

UL 61131-2

Programmable Controllers – Part 2: Equipment Requirements and Test

Equipment Requirements and Tests

JIMORIN.COM. Cick to view the full Polit of 131.22021

JUNE 10, 2021 - UL61131-2 tr1

UL Standard for Safety for Programmable Controllers – Part 2: Equipment Requirements and Tests, UL 61131-2

Second Edition, Dated June 5, 2008

Summary of Topics

This revision of ANSI/UL 61131-2 dated June 10, 2021 is being issued to update the title page to reflect the most recent designation as a Reaffirmed American National Standard (ANS). No technical changes have been made.

Text that has been changed in any manner or impacted by UL's electronic publishing system is marked with a vertical line in the margin.

The requirements are substantially in accordance with Proposal(s) on this subject dated April 9, 2021.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form by any means, electronic, mechanical photocopying, recording, or otherwise without prior permission of UL.

UL provides this Standard "as is" without warranty of any kind, either expressed or implied, including but not limited to, the implied warranties of merchantability or fitness for any purpose.

In no event will UL be liable for any special, incidental consequential, indirect or similar damages, including loss of profits, lost savings, loss of data, or any other damages arising out of the use of or the inability to use this Standard, even if UL or an authorized UL representative has been advised of the possibility of such damage. In no event shall UL's liability for any damage ever exceed the price paid for this Standard, regardless of the form of the claim.

Users of the electronic versions of UL's Standards for Safety agree to defend, indemnify, and hold UL harmless from and against any loss, expense, liability, damage, claim, or judgment (including reasonable attorney's fees) resulting from any error or deviation introduced while purchaser is storing an electronic Standard on the purchaser's computer system.

<u>tr2</u> JUNE 10, 2021 - UL61131-2

No Text on This Page

ULMORM.COM. Click to view the full POF OF ULL 61/31/22021

JUNE 5, 2008

(Title Page Reprinted: June 10, 2021)

1

UL 61131-2

Standard for Programmable Controllers - Part 2: Equipment Requirements

and Tests

First Edition - Not Printed

Second Edition

June 5, 2008

This ANSI/UL Standard for Safety consists of the Second Edition including revisions through June 10, 2021.

The most recent designation of ANSI/UL 61131-2 as a Reaffirmed American National Standard (ANS) occurred on June 10, 2021. ANSI approval for a standard does not include the Cover Page, Transmittal Pages, Title Page, or Preface. The National Difference Page and IEC Foreword are also excluded from the ANSI approval of IEC-based standards.

Comments or proposals for revisions on any part of the Standard may be submitted to UL at any time. Proposals should be submitted via a Proposal Request in UL's On-Line Collaborative Standards Development System (CSDS) at https://csds.ul.com

UL's Standards for Safety are copyrighted by UL. Neither a printed nor electronic copy of a Standard should be altered in any way. All of UL's Standards and all copyrights, ownerships, and rights regarding those Standards shall remain the sole and exclusive property of UL.

COPYRIGHT © 2021 UNDERWRITERS LABORATORIES INC.

No Text on This Page

ULTORIN.COM. Click to view the full POF OF ULL 61/31/22021

CONTENTS

Prefac	e (UL)	7
NATIO	NAL DIFFERENCES	•
NATIO	NAL DIFFERENCES	9
EODEN	VORD	44
FORE	VORD	11
INTPO	DUCTION	12
IIV I INO	DOCTION	13
1	General	15
'	1.1 Scope and object	
	1 1DV Modification to Paragraph 4 of 1.1	15
	1 101DV Addition of the following to 1 1:	16
	1.1DV Modification to Paragraph 4 of 1.1: 1.101DV Addition of the following to 1.1: 1.2 Compliance with this standard	16
	1.2DV Modification to Clause 1.2:	17
	1.3 Normative references	1 /
	1.102DV Additions to 1.3:	19
2	Type tests	19
	Type tests	20
	2.1 Equipment to be tested (equipment under test/EUT)	20
	2.2 Special features for immunity and EMC tests	21
	Special features for immunity and EMC tests Withstand test conditions Verification procedure	22
	2.4 Verification procedure	22
	2.5 Requirements for test programmes and proper functioning verification procedures	00
	(PFVPs) to be provided by the manufacturer	
2	2.6 General conditions for tests	
3 4	Terms and definitions Normal service conditions and requirements	
4	4.1 Climatic conditions and requirements	
	4.1 Climatic conditions and requirements	30
	4.2DV Modification to 4.2	31
	4.3 Transport and storage conditions and requirements	
	4.3DV Modification to 4.3:	32
	4.4 Electrical service conditions and requirements	
	4.4DV Modification to 4.4:	
	4.5 Special conditions and requirements	
	4.5DV Modification to 4.5:	
5	Functional requirements	
	5DV Modification to 5:	36
	5 1 Functional power supply and memory back-up requirements	36
	5.2 Digital I/Os	
	5.3 Analogue I/Os	
	5.4 Communication interface requirements	
	5.5 Main processing unit(s) and memory(ies) of the PLC-system requirements	
	5.6 Remote input/output stations (RIOSs) requirements	
	5.7 Peripherals (PADTs, TEs, HMIs) requirements	
	5.8 PLC-system self-tests and diagnostics requirements	
	5.9 Functional earthing	
	5.10 Mounting requirements	
	5.11 General marking requirements	
	5.12 Requirements for normal service and functional type tests and verifications	
6	5.13 Requirements for information on normal service and function	
U	6DV Modification of <u>6</u> :	
	0D v infomitation of <u>v.</u>	52

	6.1 Climatic tests	
	6.2 Mechanical tests	54
	6.3 Verification of special functional requirements for power ports and memory back-up –	
	Special immunity limits for power ports	
	6.4 Verification of input/output requirements	
	6.5 Verification of communication interface requirements	
	6.6 Verification of MPU requirements	
	6.7 Verification of remote I/O stations	
	6.8 Verification of peripheral (PADTs, TEs, HMIs) requirements	66
	6.9 Verification of PLC-system self-tests and diagnostics	66
	6.10 Verification of markings and manufacturer's documentation	66
7	General information to be provided by the manufacturer	
	7DV Modification of 7:	66
	7.1 Information on type and content of documentation	66
	7.2 Information on compliance with this standard	67
	7.2 Information on compliance with this standard 7.3 Information on reliability 7.4 Information on other conditions 7.5 Information on shipping and storage 7.6 Information on a.c. and d.c. power supply	67
	7.4 Information on other conditions	67
	7.5 Information on shipping and storage	67
	7.6 Information on a c. and d.c. power supply	68
	7.7 Information on digital inputs (current sinking)	68
	7.8 Information on digital outputs for alternating currents (current sourcing)	60 60
	7.9 Information on digital outputs for direct current (current sourcing)	
	7.10 Information on analogue inputs	71
	7.11 Information on analogue outputs	7
	7.12 Information on main processing unit(s) and memory(ies) of the PLC-system	
	7.14 Information on remote input/output stations (RIOSs)	
	7.15 Information on peripherals (PADTs, NEs, HMIs)	
_	7.16 Information on self-tests and diagnostics	
8	Electromagnetic compatibility (EMC) requirements	
	8DV Modification of 8:	
	8.1 General	/5
	8.2 Emission requirements C	
	8.3 EMC immunity requirements	
	8.4 Requirements for EMC tests and verifications	
	8.5 Requirements for information on EMC	
9	Electromagnetic compatibility (EMC) type tests and verifications	
	9DV Modification of <u>9</u> :	
	9.1 Electromagnetic compatibility-related tests	82
	9.2 Test environment	
	9.3 Measurement of radiated interference	83
	9.4 Measurement of conducted interference	
	9.5 Electrostatic discharge	
	9.6 Radiofrequency electromagnetic field – Amplitude modulated	85
	9.7 Power-frequency magnetic fields	85
	9.8 Fast transient bursts	
	9.9 High-energy surges	86
	9.10 Conducted radiofrequency interference	
	9.11 Damped oscillatory wave (for zone C only)	
	9.12 Voltage drops and interruptions – Power port type tests and verifications	
10	Electromagnetic compatibility (EMC) information to be provided by the manufacturer	
-	10DV Modification of 10:	
11	Safety requirements	
• •	11.1 Protection against electrical shock	
	11.1DV Modification of 11.1:	
	11.101DV Addition to 11.1:	

	11.2 Protection against the spread of fire	97
	11.3 Limited power circuits	
	11.3DV.1 Modification of 11.3:	98
	11.3DV.2 Modification of Table 45 and Table 46:	99
	11.4 Clearance and creepage distances requirements	99
	11.5 Flame-retardant requirements for non-metallic materials	105
	11.6 Temperature limits	108
	11.6DV Modification to 11.6 by adding the following:	109
	11.7 Enclosures	
	11.8 Field-wiring terminals constructional requirements	112
	11.8DV.1 Modification to 11.8:	
	11.8DV.2 Modification to 11.8:	
	11.9 Provisions for protective earthing	113
	11.102DV Addition: 11.10 Wiring	113
	11.10 Wiring	114
	11.11 Switching devices	115
	11.12 Components	116
	11.12DV Modification to <u>11.12</u> :	116
	11.13 Battery requirements	116
	11.14 Maximum voltage and minimum voltage	116
	11.15 Markings and identification.	11 /
	11.15DV Modify 11.15 by adding the following requirements:	
	11.16 Requirements for safety type tests and verifications	
	11.16DV Modification of 11.16:	
	11.17 Requirements for safety routine tests and verifications	
,	11.18 Requirements for information on safety	
-	Safety type tests and verifications 12.101DV Addition:	I∠ാ 123
	12.1 Safety-related mechanical tests and verifications	
	12.2 Safety-related electrical tests	
	12.3 Single-fault condition test-General	120
	Safety routine tests	
'	13DV Modify 13 by indicating the following:	
	13.1 Dielectric withstand test	
	13.1DV Modify 13.1(1) second paragraph as follows:	
	13.2 Dielectric withstand verification test	
	13.3 Protective earthing test.	
Ļ	Safety information to be provided by the manufacturer	
	14.1 Information on evaluation of enclosures for open equipment (power dissipation)	
	14.1DV Modify 14.1 to indicate the following:	
	14.2 Information on mechanical terminal connection	
	14.2DV Modify 14.2 by adding the following:	
x A	14.2DV Modify 14.2 by adding the following:	1

Anne

Annex C (normative) Test tools

C.1	Jointed test finger	141
C.2	Test pins	142
	Annex CDV Modification to Annex C:	144

Annex D (informative) Zone C – EMC immunity levels

Annex E (informative) Overvoltage example

Bibliography

(NEC)	
Annex DVA Addition:	149
Annex DVB (informative) Component Reference Standards	
Annex DVB Addition:	153
Annex DVC (normative) IEC to USA Standard references	
Annex DVC Addition:	154
Annex DVD (normative) Secondary Circuits and Circuits Supplied by Battery	
Annex DVD Addition:	157
Annex DVE (normative) Enclosures for use with Industrial Control Equipment	
Annex DVE Addition:	165 165
Annex DVF (normative) Additional requirements for devices with integrally connected cables	
Annex DVF Addition:	179
' HOK	

Preface (UL)

This UL Standard is based on IEC Publication 61131-2: second edition Programmable Controllers – Part 2: Equipment Requirements and Tests, as revised by Corrigendum 1, March 2004. IEC publication 61131-2 is copyrighted by the IEC.

Efforts have been made to synchronize the UL edition number with that of the corresponding IEC standard with which this standard is harmonized. As a result, one or more UL edition numbers have been skipped to match that of the IEC edition number.

These materials are subject to copyright claims of IEC and UL. No part of this publication may be reproduced in any form, including an electronic retrieval system, without the prior written permission of UL. All requests pertaining to the Programmable Controllers – Part 2: Equipment Requirements and Tests, UL 61131-2 Standard should be submitted to UL.

Note – Although the intended primary application of this Standard is stated in its Scope, it is important to note that it remains the responsibility of the users of the Standard to judge its suitability for their particular purpose.

No Text on This Page

ULTORIN.COM. Click to view the full POF OF ULL 61/31/22021

NATIONAL DIFFERENCES

GENERAL

National Differences from the text of International Electrotechnical Commission (IEC) Publication 61131-2, Programmable Controllers – Part 2: Equipment Requirements and Tests, copyright February 2003 as revised March 2004 are indicated by notations (differences) and are presented in bold text.

There are five types of National Differences as noted below. The difference type is noted on the first line of the National Difference in the standard. The standard may not include all types of these National Differences.

- **DR** These are National Differences based on the **national regulatory requirements**.
- **D1** These are National Differences which are based on **basic safety principles** and **requirements**, elimination of which would compromise safety for consumers and users of products.
- **D2** These are National Differences from IEC requirements based on existing **safety practices**. These requirements reflect national safety practices, where empirical substantiation (for the IEC or national requirement) is not available or the text has not been included in the IEC standard.
- **DC** These are National Differences based on the **component standards** and will not be deleted until a particular component standard is harmonized with the IEC component standard.
- **DE –** These are National Differences based on **editorial comments or corrections**.

Each national difference contains a description of what the national difference entails. Typically one of the following words is used to explain how the text of the national difference is to be applied to the base IEC text:

Addition / **Add** - An addition entails adding a complete new numbered clause, subclause, table, figure, or annex. Addition is not meant to include adding select words to the base IEC text.

Modification / Modify - A modification is an altering of the existing base IEC text such as the addition, replacement or deletion of certain words or the replacement of an entire clause, subclause, table, figure or annex of the base IEC text.

Deletion / Delete A deletion entails complete deletion of an entire numbered clause, subclause, table, figure, or annex without any replacement text.

No Text on This Page

ULTORIN.COM. Click to view the full POF OF ULL 61/31/22021

FOREWORD

INTERNATIONAL ELECTROTECHNICAL COMMISSION

PROGRAMMABLE CONTROLLERS - Part 2: Equipment requirements and tests

- 1) The IEC (International Electrotechnical Commission) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of the IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, the IEC publishes International Standards. Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. The IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of the IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested National Committees.
- 3) The documents produced have the form of recommendations for international use and are published in the form of standards, technical reports or guides and they are accepted by the National Committees in that sense.
- 4) In order to promote international unification, IEC National Committees undertake to apply IEC International Standards transparently to the maximum extent possible in their national and regional standards. Any divergence between the IEC Standard and the corresponding national or regional standard shall be clearly indicated in the latter:
- 5) The IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with one of its standards.
- 6) Attention is drawn to the possibility that some of the elements of this international Standard may be the subject of patent rights. The IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 61131-2 has been prepared by subcommittee 65B: Devices, of IEC technical committee 65: Industrial-process measurement and control.

This second edition of IEC 61131-2 cancels and replaces the first edition published in 1992 and constitutes a technical revision.

The text of this standard is based on the following documents:

Fbis	Report on voting
65B/470A/FDIS	65B/481/RVD

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

IEC 61131 consists of the following parts under the general title *Programmable controllers*:

Part 1: General information

Part 2: Equipment requirements and tests

Part 3: Programming languages

Part 4: User guidelines

- Part 5: Communications
- Part 6: Reserved
- Part 7: Fuzzy control programming
- Part 8: Guidelines for the application and implementation of programming languages

The committee has decided that the contents of this publication will remain unchanged until 2007. At this date, the publication will be

- reconfirmed;
- · withdrawn;
- replaced by a revised edition, or
- amended.

A bilingual version of this standard may be issued at a later date.

101DV.1 DE Addition to IEC Foreword notes:

Annexes DVA, DVB, DVC, DVD, DVE, and DVF form an integral part of this standard.

INTRODUCTION

This part of IEC 61131 constitutes Part 2 of a series of standards on programmable controllers and the associated peripherals and should be read in conjunction with the other parts of the series.

Where a conflict exists between this and other IEC standards (except basic safety standards), the provisions of this standard should be considered to govern in the area of programmable controllers and their associated peripherals.

Compliance with Parts 1 and 2 of this standard cannot be claimed unless the requirements of $\frac{7.2}{1.2}$ of this part are met.

Service and physical environment requirements are specified in Clause 4. Functional requirements are specified in Clause 5. Electromagnetic compatibility requirements are specified in Clause 8. Safety requirements are specified in Clause 11.

Terms of general use are defined in Part 1 of this standard. More specific terms are defined in each part.

No Text on This Page

ULTORIN.COM. Click to view the full POF OF ULL 61/31/22021

PROGRAMMABLE CONTROLLERS – Part 2: Equipment requirements and tests

1 General

1.1 Scope and object

This Part of IEC 61131 specifies requirements and related tests for programmable controllers (PLC) and their associated peripherals (for example, programming and debugging tools (PADTs), human-machine interfaces (HMIs), etc.) which have as their intended use the control and command of machines and industrial processes.

PLCs and their associated peripherals are intended to be used in an industrial environment and may be provided as open or enclosed equipment. If a PLC or its associated peripherals are intended for use in other environments, then the specific requirements, standards and installation practices for those other environments must be additionally applied to the PLC and its associated peripherals.

This standard also applies to any products performing the function of PLCs and/or their associated peripherals.

Equipment covered in this standard is intended for use in overvoltage category II (IEC 60664-1) in low-voltage installations, where the rated mains supply voltage does not exceed a.c. 1 000 V r.m.s. (50/60 Hz), or d.c. 1 500 V. (If PLCs or their associated peripherals are applied in overvoltage category III installations, then additional analysis will be required to determine the suitability of the equipment for those applications.)

1.1DV DR Modification to Paragraph 4 of 1.1:

Equipment operating at more than 600 V is considered as high voltage equipment with respect to the requirements in the National Electrical Code.

This standard does not deal with the functional safety or other aspects of the overall automated system. PLCs, their application programme and their associated peripherals are considered as components of a control system.

Since PLCs are component devices, safety considerations for the overall automated system including installation and application are beyond the scope of this standard. However, PLC safety as related to electric shock and fire hazards, electrical interference immunity and error detecting of the PLC-system operation (such as the use of parity checking, self-testing diagnostics, etc.), are addressed. Refer to IEC 60364 or applicable national/local regulations for electrical installation and guidelines.

The object of this standard is

- to establish the definitions and identify the principal characteristics relevant to the selection and application of PLCs and their associated peripherals;
- to specify the minimum requirements for functional, electrical, mechanical, environmental and construction characteristics, service conditions, safety, EMC, user programming and tests applicable to PLCs and the associated peripherals.

This Part also specifies

- a) service, storage and transportation requirements for PLCs and their associated peripherals (Clause $\underline{4}$);
- b) functional requirements for PLCs and their associated peripherals (Clause 5);
- c) EMC requirements for PLCs and their associated peripherals (Clause 8);
- d) safety requirements for PLCs and their associated peripherals (Clause 11);
- e) information that the manufacturer is required to supply (Clauses $\frac{7}{10}$, and $\frac{14}{10}$);
- f) test methods and procedures that are to be used for the verification of compliance of PLCs and their associated peripherals with the requirements (Clauses 6, 9, and 12).

The tests are type tests or production routine tests, and not tests related to the ways PLC systems are applied.

1.101DV DR Addition of the following to 1.1:

This equipment is intended for installation in accordance with the National Electrical Code (NEC) for use in ordinary locations. Requirements based on the NEC are found in Annex DVA of this document.

1.2 Compliance with this standard

When compliance with this Part of IEC 6113 D is indicated without qualification, compliance with all clauses, including all tests and verifications required in this part, must be verified. Moreover, the manufacturer's obligations expressed in this part are not waived if no type test is required, or if the test conditions are restricted for practical reasons.

When compliance with some portion of this Part of IEC 61131 is indicated, it is only necessary to verify compliance with those clauses against which the compliance claim is made. The manufacturer's obligations as indicated above are still applicable. The smallest unit of this part for compliance purposes shall be a clause, such as Clauses 5, 8 or 11.

Compliance with a portion of this Part of IEC 61131 is provided to facilitate efforts with respect to particular conformity assessment requirements (for example, Clause <u>8</u> as the compliance requirement for the EU electromagnetic compatibility directive or Clause <u>11</u> as the compliance requirement for the EU low-voltage directive).

Compliance with constructional requirements and with requirements for information to be provided by the manufacturer shall be verified by suitable examination, visual inspection and/or measurement.

All requirements not tested according to the clauses on tests and verifications shall be verifiable under a procedure to be agreed to by the manufacturer and the user.

It is the manufacturer's responsibility to ensure that delivered PLC equipment and associated peripherals are equivalent to the sample (s) which have been type-tested according to this Part of IEC 61131 and therefore that they comply with all requirements of this part.

Significant modifications shall be indicated through the use of suitable revision level indexes and markings (see 5.11 and 11.15) and shall comply with this Part of IEC 61131.

NOTE A new type test may be required to confirm compliance.

Where the manufacturer is allowed to select among several options, he shall clearly specify in his catalogues and/or datasheets those to which any portion of the PLC-system equipment complies. This applies to severity classes of voltage drops (i.e. PS1 or PS2) and types of digital inputs (i.e. Type 1 or Type 3).

1.2DV DR Modification to Clause 1.2:

This clause is considered informative.

1.3 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60068-2-1:1990, Environmental testing – Part 2: Tests – Tests A: Cold

IEC 60068-2-2:1974,

Environmental testing - Part 2: Tests - Tests B: Dry heat

IEC 60068-2-6:1995,

Environmental testing – Part 2: Tests – Test Fc. Vibration (sinusoidal)

IEC 60068-2-14:1984,

Environmental testing – Part 2: Tests – Test N: Change of temperature

IEC 60068-2-27:1987,

Environmental testing – Part 2: Tests – Test Ea and guidance: Shock

IEC 60068-2-30:1980

Environmental testing – Part 2: Tests – Test Db and guidance: Damp heat, cyclic (12 + 12-hour cycle)

IEC 60068-2-31:1969,

Environmental testing – Part 2: Tests – Test Ec: Drop and topple, primarily for equipment-type specimens

IEC 60068-2-32:1975,

Environmental testing – Part 2: Tests – Test Ed: Free fall (Procedure 1)

IEC 60364 (all parts),

Electrical installations of buildings

IEC 60417 (all parts),

Graphical symbols for use on equipment

IEC 60529:1989,

Degrees of protection provided by enclosures (IP Code)

IEC 60664-1:1992.

Insulation coordination for equipment within low-voltage systems – Part 1: Principles, requirements and tests

IEC 60664-3:1992,

Insulation coordination for equipment within low-voltage systems – Part 3: Use of coatings to achieve insulation coordination of printed board assemblies

IEC 60695-2-1 (all sheets),

Fire hazard testing - Part 2: Test methods - Section 1: Glow-wire test and methods

IEC 60707:1999,

Flammability of solid non-metallic materials when exposed to flame sources – List of test methods

IEC 60947-5-1:1997,

Low-voltage switchgear and controlgear – Part 5-1: Control circuit devices and switching elements – Electromechanical control circuit devices

IEC 60947-7-1:2002,

Low-voltage switchgear and controlgear – Part 7-1: Ancillary equipment – Terminal blocks for copper conductors

IEC 60950-1:2001,

Information technology equipment – Safety – Part 1: General requirements

IEC 61000-4-2:1995,

Electromagnetic compatibility (EMC) – Part 4-2: Testing and measurement techniques – Electrostatic discharge immunity test

IEC 61000-4-3:2002,

Electromagnetic compatibility (EMC) - Part 4-3: Testing and measurement techniques – Radiated radiofrequency electromagnetic field immunity test

IEC 61000-4-4:1995,

Electromagnetic compatibility (EMC) – Part 4: Testing and measurement techniques – Section 4: Electrical fast transient/burst immunity test

IEC 61000-4-5:1995,

Electromagnetic compatibility (EMC) – Part 4-5: Testing and measurement techniques – Surge immunity test

IEC 61000-4-6:1996,

Electromagnetic compatibility (EMC) – Part 4-6: Testing and measurement techniques – Immunity to conducted disturbances induced by radio-frequency fields

IEC 61000-4-8:1993,

Electromagnetic compatibility (EMC) – Part 4-8: Testing and measurement techniques – Power frequency magnetic field immunity test

IEC 61000-4-12:1995,

Electromagnetic compatibility (EMC) – Part 4-12: Testing and measurement techniques – Oscillatory waves immunity test

IEC 61010-1:2001.

Safety requirements for electrical equipment for measurement, control, and laboratory use – Part 1: General requirements

CISPR 11:1999,

Industrial, scientific and medical (ISM) radio-frequency equipment – Electromagnetic disturbance characteristics – Limits and methods of measurement

CISPR 16-1:1999.

Specification for radio disturbance and immunity measuring apparatus and methods – Part 1: Radio disturbance and immunity measuring apparatus

CISPR 16-2:1999,

Specification for radio disturbance and immunity measuring apparatus and methods — Part 2: Methods of measurement of disturbances and immunity

- 1.102DV D2 Additions to 1.3:
- 1.102DV.1 A component of a product covered by this standard shall comply with the requirements for that component. See Annex <u>DVB</u> for a list of standards covering components used in the products covered by this standard.
- 1.102DV.2 A component is not required to comply with a specific requirement that:
 - a) Involves a feature or characteristic not required in the application of the component in the product covered by this standard, or
 - b) Is superseded by a requirement in this standard.
- 1.102DV.3 A component shall be used in accordance with its rating established for the intended conditions of use.
- 1.102DV.4 Specific components are incomplete in construction features or restricted in performance capabilities. Such components are intended for use only under limited conditions, such as certain temperatures not exceeding specified limits, and shall be used only under those specific conditions.
- 1.102DV.5 See Annex <u>DVC</u> for Normative References that replace IEC Normative References.

2 Type tests

The object of this clause is to define how to verify compliance of the PLC and the associated peripherals with the requirements set forth in this part of IEC 61131. This compliance verification includes

- verification by type tests given in Clauses 6, 9 and 12,
- verification by suitable examination, visual inspection or/and measurement.

These tests are qualification tests, and not tests related to the ways PLCs are employed. According to the scope of this standard, the above compliance verification may not cover the verification of the ability of the PLC-system to satisfy the intended automated system requirements. Where needed, special tests, not covered by this standard, shall be agreed to by the manufacturer and the user.

In addition, routine tests are specified in Clause 13.

NOTE Peripherals, used in the same environment as the PLC-system, must meet the same requirements as the PLC-system.

2DV D2 Modification to Clause 2:

This clause and all its subclauses are informative.

2.1 Equipment to be tested (equipment under test/EUT)

PLC-systems span the range from stand-alone products to modular designs; this leads to an infinite variety of user-built actual PLC-system configurations. For obvious practical reasons, in most cases type tests cannot be conducted on EUT identical to user-built PLC-systems, and engineering judgement is necessary. Therefore, the manufacturer is required to define the EUTs and document the corresponding test plan and test programmes to meet the following principles.

Combination of tests/EUTs/test programmes shall be such that one may reasonably think that any configuration built by the user according to the manufacturer's specifications and installation instructions would pass satisfactorily the same tests, and will properly function in normal operation, which these tests are intended to reflect.

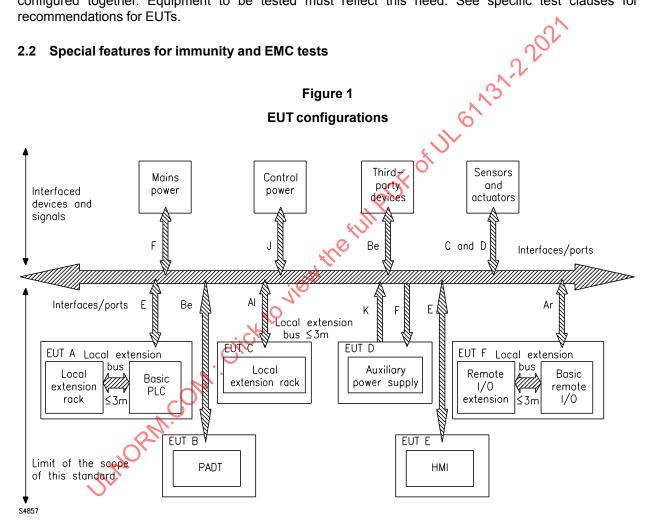
Unless otherwise specified in this standard, the manufacturer may elect to use various EUTs to achieve the objectives of a given type test.

If an EUT representing a basic PLC or a remote I/Os (RIOS) is of modular structure, it shall fulfil the following minimum requirement.

All types of modules shall be represented in 1 or several EUT configurations in which any mix of modules is permissible.

All types of modules shall be configured in the EUTs and tested at least once.

NOTE It may be appropriate to consider statistical criteria based on samples, for a large number of I/Os (for example, >100).


If there are too many families to be included into a single EUT, the manufacturer will define several EUTs.

- For the type test of a family with very similar modules (i.e. modules using the same schematic and basic manufacturing and differing mainly by, for example, the number of inputs and outputs), the manufacturer may elect to include in the basic PLC-system only 1 arbitrarily chosen member of the family. If the type test is dependent on the differences between the modules, then a single family member may not be used.
- Appropriate catalogued options, such as power supply units, application memory(ies), processing unit(s) etc. shall be used to build the relevant EUT(s).
- If a local bus extension is part of the PLC-system and if its maximum cable length cable is less than, or equal to, 3 m, it is considered to be an internal PLC bus. As such, it should not be considered a port for test.
- If a local bus extension is part of the PLC-system and is capable of driving cables with a length of
 3 m, then only 1 end of the link is part of the EUT and it is considered as a communication port.

When new units/modules are introduced after initial release of a PLC-system catalogue, which has already been satisfactorily tested according to this standard, EUT(s) simpler than those originally used can be defined. This is only permissible if such EUTs and the associated test programmes provided by the manufacturer allow proper verification as if these new units/modules had been tested within the originally tested EUTs.

Unless otherwise specified in this standard, the manufacturer may elect either that each type test be conducted on a new EUT or that several type tests be performed successively on the same EUT.

Certain tests can be easily targeted at a single item, others are more appropriate to a set of items configured together. Equipment to be tested must reflect this need. See specific test clauses for recommendations for EUTs.

Each subpart of the PLC-system as shown in <u>Figure 2</u> may constitute an EUT represented in <u>Figure 1</u> as EUT A, B, C, D, E and/or F. To exercise the different ports of each EUT, the manufacturer may define subsystems and the different EUTs are tested in turn.

Only 1 subsystem is under test at any time, the others being considered as auxiliary equipment.

For instance, to achieve a given test on the EUT A, equipment of the other EUTs may be connected but are not in the test bed.

For example, to check the electrical interference immunity of the PLC-system, the manufacturer may choose between the following, as applicable:

- to build a single global EUT including the PADT/TE/RIOSs, and check the whole configuration; or
- to define a suite of simpler EUTs (for example, a PLC-system without any PADT/TE/RIOS, and a single PADT and a single RIOS and a single PADT and a single TE, or any other suite of partial combinations of them which make sense) but correspondingly exercise the appropriate ports of each EUT with an equipment part of the test bed (the laboratory equipment necessary to test the EUT) as would do the missing PADT/TE/RIOSs. For practical reasons, the manufacturer may elect to use actual PADTs/TEs/RIOSs to exercise the EUT ports.

At least 1 of each type or a representative number of I/O ports of the EUT must be connected and be functional.

A selection of the representative functional modes shall be made considering that only the most typical functions of the PLC can be tested.

2.3 Withstand test conditions

In general, the module which is in the manufacturer's catalogue should be tested alone, providing that mixing several modules does not affect the result of the test. Refer to those clauses dealing with withstand tests for specifics.

2.4 Verification procedure

Type tests shall be conducted on the EUT(s) defined in 2.1, unless otherwise specified.

For each test, the manufacturer shall

- specify how this configuration shall be installed and externally connected;
- provide the suitable test programmes which shall be run during the test;
- provide the proper operation verification procedure including the way to measure accuracy and temporary deviations of analogue I/Os.

The appropriate test programmes and proper functioning verification procedures provided by the manufacturer shall satisfy the requirements given in 2.5.

2.5 Requirements for test programmes and proper functioning verification procedures (PFVPs) to be provided by the manufacturer

During the type tests, there shall be no

- destruction of hardware, unless required by the test;
- modification of the operating system and test programmes and/or alteration of their execution:
- unintended modification of system and application data stored or exchanged;
- erratic or unintended behaviour of the EUT;
- deviation of the analogue I/Os out of the limits specified in item 4 of 7.10.2 and item 3 of 7.11.2.

All relevant functions and parts of the EUT (i.e. units and modules) shall be functioning in such a way that the information paths to/from these functions and parts are exercised.

All the I/O and communication channels of the EUT shall be exercised.

NOTE It is acceptable to apply statistical criteria based on samples, for large number of I/Os, etc. (for example, >100).

All external and internal product status information reporting means, such as displays, lamps, alarm signals, self-test result registers, shall be exercised. The test procedures shall include conditions to verify the related activities.

All various PLC-system operation modes significant for the user's implementation such as start-up and shut-down, cold/warm/hot restart, "normal run", "normal stop", "programme/monitor with PADTs", etc., as applicable, shall be verified for performance and behaviour.

Initialization and reset conditions of all system components shall be checked for controlled start-up and shut-down. The various modes, such as "run", "programme", "monitor", shall be verified for performance and behaviour.

Any special feature/performance not covered in this standard but necessary for the proper operation of the basic PLC-system shall be exercised and tested.

2.6 General conditions for tests

The tests shall be carried out in accordance with the appropriate test procedure.

The tests shall be carried out under the general test conditions given in <u>Table 1</u>, unless otherwise specified.

Unless otherwise specified, no sequence is imposed for type tests.

Table 1
General conditions for tests

.0	Test conditions
Mains power supply	Rated voltage and frequency
Temperature	15 °C to 35 °C
Relative humidity	≤75 %
Barometric pressure	86 kPa to 106 kPa (650 mm Hg to 800 mm Hg)
Output loads	Outputs loaded to rated load
Pollution	Pollution degree 2

3 Terms and definitions

For the purposes of this Part of IEC 61131, the following terms and definitions, in addition to those given in IEC 61131-1, apply.

3.1 **analogue input**: device which converts a continuous signal to a discretely valued multi-bit binary number, for use by the PLC-system

- 3.2 **analogue output**: device which converts a multi-bit binary number from the PLC-system to a continuous signal
- 3.3 **accessible**: able to be touched by the jointed test finger or test pin, when installed as intended. See 12.1.2, 12.1.3 and Annex C
- 3.4 **basic PLC (-system)**: configuration which consists, at a minimum, of a processing unit, power supply and I/O. See Figure 2.
- 3.5 battery: electrochemical energy source which may be rechargeable or non-rechargeable
- 3.6 **clearance**: shortest distance in air between two conductive parts

[IEC 60664-1]

3.7 **coating, protective**: covering of suitable insulating material that encloses the clearance and/or creepage distance of the printed wiring board and conforms to the surface of the board in such a manner that the environment is excluded and the clearance and/or creepage distance can withstand the required impulse and continuous potential

NOTE Coating is normally applied to exclude the effects of atmosphere and to increase the dielectric properties of the clearance and/or creepage distances that would not normally be adequate without coating. A less effective coating may exclude the atmosphere, but cannot be relied on to enhance the dielectric properties.

3.8 **comparative tracking index (CTI)**: numerical value of the maximum voltage at which a material withstands 50 drops of NH₄Cl solution (ammonia chloride) without tracking.

[IEC 60112]

3.9 **creepage distance**: shortest distance along the surface of the insulating material between two conductive parts

[IEV 60151-15-50]

- 3.10 **current sinking**: property of receiving current
- 3.11 **current sourcing**: property of supplying current.
- 3.12 **digital input, type 1**: device for sensing signals from mechanical contact switching devices, such as relay contacts, push-buttons, switches, etc. Converts an essentially two-state signal to a single-bit binary number

NOTE Type 1 digital inputs may not be suitable for use with solid-state devices such as sensors, proximity switches, etc.

3.13 **digital input, type 2**: device for sensing signals from solid-state switching devices such as 2-wire proximity switches. Converts an essentially 2-state signal to a single-bit binary number

NOTE 1 Two-wire proximity switches described here are designed to IEC 60947-5-2.

NOTE 2 This class could also be used for Type 1 or Type 3 applications.

3.14 **digital input, type 3**: device for sensing signals from solid-state switching devices such as 2-wire proximity switches. Converts an essentially 2-state signal to a single-bit binary number

NOTE 1 This class could also be used for Type 1 applications.

NOTE 2 Type 3 digital inputs offer lower power characteristics then Type 2 digital inputs. Generally, this allows much higher input channel densities per module or product. Type 3 differs from Type 2 in that it is compatible with those IEC 60947-5-2 devices that offer low current in the off state. See <u>Table 7</u> for details of operating ranges. Proximity switch compatibility is such that a high percentage of proximity switches having Type 2 compatibility will also have Type 3 compatibility.

- 3.15 digital output: device which converts a single-bit binary number to a 2-state signal
- 3.16 **earth**: conducting mass of the Earth, whose electric potential at any point is conventionally taken as zero
- 3.17 **EMC** (electromagnetic compatibility): ability of an equipment or system to function satisfactorily in its electromagnetic environment without introducing intolerable electromagnetic disturbances to anything in that environment

[IEV 60161-01-07]

- 3.18 **enclosed equipment**: equipment which is enclosed on all sides with the possible exception of its mounting surface to prevent personnel from accidentally touching live of moving parts contained therein and to protect the equipment against ingress of medium-size solid foreign bodies, and meeting requirements of mechanical strength, flammability, and stability (where applicable). Protection degree must be \geq IP20
- 3.19 **enclosure**: housing affording the type and degree of protection suitable for the intended application

[IEV 60195-02-35]

3.20 **equipment class**: class numbers designate the means by which electric shock protection is maintained in normal condition and single-fault conditions of the installed equipment

[IEC 61140]

- 3.21 **equipment under test (EUT)**: representative configuration (s), as defined by the manufacturer, used for type tests (see Clause 2)
- 3.22 external wiring: wiring of the PLC-system equipment, which is installed by the user
- 3.23 **field wiring** external wiring
- 3.24 **functional earthing conductor**: conductor that is in electrical contact with, for example, Earth, for purposes of interference immunity improvement
- 3.25 **hand-held equipment**: equipment which is intended to be held in one hand while being operated with the other hand
- 3.26 **hazardous live**: capable of rendering an electric shock or electric burn in normal condition or single-fault condition.

NOTE See 11.1.1.1 for values applicable to normal condition and 11.1.1.2 for the values applicable to single-fault condition.

3.27 **immunity (to a disturbance)**: ability of a device, equipment or system to perform without degradation in the presence of an electromagnetic disturbance

[IEV 60161-01-20]

NOTE Not used exclusively to refer to EMC in this standard. It may also refer, for example, to vibration, humidity, etc.

3.28 **immunity type test (immunity test)**: type test verifying that the basic PLC-system operation is not altered by the application of specified influencing quantities that are intended to approximate normal operation

3.29 insulation:

NOTE 1 Insulation can be a solid, a liquid, a gas (for example, air), or any combination. [IEV 60151-03-30]

NOTE 2 (To) insulate - To prevent conduction between separate conductive bodies. [IEV 60151-03-28]

NOTE 3 (To) isolate - To disconnect completely a device or circuit from other devices or circuits.

To provide (by separation) a specified degree of protection from any live circuit. [IEV 60151-03-29]

3.29.1 **basic insulation**: insulation of hazardous live parts, which provides basic protection against electric shock under fault-free conditions

[IEV 60195-06-06 and IEV 60195-06-01]

NOTE This concept does not apply to insulation used exclusively for functional purposes. Such insulation is referred to as functional insulation.

3.29.2 double insulation: insulation comprising both basic insulation and supplementary insulation

[IEV 60195-06-08]

3.29.3 **reinforced insulation**: insulation of hazardous live parts which provides a degree of protection against electric shock equivalent to double insulation

NOTE Reinforced insulation may comprise several layers which cannot be tested singly as basic or supplementary insulation.

[IEV 60195-06-09]

3.29.4 **supplementary insulation**: independent insulation applied in addition to basic insulation, for fault protection

[IEV 60195-06-07]

- 3.30 **interface**: shared boundary between a considered system and another system, or between parts of a system, through which information or electrical energy is conveyed
- 3.31 **internal wiring**: wiring which is inside the PLC-system equipment, which is installed by the manufacturer
- 3.32 isolated (devices, circuits): devices or circuits without galvanic connection between them
- 3.33 **live part**: conductor or conductive part intended to be energized in normal operation, including a neutral conductor, but by convention not a PEN conductor or PEM conductor or PEL conductor

NOTE 2 PEN conductor – conductor combining the functions of both a protective earthing conductor and a neutral conductor. [IEV 60195-02-12]

NOTE 3 PEM conductor – conductor combining the functions of a protective earthing conductor and a mid-point conductor. [IEV 60195-02-13]

NOTE 4 PEL conductor – conductor combining the functions of both a protective earthing conductor and a line conductor. [IEV 60195-02-14]

[IEV 60195-02-19]

- 3.34 **mains power supply**: power from the conductors/mains of the permanent installation of the building at the supply voltage to the PLC-system
- 3.35 **material group**: classification of insulating materials in terms of comparative tracking index (CTI) range (see <u>11.4.3</u>)
- 3.36 **micro-environment**: ambient conditions which surround the clearance or creepage distance being reviewed

NOTE The micro-environment of the clearance or creepage distance and not the environment of the equipment determines the effect of the insulation. The micro-environment may be better or worse than the environment of the equipment. It includes all factors influencing the insulation, such as climatic, electromagnetic, pollution, etc. (IEC 60664).

- 3.37 **module**: part of the PLC-system containing an identified function(s) (MPU, analogue input, etc.), which may plug into a backplane or base
- 3.38 **multi-channel module**: module containing multiple input and/or output signal interfaces. These signal interfaces could be isolated or not isolated from each other
- 3.39 **normal use**: operation, including stand-by, according to the instructions for use or for the obvious intended purpose

NOTE Normal service conditions are stated in Clause 4.

- 3.40 **normal condition**: condition in which all means for protection against hazards are intact that is, a fault-free condition
- 3.41 **open equipment**: equipment that may have live electrical parts accessible, for example, a main processing unit open equipment is to be incorporated into other assemblies manufactured to provide safety
- 3.42 **operator**: person commanding and monitoring a machine or process through an HMI connected to the PLC. The operator does not change the PLC hardware configuration, software or the application programme. A PLC is not intended for use by untrained personnel. The operator is assumed to be aware of the general hazards in an industrial environment
- 3.43 **overvoltage category (of a circuit or within an electrical system)**: classification based on limiting (or controlling) the values of prospective transient overvoltages occurring in a circuit (or within an electrical system having different nominal voltages) and depending upon the means employed to influence the overvoltages.

NOTE 1 In an electrical system, the transition from 1 overvoltage category to another of lower category is obtained through appropriate means complying with interface requirements. These interface requirements may be an overvoltage protective device or a series-shunt impedance arrangement capable of dissipating, absorbing, or diverting the energy in the associated surge current, to lower the transient overvoltage value to that of the desired lower overvoltage category.

NOTE 2 Equipment covered in this standard is intended for use in overvoltage category II.

3.44 **permanent installation**: portion of the PLC-system which is required to perform the intended application function

NOTE See Annex A.

3.45 **pollution degree (in the micro-environment)**: for the purpose of evaluating clearances and creepage distances, 3 degrees of pollution in the micro-environment are established

NOTE 1 The conductivity of a polluted insulation is due to the deposition of foreign matter and moisture.

NOTE 2 The minimum clearances given for pollution degrees 2 and 3 are based on experience rather than on fundamental data.

- 3.45.1 **pollution degree 1**: no pollution or only dry, non-conductive pollution occurs. The pollution has no influence
- 3.45.2 **pollution degree 2**: normally, only non-conductive pollution occurs. Occasionally, however, a temporary conductivity caused by condensation must be expected
- 3.45.3 **pollution degree 3**: conductive pollution occurs, or dry, non-conductive pollution occurs which becomes conductive due to condensation, which is expected
- 3.46 **port**: interface

NOTE Most commonly used with respect to EMC.

3.47 **portable equipment**: enclosed equipment that is moved while in operation or which can easily be moved from one place to another while connected to the supply

NOTE Examples are programming and debugging tools (PADTs) and test equipment (TE).

3.48 **protective conductor**: conductor provided for purposes of safety, for example, protection against electric shock

[IEV 60195-02-09]

3.49 **protective extra-low voltage (PELV) circuit**: electrical circuit in which the voltage cannot exceed a.c. 30 V r.m.s., 42,4 V peak or d.c. 60 V in normal and single-fault condition, except earth faults in other circuits.

A PELV circuit is similar to an SELV circuit that is connected to protective earth

3.50 **protective impedance**: single component regarded as fault-free, a combination of components, or a combination of basic insulation and a current- or voltage-limiting device, the impedance, construction and reliability of which are such that when connected between parts which are hazardous live and accessible conductive parts, it provides protection to the extent required by this standard in normal and single-fault condition

- 3.51 **recurring peak voltage**: peak value of a generated voltage whose characteristic is recurring at some specified period
- 3.52 **routine test**: conformity test made on each individual item during or after manufacture

[IEV 60151-16-17]

3.53 **safety extra-low voltage circuit (SELV circuit)**: electrical circuit in which the voltage cannot exceed a.c. 30 V r.m.s., 42,4 V peak or d.c. 60 V in normal and single-fault condition, including earth faults in other circuits.

An SELV circuit is not connected to protective earth

3.54 **service personnel**: person changing or repairing the PLC hardware configuration or the application programme

The service person may also install software updates provided by the manufacturer. They are assumed to be trained in the programming and operation of the PLC equipment and its use.

They are persons having the appropriate technical training and experiences necessary to be aware of hazards – in particular, electrical hazards – to which they are exposed in performing a task and of measures to minimize danger to themselves or to other persons or to the equipment.

3.55 **total output current (of an output module)**: current that a multi-channel module operating at the most adverse combination of normal operation can supply without any part of it (insulation, terminals, exposed conductive parts, etc.) exceeding the specified temperature limits

NOTE For a multi-channel module, the total output current is generally less than the sum of the output currents of the channels.

3.56 **type test**: conformity test made on one or more items representative of the production

[IEV 60151-16-16]

- 3.57 **unit**: integral assembly which may consist of modules plugged in or otherwise connected within the assembly) connected to other units within the system by means of cables for permanently installed units and cables or other means for portable units
- 3.58 **withstand type test (withstand test)**: type test verifying that the application of more severe influencing quantities to the basic PLC system does not impair its ability to assume its intended mission
- 3.59 **working voltage**: highest value of the a.c. (r.m.s) or d.c. voltage across any particular insulation which can occur when the equipment is supplied at rated voltage (U_e)

Transients are disregarded.

Both open-circuit conditions and normal use are taken into account.

4 Normal service conditions and requirements

It is the user's responsibility to ensure that the equipment service conditions are not exceeded. The PLC and PLC-system is intended to be used in an industrial environment.

The user must ensure the installation conditions match the environmental conditions given in this standard.

4.1 Climatic conditions and requirements

4.1.1 Operating ambient air temperature

The equipment shall be suitable for the operating temperature ranges given by the following <u>Table 2</u>.

Table 2
Operating ambient air temperature of PLC-systems

Temperature	Type of limit	Enclosed equipment (ventilated/non-ventilated)		Open equipment
range		Permanent installation	Non-permanent installation	Permanent installation
	Max.	40 °C	40 °C	55 °C
	Min.	5 °C	5 °C	5 °C
Average temperature over 24 h	Max.	35 °C	35°C	50 °C

For enclosed non-ventilated equipment that is cooled by natural air convection, the equipment ambient air temperature is the room temperature 1 m away from the surface of the enclosure on a horizontal plane located at the vertical mid-point of the enclosure.

For enclosed ventilated equipment, the equipment ambient temperature is the temperature of the incoming air.

For open equipment, the ambient air temperature is the temperature of the incoming air immediately below the equipment.

No forced external cooling is assumed. Open peripherals, which are intended to be permanently installed as part of the PLC-system shall meet the operating temperature range of the PLC.

Some types of equipment (for example, panel-mounted HMI, etc.) can use a combination of open and enclosed characteristics.

Requirements of this subclause are verified in accordance with 6.1.1 and 6.1.2.

4.1.1DV D2 Modification to 4.1.1:

The equipment shall be suitable for operating in a temperature range from 5°C to 25°C for both open and enclosed equipment and shall be marked in accordance with <u>Table 11.15DV.1.1</u>.

4.1.2 Relative humidity

The equipment shall be suitable for a relative humidity level from 10 % to 95 %, noncondensing.

Requirements of this subclause are verified in accordance with 6.1.3.

4.1.2DV D2 Modification to 4.1.2:

This clause is informative.

4.1.3 Altitude

The equipment shall be suitable for operation up to 2 000 m.

No test required.

4.1.4 Pollution degree

Where not otherwise specified by the manufacturer the equipment is designed for use in pollution degree 2.

4.2 Mechanical service conditions and requirements

Vibration, shock and free-fall conditions vary widely depending on the installation and environment and are very difficult to specify.

For the purpose of this standard, the service conditions are indirectly defined by the following requirements which apply to fixed equipment as well as to unpackaged portable and handheld equipment (see exceptions in 4.2.2). They do not apply to equipment containing assemblies other than PLC-systems and/or associated peripherals.

Experience shows that equipment meeting these requirements is suitable for industrial use on stationary installations.

Fixed equipment is that which is part of the permanent installation.

4.2DV D2 Modification to 4.2:

This clause and its subclauses are informative.

4.2.1 Vibrations

Immunity requirements are:

Table 3
Sinusoidal vibrations service conditions for PLC-systems

Frequency range		
Hz	Continuous	Occasional
5 ≤ <i>f</i> < 9	1,75 mm amplitude	3,5 mm amplitude
9 ≤ <i>f</i> ≤ 150	0,5 g constant acceleration	1,0 g constant acceleration

Vibration is applicable to each 3 mutually perpendicular axes.

The manufacturer shall specify the method of mounting portable and hand-held peripherals on the test equipment.

Requirements of this subclause are verified in accordance with 6.2.1.

4.2.2 Shock

Immunity requirements are occasional excursions to 15 g, 11 ms, half-sine, in each of 3 mutually perpendicular axes.

Devices containing CRTs are excluded from this requirement.

Electromechanical relays may temporarily respond to 15 g shocks. Temporary malfunctioning is allowed DF OF UL 61/31.2 during the test, but equipment should be fully functional after the test.

Requirements of this subclause are verified in accordance with 6.2.2.

4.2.3 Free falls (portable and hand-held equipment)

Immunity requirements for free falls are:

Table 4 Free fall on concrete floor for portable and hand-held equipment

	Portable and hand-held (any weight) (withstand)	Hand-held (any weight) (immunity)	Normative items
Random drops	- jie	1 000 mm; 2 trials	(1), (2), (4)
Flat drops	100 mm; 2 trials	-	(1), (4)
Supported drops	30° or 100 mm; 2 trials	-	(1), (3), (4)

⁽¹⁾ Caution: temporary malfunctioning is allowed at the impact, but equipment shall be fully functional after the test. Therefore, if equipment is operating during the fall, erroneous operation could be introduced upon impact which may require operator correction.

Requirements of this subclause are verified in accordance with 6.2.3.

4.3 Transport and storage conditions and requirements

The following requirements apply to PLC units placed within manufacturer's original packaging.

Transport and storage of unpackaged portable equipment should not exceed the requirements of 4.2.

When components are included in the equipment that have particular limitations (for example, CMOS components, batteries, etc.), the manufacturer shall specify the arrangements to be made for transport and storage.

4.3DV D2 Modification to 4.3:

This clause and its subclauses are informative.

⁽²⁾ From prescribed altitude (normal position of use) Table 17.

⁽³⁾ See <u>Table 1</u>7.

⁽⁴⁾ Random drops are drops on any edge, surface or corner. Flat drops are only on surfaces. Supported drops are only on edges.

4.3.1 Temperature

The allowable temperature range is -40 °C to +70 °C.

The temperature range -25 °C to +70 °C is acceptable, but is not recommended for future designs.

Requirements of this subclause are verified in accordance with 6.1.1.

The relative humidity range is 10 % to 95 %, non-condensing.

Requirements of this subclause are verified in accordance with 6.2.3.

4.3.2 Relative humidity

The relative humidity range is 10 % to 95 %, non-condensing.

Requirements of this subclause are verified in accordance with 6.1.3.

4.3.3 Altitude

The design atmospheric pressure for transportation shall be equivalent to 0-3 000 m altitude (minimum 70 kPa).

No test required.

4.3.4 Free falls (PLC units in manufacturer's original packaging)

Withstand requirements for PLC units within manufacturer's original packaging are given in <u>Table 5</u> below. After the test, they shall be fully functional and shall show no evidence of physical damage.

Table 5
Free fall on concrete floor in manufacturer's original packaging

Shipping weight with	Random fre	ee-fall height				
packaging	m	mm				
kg	With shipping package	With product package	Number of falls			
<10	1000	300	5			
10 to 40	500	300	5			
>40	250	250	5			

Requirements of this subclause are verified in accordance with 6.2.4.

4.3.5 Other conditions

The user should reach agreement with the manufacturer for any mechanical conditions that are not specified in this standard. This may include items such as extra-low temperature storage, higher altitude transportation, etc.

4.4 Electrical service conditions and requirements

4.4DV D2 Modification to 4.4:

This clause and its subclauses are informative.

4.4.1 AC and d.c. mains power supply

Refer to 5.1.1.

4.4.2 Overvoltage category, control of transient overvoltages

The nature of the installation shall be such that overvoltage category II conditions shall not be exceeded.

Transient overvoltages at the point of connection to the mains power supply shall be controlled not to exceed overvoltage category II, i.e. not higher than the impulse voltage corresponding to the rated voltage for basic insulation. The equipment or the transient suppression means shall be capable of absorbing the energy in the transient.

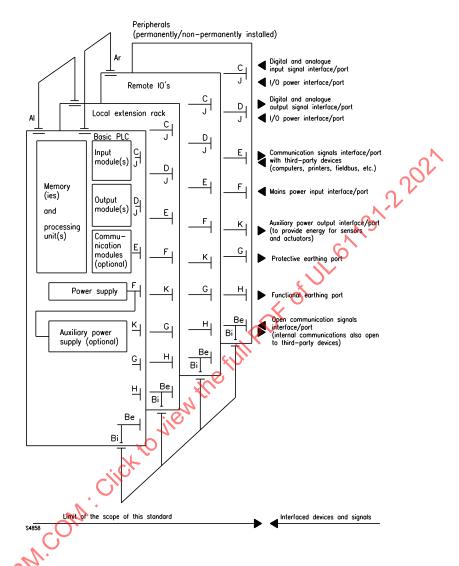
4.4.3 Non-periodic overvoltages

In the industrial environment, non-periodic overvoltage peaks may appear on mains power supply lines as a result of power interruptions to high-energy equipment (for example, blown fuse on 1 branch in a 3-phase system). This will cause high current pulses at relatively low voltage levels (approximately 2 × U_{peak}). The user shall take the necessary steps to prevent damage to the PLC-system (for example, by interposing a transformer).

4.5 Special conditions and requirements

When the service conditions are more severe than those given in <u>4.1</u>, <u>4.2</u>, <u>4.3</u> and <u>4.4</u> or other adverse environmental conditions exist (for example, air pollution by dust, smoke, corrosive or radioactive particles, vapours or salts, attack by fungi, insects or small animals), the manufacturer should be consulted to determine suitability of the equipment or the steps to be taken.

4.5DV D2 Modification to 4.5:


This clause and its subclauses are informative.

5 Functional requirements

A typical PLC-system and its interfaces/ports are shown in Figure 2.

Figure 2

Typical interface/port diagram of a PLC-system

Key

Al Communication interface/port for local I/O

Ar Communication interface/port for remote I/O station

Be Open communication interface/port also open to third-party devices (for example, personal computer used for programming instead of a PADT)

Bi Internal communication interface/port for peripherals

C Interface/port for digital and analogue input signals

D Interface/port for digital and analogue output signals

E Serial or parallel communication interfaces/ports for data communication with third-party devices

F Mains-power interface/port. Devices with F ports have requirements on keeping downstream devices intelligent during power up, power down and power interruptions.

G Port for protective earthing

H Port for functional earthing

J I/O power interface/port used to power sensors and actuators.

K Auxiliary power output interface/port

5DV D2 Modification to 5:

This clause and its subclauses are informative.

5.1 Functional power supply and memory back-up requirements

5.1.1 AC and d.c. power supply

Requirements of this subclause are verified in accordance with 6.3.1, 6.3.2 and 6.3.3.

5.1.1.1 Rated values and operating ranges

Incoming power supplies to the PLC-system and to the externally powered I/O modules shall be as shown in Table 6.

Table 6
Rated values and operating ranges of incoming power supply

Volt	age	Frequency		Recommen	ded use (R)	Normative
Rated	Tolerance	Rated	Tolerance	Power supply	I/O signals	items and note
(<i>U</i> _e)	(min./max.)	(F _n)	(min./mas.)	Y	(5)	(3)
DC 24 V			6)	R	R	(1)
DC 48 V	-15 %/+20 %		ine.	R	R	(1), (2)
DC 125 V			47	_	_	_
AC 24 V r.m.s.				_	-	(Note)
AC 48 V r.m.s.		٠,٠	7	_	-	(Note)
AC 100 V r.m.s.		1		R	R	_
AC 110 V r.m.s.		clic.		R	R	_
AC 120 V r.m.s.	-15 %/+10 %	50 Hz or 60 Hz	-6 %/+4 %	R	R	(Note)
AC 200 V r.m.s.		\mathcal{O} .		R	R	_
AC 230 V r.m.s.	~ C)``		R	R	(Note)
AC 240 V r.m.s.	an.			R	R	_
AC 400 V r.m.s.	OW.			R	_	(Note), (4)

⁽¹⁾ In addition to the voltage tolerances, a total a.c. component having a peak value of 5 % of the rated voltage is allowed. The absolute limits are d.c. 30/19,2 V for d.c. 24 V and d.c. 60/38,4 V for d.c. 48 V.

(5) For power supplies for analogue I/Os, see item 5 of 7.10.3 and item 3 of 7.11.3.

NOTE The rated voltages are derived from IEC 60038.

Requirements of this subclause are verified in accordance with 6.3.1.

5.1.1.2 Voltage harmonics

AC voltage is in terms of the total r.m.s. voltage values measured at the point of entry to the equipment.

⁽²⁾ See Note 5 of Table 7 if Type 2 digital inputs are likely to be used.

⁽³⁾ For incoming voltages other than those given in the table such as d.c. 110 V etc., the tolerances given in the table and Note 1 apply. These voltage tolerances shall be used to calculate the input limits of <u>Table 7</u>, using the equations in Annex <u>B</u>.

⁽⁴⁾ Three-phase supply.

Total r.m.s. content of true harmonics (integral multiple of nominal frequency) less than 10 times nominal frequency may reach 10 % of the total voltage. Harmonic and other frequency content for higher frequencies may reach 2 % of the total voltage. However, to provide constant comparative results, the equipment shall be tested at the third harmonic only (10 % at 0° and at 180° phase angle).

The total content of harmonics of the power supply to the PLC-system may be affected when the energy source output impedance is relatively high with regard to the input impedance of the PLC-system power supply; sizing a dedicated power source such as an inverter for a PLC-system may require an agreement between the user and the manufacturer. The use of line conditioner should be considered. See IEC 61131-4.

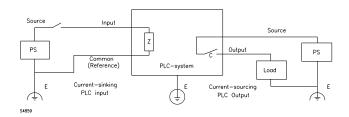
Requirements of this subclause are verified in accordance with <u>6.3.1.2</u>.

5.1.2 Memory back-up

Power back-up for volatile memories shall be capable of maintaining stored information for at least 300 h under normal use, and 1 000 h at a temperature not greater than 25 °C when the energy source is at rated capacity. (For power back-up needing replacement, the rated capacity is the value used to designate the procedure and time interval for replacement.)

The manufacturer should specify storage time information relative to volatile memory if different from stated durations.

It shall be possible to change or refresh power back-up without loss of data in the backed-up portions of memory. (See also 4.3, 7.6 item 8 and 7.13 item 4.)


If a memory back-up battery is provided, a warning of "low battery voltage" shall be provided.

Requirements of this subclause are verified in accordance with 6.3.4.

5.2 Digital I/Os

Figure 3 gives an illustration of definitions of some I/O parameters.

Figure 3 I/O Parameters

Key

C Output

Mechanical or static contact (for example dry relay contact, triac, transistor or equivalent).

E Earthings

The earths shown are original.

Earthing is dependent on national regulations and/or application needs.

Z Input

Input impedance

PS External power supplies

NOTE Some applications may use only 1 PS common to inputs, outputs and PLC-system

Digital I/Os shall comply with the following requirements.

The PLC-system shall be provided with at least 1 type of input interface and 1 type of output interface among those defined respectively in 5.2.1, 5.2.2 and 5.2.3.

Digital inputs shall comply with the requirements of the standard voltage ratings given in <u>5.2.1</u>. Non-standard voltage digital inputs should be in accordance with the design equation given in Annex B.

Digital outputs shall comply with the requirements of the standard ratings given in <u>5.2.2.1</u> for a.c. or <u>5.2.3.1</u> for d.c..

It shall be possible to interconnect inputs and outputs by means of a correct selection of the above digital I/Os, resulting in proper PLC-system operation. (Additional external load shall be specified by the manufacturer if necessary.)

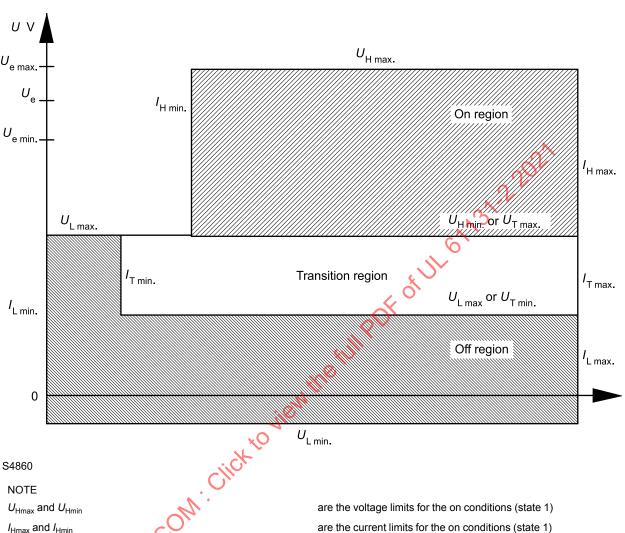
It shall be possible to feed isolated multi-channel a. c. input modules from different phases and the modules shall then comply with the maximum voltage difference likely to occur between phases, or the user manual shall include a note indicating that all channels must be fed from the same phase.

If a multi-channel a.c. circuit is intended for multi-phase use, the circuit shall comply with the clearance and creepage distance requirements and the dielectric test corresponding to the voltage between phases.

NOTE 1 Current-sourcing inputs and current-sinking outputs which may be required for certain applications are not covered in this Part of IEC 61131. Special care should be exercised in their use. (Where positive logic, current sinking inputs and current-sourcing outputs are used, any short-circuit to the reference potential and wire-breakage are interpreted by the inputs and loads as the "off state"; on the other hand, for current-sourcing inputs and current-sinking outputs, earth faults are interpreted as the "on state") (See Figure 3.)

NOTE 2 A PLC-system may be offered with interfaces that are not covered in this standard, i.e., interfaces for TTL and CMOS circuits, etc. In such a case, the manufacturer's data shall give all relevant information to the user.

5.2.1 Digital inputs (current sinking)


Requirements of this subclause are verified in accordance with 6.4.2.

5.2.1.1 Terminology (U/I operation regions)

<u>Figure 4</u> represents graphically the limits and operating ranges which are used herein to characterize current sinking digital input circuits.

JINORM. Cidy to view the full Role of the Child to view th The operating region consists of "on region", "transition region" and "off region". It is necessary to exceed both UT min. and IT min. to leave the "off region", and to exceed IH min. before UH min. to enter the "on region": all input U-I curves shall remain within these boundary conditions. The region below zero volts is a valid part of the "off region" for d.c. inputs only.

Figure 4
U-I operation regions of current-sinking inputs

NOTE $U_{\rm Hmax} \text{ and } U_{\rm Hmin}$ $I_{\rm Hmax} \text{ and } I_{\rm Hmin}$ $U_{\rm Tmax} \text{ and } I_{\rm Tmin}$ $I_{\rm Tmax} \text{ and } I_{\rm Lmin}$ $U_{\rm Lmax} \text{ and } I_{\rm Lmin}$ $U_{\rm Lmax} \text{ and } I_{\rm Lmin}$ $U_{\rm Lmax} \text{ equals } U_{\rm Hmin} \text{ to } I_{\rm Tmin} \text{ and equals } U_{\rm Tmin} \text{ above } I_{\rm Tmin}$ $U_{\rm e}, U_{\rm e} \text{ max } \text{ and } U_{\rm e} \text{ min}$

are the voltage limits for the on conditions (state 1) are the current limits for the on conditions (state 1) are the voltage limits for the transition state (on or off) are the current limits for the transition state (on or off) are the voltage limits for the off conditions (state 0) are the current limits for the off conditions (state 0)

are the rated voltage and its limits for the external power supply voltage

5.2.1.2 Standard operating ranges for digital inputs (current sinking)

Current-sinking digital inputs shall operate within the limits presented in Table 7.

JINORM.COM. Cick to view the full POF of UL 61/31.2 2021

Table 7
Standard operating ranges for digital inputs (current sinking)

Rated	Rated	Type of			Type 1 lir	nits (7)				Тур	e 2 limits	(7), (Not	e)				Type 3 I	imits (7)			Normative
voltage <i>U</i> _e	frequency F _n Hz	limit	State	0	Trans	sition	Stat	e 1	State	0	Trans	sition	Stat	e 1	State	0	Tra	nsition	Stat	e 1	items
			UL	IL	UT	IT	UH	IH	UL	IL	UT	IT	UH	IH	UL	IL.	UT	IT	UH	IH	
			V	mA	V	mA	V	mA	V	mA	٧	mA	v	mA	٧	mA	٧	mA	v	mA	
DC 24V	-	Max.	15/5	15	15	15	30	15	11/5	30	11	30	30	30	11/5	15	11	15	30	15	(1),(2),
		Min.	-3	ND	5	0,5	15	2	-3	ND	5	2	11	6	73	ND	5	1,5	11	2	(4),(5)
DC 48V	-	Max.	34/10	15	34	15	60	15	30/10	30	30	30	60	30	30/10	15	30	15	60	15	(1),(2),
		Min.	-6	ND	10	0,5	34	2	-6	ND	10	2	30	6 (-6	ND	10	1,5	30	2	(4)
AC 24V	50/60	Max.	14/5	15	14	15	27	15	10/5	30	10	30	27	30	10/5	15	10	15	27	15	(1),(3)
V r.m.s.		Min.	0	0	5	1	14	2	0	0	5	4	10	6	0	0	5	2	10	5	
AC 48	50/60	Max.	34/10	15	34	15	53	15	29/10	30	29	30	53	30	30/10	15	30	15	53	15	(1),(3)
V r.m.s.		Min.	0	0	10	1	34	2	0	0	10	4	29	6	0	0	10	2	30	5	
AC 100		Max.	79/20	15	79	15	1,1 <i>U</i> _e	15	74/20	30	74	30	√,1 <i>U</i> _e	30	74/20	15	74	15	1,1 <i>U</i> _e	15	(1),(3),
AC 110	50/60											11									(4),(6)
AC 120		Min.	0	0	20	1	79	2	0	0	20 🔇	4	74	6	0	0	20	2,5	74	5	
V r.m.s.											0	•									
AC 200		Max.	164 /40	15	164	15	1,1 <i>U</i> _e	15	159 /40	30	159	30	1,1 <i>U</i> _e	30	159 /40	15	159	15	1,1 <i>U</i> _e	15	(1),(3),
AC 230	50/60									N											(4),(6)
AC 240		Min.	0	0	40	2	164	3	0	18	40	5	159	7	0	0	40	2,5	159	5	
V r.m.s.									×O												

(1) All logic signals are in positive logic. Open inputs shall be interpreted as state 0 signal. See Annex 🖺 for equations and assumptions used in developing values in this table and for additional comments.

(3) Static switches may affect the total r.m.s. content of true harmonics of the input signals and therefore affect the compatibility of the input interface with proximity switches, especially for Type 2, a.c. 24 V r.m.s. See 5.1.1.1 for requirements.

- (4) Recommended for common usage and future designs.
- (5) The minimum external power supply voltage for Type 2, d.c. 24 V inputs connected to 2-wire proximity switches should be higher than d.c. 20 V or UH min lower than d.c. 11 V to allow sufficient safety margin.
- (6) As allowed by current technology, and to encourage the design of single input modules compatible with all commonly used rated voltages, limits are absolute and independent of rated voltage (except U_{H max}) and based on equations given in Annex B and respectively a.c. 100 V r.m.s. and a.c. 200 V r.m.s.
- (7) See definitions 3.12, 3.13, and 3.14.

NOTE Compatibility with 2-wire proximity switches according to IEC 60947-5-2 is possible with Type 2. See also (3).

ND = Not defined.

⁽²⁾ The given voltage limits include all alternating voltages components.

5.2.1.3 Additional requirements

Each input channel shall be provided with a lamp or equivalent means to indicate the state 1 condition when the indicator is energized.

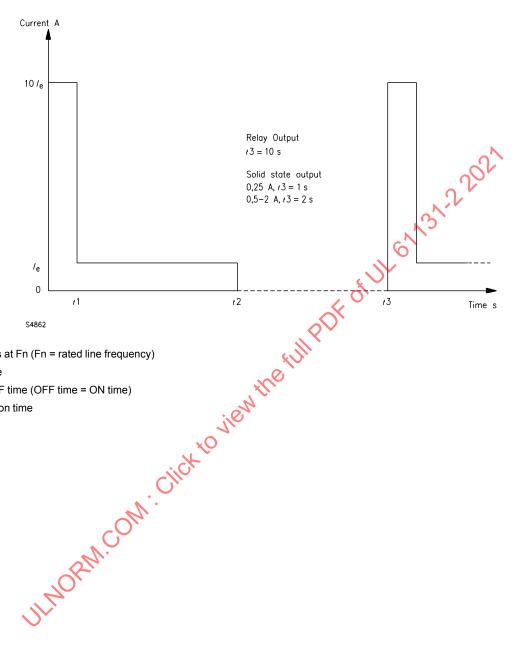
5.2.2 Digital outputs for alternating currents (current sourcing)

Requirements of this subclause are verified in accordance with <u>6.4.3</u>.

5.2.2.1 Rated values and operating ranges (a.c.)

Digital a.c. outputs shall comply with the ratings given in $\underline{\text{Table 8}}$, at the output voltage (s) stated by the manufacturer according to $\underline{5.1.1.1}$.

Table 8
Rated values and operating ranges for current sourcing digital a.c. outputs


Rated current (state 1)	I _е А	0,25	0,5	1	2	Normative items
Current range for state 1	Min. (mA)	10 [5]	20	100	100	(1), (2)
(continuous at max. voltage)	Max. (A)	0,28	0,55	1,1	2,2	(1)
Voltage drop, U _d for state 1	U_{d}	- //	-	-	-	_
 Non protected output 	Max. (V)	3///	3	3	3	(1)
 Protected and short-circuit proof 	Max. (V)	We5	5	5	5	(1)
Leakage current for state 0		-	-	-	-	_
Solid-state outputs	Max. (mA)	5 [3]	10	10	10	(1), (2), (3)
 Electromechanical outputs 	Max. (mA)	2,5	2,5	2,5	2,5	(1), (3)
Repetition rate for temporary overload (see Figure 5)	Operating cycle time (s)	-	-	-	-	
 Solid-state outputs 	Max.	1	2	2	2	
– Relay-based outputs	Max.	10	10	10	10	

⁽¹⁾ RMS currents and voltages

⁽²⁾ Figures in square brackets apply to a module not equipped with RC network or equivalent surge suppressers. All other values apply to modules with suppression.

⁽³⁾ Leakage current for solid-state outputs greater than 3 mA imply the use of additional external loads to drive Type 2 digital inputs.

Figure 5 Temporary overload waveform for digital a.c. outputs

t1: 2 cycles at Fn (Fn = rated line frequency)

t2: ON time

t3 – t2: OFF time (OFF time = ON time)

t3: Operation time

5.2.2.2 Additional requirements

5.2.2.2.1 Output indicators

Each output channel shall be provided with a lamp or equivalent means to indicate the output state 1 condition when the indicator is energized.

5.2.2.2.2 Protected outputs

For outputs stated by the manufacturer to be protected

- the output shall either withstand and/or the associated protective device shall operate to protect the output for all steady-state values of output current greater than 1,1 times the rated value;
- after resetting or replacement of the protective device alone, as applicable, the PLC-system shall return to normal operation;
- optional restart capabilities may be selected among the 3 following types:
 - automated restart protected output: a protected output which automatically recovers after the overload is removed;
 - controlled restart protected output: a protected output which is reset through signals (for example, for remote control);
 - manual restart protected output: a protected output which implies a human action to recover (the protection may be fuses, electronic interlocks, etc.).

Requirements of this subclause are verified in accordance with 6.4.3.2.

NOTE 1 Operation under overload condition for an extended period of time may affect the operating life of the module.

NOTE 2 The protected outputs will not necessarily protect the external wiring. It is the user's responsibility to provide that protection when it is needed.

5.2.2.2.3 Short-circuit-proof outputs

For outputs stated by the manufacturer to be short-circuit-proof:

- for all output currents greater than $I_{\rm e\ max.}$ and up to 2 times the rated value $I_{\rm e}$, the output shall operate and withstand temporary overload(s). Such temporary overload(s) shall be specified by the manufacturer.
- for all output currents prospectively above 20 times the rated value, the protective device shall operate. After resetting or replacement of the protective device alone, the PLC-system shall return to normal operation.
- for output currents in the range of 2 times to 20 times I_e , or for temporary overload(s) beyond the limits specified by the manufacturer (item 1 above), the module may require repair or replacement.

Requirements of this subclause are verified in accordance with <u>6.4.3.2</u>.

5.2.2.2.4 Non-protected outputs

For outputs stated by the manufacturer to be non-protected, if the manufacturer recommends an external protection device, then the outputs shall meet all the requirements stated for the short-circuit-proof outputs.

5.2.2.2.5 Electromechanical relay outputs

Electromechanical relay outputs shall be capable of performing at least 0,3 million operations with the load specified for AC-15 utilization category (durability class 0.3) according to IEC 60947-5-1.

The type test is not required if the relay components have been shown to comply with the requirements of IEC 60947-5-1.

5.2.3 Digital outputs for direct current (current sourcing)

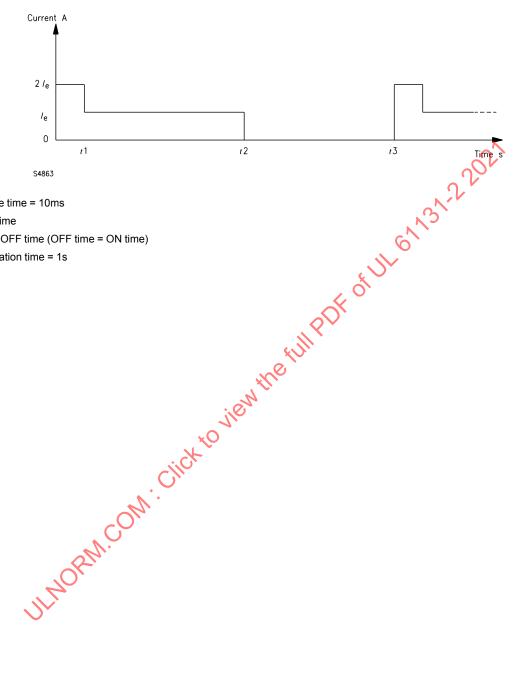
Requirements of this subclause are verified in accordance with 6.4.3.

5.2.3.1 Rated values and operating ranges (d.c.)

Digital outputs shall comply with the ratings given in the following Table 9, at the output voltage(s) stated by the manufacturer according to 5.1.1.1.

Table 9
Rated values and operating ranges (d.c.) for current-sourcing digital d.c. outputs

Rated current for state 1	I _e (A)	0,1	0,25	0,25	1	2	Norma- tive items
Current range for state 1 at maximum voltage (continuous)	Max. (A)	0,12	0,3	0,6	1,2	2,4	
Voltage drop, U _d	U_{d}	_	_	-	_	_	-
Non-protected output	Max. (V)	3	3	3	3	3	_
Protected and short-circuit-proof		3	3	3	3	3	(1)
Leakage current for state 0	Max. (mA)	0,1	0,5	0,5	1	1	(2), (3)
Temporary overload	Max. (A)		See Figure	e 6 or as spe	cified by ma	nufacturer	


⁽¹⁾ For 1A and 2A rated currents, if reverse polarity protection is provided, a 5 V drop is allowed. This makes the output incompatible with a type 1 input of the same voltage rating.

⁽²⁾ The resulting compatibility between d.c. outputs and d.c. inputs, without additional external load, is as follows:

Rated out	put current I_{ϵ}	, (A):	0,1	0,25	0,5	1
Type 1:	yes	yes	yes	no	no	
Type 2:	yes	yes	yes	yes	yes	
Type 3:	yes	yes	yes	yes	yes	

⁽³⁾ With adequate external load, all d.c. outputs may become compatible with all Type 1, Type 2 and Type 3 d.c. inputs.

Figure 6 Temporary overload waveform for digital d.c. outputs

t 1 = surge time = 10ms

t = 0 time

t3 - t2 = OFF time (OFF time = ON time)

t 3 = operation time = 1s

5.2.3.2 Additional requirements

Other requirements are the same as for current sourcing outputs for a.c. as defined in 5.2.2.2, except for

- protected outputs: the limit is 1,2 I_e instead of 1,1 I_e ,
- electromechanical relay outputs: AC-15 is replaced by DC-13.

5.3 Analogue I/Os

Requirements of this subclause are verified in accordance with verification of analogue I/Os test in 6.4.4.

5.3.1 Analogue inputs

Rated values of signal range and impedance for analogue inputs to PLC-systems shall be as specified in the following Table 10.

Table 10
Rated values and impedance limits for analogue inputs

Signal range	Input impedance limits	Normative items					
±10 V	≥10 kΩ	-					
0 – 10 V	≥10 kΩ	_					
1 – 5 V	≥5 kΩ	_					
4 – 20 mA	≤300 Ω	_					
0 – 20 mA	≤3 00 Ω	(1)					
(1) Not recommended for future designs.	1) Not recommended for future designs.						

Analogue inputs may be designed to be compatible with standard thermocouples or standard resistive temperature devices (RTDs) such as PT100 sensors. Thermocouple analogue inputs shall provide a method for cold-junction compensation.

5.3.2 Analogue outputs

Rated values of signals range and load impedance for analogue outputs of PLCs shall be as specified in Table 11.

Table 11
Rated values and impedance limits for analogue outputs

Signal range	Load impedance limits	Normative items
±10 V	≥1 000 Ω	(1)
0 – 10 V	≥1 000 Ω	(1)
1 – 5 V	≥500 Ω	(1)
4 – 20 mA	≤600 Ω	(2)
0 – 20 mA	≤600 Ω	(2), (3)

⁽¹⁾ Voltage analogue outputs shall withstand any overload down to short circuit.

⁽²⁾ Current analogue outputs shall withstand any overload up to open circuit.

⁽³⁾ Not recommended for future designs.

5.4 Communication interface requirements

The configuration tested according to Clause $\underline{2}$ of this Part of IEC 61131 shall be equipped with communication interface modules where applicable and with communication links specified by the manufacturer.

Requirements of this subclause are verified in accordance with 6.5.

5.5 Main processing unit(s) and memory(ies) of the PLC-system requirements

This subclause should be read in conjunction with IEC 61131-1 and with $\underline{5.6}$ and $\underline{5.7}$ of this part (respectively, RIOSs and peripherals).

See <u>Figure 2</u> and Annex <u>A</u> for the definition and illustration of the PLC-system, the main processing unit (MPU), the main memory and other terms used in this subclause.

Main processing unit(s) and memory(ies) are part of the permanent PLC installation and therefore tested accordingly.

Requirements of this subclause are verified in accordance with 6.6

5.6 Remote input/output stations (RIOSs) requirements

RIOSs are part of the permanent PLC installation and therefore to be tested accordingly. However, for ease of testing, isolated RIOSs may be tested separately where appropriate.

Requirements for voltage drops and interruption of the power supply (ies) fully apply to RIOSs. These requirements are shown in 8.3.4.

In case of loss of communication with the MPU application programme, RIOSs shall be able to fix the states of their outputs to specified values, within specified delays and without passing through unspecified states and be capable of providing a fault indication signal.

The MPU system shall provide the user's application programme with relevant information on the current status of RIOSs.

Requirements of this subclause are verified in accordance with 6.7.

5.7 Peripherals (PADTs, TEs, HMIs) requirements

Peripherals which are not a permanent part of the PLC-system shall cause no malfunction of the system when making or breaking communication with an operating system.

Requirements are verified in accordance with 6.2.5.

Connectors for the peripherals shall be polarized to prevent improper connection, or the PLC-system shall be so designed that no malfunction occurs if a connection is improper.

The system consisting of the peripheral and the PLC-system shall be designed to ensure that the edited programme executing in the PLC-system is functionally identical to the edited programme displayed on the peripheral.

If on-line modification of the application programme and/or the modes of operation of the PLC-system by a peripheral is possible (i.e. when the PLC-system is in active control of a machine or industrial process), then

- the peripheral shall automatically give clear warnings equivalent to "during on-line modification, programme display may differ from application programme, control of the machine/ process may be interrupted during ... ms, etc.", as applicable.
- the peripheral shall ask the operator "Do you really want to carry out this action?" or some similar words and execute the command only after a positive reply has been given by the operator.

It shall be possible to upload the new application programme to the manufacturer's supplied data media and verify, on line, that the record is functionally equivalent to it, and means shall be provided to prevent unauthorized use of these functions (hardware or software).

Requirements of this subclause are verified in accordance with 6.8.

5.8 PLC-system self-tests and diagnostics requirements

The manufacturer shall provide means for self-tests and diagnostics of the PLC-system operation. Such means shall be built-in services of the PLC-system and/or recommended ways to implement the intended application.

The following shall be provided:

- a means for monitoring the user's application programme (i.e. watchdog timer, etc.),
- a hardware or software means to check the memory integrity,
- a means to check the validity of the data exchanged between memory (ies), processing unit (s) and I/O modules (such as an application loop-back test),
- a means to check that the power supply unit(s) do(es) not exceed the current and voltage limits allowed by the hardware design,
- a means to monitor the status of MPU.

The permanently installed PLC-system shall be capable of operating an alarm signal on an alarm output. When the system is monitored as "functioning correctly", this alarm output shall be in a predetermined state; in the other case it shall go to the opposite state. The manufacturer shall specify the conditions of the "correct functioning state" and the self-tests which are executed to drive this alarm output.

RIOSs shall be capable of operating an alarm signal on an alarm output (for example, through a digital output module) in the event of loss of power or loss of normal communication with the MPU and go to a predetermined state (see 5.6).

Requirements of this subclause are verified in accordance with 6.9.

5.9 Functional earthing

There are no constructional requirements such as interference immunity control, RFI protection, etc., for functional earthing terminals (except for marking requirements as given in 5.11.3).

5.10 Mounting requirements

Provisions shall be made for securely mounting equipment to a supporting surface.

Alternate mounting methods, such as DIN rails, should also provide for secure mounting of the equipment.

A bolt, screw, or other part used to mount a component of the equipment shall not be used for securing the equipment to a supporting surface, DIN rail, etc.

5.11 General marking requirements

For all equipment, as a minimum, the information marked on the device shall identify the manufacturer (the company bringing the product to market) and the device. The remaining information shall be provided in the data sheet. See Clause 7.

The following information shall be provided by the manufacturer:

- manufacturer's name, trade mark or other identification,
- model/catalogue number, type designation or name,
- software serial number and/or revision level (see 1.2), where applicable,
- hardware serial number or series and/or revision level (see 1.2), and date code or equivalent.

Requirements of this subclause are verified in accordance with 6.10.

5.11.1 Functional identifications

The function of each I/O module shall be unambiguously identifiable when it is placed in its service position and operating, by means of a convenient manufacturer's mark.

All operator's switches, indicator lamps, and connectors shall be identified or have provisions for identification.

5.11.2 Module location and module identifications

Space shall be provided for identification of each module and I/O channel on or near to the modules.

5.11.3 Functional earth terminals markings

Functional earth terminals (i.e. used for non-safety purposes such as interference immunity improvement) shall be marked with the following symbol:

5.12 Requirements for normal service and functional type tests and verifications

Test and verifications for normal service and function shall be performed by the manufacturer, in accordance with Clause $\underline{6}$.

5.13 Requirements for information on normal service and function

Information on normal service and function shall be provided by the manufacturer, in accordance with the requirements of Clause 7.

6 Normal service and functional type tests and verifications

6DV D2 Modification of 6:

This clause and its subclauses are informative.

6.1 Climatic tests

Tests are performed on unpackaged equipment.

Temperature-sensitive components that are normally serviced and removed by the user may be removed, if so requested by the manufacturer.

6.1.1 Dry-heat and cold withstand tests

Table 12
Dry-heat and cold withstand tests

	Dry heat	Cold		
Reference test	JEC 60068-2-2, test Bb IEC 60068-2-1, te			
Preconditioning	According to manufa	cturer's specifications		
Initial measurement	According to	o PFVP (<u>2.5</u>)		
Conditioning	Power supply	unconnected		
Temperature	+70 °C ± 2 °C	-40 °C ± 3 °C (2)		
Duration of exposure	16 h ± 1 h	16 h ± 1 h		
Measuring and/or loading during conditioning	No	one		
Recovery procedure	IEC 60068-2-2, test Bb	IEC 60068-2-1, test Ab		
Time	1 h minimum			
Climatic conditions	See <u>6.1</u> a	and <u>2.6(</u> 1)		
Special caution		No condensation (1)		
Power supply	Power supply unconnected			
Final measurements	According to PFVP (2.5)			

⁽¹⁾ All external and internal condensation shall be removed by airflow, prior to connecting again the basic PLC-system to a power supply.

^{(2) -25 °}C ± 3 °C is acceptable, but not recommended for future designs

6.1.2 Variation of temperature

Table 13
Change of temperature, withstand and immunity tests

	Withstand test	Immunity test		
Reference test	IEC 60068-2-14, test Na	IEC 60068-2-14, test Nb		
Preconditioning	According to manufa	cturer's specification		
Initial measurements	According to F	PFVP (see <u>2.5</u>)		
Conditioning	Power supply unconnected	Power supply connected		
Measurement and/or loading during conditioning	None	(3)		
Low temperature	-40 °C ± 3 °C (5)	+5°C ± 2°C		
High temperature		21.		
Open equipment	+70 °C ± 2 °C	+55 °C ± 2 °C		
Enclosed equipment	+70 °C ± 2 °C	+40 °C ± 2 °C		
Exposure time at each temperature	3 h ± 30 min	3 h ± 30 min		
Transport time	Less than 3 min	Not applicable		
Temperature variation speed	Not applicable	3 °C/min. ± 0,6 °C/min.		
Number of cycles	2	5		
Recovery procedure	IEC 60068-2-14, test Na	Not applicable		
Time	Less than 2 h	Not applicable		
Climatic conditions	See <u>6.1</u> and <u>2.6</u> (4)	Not applicable		
Power supply	Power supply unconnected	Not applicable		
Final measurements	jie (1)	(2)		

⁽¹⁾ PFVP according to 2.5 performed after recovery.

6.1.3 Cyclic damp heat withstand test

Table 14 Cyclic (12 + 12) damp-heat test

Reference test	IEC 60068-2-30, test Db			
Preconditioning	According to manufacturer's specifications			
Initial measurements	According to PFVP (2.5)			
According to PFVP (2.5)	None			
Measurement and/or loading during conditioning	None			
Details of mounting/support	None			
Variant	2			
Special precautions	Power supply disconnected			

⁽²⁾ PFVP according to 2.5 performed during test.

⁽³⁾ Multi-channel output modules shall be derated as specified by the manufacturer.

⁽⁴⁾ All external and internal condensation shall be removed by airflow, prior to connecting again the basic PLC-system to a power supply.

Table 14 Continued

Reference test	IEC 60068-2-30, test Db				
Temperature	+55 °C				
Number of cycles	2				
Recovery procedure	-				
Time					
Climatic conditions	Under controlled conditions prescribed in IEC 60068-2-30 (1)				
Power supply	Power supply disconnected (1)				
Final measurements	PFVP according to (2.5) performed after recovery				
(1) All external and internal condensation shall be removed by airflow, prior to reconnecting the basic PLC-system to a power					

supply.		
6.2 Mechanical tests 6.2.1 Vibration (type test associated with normal service conditions)		
Table 15 Immunity vibration test		
Reference test	IEC 60068-2-6, test Fc	
Preconditioning	According to manufacturer's specifications	
Initial measurements	According to PFVP (2.5)	
Details of mounting/support	According to manufacturer's specifications for portable and hand-held equipment	
Motion	Sinusoidal	
Vibration amplitude/acceleration V	-	
5 Hz ≤ f < 9 Hz	3,5 mm amplitude	
9 Hz ≤ f ≤ 150 Hz	1,0 g	
Vibration type	Sweeping, at a rate of 1 octave/min (± 10 %)	
Vibration duration	10 sweep cycles per axis on each of 3 mutually perpendicular axes	
and the second	-	
Measurement and verification during loading	According to PFVP (2.5)	
Verification after tests	According to PFVP (2.5)	

6.2.2 Shock (type test associated with normal service conditions)

Table 16 **Immunity shock test**

Reference test	IEC 60068-2-27, test Ea
Preconditioning	According to manufacturer's specifications
Initial measurements	According to PFVP (2.5)
Details of mounting/support	According to manufacturer's specifications for portable and hand-held equipment

Table 16 Continued

Reference test	IEC 60068-2-27, test Ea
Type of shock	Half-sine
Shock severity	15 g peak, 11 ms duration
Application	Three shocks in each direction per axis, on 3 mutually perpendicular axes (total of 18 shocks)
Measurement and verification during loading	According to PFVP (2.5)
Verification after tests	According to PFVP (2.5)

6.2.3 Free fall (type test associated with normal service conditions)

Table 17
Free-fall immunity/withstand tests (portable and hand-held equipment)

Reference tests: Random and flat drops Supported drops	IEC 60068-2-32, procedure 1
Preconditioning	According to manufacturer's specifications
Initial measurements	According to PFVP (2.5)
Details of mounting/support	EUT equipped with manufacturer's standard cable(s) (if any)
Measurement and verification during loading	According to PFVP (2.5)
Verification after the tests	According to PFVP (2.5)

6.2.4 Free fall (type test associated with transport and storage conditions)

Table 18
Free-fall withstand test (units within manufacturer's original packaging)

Reference test	IEC 60068-2-32, procedure 1
Selection of samples	Each type of manufacturer's original packaging with the heaviest unit using it
Initial measurements	According to PFVP (2.5)
Details of mounting/support	EUT equipped with manufacturer's standard cable(s) (if any)
Measurement and verification during loading	None
Verification after the test	According to PFVP (2.5)

6.2.5 Plugging/unplugging of removable units

Table 19 Insertion/withdrawal of removable units

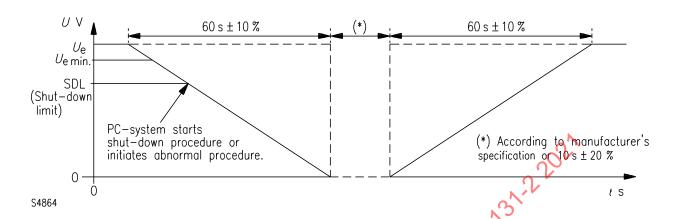
Description of the test for permanently installed units	50 insertions/withdrawals are performed without power; then the equipment shall pass the PFVP (2.5)
Description of the test for non-permanently installed units	500 insertions/withdrawals are performed while the basic PLC-system is performing functional test programmes as required for PFVP (2.5)
	Insertions and withdrawals shall not affect the proper operation of the basic PLC-system
	Communication on the physical link during the test is not required

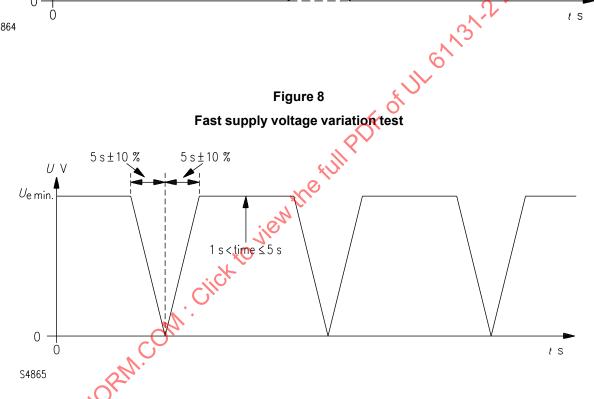
6.3 Verification of special functional requirements for power ports and memory back-up – Special immunity limits for power ports

Perform the proper functional verification procedure of 2.5 during tests under 6.3.1 and 6.3.2.

Power ports are mains power input port (port F, Figure 2).

6.3.1 Verification of functional mains power input port (a.e. or d.c.)


6.3.1.1 Voltage range, voltage ripple and frequency range test

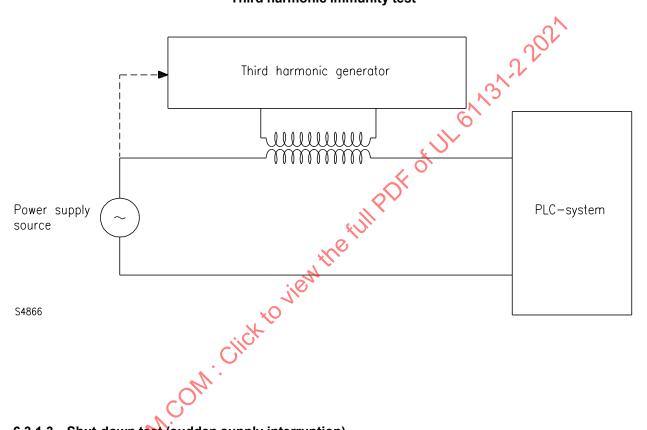

Voltage ripple and frequency range immunity test (1)

Reference test	No	ne
EUT configuration	According to manufacture's specifications	
Initial measurements	According to PFVP (2.5)	
Description of tests (1)	Gradual shut-down	Fast variations
	(See <u>Figure 7</u>)	(See Figure 8)
AC voltage (k ×U _s) (2)	k = 0,85	k = 1,10
AC frequency $(k + F_n)$ (2)	k = 0,94	k = 1,04
DC voltage (k × U_e) (2)	k = 0,85	k = 1,20
Ripple continuous (k × U_e) (2)	k = 0,05	k = 0,05
Test duration	30 min	30 min
Measurement and verification during loading	According to PFVP (2.5)	
Verification after tests	According to PFVP (2.5)	
Performance criteria	A	
(1) If there are separate mains supplies to the PLC-system the tests may be carried out on each supply separately.		

⁽²⁾ See precise definitions in Table 6.

Figure 7 Gradual shut-down/start-up test

6.3.1.2 Third harmonic immunity test


Table 21 Third harmonic immunity test

Reference test	None
EUT configuration	According to manufacture's specifications
Initial measurements	According to PFVP (2.5)
Description of tests (1) -	A third harmonic voltage (150 Hz or 180 Hz) adjusted to 10 % of the mains rated voltage is added to the a.c. mains power supply with 0° and 180° (See Figure 9)
Test duration for each phase	5 min

Table 21 Continued

Reference test	None	
Measurement and verification during loading	According to PFVP (2.5)	
Verification after tests	According to PFVP (2.5)	
(1) If there are separate mains supplies to the PLC-system, the test may be carried out on each supply separately.		

Figure 9
Third harmonic immunity test

6.3.1.3 Shut-down test (sudden supply interruption)

Test description: during shut-down due to the supply interruption, the system behaviour shall be observed. The test is repeated twice.

Performance criteria:

The requirement given above shall be met. In addition, from the start of interruption to shutdown, there shall be no change not caused by the normal test programme and no erratic or unintended condition of any kind.

6.3.1.4 Start-up test

When the external supply is applied for a time specified by the manufacturer, the PLC-system shall start again according to the specifications of the manufacturer (automatic or manual restart, initialization sequence, etc.). During the start-up, there shall be no erratic or unintended condition.

6.3.2 External energy supply variation tests (immunity tests)

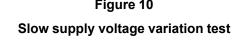
At voltages below the minimum normal service conditions limits and/or frequencies beyond the normal service condition limits, the PLC-system shall "either maintain normal operation or go to a predefined state and have a clearly specified behaviour until normal operation is resumed".

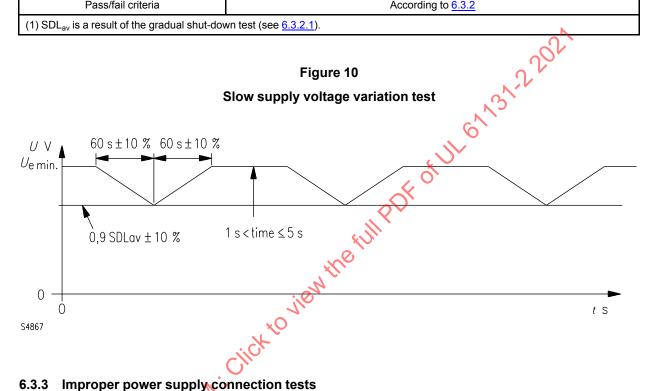
Performance criteria: during the tests, the PFVP $(\underline{2.5})$ shall ensure that the behaviour of the basic PLC-system is as specified by the manufacturer and that there is no change not caused by the PFVP test programme and no erratic or unintended conditions of any kind.

6.3.2.1 Gradual shut-down/start-up test

Table 22 Gradual shut-down/start-up test

Reference test	None
EUT configuration	The behaviour of the basic PLC-system shall be according to
-	PFVP (2.5) at minimum operational voltage and frequency (gradual shut-down of 6.3.1.1) and at maximum operational
-	voltage and frequency (fast variations of <u>6.3.1.1</u>)
-	0
Test description	See <u>Figure 7</u>
Initial/final conditions	Power supply at rated values (U_e, F_n)
Lowest voltage (V)	0 (zero)
Waiting time at lowest voltage (s)	10 s ± 20 %
Number of trials	3
Time interval between trials	1 s < time interval ≤ 10 s
Measurement and verification during loading	According to PFVP (2.5)
Voltage shut-down limit (SDL)	The voltage at which the basic PLC-system starts the
- iick	manufacturer's specified shut-down sequence or initiates a behaviour not in accordance with the PFVP during the
	decreasing voltage sequence
Average SDL (SDL _{av})	The average of 3 measured SDL
Performance criteria	According to 6.3.2


6.3.2.2 Supply voltage variation tests


Table 23 Supply voltage variation tests

Reference test	None	
EUT configuration	The behaviour of the basic PLC-system shall be according to PFVP (2.5) at minimum	
-	operational voltage and frequency (gradual shut-down of <u>6.3.1.1</u>) and at maximum operational voltage and frequency (fast variations of <u>6.3.1.1</u>)	
-		
_		
Description of tests	Fast variations	Slow variations
_	(See <u>Figure 8</u>)	(See <u>Figure 10</u>)
Initial/final conditions	Power supply at rated values $(U_{e min}, F_n)$	

Table 23 Continued

Reference test	None	
Lowest voltage (U)	0 (zero)	0,9 SDL _{av} ± 10 % (1)
Waiting time at lowest voltage (s)	0 (zero)	0 (zero)
Number of trials	3	3
Time interval between trials	1 s < time interval ≤ 5 s	
Measurement and verification during loading	According to PFVP (2.5)	
Pass/fail criteria	According to 6.3.2	
(1) SDL _{av} is a result of the gradual shut-down test (see <u>6.3.2.1</u>).		

Improper power supply connection tests

Reversal of d.c. power supply polarity test (withstand test)

The rated voltage of reverse polarity shall be applied for 10 s. The results shall comply with the conditions stated by the manufacturer (such as fuse-blowing).

After the test the basic PLC-system shall pass the proper verification procedure (see 2.5). Protective devices such as fuses may be reset prior to verification.

6.3.3.2 Improper voltage level and/or frequency test

For voltage level above the maximum normal service conditions limit $U_{\rm e\,max}$ or/and frequencies beyond the normal service conditions limits $F_{n \text{ max}}$ and $F_{n \text{ min}}$, the test shall be agreed between the user and the manufacturer.

6.3.4 Verification of memory back-up requirements

6.3.4.1 Back-up duration withstand test

Table 24
Back-up duration withstand test

Reference test	None					
EUT configuration	According to PFVP (2.5)					
Duration of preparation	According to manufacturer's specifications (energy source may require time to be					
Tests to be performed	fully charged)					
_	Either Test A or Test B defined below					
Description of tests	Test A	Test B				
Initial conditions	Energy source fully charged; external energy supply disconnected					
Temperature	Open equipment 55 °C	General conditions				
-	Enclosed equipment 40 °C	(<u>2.6</u>)				
Duration	300 h	1 000 h				
Verification after the test	According to PFVP (2.5). The PLC-system shall be fully operational. No loss of retentive data is allowed					
_						

6.3.4.2 Verification of manufacturer's method of changing the energy source

Table 25
Change of energy source test

Reference test	None
EUT configuration	According to PFVP (2.5)
Replacement of energy source -	According to manufacturer's specifications (energy source may require time to be fully charged)
Verification after the tests	According to PFVP (2.5) The PLC-system shall be fully operational. No loss of retentive information is allowed

6.3.4.3 Verification of other requirements

Check the required warning of "low battery voltage" (see requirements in <u>5.1.2</u>). (Remove the energy source and apply the proper controlled voltage in place of the energy source.)

6.4 Verification of input/output requirements

6.4.1 General

Test procedures are not defined in detail hereinafter. Detailed procedures shall be agreed upon by the user and the manufacturer and shall be such that the conditions defined in 1.2 shall not be impaired.

Though test procedures are not defined in detail, all tests which are referenced shall be performed.

Unless otherwise specified in this subclause, all tests shall be carried out twice on the same I/O channel(s):

- First test: at minimum service temperature (T_{min}), i.e. 5 °C or T_{min} given in Table 2.
- S test: at maximum service temperature (T_{max}), i.e. 40 °C/55 °C or T_{max} given in Table 2.

It is not required to test more than 1 analogue input channel and 1 digital input channel of each type, but all different types which are represented in the basic PLC-system shall be tested.

All channels of multi-channel output modules shall be tested.

6.4.1DV DE Modification:

Modify second dashed item by replacing "S" with "Second".

6.4.2 Verification of digital inputs

6.4.2.1 Operating range test

Verify that all requirements are met.

6.4.2.2 Reversal of signal polarity test (withstand test)

Test procedure: A signal of reverse polarity for digital inputs shall be applied for 10 s.

Verification:

The results shall be as stated by the manufacture. The device shall pass the PFVP (see $\underline{2.5}$). Protective devices such as fuses may be reset prior to verification.

6.4.2.3 Verification of other requirements

Verify that the general requirements for digital I/Os under 5.2 and the requirement of 5.2.1.3 are met.

6.4.3 Verification of digital outputs

6.4.3.1 Operating range test

Verify that all requirements are met.

Test procedures:

Current range: To be agreed upon by the user and manufacturer.

Voltage drop: To be agreed upon by the user and manufacturer.

Leakage current: Devices/circuits intended for output protection shall not be removed.

Temporary overload: According to IEC 60947-5-1, (AC-15 or DC-13, as applicable). For short-circuit proof outputs, the current values shall be respectively 2 I_e to 20 I_e (as given in 5.2.2.2.3).

6.4.3.2 Test of protected, not-protected, and short-circuit proof outputs

Table 26
Overload and short-circuit tests for digital outputs

Reference test	None						
EUT configuration	According to manufacturer's specifications						
Details of mounting/support	According to manufacturer's specifications						
Loading	It is sufficient to check one I/O channel of each type under test						
Initial measurements	According to PFVP (2.5)						
Description of the tests	Α	В	С	D	ne.		
Prospective currents (k × I _e)	1,2/1,3 (1)	1,5	2	5	21		
Duration of test (min)	5	5	5	5	5		
Order of trials	_	_	_	- 0	_		
First series (at T _{min})	1	2	3	4	5		
Second series (at T _{max})	6	7	8	6,	10		
Time intervals between tests	10 min ≤ time intervals ≤ 60 min						
Application of the test protected outputs	Yes	Yes	Yes	Yes	Yes		
Short-circuit proof outputs	No	No	Yes (2)	No	Yes (4)		
Not-protected outputs (3)	No	No	Yes (2)	No	Yes (4)		
Measurement and verification	See requirements in 5.2.2.2 and 5.232						
during the overload	According to PFVP (2.5)						
immediately after overload	According to PFVP (2.5)						
after overload and proper resetting	According to PFVP (2.5)						
(1) 1,2 for a.c. outputs, 1,3 for d.c. outputs.							

- (2) For currents in the range of 2 times to 20 times l_e , the module may require repair or replacement.
- (3) Protective device(s) to be provided or specified by the manufacturer shall be installed.
- (4) Protective device(s) shall operate They shall be reset or replaced as applicable for the following test.

6.4.3.3 Reversal of signal polarity test (withstand test)

If the equipment is designed to prevent reversal of signal polarity, the withstand test may be not carried out and replaced by proper visual inspection.

Test procedure:

A signal of reverse polarity for digital d.c. outputs shall be applied for 10 s.

Verification:

The results shall be as stated by the manufacturer.

The device shall pass the PFVP (see 2.5). Protection devices such as fuses may be reset prior to verification.

6.4.3.4 Verification of other requirements

Verify that general requirements for digital I/Os under $\underline{5.2.2}$ or $\underline{5.2.3}$ and the remaining requirements of $\underline{5.2.3.2}$ or $\underline{5.2.3.2}$ are met (output indicators and electromechanical relay outputs).

6.4.4 Verification of analogue I/Os

6.4.4.1 Operating range tests

Verify that all requirements are met.

Test procedures: To be agreed upon by the user and manufacturer.

6.4.4.2 Analogue input overload withstand test

Test procedure:

Measurement and verification:

During loading:

During the application of specified maximal overload, no physical damage or abnormal phenomenon shall be detected.

After the test:

The accuracy shall be verified for the minimal and the maximal value of the input range according to PFVP (see <u>2.5</u>).

6.4.4.3 Short-circuit test (voltage output) and open-circuit test (current output)

When the short circuit (for a voltage output) or the open circuit (for a current output) is realized, no physical damage or abnormal phenomenon shall be detected. After the test, perform the proper functional verification procedure of 2.5.

6.4.4.4 Voltage supply variation test

This test shall be performed when the analogue I/O modules are externally energized by an independent power supply (i.e. independent from the other I/O modules power supply (ies) of the PLC-system).

The power supply is replaced by a variable power source. The voltage is adjusted to the extreme values of the specified range of voltage supply. The module shall then pass the PFVP and the output variations shall be inside the specified range (see <u>2.5</u>).

6.4.4.5 Reversal of signal polarity test (withstand test)

If the equipment is designed to prevent confusion of signal polarity, the withstand test may not be carried out and replaced by proper visual inspection.

A signal of reverse polarity for unipolar analogue inputs shall be applied for 10 s.

Verification:

The results shall be as stated by the manufacturer. The device shall pass the PFVP (see $\underline{2.5}$). Protection devices such as fuses may be reset prior to verification.

6.4.4.6 Verification of other requirements

Type tests are not required; all requirements non-tested shall be verifiable under a procedure to be agreed upon by the manufacturer and the user.

6.5 Verification of communication interface requirements

Type tests are not required; all requirements non-tested shall be verifiable under a procedure to be agreed upon by the manufacturer and the user.

6.6 Verification of MPU requirements

Type tests are not required; all requirements non-tested shall be verifiable under a procedure to be agreed upon by the manufacturer and the user.

6.7 Verification of remote I/O stations

6.7.1 Response time test

This test verifies the effect on transfer time(s) introduced to provide remote input information and RIOSs status to the application programme and to transmit its logical decisions to remote outputs.

Procedure:

An application test programme consisting of copying input status to outputs is run in 4 similar configurations:

- local inputs to local outputs,
- remote inputs to local outputs,
- local inputs to remote outputs and
- remote inputs to remote outputs.

Pass/fail criteria:

The total system response times and the subsequent variations of transfer time(s) shall conform to the manufacturer's published specifications.

6.7.2 Loss of communication test

When communication is removed, outputs shall assume a manufacturer's specified state within a manufacturer's specified interval without erratic or unintended behaviour, and the communication error shall be signalled to the user.

Procedure:

The test is performed by disconnecting a) the link, b) the RIOS external power supply, and observing the behaviour of the basic PLC-system (i.e. of the MPU as well as of the RIOS and of their outputs).

Pass/fail criteria:

According to requirements.

6.7.3 Verification of other requirements

Type tests are not required; all requirements non-tested shall be verifiable under a procedure to be agreed upon by the manufacturer and the user.

6.8 Verification of peripheral (PADTs, TEs, HMIs) requirements

All requirements non-tested shall be verifiable under a procedure to be agreed upon by the manufacturer and the user.

6.9 Verification of PLC-system self-tests and diagnostics

All requirements non-tested shall be verifiable under a procedure to be agreed upon by the manufacturer and the user.

6.10 Verification of markings and manufacturer's documentation

Verify the requirements of 5.11 by visual inspection.

7 General information to be provided by the manufacturer

The manufacturer shall provide users with information required for the application, design, installation, commission, operation and maintenance of the PCC-system. In addition, the manufacturer may provide user training.

Information to be made available can be in other than printed form.

7DV D2 Modification of 7.

This clause and its subclauses are informative.

7.1 Information on type and content of documentation

Three types of documentation are defined:

- catalogues and datasheets,
- user's manuals and
- technical documentation.

NOTE For the preparation of the instructions, see IEC 62079 and IEC 61506.

7.1.1 Information on catalogues and datasheets

These documents shall contain the description and the specifications of the PLC-system and its associated peripherals. Additionally, they shall contain any other relevant information to aid in understanding the application and use of these products including functional characteristics, equipment

configuration rules, normal service conditions, physical dimensions and weights, and list compliance with standards and certifications.

7.1.2 Information on user's manuals

These documents shall include the necessary information for the proper installation, wiring, troubleshooting, user programming and commissioning of the PLC-system by the user. They shall include as a minimum

- installation and commissioning instructions,
- programming and troubleshooting instructions,
- maintenance and service requirements, and
- accessory and spare parts lists (for example, fuses).

7.1.3 Information on technical documentation

The manufacturer optionally may provide a set of documents which contain more information than those given in the user's manual such as: schematic diagrams, internal or external data protocols, bus assignments, physical dimension characteristics, energy available, firmware, internal test programmes or repair procedures, etc.

7.2 Information on compliance with this standard

The manufacturer shall provide information on compliance with this Part of IEC 61131, which can be claimed on two levels:

- a) full compliance with all of the requirements contained in all clauses of this part, such as indicated by reference to IEC 61131-2 without qualification;
- b) compliance with a portion of this Part of IEC 61131 where documentation identifies the specific clauses of this part with which the product has been determined to comply.

See 1.2 for details.

7.3 Information on reliability

If the manufacturer provides values of the mean time between failures (MTBF) of any subassembly or module, and of the type-test configuration (s) (PLC-system (s)) under normal service conditions the manufacturer shall also explain the method used to determine it.

7.4 Information on other conditions

The user should reach agreement with the manufacturer for any mechanical conditions that are not specified in this standard.

7.5 Information on shipping and storage

The manufacturer shall provide shipping and storing instructions.

7.6 Information on a.c. and d.c. power supply

The manufacturer shall provide the following information:

- data to allow selection of a suitable power distribution network to provide specified voltage at each power utilization point. This information includes peak inrush (at cold start and warm restart), repetitive peak and steady-state r.m.s. input currents under full-load conditions;
- external terminal identification for power supply interfaces;
- typical example(s) for power supply system(s);
- special supply installation requirements, if any, for PLC-systems energized through multiple power supplies or supply voltages and frequencies not included in <u>5.1.1.1</u>;
- the effect of the following incorrect connections of power to the supply(ies):
 - · reverse polarity,
 - · improper voltage level and/or frequency and
- complete information on PLC-system behaviour for typical power up/down sequences.
- data to allow evaluation of the maximum values of interruption time which do not affect the normal operation of any PLC-system configuration; PS class (PS-1 or PS-2) of d. c. supplied devices;
- memory back-up time with respect to temperature and maintenance requirements;
- recommended time interval between replacement of energy sources, if applicable, and recommended procedure and subsequent effects on the PLC-system;
- peak inrush current (at cold start and warm restart) or recommended fuse size and blowing characteristics.

7.7 Information on digital inputs (current sinking)

The manufacturer shall provide the following information:

- volt-ampere curve over the full operating range, with tolerances or equivalent;
- digital input delay time for 0 to 1 and 1 to 0 transitions;
- existence of common points between channels;
- effect of incorrect input terminal connection;
- isolation potentials between channel and other circuits (including ground) and between channels under normal operation;
- type of input (Type 1, Type 2 or Type 3);
- monitoring point and binary state of visual indicator;
- effects when withdrawing/inserting input module under power;
- additional external load when interconnecting inputs and outputs, if needed;

- explanation of signal evaluation (for example, static/dynamic evaluation, interrupt release, etc.);
- recommended cable and cord lengths depending on cable type and electromagnetic compatibility;
- terminal arrangements;
- typical example(s) of external connections.

7.8 Information on digital outputs for alternating currents (current sourcing)

The manufacturer shall provide the following information with respect to digital outputs for a.c. operation:

- type of protection (i.e. protected, short-circuit-proof, non-protected output), and
- for protected outputs: operating characteristics beyond 1,1 I_e including the current(s) level(s) at which the protecting device energizes, the current behaviour beyond, and the time(s) involved;
- for short-circuit-proof outputs: information for replacement or resetting the protective device as required;
- for non-protected outputs: specification for protective device to be provided by the user, as required;
- output delay time for state 0 to state 1 and state 1 to state 0 transitions;
- commutation characteristics and turn-on voltage with respect to zero-voltage crossing;
- existence of common points between channels;
- terminal arrangements;
- typical example(s) of external connections;
- number and type of outputs (for example, NO/NC contacts, solid state, individually isolated channels, etc.);
- for electromechanical relays, the rated current and voltage complying with 5.2.2.2.5;
- output ratings for the other loads such as incandescent lamps;
- total output current for multi-channel modules (see 3.38);
- characteristics of suppresser networks incorporated into the output circuit against voltage peaks due to inductive kickback;
- type of external protective networks, if required;
- effects of incorrect output terminal connection;
- isolation potentials between channel and other circuits (including ground) and between channels under normal operation;
- monitoring points of visual indicators in the channel (for example, MPU side/load side);
- recommended procedures for changing output modules;
- output behaviour during interruptions of MPU control, voltage drops and interruptions and power up/down sequences (see also 5.6);

- way of operation (i.e. latching/non-latching type);
- effects of multiple overloads on isolated multi-channel modules.

7.9 Information on digital outputs for direct current (current sourcing)

Information to be provided by the manufacturer for digital outputs for d.c. shall be the same as for digital outputs for a.c., as defined in <u>7.8</u>. However, the specification of commutation for zero-voltage crossing does not apply, and with regard to electromechanical relay outputs, AC-15 is replaced by DC-13 in <u>5.2.2.2.5</u>.

7.10 Information on analogue inputs

Besides the type and standard range, the manufacturer shall provide the following information.

7.10.1 Information on analogue input static characteristics

Static characteristics	Units and examples
Input impedance in signal range (manufacturer should specify if this is in the on or off state)	Ω
2) Analogue input error:	-
* maximum error at 25 °C * temperature coefficient 3) Maximum error over full temperature range 4) Digital resolution 5) Data format returned of the application programme C) Volve of a LSB (least size) for a table)	± % of full scale (which scale)
temperature coefficient	± % of full scale/K
3) Maximum error over full temperature range	± % of full scale (which scale)
4) Digital resolution	Number of bits
5) Data format returned of the application programme	Binary, BCD, etc
6) Value of a LSB (least significant bit)	mV, mA
7) Maximum permanent allowed overload (no damage)	V, mA
8) Digital output reading under overload condition	For example, flag
9) Type of input	For example, differential
10) Common-mode characteristics (d.c.) a.c. 50 Hz, a.c. 60 Hz) if applicable	CMRR-dB, CMV-V
11) For other inputs (thermocouples, RTD, etc):	-
• type(s) sensor(s)	J, K, T, etc.: Pt, 100, etc.
• type(s) sensor(s)	Min. °C to max. °C
• type(s) sensor(s)	Internal or user-provided

7.10.2 Information on analogue input dynamic characteristics

Dynamic characteristics	Units and examples
1) Sample duration time (including setting time)	ms
2) Sample repetition time	ms
3) Input filter characteristics:	-
• order	First, second, etc.
transition frequency	Hz
4) Maximum temporary deviation during each specified electrical interference test	± % of full scale

7.10.3 Information on analogue input general characteristics

General characteristics	Units and examples
1) Conversion method	Dual slope, S.A, etc.
2) Operating modes	Trig, self-scan, etc
3) Type of protection	RC, opto-isolator, MOVs, etc
4) Isolation potentials under normal operation between channel and a) other circuits (including ground), b) between channels, c) power supply(ies) and d) interface(s)	V
5) External power supply data, if required	Technical data
6) Common points between channel if any	- 0
7) Type, length of cable, installation rules recommended to provide interference immunity	Twisted pair, 50 m max
8) Calibration or verification to maintain rated accuracy	Month, years
9) Terminal arrangements	, NO -
10) Typical example(s) of external connections	6 -
11) Effect of incorrect input terminal connection	-

7.10.4 Information on analogue input miscellaneous characteristics

Miscellaneous characteristics	Units and examples
1) Monotonicity with no missing codes	Yes, no
2) Crosstalk between channels at d.c., a.c. 50 Hz and a.c. 60 Hz	dB
3) Non-linearity	% of full scale
4) Repeatability at fixed temperature after specified stabilization time	% of full scale
5) Lifetime of electromagnetic relay multiplexers, if applicable	Number of cycles, of hours

7.11 Information on analogue outputs

Besides the type and standard range, the manufacturer shall provide the following information.

7.11.1 Information on analogue output static characteristics

Static characteristics	Units and examples
Output impedance in signal range (manufacturer should specify if this is in the on or off state)	Ω
2) Analogue output error:	-
• maximum error at 25 °C	± % of full scale (which scale)
temperature coefficient	± % of full scale/K
3) Maximum error over full temperature range	± % of full scale (which scale)
4) Digital resolution	Number of bits
5) Data format returned of the application programme	Binary, BCD, etc
6) Value of a LSB (least significant bit)	mV, mA

7.11.2 Information on analogue output dynamic characteristics

Dynamic characteristics	Units and examples
1) Settling time for full-range change	ms
2) Overshoot	% of full scale
3) Maximum temporary deviation during each specified electrical interference test	± % of full scale

7.11.3 Information on analogue output general characteristics

General characteristics	Units and examples
1) Type of protection	Opto-isolator, etc.
2) Isolation potentials between channel and other circuits (including ground) and between channels under normal operation	
3) External power supply data, if required	Technical data
4) For current outputs with external supply, the maximum and minimum voltage drop across the output terminals in the full output range	V
5) Type, length of cable, installation rules recommended to provide interference immunity	Twisted pair, 50 m max
6) Calibration or verification to maintain rated accuracy	Month, years
7) Terminal arrangements	-
8) Common points between channels, if any	_
9) Allowed type(s) of loads	Floating, grounded
10) Maximum capacitive load (for voltage outputs)	pF
9) Allowed type(s) of loads 10) Maximum capacitive load (for voltage outputs) 11) Maximum inductive load (for current outputs)	mH
12) Typical example(s) of external connections	-
13) Output response at power up and power down	-
14) Effect of incorrect output terminal connection	_

7.11.4 Information on analogue output miscellaneous characteristics

Miscellaneous characteristics	Units and examples
1) Monotonicity	Yes, no
2) Crosstalk between channels at d.c., a.c. 50 Hz and a.c. 60 Hz	dB
3) Non-linearity	% of full scale
4) Repeatability at fixed temperature after specified stabilization time	% of full scale

7.12 Information on communication interfaces

If the manufacturer provides communication interfaces to other than his own equipment, he shall provide the necessary information for correct operation. This may be achieved by referencing a specific standard or specification together with details of any options such as baud rate, type of cable to be used, etc.

7.13 Information on main processing unit(s) and memory(ies) of the PLC-system

Information to be provided by the manufacturer for main processing unit(s) and memory(ies) shall be:

- organization, capacity of programme memory;
- organization, capacity of data memory and number of bits per word;
- memory type(s) (i.e. CMOS-EPROM, etc.) available;
- memory back-up functionality and service requirements if any;
- data, constraints and procedures to determine a desired configuration (racks, cables, bus expanders, power supply unit, maximum number of I/Os per type, maximum number of I/O modules, etc.);
- description of the programming languages supported by the PLC-system (combination of the PADT and the main processing unit(s);
- to what extent the languages defined in IEC 61131-3 are supported, including the differences if any (objects, instructions, semantic and syntactic rules, etc.);
- calculation methods to determine every memory utilization (user's application programme and data, firmware programme and data where applicable) and average values of every relevant time (scan time(s), system response time(s), transfer time(s), execution time(s));
- mechanisms in which I/Os are processed (i.e. use of I/O image registers periodically refreshed by the system, immediate "get/put" type instructions, interrupt and event-driven programmes, etc.) and their effect on the following subjects:
 - system response time(s);
 - restart capabilities (i.e. cold, warm, hot restart);
 - detailed times for inputs, outputs; processing, etc.;
 - effect of non-permanently installed peripherals on every relevant time (see item 8 of this subclause) when they are plugged/unplugged, connected/disconnected to their PLC-system interface;
 - PLC-system status information concerning cold, warm and hot restart if applicable. Description and usage of programmable timers usable to determine the process-dependent difference between warm and hot restart;
 - self-test and diagnostic functions implemented (see 5.8)

7.14 Information on remote input/output stations (RIOSs)

The manufacturer shall provide the following information:

- specifications for the selection of adequate cables and other devices needed for the communication link;
- specifications for proper installation of the whole system (including proper selection of energy source(s));
- type of I/O communication network (point-to-point, star, multi-drop, ring, etc.)
- principles, procedures and transmission speeds used on the communication link and their capability to transfer data from and to the RIOSs with respect to error coding/detection and to the delays of transmission in the best, most likely and worst cases;

- effect on transfer time(s) introduced to provide remote input information and RIOSs status to the user's application programme and to transmit its logical decisions to remote outputs;
- specified values and delays according to <u>5.6</u>;
- configuration related data: maximum number of RIOSs in 1 single PLC-system configuration, min/max size of each;
- which I/O modules of the total I/O system may not be used in RIOSs and/or which of their functions are altered if any;
- type, architecture and characteristics of redundancy if provided;
- modems/repeaters if applicable. Maximum distance with or without repeaters;
- terminating devices if required;
- physical characteristics of the communication interface including solution characteristics, maximum acceptable common mode voltage, built-in short-circuit protections, etc.;
- type of standard link interface (i.e. RS 232, RS 422, RS 485, RS 511, etc.);
- functional and safety earthing specifications;
- procedures for making/breaking logical and physical connection of a RIOS to a PLC-system (for example, "on line").

7.15 Information on peripherals (PADTs, TEs, HMIs)

The manufacturer shall provide the following information through convenient documentation and marking:

- clear warnings and precautions to be observed when using functions enabling alteration of control conditions such as PLC-system status modification, changing of data or programmes in the memory, forcing input or output signal, etc.;
- usability of peripherals at RIOSs;
- service conditions for peripherals which are intended for use in an environment less severe than stated in Clause 4 (such peripherals may need to be remotely connected to the rest of the PLC-system through communication lines);
- specifications for the selection of adequate cables and other devices needed for the communication link;
- specifications for proper installation of the whole system (including proper selection of energy source(s));
- type of communication network (point-to-point, star, multi-drop, ring, etc.)
- principles, procedures and transmission speeds used on the communication link and their capability to transfer data from and to the RIOSs with respect to error coding/detection and to the delays of transmission in the best, most likely and worst cases;
- terminating devices if required;
- physical characteristics of the communication interface including isolation characteristics,
 maximum acceptable common mode voltage, built-in short-circuit protections, etc.;

- type of standard link interface (i.e. RS 232, RS 422, RS 485, etc.);

7.16 Information on self-tests and diagnostics

The manufacturer shall provide the following information through convenient documentation and marking:

- description of tests and diagnostics which are implemented and when they are executed (i.e. permanently, periodically, upon user's application programme request, during start-up procedure, etc.);
- correct functioning state and driving conditions of the alarm output(s) (see <u>5.8</u>).

8 Electromagnetic compatibility (EMC) requirements

8DV D2 Modification of 8:

This clause and all its subclauses are informative.

8.1 General

As potential radiating equipment, the installed PLC-system and other devices may emit conducted and radiated electromagnetic interference.

As potential receiving equipment the PLC-system may be effected by externally generated conducted interference, radiated electromagnetic fields and electrostatic discharges.

The requirements of <u>8.2</u> and <u>8.3</u> are intended to characterize the EMC performance of the PLC-system equipment and are the responsibility of the manufacturer. The user, advised by the manufacturer, is responsible for the electromagnetic compatibility of the product as installed.

Since the PLC-system is only 1 component of the overall automated system, this standard does not deal with the EMC compatibility of the overall automated system.

If an optional EMC enclosure (for example, cabinet) or other protection device (for example, filter) is specified by the manufacturer it shall be included as part of the equipment under test (EUT).

The EMC enclosure port is the physical boundary of the PLC-system through which electromagnetic fields may radiate or impinge. See <u>3.46</u>.

8.2 Emission requirements

8.2.1 General requirements for emission

For emissions, the objective of the requirements given in $\underline{\text{Table 27}}$ is to ensure protection of the radiofrequency spectrum.

8.2.2 Emission limits in the low-frequency range

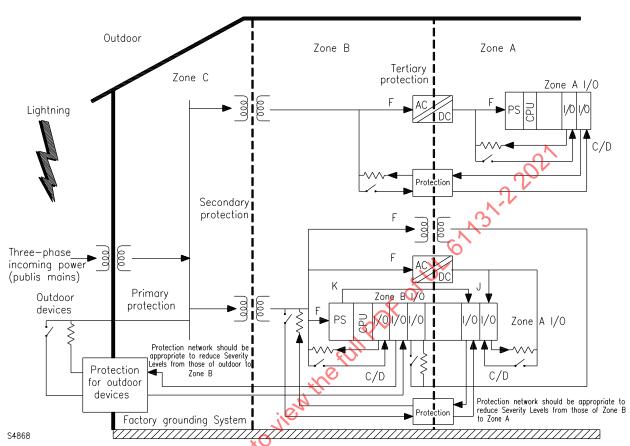
Since the PLC-system is not connected to the public mains, there is no requirement up to 150 kHz.

8.2.3 Emission limits in the high-frequency range

Table 27 Emission limits

Port	Frequency range	Severity level	Severity level	Basic standard
		(normative)	(optional)	
	-	Measured at 10 m distance	Measured at 30 m distance	
Enclosure port	30-230 MHz	40 dB(μV/m) quasi-peak	30 dB(μV/m) quasi-	CISPR 11
(radiated)			peak	Class A, Group 1
	230-1 000 MHz	47 dB(μV/m) quasi-peak	37 dB(μV/m) quasi- peak	202
	0,15-0,5 MHz	79 dB(μV) quasi-peak		<u>٠</u>
AC power port (conducted)	_	66 dB(μV) average	, 07	CISPR 11
	_	_	2/1/2	
	0,5-30 MHz	73 dB(μV) quasi-peak	, 6,	Class A, Group 1
	-	60 dB(μV) average		
NOTE Emission limits at frequencies above 1 000 MHz are under consideration.				

Requirements of this subclause are verified in accordance with 3.3 and 9.4.


8.3 EMC immunity requirements

8.3.1 General

If a product is to be used in multiple zones, then it shall be designed and tested to the most severe combination of requirements for its intended zones.

PLC's are designed for Zone B (which encompasses Zone A) unless otherwise indicated by manufacturer's information.

Figure 11
EMC immunity zones

JILMORM, Chick

The picture shown in <u>Figure 11</u> is meant to describe the EMC and interference coupling mechanisms in a factory environment. Zone separation is determined by power distribution and I/O wiring. Dotted lines are not meant to indicate physical separation or segregation. The letters referred to in <u>Figure 11</u> (F, K, C, D, etc.) correspond to those referred to in <u>Figure 2</u>. They describe interface/ports.

Zone C = Factory mains (isolated from public mains by dedicated transformer), primary surge protection and severe interference coupling.

Zone B = Dedicated power distribution, secondary surge protection and moderate industrial interference coupling.

Zone A = Local power distribution, protected, I/O impedance limiting and low interference coupling.

Table 28 EMC immunity zones

EMC zones	EMC considerations		
Zone C	Factory mains distribution	Primary surge protection	Severe voltage surge coupling
	High rated voltage		4 000 V
Zone B	Dedicated power distribution	Secondary surge protection	Moderate voltage surge coupling
	≤300 V rated voltage	I/O impedance limiting	2 000 V
Zone A	Local power distribution	I/Q impedance limiting	Low-voltage surge coupling
	≤120 V rated voltage	*/le	1 000 V
	≤100 V rated voltage	" All	800 V
	≤50 V rated voltage	7	500 V

8.3.2 Performance criteria

Table 29
Criteria to prove the performance of a PLC-system against EMC disturbances

Performance criterion			
Criterion	Operation		
	During test	After test	
A	The PLC-system shall continue to operate as intended. No loss of function or performance, according to PFVPs (2.5)	The PLC-system shall continue to operate as intended	
В	Degradation of performance accepted Examples: analogue values vary within manufacturer-specified limits, communication delay times vary within manufacturer-specified limits, flickering on HMI display, etc. No change of operating mode Examples: loss of data or uncorrected errors in communication, unintentional state changes of digital I/O which are seen by the system or test set-	The PLC-system shall continue to operate as intended. Temporary degradation of performance must be self-recoverable	

Table 29 Continued

	Performance criterion		
Criterion	Operation		
	During test	After test	
	No irreversible loss of stored data, according to PFVPs (2.5)		
С	Loss of functions accepted, but no destruction of hardware or software (programme or data)	The PLC-system shall continue to operate as intended automatically, after manual restart or power off/power on	

8.3.3 General radiated immunity limits

Table 30
Radiated immunity and enclosure ports (1) Conducted immunity, Zones A-B

Environmental phenomenon	Basic standard	Units	Test severity	Test set-up	Normative items	Performance criteria
Electrostatic	IEC 61000-4-2	kV	±4 Contact	Table 36	(1)	В
discharge			±8 Air	0		В
	IEC 61000-4-3	GHz	1,4-2,0			
Radio-frequency		MHz	800-960	Q*		
Electro-magnetic		MHz	80-1 000			
field Amplitude modulated		V/m	140°	Table 37	(4)	Α
		% AM, 1kHz Sinusoidal	80			
		Hz	60	Table 38	(2), (3)	Α
Power frequency	IEC 61000-4-8	A/m	30			
magnetic fields	1EC 61000-4-8	Hz	50	Table 38	(2), (3)	Α
		A/m	30			

⁽¹⁾ The ESD test shall be applied to (a) operator accessible devices (for example, HMI, PADT and TE) (b) enclosure ports, (c) service accessible parts (for example, switches, keyboards, protective/functional earth, module housing, communications ports with connectors in place and metal connectors) which are not protected from casual access. The ESD test shall not be applied to communications ports without connectors in place, I/O ports or power ports.

Zone B levels are the most typical industrial environmental levels.

⁽²⁾ This test is meant to test equipment sensitivity to magnetic fields normally occurring on the factory floor. The test is only applicable to equipment containing devices susceptible to magnetic fields, such as Hall effect devices, CRT displays, disk drives, magnetic memories and similar equipment. The basic PLC does not normally contain such devices; however, other devices, such as HMI, may. The test is not meant to simulate high-intensity magnetic fields such as those, for example, associated with welding and induction heating processes. This requirement may be satisfied by the test being applied to the sensitive device at the device manufacturer.

⁽³⁾ There will be no deviation up to 3 A/m. Above 3 A/m the manufacturer will specify the allowed deviation for CRT display interfaces.

⁽⁴⁾ This level does not represent the field emitted by a transceiver in close proximity to the PLC-system.

Table 31 Conducted immunity, Zone B

	Environmental phenomenon	Fast transient burst	High energy surge	Radio frequency interference
	Basic standard	IEC 61000-4-4	IEC 61000-4-5	IEC 61000-4-6
	Test set-up	Table 39	Table 40	Table 41
	Performance criteria	В	В	Α
	Normative items		(1), (2)	
Interface/Port Figure 2 (designation)	Specific interface/port			
Data communication	Communication	_	_	0/-
(Al and Ar for I/O racks	Shielded cable	1 kV (5)	1 kV CM	3 V (5)
and		-	-	ก.้V -
Be, Bi and E for peripherals)	Unshielded cable	1 kV (5)	No test	3 V (5)
	AC I/O	2 kV (5)	2 kV CM	3 V (5)
	(unshielded)		1 kV DM	
Digital and analogue	Analogue or		0,5 kV CM	
I/Os (C and D)	DC I/O	1 kV (5)	1 kV (5)	3 V (5)
	(unshielded)		O_{χ}	
	All shielded lines (to shield)	1 kV (5)	1 kV CM	3 V (5)
	AC power	2 kV 🕜	2 kV CM	3 V
Maina nautar (E)		111	1 kV DM	
Mains power (F)	DC power	2 ^k V (4)	1 kV CM	3 V
		JIL	0,5 kV DM	
Protective earthing (G)	Protective earth	No test	No test	No test
Functional earthing (H) (3)	Functional earth	1 kV (5)	No test	3 V
I/O power (J)	I/O and	1 kV	2 kV CM	3 V
and	a.c. auxiliary power		1 kV DM	
auxiliary power output	I/O and	1 kV (4)	0,5 kV CM	3 V
(K)	d.c. auxiliary power		0,5 kV DM	

⁽¹⁾ Not applicable to d.c. power ports intended for connection to a battery or a rechargeable battery that must be removed or disconnected from the equipment for recharging. The test is applicable to d.c. power ports, unless cables are specified ≤10 m a.c. Power ports to be tested regardless of specified length.

Zone A levels apply where installation practices reduce industrial environmental levels below those of Zone B. Referring to <u>Figure 11</u>, these may be installation of protection networks, a.c. / d.c. converters, isolation transformers, surge suppressers, etc.

⁽²⁾ For non-mains power ports with cables specified ≤30 m, no test is needed.

⁽³⁾ If this port is used for shield returns, this port would be tested as a consequence of the shielded cable test. Otherwise, no specific test of this port is required.

⁽⁴⁾ For ports with cables specified ≤10 m, no test is needed.

⁽⁵⁾ For ports with cables specified ≤3 m, no test is needed.

Table 32 Conducted immunity, Zone A

	Environmental phenomenon	Fast transient burst	High energy surge	Radiofrequency interference
	Basic standard	IEC 61000-4-4	IEC 61000-4-5	IEC 61000-4-6
	Test set-up	Table 39	Table 40	<u>Table 41</u>
	Performance criteria	В	В	Α
	Normative items		(1), (2)	
Interface/Port Figure 2 (designation)	Specific interface/port			
Data communication	Communication	-	_	- N
(Al and Ar for I/O racks	Shielded cable	0,5 kV (5)	0,5 kV CM	3 V (5)
and		-	- (_
Be, Bi and E for peripherals)	Unshielded cable	0,5 kV (5)	No test	3 V (5)
	AC I/O	1 kV (5)	1 kV CM	3 V (5)
	(unshielded)		0,5 kV DM	
Digital and analogue	Analogue or d.c. I/O	0,5 kV (5)	No test	3 V (5)
I/Os (C and D)	(unshielded)		0	
	All shielded lines	0,5 kV (5)	1 kV CM	3 V (5)
	(to shield)	"6,		
	AC power	1 kV	1 kV CM	3 V
Mains power (F)		,00	0,5 kV DM	
	DC power	1kV (4)	0,5 kV CM	3 V
Protective earthing (G)	Protective earth	No test	No test	No test
Functional earthing (H) (3)	Functional earth	0,5 kV (5)	No test	3 V
I/O power (J)	I/O and a.c. auxiliary	0,5 kV	1 kV CM	3 V
and	power		0,5 kV DM	
auxiliary power output (K)	I/O and d.c. auxiliary power	0,5 kV (4)	No test	3 V

⁽¹⁾ Not applicable to d.c. power ports intended for connection to a battery or a rechargeable battery that must be removed or disconnected from the equipment for recharging. The test is applicable to d.c. power ports, unless cables are specified ≤10 m. AC power ports to be tested regardless of specified length.

Conditions of use may require installation in Zone C. The manufacturer may elect to provide equipment for this installation by utilizing the levels given in Annex \underline{D} .

Requirements of this subclause are verified in accordance with 9.5, 9.6, 9.7, 9.8, 9.9, and 9.10.

8.3.4 Voltage drops and interruptions power ports

These limits apply to the mains power interface/port (F) in Figure 2.

⁽²⁾ For non-mains power ports with cables specified ≤30 m, no test is needed.

⁽³⁾ If this port is used for shield returns, this port would be tested as a consequence of the shielded cable test. Otherwise, no specific test of this port is required.

⁽⁴⁾ For ports with cables specified ≤10 m, no test is needed.

⁽⁵⁾ For ports with cables specified ≤3 m, no test is needed.

For short disturbances of the supply as defined in <u>Table 33</u>, the PLC-system (including RIOSs (see $\underline{5.6}$) and non-permanently installed peripherals) shall maintain normal operation.

For longer interruptions of the supply(ies), the PLC-system shall either maintain normal operation or go to a predefined state and have a clearly specified behaviour until normal operation is resumed.

NOTE Outputs and fast responding inputs energized by the same supply(ies) will respond to these power supply variations.

Table 33 Voltage drops and interruptions

(5)	(3), (4)	Maximum interruption Time	Time interval between drops	Low voltage
DC supply	Severity level PS1	1 ms	≥1 s	Any voltage under
-	Severity level PS2	10 ms	≥1 s 🔨	lower operational limit
AC supply	-	0,5 period (1)	≥1 s 6	<i>U</i> _{e min} (2)

- (1) Any arbitrary phase angle (see 9.12).
- (2) $U_{\rm e \, min}$ is the $U_{\rm e}$ at minimum tolerance in <u>Table 6</u>.
- (3) PS1 applies to PLC-systems supplied by battery.
- (4) PS2 applies to PLC-systems energized from rectified a.c. supplies and/ortong d.c. lines.
- (5) Voltage interruptions are from $U_{\rm e \, min}$

Requirements of this subclause are verified in accordance with 9.12.

8.4 Requirements for EMC tests and verifications

Test and verifications for EMC shall be performed by the manufacturer, in accordance with Clause 9.

8.5 Requirements for information on EMC

Information on EMC shall be provided by the manufacturer, in accordance with 10.

9 Electromagnetic compatibility (EMC) type tests and verifications

For EMC type tests, also refer to pass-fail criteria (Table 29).

9DV D2 Modification of 9:

This clause and all its subclauses are informative.

9.1 Electromagnetic compatibility-related tests

The conducted and radiated emissions and immunity of the PLC-system must be tested according to the manufacturer's installation guideline.

All EMC tests shall be conducted in a well-defined and reproducible manner.

All EMC tests are type tests.

It may be determined from consideration of the electrical characteristics and usage of a particular apparatus that some tests are inappropriate and therefore unnecessary. In such cases, it is required that the decision and justification not to test is recorded in the test report.

9.2 Test environment

The EUT is located in the specified test site and any auxiliary equipment shall be located outside the influence of the test environment. For certain environments, it is appropriate to expect that potential interference victims will be located at least a minimum distance from the radiator. In the industrial environment, the expected distance is 30 m.

All input/output cables can be normally looped back for monitoring and testing and/or can be terminated with a representative load.

In general, for multi-channel I/O, 1 circuit may be tested to represent all channels. On and off states and/or points representing the range of allowed loads must be tested.

9.3 Measurement of radiated interference

Table 34
Radiated emission measurement

Reference test	CISPR 11
Test configuration	accordance with CISPR 11 and CISPR 16-1 (2)
Distance and method (1)	See <u>Table 27</u>
Details of mounting/support	Installed according to manufacturer's specification
_	-
Frequency range	See <u>Table 27</u>
-	-
Class A Limits	See <u>Table 27</u>

⁽¹⁾ The measurement distance is the distance between the EUT or its enclosure and the receiving antenna for test site measurements, or the measurement distance is the distance between the exterior wall of the building in which the equipment is situated and the receiving antenna, for in situ measurements.

9.4 Measurement of conducted interference

Table 35
Conducted emission measurement

Reference test	CISPR 11
Test configuration and method	In accordance with CISPR 11, CISPR 16-1 and -2
-	-
Applicable ports	AC power port (F) (1)
_	-

⁽²⁾ Tests may be conducted on radiation test sites, which do not have the physical characteristics of an open-air test site. An alternative radiation test site in the frequency range 30 MHz to 1 GHz shall be acceptable if the horizontal and vertical site attenuation measurements made according to 16.6 of CISPR 16-1 are within ±4 dB of the theoretical site attenuation as given in CISPR 16-1 Table G.1, G.2, or G.3. Alternative radiation test sites shall allow for, and be validated for, the measurement distance in the frequency range of 30 MHz to 1 GHz. Evidence shall be obtained to show that such alternative sites will yield valid results.

Table 35 Continued

Reference test	CISPR 11	
Details of mounting/support	Installed according to manufacturer's specifications	
_	-	
Frequency range	See <u>Table 27</u>	
-	_	
Class A limits (2)	See <u>Table 27</u>	

⁽¹⁾ DC mains are under consideration.

9.5 Electrostatic discharge

are observed, failure of the ESD test shall be declared.

Table 36 Electrostatic discharge immunity test

Reference test	EC 61000-4-2	
EUT configuration	According to manufacturer's specifications	
-	◇ ◇` -	
Initial measurements	According to PFVP (2.5)	
_		
Details of mounting/support	According to manufacturer's specifications and IEC 61000-4-2 provisions	
_		
Selection of application points	The ESD test shall be applied to (a) operator accessible devices (for example, HMI, PADT and TE) (b) enclosure ports, (c) service accessible parts (for example, switches, keyboards, protective/functional earth, module packaging, communications ports with connectors in place and metal connectors) which are not protected from casual access. The ESD test shall not be applied to communications ports without connectors in place, I/O ports or power ports	
Test application	-	
Contact discharge	EUT, horizontal and vertical coupling planes	
Air discharge	EUT	
, / / ² -	-	
Test levels	See <u>Table 30</u> or <u>Table D.1</u>	
-	-	
Time between two discharges	≥1 s	
Number of discharges on each selected point	Ten discharges after the equipment is discharged to earth	
Measurement and verification during loading	According to PFVP (2.5)	
_	-	
Performance criteria	See <u>Table 30</u> or <u>Table D.1</u> (1)	
1) If the system deviates only once during the test, a second trial of 10 discharges shall performed; if more nonallowed deviation		

⁽²⁾ Impulse interference (click) which occurs less than 5 times per minute is not considered. For clicks appearing more often than 30 times per minute the limits apply. For clicks appearing between 5 and 30 times per minute a relaxation of the limits of 20 log 30/N (where N is the number of clicks per minute) is allowed.

9.6 Radiofrequency electromagnetic field - Amplitude modulated

Table 37
Radiated electromagnetic field immunity test

Reference test	IEC 61000-4-3
EUT configuration	According to manufacture's specifications
_	-
Initial measurements	According to PFVP (2.5)
-	-
Details of mounting/support	The EUT is placed in the calibrated test field
_	- 00 ¹
Frequency range to be swept	See <u>Table 30</u> or <u>Table D.1</u> (2), (Note)
_	- 01/1
Modulation	See <u>Table 30</u> or <u>Table D.1</u>
-	6
Sweep speed	1,5 × 10 ⁻³ decade/s
-	<u> </u>
Test field strength	See <u>Table 30</u> or <u>Table D.1</u> (1)
Measurement and verification during loading	According to PFVP (2.5)
_	
Performance criteria	See <u>Table 30</u> or <u>Table D.1</u>

⁽¹⁾ Except for the ITU broadcast frequency bands: 87-108 MHz, 174-230 MHz and 470-790 MHz where the level shall be 3 V/m.

NOTE See also Annex H, IEC 61000-4-3.

9.7 Power-frequency magnetic fields

Table 38

Power-frequency magnetic field immunity test

Reference test	IEC 61000-4-8	
EUT-configuration	According to manufacture's specifications	
2 0 -	-	
Initial measurements	According to PFVP (2.5)	
_	-	
Details of mounting/support	The EUT is immersed	
_	in the magnetic field of a 1 m x 1 m induction coil.	
_	-	
Frequency (power line)	See <u>Table 30</u> or <u>Table D.1</u>	
_	-	
Test condition	Immersion method in continuous field	
-	-	
Test field strength	See <u>Table 30</u> or <u>Table D.1</u>	
Measurement and verification during loading	According to PFVP (2.5)	
Performance criteria	See <u>Table 30</u> or <u>Table D.1</u> (1)	
(1) For CRTs, the performance criteria is B, if the field is ≥3A/m.		

⁽²⁾ Conducted immunity requirements <u>9.10</u>, for 26-80 MHz may be satisfied by utilizing this test over the 26-80 MHz range. See <u>Table 41</u>.

9.8 Fast transient bursts

Table 39
Fast transient burst immunity test

Reference test	IEC 61000-4-4	
EUT configuration	According to manufacturer's specifications	
-	-	
Initial measurements	Initial measurements	
-	-	
Details of mounting/support	The EUT shall be such as to eliminate the radiated EMI received on I/O	
-	wiring by the specified capacitive coupling	
-	- ~~~~~	
Severity level at rated voltage	See <u>Table 31</u> , <u>Table 32</u> or <u>Table D.2</u>	
-	- \(\frac{1}{2}\)	
Duration	1 min minimum	
-	<u></u> 0	
Application ports/methods	<u>ر ۷</u>	
-	, o · -	
Communication (Al, Ar, Be, Bi, and E), I/O (C and D),	50-200 pF capacitive clamp coupling	
I/O Power (J) and auxiliary power output (K)		
-	-	
AC/DC power (F)	33 nF direct coupling	
Measurement and verification during loading	According to PFVP (2.5)	
Performance criteria	See <u>Table 31</u> , <u>Table 32</u> or <u>Table D.2</u>	
NOTE The repeatability of this test is closely related to the number and relative position of wires within the capacitive coupling		

clamp.

9.9 High-energy surges

Table 40 High-energy surge immunity test

Reference test	IEC 61000-4-5
EUT configuration	According to manufacturer's specifications
, L -	-
Initial measurements	According to PFVP (2.5)
_	_
Details of mounting/support	According to manufacturer's specifications
-	-
Severity level at rated voltage	See <u>Table 31</u> , <u>Table 32</u> or <u>Table D.2</u>
_	-
Number of discharges	Five each in positive and negative polarities
_	-
Repetition rate	1/min maximum
_	-

Table 40 Continued

Reference test	IEC 61000-4-5
Application ports/methods	Direct coupling by wired capacitance method
-	-
Shielded communication (Al, Ar, Be, Bi, and E) and shielded I/O (C and D)	$2\Omega/10$ nF between shield and reference ground
-	-
Unshielded communication (Al, Ar, Be, Bi, and E) and unshielded I/O (C and D),	42Ω/0,5 μF CM 42Ω/0,5 μF DM
I/O Power (J) and auxiliary power output (K)	-
_	- 0^
AC/DC power (F)	12 Ω/9 μF CM 2Ω/18 μF DM
Measurement and verification during loading	According to PFVP (2.5)
Performance criteria	See <u>Table 31</u> , <u>Table 32</u> or <u>Table D.2</u>

9.10 Conducted radiofrequency interference

Performance criteria	See <u>Table 31</u> , <u>Table 32</u> or <u>Table D.2</u>			
9.10 Conducted radiofrequency interference Table 41				
Conduc	cted RF immunity test			
	VIII 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			
Reference test	IEC 61000-4-6 (2), (Note1)			
EUT configuration	According to manufacturer's specifications			
-	-			
Initial measurements	According to PFVP (2.5)			
-	<u></u>			
Details of mounting/support	The EUT shall be such as to eliminate the radiated EMI received on I/O wiring by the specified magnetic coupling			
- cjic,	_			
Severity level at rated voltage	Severity level at rated voltage			
- "V".	_			
Frequency range to be swept	150 kHz-80 MHz (1), (Note 2)			
-0.				
Modulation	80 % AM by a 1 kHz sinusoidal			
0	_			
Sweep speed				
oweep speed	1,5 × 10 decade/5			
Test level (unmodulated)	- See <u>Table 31</u> (3), <u>Table 32</u> (3) or <u>Table D.2</u>			
rest level (utilitiodulated)	3ee <u>lable 31 (3), lable 32 (3) 01 lable 0.2</u>			
-	All cable between FLIT and element of CDN is an about as presible			
Application points	All cable between EUT and clamp or CDN is as short as possible			
-	,			
-	(max. 0,3 m)			
Communication (Al, Ar, Be, Bi, and E), I/O (C and D),	-			
a.c./d.c. power (F), functional earthing (H), I/O power (J) and auxiliary power output (K)	-			
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	CDN, EM or current coupling clamp			
	-			

Table 41 Continued

Reference test	IEC 61000-4-6 (2), (Note1)
CDN, EM or current coupling clamp	According to PFVP (2.5)
Performance criteria	See <u>Table 31</u> , <u>Table 32</u> or <u>Table D.2</u>

- (1) There are no new radiators below 26 MHz. Additionally, history has shown no difficulty below 26 MHz. So, no test is necessary below 26 MHz. The 0,15-26 MHz band is exempted from test.
- (2) Conducted Immunity requirements, for 26-80 MHz, may be satisfied by utilizing the radiated electromagnetic field immunity test over the 26-80 MHz range. See <u>Table 37</u>.
- (3) For the 3 V open-circuit test level, if (2) is exercised, a 10 V/m field strength should be used.

NOTE 1 See also Annex H, IEC 61000-4-3.

NOTE 2 Notes on test level selection and Annex B of IEC 61000-4-6.

9.11 Damped oscillatory wave (for zone C only)

Table 42
Damped oscillatory wave immunity test

Reference test	(IÈC 61000-4-12			
EUT configuration	According to manufacturer's specifications			
-	_			
Initial measurements	According to PFVP (2.5)			
_	_			
Details of mounting/support	According to manufacturer's specifications			
Test description	-			
Waveform	Damped oscillating wave the envelope of which reaches 50 % of the			
- Click to	initial peak value after 3 to 6 cycles (verify the sinusoidal shape of the wave)			
	,			
- Cille	1 MHz ± 10 %			
Frequency	200 Ω ± 10 % unshielded			
Source impedance	400/s			
Repetition rate	2 s minimum			
Test duration	2 m maximum			
Length to connection	_			
2 0-	See <u>Table D.2</u>			
Severity level at rated voltage	_			
_	-			
Application points/method:	CM, DM			
I/O (C and D), a.c./d.c. power (F), I/O power (J) and auxiliary power output (K)	_			
Measurement and verification during loading	According to PFVP (2.5)			
Performance criteria	See <u>Table D.2</u>			

9.12 Voltage drops and interruptions – Power port type tests and verifications

Power ports are mains power input port, port F, Figure 2.

Perform the proper functional verification procedure of 2.5 during tests.

Table 43
Voltage drops and interruptions immunity test

Reference test	None	
EUT configuration	According to manufacturer's specifications	
Initial measurements	According to PFVP (2.5)	
Supply voltage and frequency	U _e min to 0 (zero) V, F _n	
Test description	-	
AC supply interruption	_	
Duration base	0,5 period, starting at zero-crossing (1), (2)	
Number of trials	20	
Time interval between trials	1 s < time interval < 10 s	
-	- 0.V	
DC supply interruption	- ~~~	
Duration	PS1: ≥ 1 ms; PS2: ≥ 10 ms (2)	
Number of trials	20	
Time interval between trials	1 s < time interval < 10 s	
Measurement and verification during loading	According to PFVP (2.5)	
-	Normal operation shall be maintained (3)	
-		
Verification after tests	According to PFVP (2.5)	
Performance criteria	A	

- (1) Optionally, the manufacturer may elect to interrupt supply at a random phase angle.
- (2) The manufacturer may state longer interruptions.
- (3) Fast responding inputs energized by the same power supply may be affected temporarily during the disturbance but shall resume normal operation after the disturbance.

10 Electromagnetic compatibility (EMC) information to be provided by the manufacturer

Information to be made available can be in other than printed form.

General rules of installation are noted in IEC 61131-4. Specific installation information shall be provided by the manufacturer.

The manufacturer shall state if its devices are intended to be used under normal service conditions or in a less severe environment (for example, office environment). If the PLC is intended for other than Zone B (which encompasses Zone A), the manufacturer shall state the intended zone.

The test report shall describe all the tests, the rationale for the selection of the typical (representative) configuration of the EUT and the test results.

The EUT software used during the test shall be documented.

10DV D2 Modification of 10:

This clause is informative.

11 Safety requirements

This section specifies safety requirements for PLC-systems equipment (i.e. MPU, RIOSs, permanently non-permanently installed peripherals). Components connected to the mains power supply of the installation, such as power supplies, I/O modules, communication interfaces, and memory subsystems are also subject to the applicable provisions of this clause.

11.1 Protection against electrical shock

Protection against electric shock of the PLC-system shall be maintained in normal and singlefault condition. Accessible parts of equipment shall not be, or in the case of a single fault become, hazardous live. Although they are principally directed at enclosed equipment, these requirements also apply to open equipment. When applied to open equipment, the equipment shall be considered to be installed, according to the manufacturer's instructions.

Protection shall be by compliance with the dielectric strength requirements in 11.1.4, the operator accessibility requirements of 11.1.5, the normal condition requirements of 11.1.6, the single-fault requirements in 11.1.7 and the clearance and creepage requirements in 11.4.

SELV/PELV circuits do not pose a risk of electric shock and do not require additional evaluation.

11.1DV D2 *Modification of* 11.1:

Protection against electric shock is only required in normal conditions, and is demonstrated by compliance with the normal condition requirements of the following: dielectric strength requirements in 11.1.4, the shock protection requirements of 11.1.5, the normal condition requirements of 11.1.6, and the clearance and creepage requirements in 11.4.

11.101DV D2 Addition to 11.10

Circuits identified in Annex <u>DVD</u> as not posing a risk of electric shock do not require additional evaluation other than as noted in Annex <u>DVD</u>.

11.1.1 Permissible limits for accessible parts

To ensure that accessible parts are not hazardous live, the voltage, current, charge or energy between an accessible part and reference test earth, or between any 2 accessible parts on the same piece of equipment within a distance of 1,8 m (over a surface or through air), shall not exceed the values of 11.1.1.1 in normal condition nor of 11.1.1.2 in single-fault condition.

The accessible voltage shall be measured. If the voltage is below the limit of $\underline{11.1.1.1}$ or $\underline{11.1.1.2}$ as applicable, accessible current and capacitance need not be measured. If the voltage exceeds that value, the current and capacitance shall be measured.

11.1.1.1 Values in normal condition

Values above the levels of a), b) or c) in normal condition are deemed to be hazardous live.

a) The voltage levels are a.c. 30 V r.m.s. and 42,4 V peak or d.c. 60 V.

- b) If the voltage exceeds one of the values of a), the current levels are
 - a.c. 0,5 mA r.m.s. for sinusoidal waveforms, 0,7 mA peak for non-sinusoidal waveform or mixed frequencies, or d.c. 2 mA, when measured with the measuring circuit of IEC 61010-1, Annex A, Figure A.1. Alternatively, the measuring circuit of IEC 61010-1, Annex A, Figure A.2 can be used if the frequency does not exceed 100 Hz;
 - a.c. 70 mA r.m.s. when measured with the measuring circuit of IEC 61010-1, Annex A,
 Figure A.3.

NOTE This relates to possible burns at higher frequencies.

- c) If the voltage exceeds one of the values of a), the charge or energy of capacitance levels are
 - 45 μC charge for voltages up to 15 kV peak or d.c.;
 - 350 mJ stored energy for voltages above 15 kV peak or d.c.

11.1.1.1DV D2 Modification to part b) of 11.1.1.1:

Reference UL 61010C-1, Annex A, Figures A.1, A.2 and A.3 for current measuring.

11.1.1.2 Values in single-fault condition

Values above the levels of a), b) or c) in single-fault condition are deemed to be hazardous live.

- a) The voltage levels are a.c. 50 V r.m.s. and 70 V peak or d.c. 120 V.
- b) If the voltage exceeds one of the values of a), the current levels are
 - a.c. 3,5 mA r.m.s. for sinusoidal waveforms, 5 mA peak for non-sinusoidal waveform or mixed frequencies, or d.c. 15 mA, when measured with the measuring circuit of IEC 61010-1, Annex A, Figure A.1 Alternatively, the measuring circuit of IEC 61010-1, Annex A, Figure A.2 can be used if the frequency does not exceed 100 Hz;
- a.c. 500 mA r.m.s. when measured with the measuring circuit of IEC 61010-1, Annex A, Figure A.3.
 NOTE This relates to possible burns at higher frequencies.
- c) If the voltage exceeds one of the values of a), the capacitance levels are those of IEC 61010-1, Figure 2.
- 11.1.1.2DV.1 D2 Modification to part b) and c) of 11.1.1.2:

Reference UL 61010C-1, Annex A, Figures A.1, A.2 and A.3 for current measuring.

- 11.1.1.2DV.2 D2 Modification of 11.1.1.2 by adding the following item d):
- d) Circuits identified in Annex <u>DVD</u> as not posing a risk of electric shock do not require additional evaluation other than as noted in Annex <u>DVD</u>.

11.1.2 Open PLC-system equipment

Open PLC-system equipment is equipment that may have live electrical parts accessible, for example, a main processing unit.

Protection against electric shock shall be provided for those interfaces that are intended for operator access (see <u>Table 44</u> for clarification). No other means of protection against electric shock are required except the enclosure required for the ultimate application.

Open equipment is to be incorporated into other assemblies manufactured to provide safety.

11.1.3 Enclosed PLC-system equipment

Enclosed PLC-system equipment is equipment which is enclosed on all sides, with the possible exception of its mounting surface, to prevent personnel from accidentally touching live or moving parts contained therein, to protect the equipment against ingress of 12,5 mm diameter and greater solid foreign bodies, and meeting requirements of mechanical strength, flammability, and stability (where applicable). The protection degree must be ≥ IP20.

NOTE IP ratings as defined in IEC 60529.

As part of the requirement to provide protection against electrical shock, each entity of an enclosed PLC-system shall comply with the requirements of class I (see $\underline{11.1.3.2}$), class II (see $\underline{11.1.3.2}$), class III (see $\underline{11.1.3.3}$) or a mix thereof. The protection degree shall be ≥ 120 .

Protection against electric shock shall be provided for those interfaces that are intended for operator access (see <u>Table 44</u> for clarification).

11.1.3DV D2 Modification of 11.1.3:

11.1.3DV.1 The minimum required enclosure rating is type 1 as defined in Annex DVE.

11.1.3DV.2 Class 2, limited voltage/current and limiting impedance circuits, as described in Annex DVD, need not be so enclosed.

11.1.3.1 Class I equipment

Class I equipment is equipment in which protection against electric shock does not rely on basic insulation only, but which includes an additional safety precaution in such a way that means are provided for the connection of accessible conductive parts to the protective earth conductor in the fixed wiring of the installation in such a way that accessible conductive parts cannot become live in the event of a failure of the basic insulation.

NOTE Class I equipment may have parts with double insulation or reinforced insulation, or parts operating at safety extra-low voltage.

Equipment for use with a flexible cord (such as PADTs) shall include a provision for a protective earth conductor that must be part of the cord set.

Accessible conductive parts of a PLC-system, which may become hazardous live in the event of a single fault, shall be connected to the protective circuit of the PLC-system. This does not apply to accessible conductive parts, such as screws, rivets and nameplates, which can become hazardous live under single-fault conditions.

When a part of the PLC-system is removed from the enclosure, for normal maintenance, for example, the protective circuits serving other parts of the PLC-system shall not be interrupted.

Protective earthing requirements shall be as specified in 11.9.

11.1.3.2 Class II equipment

Class II equipment is equipment in which protection against electric shock does not rely on basic insulation only, but in which additional safety precautions, such as double insulation or reinforced insulation are provided, there being no provision for protective earthing or reliance upon installation conditions.

Such equipment may be of one of the following types:

- 1) insulation-encased class II equipment: equipment having a durable and substantially continuous enclosure of insulating material which envelops all conductive parts, with the exception of small parts, such as nameplates, screws and rivets, which are isolated from hazardous live parts by insulation at least equivalent to reinforced insulation;
- 2) metal-encased class II equipment: equipment having a substantially continuous metal enclosure, in which double insulation is used throughout, except for those parts where reinforced insulation is used:
- 3) equipment which is a combination of types 1) and 2)

NOTE 1 The insulated enclosure of a class II equipment may form a part of the whole of the supplementary insulation or of the reinforced insulation.

NOTE 2 If equipment with double insulation and/or reinforced insulation throughout has a protective earthing terminal or contact, it is deemed to be of class I construction.

NOTE 3 Class II equipment may have parts operating at safety extra-low voltage.

Protective impedance may be used in lieu of double insulation provided the protective impedance limits the accessible conductive parts to a current of 5 mA or limits open-circuit voltage to values for SELV.

Class II equipment may be provided with means for maintaining the continuity of circuits (i.e. grounded internal components or conductive surfaces) provided that these circuits are double insulated from the accessible circuits of the equipment.

Class II equipment may be provided with means for connection to the earthing terminals for functional purposes (such as radiofrequency interference suppression) provided the double insulation system is still provided for protective purposes.

11.1.3.2DV DR Modification of 11.1.3.2:

Class II construction is not permitted for permanently connected equipment.

11.1.3.3 Class III equipment

Class III equipment is equipment in which protection against electric shock is provided by circuits supplied by safety extra-low voltage (SELV) and where voltages generated do not exceed the limits for SELV.

Class III equipment may be provided with means for connection to the earthing terminals for functional purposes (such as radiofrequency interference suppression).

Wiring for SELV/PELV circuits shall be either segregated from the wiring for circuits other than SELV/PELV, or the insulation of all conductors shall be rated for the higher voltage. Alternatively, earthed screening or additional insulation shall be arranged around the wiring for SELV/PELV circuits or around the wiring of other circuits.

11.1.3.3DV D2 Modification of 11.1.3.3 by adding the following:

11.1.3.3DV.1 Internal wiring

- 11.1.3.3DV.1.1 For other than Class 2 or Class 3 circuits, as defined in Article 725 of the National Electrical Code, NFPA 70, the equipment shall be constructed so that a conductor, including a field-installed conductor of any circuit is segregated by means of a minimum permanent 6.4 mm physical separation or separated by means of a barrier from physical contact with:
 - a) A conductor connected to any other circuit unless the conductors of both circuits shall be insulated for the maximum voltage of either circuit.
 - b) An uninsulated live part of any other circuit.
- 11.1.3.3DV.1.2 A conductor subject to movement during normal operation shall maintain separation of circuits during the full range of movement.
- 11.1.3.3DV.1.3 Isolated secondary circuits as defined in Annex <u>DVD</u> are considered to comply with these requirements.

11.1.4 Dielectric strength

The dielectric withstand type test of 12.2.1 shall be performed between all parts and circuits where basic, reinforced or double insulation are specified for protection against electric shock.

However, the dielectric withstand type test of 12.2.1 need not be carried out

- between SELV/PELV circuits and operator-accessible conductive parts (frames, enclosures, earth terminal, etc.)
- on units (parts of the basic PLC-system) which have been tested separately according to the relevant standards provided:
- when the values given in Table 52, Table 53 and Table 54 have been met, as appropriate, and
- their dielectric strength is not impaired by assembly.
- 11.1.4DV D2 Modification of 11.1.4 by adding the following:
- 11.1.4DV.1 Dielectric strength tests conducted in conjunction with temperature, Overload and Endurance tests outlined in Clause 12 are considered to cover requirements in this clause.
- 11.1.4DV.2 The dielectric withstand type test of <u>12.2.1</u> must be carried out for equipment rated not more than 50 volts.

11.1.5 Operator accessibility

<u>Table 44</u> defines operator accessible ports of a PLC-system. Under special circumstances, some ports of either open or enclosed equipment may or may not be considered operator-accessible. This must be agreed upon between the manufacturer and the user.

Table 44
Operator accessibility for open and enclosed equipment

	Operator a	Operator accessible		
Port	Open equipment	Enclosed equipment		
Al (communication interface/port for local IO extension rack)	No (Yes		
Ar (communication interface/port for remote IO station)	No 🕠	Yes		
Be (open communication interface/port also open to third-party devices (for example, personal computer used for programming instead of a PADT)	Yes	Yes		
Bi (internal communication interface/port for peripherals)	No	Yes		
C (interface/port for digital and analogue input signals)	No	Yes		
D (interface/port for digital and analogue output signals)	No	Yes		
E (serial or parallel communication interfaces/ports for data communication with third-party devices)	Yes	Yes		
F (mains power interface/port)	No	Yes		
G (interface/port for protective earthing)	No	Yes		
H (interface/port for functional earthing)	No	Yes		
J (I/O power interface/port used to power sensors and actuators)	No	Yes		
K (auxiliary power output interface/port)	No	Yes		

11.1.6 Protection in normal condition

Operator-accessible parts shall be prevented from becoming hazardous live under normal condition by one or more of the following means:

a) basic insulation:

NOTE This can be provided by suitable insulating materials, transformers, and opto-isolators.

- b) enclosures or barriers;
- c) protective impedance (see 11.1.7.3).

Enclosures and barriers shall meet the rigidity requirements of <u>11.7.2.2</u>. If enclosures or barriers provide protection by insulation, it shall meet the requirements for basic insulation.

Clearances, creepage distances and insulation between accessible parts and hazardous live parts shall meet the requirements of 11.4 and the applicable dielectric strength requirements for basic insulation.

Compliance is checked

- a) by the determination of 12.1.2;
- b) by the requirements of 11.1.4 for dielectric strength of basic insulation;

c) by the tests of 12.1.7 for rigidity of enclosures and barriers.

NOTE Materials, which can easily be damaged, are not considered to provide suitable insulation, for example lacquer, enamel, oxides, anodic films. Non-impregnated hygroscopic materials such as paper, fibres and fibrous material are also not considered to provide suitable insulation.

11.1.7 Protection in single-fault condition

Additional protection shall be provided to ensure that operator-accessible conductive parts are prevented from becoming hazardous live when a single fault occurs. This additional protection shall be provided by one or more of the following means:

```
protective earthing and bonding (see 11.1.7.1), supplemental insulation (see 11.1.7.2), or protective impedance (see 11.1.7.3).
```

A single fault shall be considered to occur when a single component providing protection is unable to continue providing that protection.

Fault tests shall be performed on protective impedances, parts intended for short-term or intermittent operation, mains-connected transformers, outputs, cooling provisions and insulation. The testing shall consist of shorting, opening, blocking, etc. the part, as appropriate, while the equipment is operating under least favourable test conditions. Tests shall be applied one at a time.

After the application of the faults, the equipment shall be verified: not to have any operator-accessible parts hazardous live and to satisfy the dielectric withstand verification of 12.2.1, without pre-conditioning. If a fault is terminated by the opening of a fuse and if the fuse does not open within approximately 1 s, the equipment shall be operated for a period corresponding to the maximum specified fuse-opening time.

Requirements of this subclause are verified in accordance with 12.3.

11.1.7DV D2 Modification of 11.1.7 by adding the following:

Protection against electric shock is only required in normal conditions. This national difference does not apply to isolated secondary circuits as noted in Annex DVD.

11.1.7.1 Protective earthing and bonding

Operator-accessible conductive parts shall be bonded to the protective conductor terminal if they could become hazardous live in case of a single fault of the primary protective means specified in 11.1.6. Alternatively, such accessible parts shall be separated from parts that are hazardous live by a conductive protective screen or barrier bonded to the protective conductor terminal.

Operator-accessible conductive parts need not be bonded to the protective earth terminal if they are separated from all hazardous live parts by double insulation or reinforced insulation.

Compliance is checked by inspection.

11.1.7.1DV D2 Modification of 11.1.7.1 by adding the following:

Operator-accessible conductive parts shall be bonded to the protective earth terminal. This national difference is only needed if the national difference 11.1DV is applied.

11.1.7.2 Supplemental insulation

Clearances shall be in accordance with <u>11.4.1</u> and <u>11.4.2</u>. Creepage distances shall be in accordance with <u>11.4.3</u>. Fulfilling the requirements for double or reinforced insulation satisfies the requirements for protection under single-fault conditions.

11.1.7.3 Protective impedance

The protective impedance shall limit the voltage from becoming hazardous live under normal or single-fault conditions on operator-accessible parts or to values for SELV.

The use of a single component not liable to become defective in such a manner as to cause a risk of hazard is allowed (see IEC 61010-1, 14.6).

Requirements of this subclause are verified in accordance with 123.2

11.1.7.3DV D2 Modification of 11.1.7.3:

Evaluation of secondary circuits under normal and abnormal conditions are as noted in Annex DVD.

11.2 Protection against the spread of fire

There are no requirements for protection against the spread of fire within limited power circuits as described in 11.3. Components and spacings within limited power circuits need not be evaluated.

Protection against the spread of fire must be evaluated between limited power circuits and other circuits.

If limited power circuits are not employed, all remaining subclauses of Clause $\underline{11}$ shall be applied with regard to spread of fire.

Where breakdown of components is involved, compliance is verified according to 12.3.1.

11.3 Limited power circuits

A limited power circuit is a circuit supplied by sources such as a battery or a transformer winding where the open-circuit potential is not more than a.c. 30 V r.m.s. and 42,4 V peak or d.c. 60 V, and the energy available to the circuit is limited according to one of the following means:

- the maximum output current and power are inherently limited to not more than the values of <u>Table</u>
 45;
- the maximum output current under all conditions and power are limited by impedance to be not more than the values of Table 45;

- an over-current protective device limits the maximum output current and power to not more than the values of Table 46;
- a regulating network limits the maximum output current and power to not more than the values of Table 45 in normal use or as a result of one fault in the regulating network; or
- a regulating network limits the maximum output current and power to not more than the values of <u>Table 45</u> in normal use, and an over-current protective device limits the output current and power to not more than the values of <u>Table 46</u> as the result of any one fault in the regulating network.

Where an over-current protective device is used, it shall be a fuse or a non-adjustable non-self-resetting device.

Conformity is checked by measuring the output voltage, the maximum output current and the maximum available output power under the following conditions.

- 1) Output voltage is measured in no-load condition.
- 2) Output current and available power are measured after 60 s of operation, with any overcurrent protective devices short-circuited, with a resistive load (including short-circuit) which produces the highest value of current and power respectively.

Table 45
Limits of output current and output power for inherently limited power sources

Open-circuit output voltage <i>U</i>		Maximum output current	Maximum output power
AC V r.m.s.	DC V	A	V × A
≤20	≤20	≤8,0	≤5 × U
20< <i>U</i> ≤ 30	20< <i>U</i> ≤30	≤8,0	≤150
_	30< <i>U</i> ≤60	≤150/ <i>U</i>	≤150

For non-sinusoidal a.c. and for d.c. with ripple exceeding 10 %, the peak voltage shall not exceed 42,4 V peak.

Table 46
Limits of output current, output power and ratings for over-current protective devices for non-inherently limited power sources

Open-circuit output voltage U		Maximum output current	Maximum output power	Rated current value of over-current protective device
AC V r.m.s.	DC V	Α	V × A	Α
≤20	≤20	≤1 000/ <i>U</i>	≤250	≤5
20< <i>U</i> ≤30	20< <i>U</i> ≤60	≤1 000/ <i>U</i>	≤250	≤100/ <i>U</i>

Rated current values for over-current protective devices are for fuses and circuit-breakers which break the current within 120 s at a current value of 210 % of the value in the last column of the table.

11.3DV.1 DR Modification of 11.3:

Class 2 circuits, as defined in Annex <u>DVD</u>, are considered equivalent to Limited Power Circuits.

11.3DV.2 DR Modification of Table 45 and Table 46:

Add table 11 (a) and (b) of the National Electrical Code, NFPA 70, as replacement table without class 3 columns.

11.4 Clearance and creepage distances requirements

Clearance and creepage distances shall be designed in accordance with this clause.

Creepage values are primarily directed at accommodating pollution concerns. Clearance values are primarily directed at accommodating overvoltage concerns.

Clearance and creepage distances between circuits shall meet the requirements associated with the higher of the voltages of the circuits.

There are no requirements for clearance and creepage distances for the inner layers of multilayer printed-circuit boards.

The actual clearance and creepage distances requirements shall be based (1) on the working voltages for the circuit under evaluation and (2) on the pollution degree specified by the manufacturer.

The clearance and creepage distances within a particular circuit which serve only to permit the functioning of the device, and which do not serve to meet the requirements for galvanic isolation, need only be of a size to prevent faults from occurring which would lead to a risk of fire.

Linear interpolation of creepage distance is permissible. Interpolation of clearance is only permissible for a circuit or part that has no direct connection to the mains, but is powered from a transformer, converter, or equivalent isolation device. For voltage values less than or greater than those tabulated below, the tables in IEC 60664-1 may be used.

Components mounted to printed-circuit boards shall not degrade the galvanic isolation characteristics of the circuit under consideration. This determination shall be made in accordance with the requirements in Table 51, Table 52, Table 53 and Table 54 or in accordance with the test requirements in Table 59.

For SELV/PELV circuits and ungrounded accessible parts, the requirements for double insulation shall apply to the clearance and creepage distances between these and hazardous live parts. Clearances and creepage distances within SELV/PELV circuits are based on functional needs and are not defined with respect to safety.

In all cases the values given shall be met or exceeded.

NOTE The extent to which the manufacturing process can control the mechanical tolerance decides the limits to which practical clearance and creepage distances can approach the theoretical minimum values given in <u>Table 47</u>, <u>Table 48</u>, <u>Table 49</u>, <u>Table 50</u>, <u>Table 53</u> and <u>Table 54</u>.

It is possible to approach minimum values when the equipment is manufactured in a factory under controlled conditions and finished to a point where additional assembly other than the connections to the field wiring terminals prior to placing the equipment in service is not necessary.

Replacement of components, normally affected in service shops or in normal use (for example, fuses), is considered to be part of controlled conditions.

Increased clearances are required when the equipment is field-mounted and field-connected because the method of mounting and the method of wiring at the field wiring terminals have to be considered.

Requirements of this subclause are verified in accordance with 12.1.8.

11.4.1 Clearances relating to overvoltage category II

11.4.1.1 Clearances for other than field-wiring terminals

Clearances associated with basic and supplementary insulation are given in <u>Table 47</u> and clearances associated with double and reinforced insulation are given in <u>Table 48</u>.

Table 47
Minimum clearances in air corresponding to overvoltage category II conditions (except for field wiring terminals) for basic/supplementary insulation

Working voltage <i>U</i> _e	Minimum clearance mm				
		Pollution degree			
a.c. V r.m.s. or d.c. V	1	1 2 3			
50 (2)	0,04	0,2 (1)	0,8		
100	0,1	0,2 (1)	0,8		
150	0,5	0,5	0,8		
300	1,5	1,5	1,5		
600	3,0 3,0				
1 000	5,5 5,5				

⁽¹⁾ For printed wiring material, the values for pollution degree 1 apply except that the value shall not be less than 0,04 mm.

Table 48
Minimum clearances in air corresponding to overvoltage category II conditions (except for field wiring terminals) for double /reinforced insulation

Working voltage $U_{\rm e}$	Minimum clearance			
. 75	mm Pollution degree			
a.c. V r.m.s. or d.c. V	1 2 3			
50 (1)	0,1	0,2	0,8	
100	0,5	0,5	0,8	
150	1,5	1,5	1,5	
300	3,0	3,0	3,0	
600	5,5	5,5	5,5	
1 000	11	11	11	
(1) For d.c. products this range ends	at 60 V.			
NOTE Table derived from IEC 60664	-1.			

Clearances shall be verified by mechanical measurement or by dielectric withstand tests according to 12.2.1 without pre-conditioning.

⁽²⁾ For d.c. products this range ends at 60 V.

NOTE Table derived from IEC 60664-1.

Clearances to walls of metal enclosures, which may be deflected, shall not be less than 12 mm.

The above clearances do not apply to printed circuit boards with protective coating complying with the test of 12.1.6.

The above clearances do not apply where overvoltages are known and controlled. Refer to $\underline{11.4.2}$ and Table 50.

11.4.1.2 Field-wiring terminal clearances

Minimum clearances at field-wiring terminals from terminal to terminal and from terminal to enclosure shall comply with the requirements of Table 49.

Table 49
Minimum clearances in air at field-wiring terminals

Working voltage <i>U</i> _e	Termination clearances mm		
AC V r.m.s. or d.c. V	Limited ratings To walls of metallic enclosures which may be deflected		
0 < U _e ≤ 50	1,6	7,6	12
50 < U _e ≤ 300	3,2	1,6	12
300 < U _e ≤ 600	6,4	4,8	12

⁽¹⁾ Applicable to devices having ratings not more than 15 A at 51-150 V, 10 A at 151-300 volts, or 5 A at 301-600 V.

11.4.2 Clearances for micro-environment where voltages are known and controlled

In the case where the peak voltages are known and controlled, the minimum clearances corresponding to these peak voltages are given in <u>Table 50</u>. Peak voltages are considered to be known and controlled, where the product design will limit the voltage to the appropriate value indicated in <u>Table 50</u>. This can be verified by examination or by demonstrating the voltage control at the circuit when subjected to the impulse voltage test <u>Table 58</u>.

Table 50
Minimum clearances in air for micro-environment where the voltages are known and controlled

Peak voltage including all transients and impulses	Minimum clearances			
V		mm		
Up to 2 000 m altitude		Pollution degree		
	1	2	3	
330	0,01	0,20 (1)	0,80	
500	0,04	0,20 (1)	0,80	
800	0,1 0,2 0,80			
1 500	0,5	0,5	0,80	

⁽²⁾ Applicable to devices which control more than one load, provided that the total load connected at one time does not exceed 30 A at 51-150 V, 20 A at 151-300 V, or 10 A at 301-600 V.

Table 50	Contir	iued
----------	--------	------

Peak voltage including all transients and impulses	Minimum clearances		
v	mm		
Up to 2 000 m altitude	Pollution degree		
	1	2	3
2 500	1,5	1,5	1,5
4 000	3,0	3,0	3,0
6 000	5,5	5,5	5,5
8 000	8,0	8,0	8,0
(1) For printed circuit boards, the clearance for pollution degree 2 may be 0,04 mm for peak voltages of both 330 V and 500 V.			
NOTE Table derived from IEC 60664-1.			

Clearances shall be verified by mechanical measurement or by dielectric withstand tests according to 12.2.1 without pre-conditioning.

Clearances to walls of metal enclosures, which may be deflected, shall not be less than 12 mm.

11.4.3 Creepage distances for basic and supplementary insulation

A creepage distance cannot be less than the associated clearance so that the shortest creepage distance possible is equal to the required clearance. However, there is no physical relationship, other than this dimensional limitation, between the minimum clearance in air and the minimum acceptable creepage distance.

Creepage distances less then the clearances required in <u>Table 47</u>, <u>Table 48</u> or <u>Table 50</u> may only be used under conditions of pollution degrees 1 and 2 when an impulse withstand voltage test, according to <u>Table 58</u> and <u>Table 59</u>, is also sufficient for the clearance distances.

This can occur when the circuit design uses a homogeneous field configuration which can achieve a greater impulse withstand voltage at the same clearance than an inhomogeneous field design.

NOTE See IEC 60664-1 for an explanation of homogeneous and inhomogeneous fields.

NOTE 2 Comparative tracking index values are according to IEC 60112.

Insulating materials are separated into 4 groups by their comparative tracking index (CTI) values. The creepage distances are dependent on the CTI of the particular material specified in <u>Table 51</u>.

Table 51
Classification of material group according to comparative tracking index (CTI)

СТІ	Material group
100 ≤ CTI < 175	IIIb
175 ≤ CTI < 400	Illa
400 ≤ CTI < 600	II
600 ≤ CTI	I I

11.4.3.1 Minimum creepage distances (basic and supplementary insulation)

11.4.3.1.1 Minimum creepage distances for other than printed circuit boards

Creepage distances shall be not less than values given in <u>Table 52</u> nor less than the appropriate clearances.

Table 52
Minimum creepage distances for other than printed circuit boards (1)

Working voltage <i>U</i> _e		Pollution degree 1	Creepage distances mm (3)					
			Pollution degree 2		Pollution degree 3			
		All material	rial Material group		Material group			
		groups	I	II	Illa, Illb	rs,	II	Illa, Illb
Basic and supplementary insulation	50	0,18	0,6	0,85	1,2	1,5	1,7	1,9
	100	0,25	0,71	1,0	1,4	1,8	2,0	2,2
	125	0,28	0,75	1,05	1,5	1,9	2,1	2,4
	160	0,32	0,8	1,1	1,6	2,0	2,2	2,5
	250	0,56	1,25	1,8	2,5	3,2	3,6	4,0
	320	0,75	1,6	2,2	3,2	4,0	4,5	5,0
	630	1,8	3,2	4,5	6,3	8,0	9,0	10,0
	1 000	3,2	5,0	2 7,1	10,0	12,5	14,0	16,0 (4)

⁽¹⁾ Creepage distances given in this table are for a.c. or d.c. voltages that contain no recurring peak voltages. For microenvironments where recurring peak voltages will be present. Table 54 applies.

NOTE Table derived from IEC 60664-1.

11.4.3.1.2 Minimum creepage distances for printed circuit boards

Creepage distances associated with basic and supplementary insulation for protective coated and uncoated areas of printed circuit boards shall be not less than given in <u>Table 53</u> nor less than the values of the appropriate clearances.

⁽²⁾ V r.m.s. of sinusoidal wave.

⁽³⁾ Creepage (and clearance) distances between circuits shall be that corresponding to the highest working voltage and the corresponding dielectric withstand voltage.

⁽⁴⁾ Only for material group IIIa. Material group IIIb is in general not recommended for application in pollution degree 3 above 630 V.

Table 53
Minimum creepage distances for printed circuit boards (1), (6), (9) (basic and supplementary insulation)

Working voltage <i>U</i> _e	Areas of PWBs with protective coating	Uncoated areas of PWBs		
AC V r.m.s. or d.c. V	mm	mm		
(2)	(3), (4), (5), (6)	Pollution degree 1	Pollution degree 2	
		(1)	(8)	
50	0,025	0,025	0,04	
100	0,1	0,1	0,16	
125	0,16	0,16	0,25	
160	0,25	0,25	0,4	
250	0,56	0,56	1,0	
320	0,75	0,75	1,6	
630	1,8	1,8	3,2	
1 000	3,2	3,2	5,0	

- (1) Creepage distances given in this table are for a.c. or d.c. voltages which contain no recurring peak voltage. For microenvironments where recurring peak voltages will be present, see Table 54.
- (2) V r.m.s. of sinusoidal or non-sinusoidal wave.
- (3) Protective coating shall adhere to the board insulation to result in a effectively solid insulation so as to exclude moisture and pollution and to withstand the specified overvoltages given in 11.1.4.
- (4) Suitable for all material groups and pollution degrees 1, 2 and 3.
- (5) No test is required if the manufacturer provides evidence that the protective coating has been tested according to either the test given in 12.1.6 or an equivalent acceptable independent laboratory test.
- (6) A test board, coated but without components, shall withstand the appropriate dielectric test voltage given in 11.1.4.
- (7) For all material groups.
- (8) For material groups I, II, IIIa.
- (9) Creepage (and clearance) distances between circuits shall be those corresponding to the highest working voltage and the corresponding dielectric withstand voltage.

NOTE Table derived from IEC 60664-1

11.4.3.2 Creepage distance requirements for recurring peak voltages

11.4.3.2.1 Rationale

The phenomenon of partial discharges will occur on a surface that is subjected to long periods of high humidity and recurring peak voltages (impulses). These recurring peaks will dry out small areas between the conductors that will then flash over, giving rise to small sections of tracking. Eventually total tracking will occur between conductors and breakdown occurs. The values given in <u>Table 54</u> will prevent any partial discharge from occurring, and are valid for pollution degrees 1 and 2.

11.4.3.2.2 Creepage distance requirements for recurring peak voltages

In addition to the clearance and creepage distance requirements of the preceding clauses, when recurring peak voltages are present the creepage distance requirements given in Table 54 below shall also be met.

Table 54
Minimum creepage distances related to recurring peak voltages on printed wiring boards without protective coating (1) (pollution degrees 1 and 2)

Maximum recurring peak voltage (2), (3)	Creepage distance	Maximum recurring peak voltage (2), (3)	Creepage distance
Voltage (2), (3)	mm	Voltage (2), (3)	mm
330	0,1	1 150	1,6
400	0,2	1 250	1,8
450	0,25	1 650	3,0
600	0,4	1 700	3,2
640	0,5	2 200	5,0
800	0,75	2 300	5,5
1 140	1,5	2 800	8,0

- (1) This table does not apply to peak values of 50 Hz/60 Hz wave of the mains supply. However, it does apply to short- duration peaks superimposed on the 50 Hz/60 Hz wave.
- (2) Recurring peak voltage values are based on statistical evaluation of partial discharge data.
- (3) Existence of recurring peak voltages may be determined by circuit analysis.

11.4.4 Creepage distances for double/reinforced insulation

Creepage distances shall be double the value for basic insulation.

11.4.5 Creepage for field-wiring terminals

Creepage distances for field wiring terminals shall be in accordance with <u>Table 52</u>, but not less than the clearance specified in <u>Table 49</u>.

11.5 Flame-retardant requirements for non-metallic materials

11.5.1 Non-metallic enclosure material

Non-metallic enclosure material which forms part of the ultimate enclosure shall have suitable flame-retardant properties to prevent or minimize the spread of flame and comply with a flame spread rating of 5VA, FV2, FV1 or FV0.

Flame spread ratings are given in Clause 9 of IEC 60707.

Non-metallic enclosure materials used for decorative purposes (for example, labels) or for functional purposes (for example, gaskets, keypad overlays) and which do not form an essential part of an enclosure require no special flame-retardant additive and no flame rating.

11.5.1DV D2 Modification of 11.5.1 by adding the following:

See Annex DVE for requirements applicable to enclosures.

11.5.2 Non-metallic material supporting live parts

Non-metallic materials used to support live parts (such as printed circuit boards, transformer bobbins, battery housings, etc.), including insulating barriers, shall have suitable properties to prevent or minimize the spread of flame. Examples of these properties are: a flame rating of FV0, FV1 or FV2; a glow-wire test

at 750 °C with a 30 s application and an extinguishing time less than, or equal to, 30 s according to IEC 60695-2-1; and a comparative tracking index greater than, or equal to, 175.

No tests are required if the PLC manufacturer provides evidence of compliance to the above referenced requirements or the equivalent. Non-metallic materials used in components (for example, transistors, integrated circuits, and capacitors) are excluded from the requirements of this clause.

11.5.2DV D2 Modify 11.5.2 by adding the following:

11.5.2DV.1 Insulating material

11.5.2DV.1.1 As an alternative to the glow wire test, material that is used for the direct support of an uninsulated live part shall comply with the Hot Wire Ignition (HWI), and High-Current-Arc Resistance to Ignition (HAI) values indicated in Table 11.5.2DV.1.1.1. No additional evaluation is required for the direct support of uninsulated live parts when generic material is provided in the thickness indicated in Table 11.5.2DV.1.1.2. A material is in direct support of an uninsulated live part when:

- a) It is in direct physical contact with the uninsulated live part; and
- b) It serves to physically support or maintain the relative position of the uninsulated live part.

Table 11.5.20V.1.1.1
HWI and AI characteristics:

Flammability Category	V-0	V-1	V-2	НВ
Part Thickness, mm	See note	See note	See note	See note
HWI Time to ignite, seconds Minimum	70	15	30	30
Performance Level Category (PLC)	PLC = 4	PLC = 3	PLC = 2	PLC = 2
HAI Minimum number of arcs to ignite Performance Level Category (PLC)	, 15	30	30	60
HAI Performance Level Category (PLC)	PLC = 3	PLC = 2	PLC = 2	PLC = 1

Note: The thickness of the material used in the equipment shall not be less than the thickness of samples subjected to not wire ignition and arc ignition tests. Performance Level Categories are defined in UL Plastics Directory.

Table 11.5.2DV.1.1.2
Generic materials for direct support of uninsulated live parts

Generic Material	Thickness, mm	RTI, °C
Diallyl Phthalate	0.71	105
Ероху	0.71	105
Melamine	0.71	130
Melamine-Phenolic	0.71	130
Phenolic	0.71	150

Table	11	5 1	מוכ	11	1	2	Con	tinu	hai

Generic Material	Thickness, mm	RTI, °C	
Unfilled Nylon	0.71	105	
Unfilled Polycarbonate	0.71	105	
Urea Formaldehyde	0.71	100	
Ceramic, Porcelain, and Slate	No limit	No limit	
Beryllium Oxide	No limit	No limit	

NOTE – Each material shall be used within its minimum thickness and its Relative Thermal Index (RTI) value shall not be exceeded during the Temperature Test, 12.1.5.

11.5.2DV.1.2 The requirements for parts of insulating materials other than those necessary to retain current carrying parts in position does not apply.

11.5.2DV.2 Insulating barriers

- 11.5.2DV.2.1 When a barrier is used to comply with spacing requirements, the insulating material used shall comply with one of the following criteria:
 - a) The barrier shall be a generic direct support material provided in the thickness indicated in Table 11.5.2DV.1.1.2.
 - b) The barrier shall be a generic barrier material provided in the thickness indicated in <u>Table 11.5.2DV.2.1.1</u> when the insulating barrier does not physically support or maintain the relative position of the uninsulated parts involved; or
 - c) The barrier shall comply with the hot wire ignition (HWI) and high-current arc resistance to ignition (HAI) values indicated in Table 11.5.2DV.1.1.1. When the barrier is provided in lieu of clearance distance only, is not within 0.8 mm of uninsulated live parts, and does not physically support or maintain the relative position of uninsulated parts involved, the insulating material is only required to comply with the HAI values in Table 11.5.2DV.1.1.1. The thickness of the barrier shall be one of the following:
 - 1) Not less than 0.71 mm thick;
 - Not less than 0.33 mm thick plus one-half required clearance spacings when the barrier is provided in lieu of required clearance distance only; or
 - 3) Evaluated in accordance with the internal barrier requirements in UL 746C.

Table 11.5.2DV.2.1.1
Generic barrier materials

Generic material	Minimum thickness, mm	RTI, °C
Generic material	0.25	105
Aramid Paper	0.71	105
Cambric	0.71	105
Electrical Grade Paper	0.71	105
Ероху	0.71	105

Tahla	11	5 2	וחי	121	1 1	Continued	ı
Iable		. J.Z	. – 1	V . Z .		Commuca	

Generic material	Minimum thickness, mm	RTI, °C
Mica	0.15	105
Mylar (PETP)	0.18	105
RTV	0.71	105
Silicone	0.71	105
Treated Cloth	0.71	105
Vulcanized Fiber	0.71	105

NOTE – Each material shall have at least the minimum thickness specified and its Relative Thermal Index (RTI) value shall not be exceeded during the Temperature Test, 12.1.5.

11.5.3 Components

11.5.3.1 Non-metallic components

Non-metallic components not subject to the requirements of <u>11.5.1</u> or <u>11.5.2</u> shall be used in accordance with their specified ratings and are excluded from the requirements of <u>11.5.2</u>

11.5.3.2 Decorative and labelling materials

Decorative materials (cosmetic non-metallic materials) and labelling materials need not comply with 11.5.

11.5.3.3 Internal wiring or interconnection cables

Insulated wire used in unlimited circuits shall have a flammability classification of FV-1 or better according to IEC 60707 or an equivalent standard.

Wiring within limited power circuits has no flame-retardant requirements.

11.5.3.3DV D1 Modification of 11.5.3.3:

All internal wire shall be copper and shall be Machine Tool Wire, Thermoset or Thermoplastic insulated wire or Appliance Wiring Material. The insulation on all internal wires on the equipment shall be rated for the voltage and the temperature conditions of use. Insulation shall be at least 0.8 mm thick when the internal wiring is subjected to movement, flexing, handling, or manipulation during its intended use, or during maintenance. Internal wires used for grounding or bonding are not required to be insulated.

11.6 Temperature limits

Temperature limits are as follows.

Component temperature limits: Component parts and materials shall not be operated beyond their rated temperature limits or rated temperature rises.

Easily touched parts: Parts likely to be touched by an operator in normal use or by service personnel, as defined in <u>Table 44</u>, shall not exceed the temperature limits of <u>Table 55</u>.

Field wiring terminals shall be monitored for the temperature during the temperature test. This data is to be used in conjunction with the device rated ambient to determine the field-wiring insulation temperature rating.

Table 55
Temperature limits

Absolute maximum temperatures	Access time	Metallic	Non-metallic	Examples	
Operator hand-held equipment	Continuous	55 °C	70 °C	Hand-held terminals	
Operator parts normally touched in operation	Momentary	70 °C	85 °C	Push-buttons on cabinet	
Parts accessible during servicing, normally touched in operation	Momentary	70 °C	85 °C	Key switches on PLC	
Parts accessible during servicing, not normally touched in operation	Momentary	100 °C (1)	100 °C (1)	Heatsinks	
(1) A warning label is necessary if the temperature exceeds the level shown. See Clause 14.					

11.6DV D2 Modification to 11.6 by adding the following:

11.6DV.1 Industrial control equipment tested shall not exceed the temperature rise above the test ambient at specific points greater than those specified in <u>Table 11.6DV.1.1</u>. Instead of the voltages specified, a low voltage source of supply is able to be used for temperature tests on parts other than voltage rated coils. Protective devices or circuitry shall not trip during the test.

Table 11.6DV.1.1

Maximum temperature rises^a

Mate	erials and components	°C
1.	Knife-switch blades and contact jaws	30
2.	Fuse clip when tested with a dummy fuse that represents a fuse intended to provide branch circuit protection	30
3.	Fuse clip when tested with a fuse intended to provide branch circuit protection ^j	85
4.	Rubber- or thermoplastic-insulated conductors	b
5.	Field-wiring terminals ^{c,g}	
	Equipment marked 60°C or 60/75°C supply wires	50
	Equipment marked 75°C supply wires	65
6.	Buses and connecting straps or bars ^d	h
7.	Contacts:	
	Solid and built-up silver, silver alloy, and silver faced	е
	All other metals	65
8.	Insulation systems:	
	Class 105 insulation system ^f	
	Thermocouple method	65
	Resistance method	85
	Class 105(A) insulation systems on single-layer series coil with exposed surfaces either uninsulated or enameled, thermocouple method	90

Table 11.6DV.1.1 Continued

Materials and components	°C
Class 120(E) insulation system ^{f,k}	
Thermocouple method	75
Resistance method	95
Class 130(B) insulation systems ^{f,k}	
Thermocouple method	85
Resistance method	105
Class 155(F) insulation systems ^{f,k}	
Thermocouple method	95
Resistance method	115
Class 180(H) insulation systems ^{f,k}	
Thermocouple method	115
Resistance method	135
Class 200(N) insulation systems ^{f,k}	
Thermocouple method Resistance method Class 180(H) insulation systems ^{f,k} Thermocouple method Resistance method Class 200(N) insulation systems ^{f,k} Thermocouple method Resistance method Class 220(R) insulation systems ^{f,k} Thermocouple method Resistance method Resistance method Resistance method Insulating materials In the issuing air, 25.4 mm above the enclosure	135
Resistance method	155
Class 220(R) insulation systems ^{f,k}	
Thermocouple method	155
Resistance method	175
9. Insulating materials	b, i
10. In the issuing air, 25.4 mm above the enclosure	175
11. On the embedding material of a resistor, a theostat, and a wall-mounted dimmer with an embedded resistive element	300
12. On the embedding material of a rheostat dimmer having embedded resistive conductors, and arranged for mounting on a switchboard, or in a noncombustible frame	350
13. On bare resistor material, thermocouple method	375
14. Capacitor	b
15. Power switching semiconductor	b
16. Printed-wiring boards	b
17. Any component or material not specifically identified in 1-16	b

a. For equipment rated for an ambient temperature other than 40°C, the allowable temperature rises in this table are adjusted in accordance with the following formula:

$$T_R = T_T + 40^{\circ} C - T_M$$

in which:

T_R = Allowable temperature rise;

 T_T = Maximum temperature rise allowed by <u>Table 11.6DV.1.1</u>; and

 T_M = Ambient temperature marked on the equipment.

- b. The maximum temperature rise shall not exceed the temperature rating specified for the component or material minus the ambient temperature marked on the equipment.
- c. The temperature on a wiring terminal or lug is measured at the point able to be contacted by the insulation of a conductor installed as in actual service.
- d. The limit does not apply to connections to a source of heat, such as a resistor and a current element of an overload relay.

Table 11.6DV.1.1 Continued

Materials and components

C

- e. Temperature limited by the temperature limitations on the material for adjacent parts. There shall be no structural deterioration of the contact assembly, loosening of parts, cracking or flaking of materials, loss of temper of spring, annealing of parts, or other visible damage.
- f. See 12.1.5 for method.
- g. When the rise is 50°C or less and an aluminum bodied connector is used or aluminum wire is intended, the connector shall be marked AL7CU or AL9CU; when the terminal temperature rise exceeds 50°C and does not exceed 65°C, the connector shall be marked AL9CU.
- h. The limit applies only to bus bars and connecting straps used for distribution of power to industrial control devices. The limit does not apply to short pieces of copper located within industrial control devices and used for the support of stationary contact assemblies of factory or field wiring terminations. The maximum temperature rises for this type of construction are determined by the temperature limitations on the support material, adjacent part material, or 100°C temperature rise on the copper material, whichever is lower. There shall be no structural deterioration of the assembly, loosening of parts, cracking or flaking of material, loss of temper of spring, annealing of parts, or other visible damage.
- i. See Table 11.5.2DV.1.1.2 and Table 11.5.2DV.2.1.1.
- j. When the fuse used to determine compliance with the fuse clip temperature rise requirement is a Class G or K, there shall be a marking near the fuse holder specifying the class of the replacement fuse.
- k. The insulation system shall meet the requirements of UL 1446.
- 11.6DV.2 For equipment provided with a thermostat of other thermal protective device and tested as in 12.1.5, the temperature of the thermal device shall be measured, and corrected for the difference in ambient temperature. The resulting temperature shall not exceed the rated trip temperature of the thermal protective device.
- 11.6DV.3 Equipment shall be marked with the maximum ambient temperature rating when intended for service in any ambient temperature higher or lower than 40°C. Equipment intended for service in a 40°C ambient temperature is not required to be marked.
- 11.6DV.4 The marked ambient rating shall be at an interval from 40°C in a whole number multiple of ±5°C such as 45,50, 55, 60.

11.7 Enclosures

Enclosures shall provide protection against the hazards of moving parts and contact with live parts.

Enclosures for equipment shall comply with the requirements of 11.7.1 or 11.7.2 as applicable.

11.7.1 Open equipment

Housings of open equipment are not considered to be an enclosure. The manufacturer's installation instructions shall specify how open equipment shall be installed so that it will meet the enclosure requirements of this standard.

11.7.2 Enclosed equipment

Enclosed equipment shall meet IP20 requirements as a minimum. This protection shall also be provided under all conditions of operator use.

11.7.2DV D1 Modification of 11.7.2:

Enclosed equipment shall be rated minimum Type 1 and shall comply with the requirements in Annex DVE.

11.7.2.1 Shafts and knobs

Conductive keypads, shafts and knobs external to the enclosure shall not be in contact with hazardous live parts. If the parts are normally held or actuated in normal use, the insulation provided shall be such that the shafts and knobs do not become live in the event of an insulation fault.

11.7.2.2 Mechanical strength

The mechanical strength of the enclosure shall be such as to withstand rough handling in normal use. The protection provided by the enclosures shall be verified after the application of the impact withstand test in 12.1.1 and the rigidity test in 12.1.7.

11.7.2.2DV D1 Modification of 11.7.2.2:

Enclosed equipment shall comply with the requirements in Annex DVE.

11.8 Field-wiring terminals constructional requirements

Terminals shall be so designed that loose strands of wire shall not reduce the required clearance/creepage requirements. This shall be verified in accordance with 12.1.9.

All parts of terminals that maintain contactand carry current shall be of metal of adequate mechanical strength. This shall be verified in accordance with IEC 60947-7-1.

Terminals shall be such that the conductors may be connected by means of screws, springs, or other equivalent means such as wire wrap, quick disconnect terminal, clamp-type connection so as to ensure that the necessary contact pressure is maintained over the full range of service conditions.

Terminals shall not allow the conductors to be displaced or be displaced themselves in a manner detrimental to the operation of the equipment and the clearance and creepage distances shall not be reduced below the required values.

The mechanical design of the interfaces shall allow that no individual conductor is subjected to bending of a radius of curvature less than 6 times its diameter after removal of the common elements (armour, sheaths, fillers).

Clearances between terminals and terminal to earthed parts are given in 11.4.1.2.

11.8DV.1 DR Modification to 11.8:

See Annex DVA.2, Field Wiring, for National Electrical Code, NFPA 70, requirements.

11.8DV.2 D2 Modification to 11.8:

11.8DV.2.1 A field-wiring pressure wire connector provided with or specified for use with the equipment shall comply with the performance requirements in UL 486A, UL 486B or UL 486E.

11.8DV.2.2 A terminal intended for field wiring of conductors smaller than 14 AWG of other than Class 2 or Class 3 circuits as specified by the installation instructions or wiring diagram furnished with the device shall comply with 11.8DV.2.1 for such conductors. When the specified conductors are smaller than 18 AWG, the terminal shall additionally be evaluated to 11.8DV.2.1 for 18 AWG conductors.

11.9 Provisions for protective earthing

The requirements specified below do not apply to SELV circuits where protective earthing is not required.

11.102DV D2 *Addition*:

The requirements specified in 11.9.1 do not apply to isolated secondary circuits as defined in Annex DVD where protective earthing is not required.

11.9.1 Protective earthing constructional requirements

The accessible parts of Class I equipment (for example, chassis, framework and fixed metal parts of metal enclosures) other than those which do not constitute a danger shall be electrically interconnected and connected to a protective earth terminal for connection to an external protective conductor. This requirement can be met by structural parts providing adequate electrical continuity and applies whether the equipment is used on its own or incorporated in an assembly.

Cords or cables that supply power to Class 1 portable peripherals shall be provided with a protective earthing conductor.

Protective earthing conductor insulation, if provided, shall be green with a yellow stripe.

NOTE In North America the colour green is also acceptable.

11.9.10) DR Modify 11.9.1 NOTE by adding the following:

No other conductors shall be so identified in the field wiring area.

Accessible isolated conductive parts are considered not to constitute a danger if they are so located as to exclude any contact with live parts and withstand the dielectric test voltage of <u>Table 59</u> for reinforced insulation corresponding to the highest rated operational voltage of the unit.

Class II equipment may have an internal functional bonding conductor but shall not be provided with a protective earthing terminal or a protective earthing conductor in the mains power input cord.

11.9.2 Protective earthing terminal

If the PLC-system is provided with a protective earthing terminal (Class I equipment), the following requirements also apply in addition to the previous general connection specifications.

- The protective earthing terminal shall be readily accessible and so placed that the connection of the equipment to the protective earthing conductor is maintained when the cover or any removable part is removed.
- Products which are intended for cord connected use (such as peripherals) shall be provided with a protective earthing terminal integral to the plug cap or socket (if removable cord set).
- The protective earthing terminal shall be of screw, stud or pressure type and shall be made of a suitable corrosion resistant material.
- The clamping means of protective earthing terminals shall be adequately locked against accidental loosening, and it shall not be possible to loosen them without the aid of a tool.
- Protective earthing terminals and earthing contacts shall not be connected direct to the neutral terminal within the PLC-system. This does not prevent the connection of appropriately rated devices (such as capacitors or surge suppression devices) between the protective earthing terminal and neutral.
- The protective earthing terminal and subsequent protective equipment internal to the PLC-system shall comply with the test in 12.2.2.
- The protective earthing terminal shall have no other function.

11.10 Wiring

The following requirements shall apply to all wiring provided by the manufacturer for the internal and/or external wiring of PLC-system.

11.10.1 Internal wiring

The insulation, when provided, on all internal wiring of the equipment shall be rated for the voltage and the temperature conditions of use.

All splices and connections shall be mechanically secure and provide electrical continuity.

Internal wiring shall be so routed and secured that neither it nor related electrical connections are likely to be subjected to stress or mechanical damage. Internal wiring that is subject to flexing during operation or maintenance and whose conductors are solid or the insulation of which is less than 0,8 mm thick shall be tested for flexing integrity as specified in 12.1.4.

Electrical connections shall be soldered, welded, crimped, or otherwise securely connected.

Soldered connections subject to mechanical stress shall be mechanically secured independently from the soldering. Such connections shall not be used for other purposes such as fixing constructional parts.

Screw connections shall be secured against loosening.

This requirement does not apply to SELV/PELV circuits, earthing or bonding conductors.

11.10.2 Interconnection wiring

This clause applies to the PLC-system and the manufacturer supplied cables with connectors only and does not apply to the whole industrial control system in which the PLC-system is employed.

Cables and cords provided for the interconnection of equipment shall comply with the requirements of 11.10.1.

Cable assemblies and flexible cords provided for interconnection between sections of equipment or between units of a PLC-system shall be a type that is acceptable for the voltage and temperature involved and shall be provided with suitable strain relief.

Misalignment of plug and socket connectors, insertion of a multi-pin connector in a connector other than the one intended to receive it and plugging and unplugging of connectors that are accessible to the operator shall not result in mechanical damage or risk of fire to the PLC-system or electric shock or injury to persons from the PLC-system.

11.10.3 Mains power input cord

The mains power input cord provided by the manufacturer shall comply with the mains power input cord requirements in 6.10 of IEC 61010-1.

The circuitry connected to a cord set (removable or fixed) shall be so designed that there is no risk of electric shock, as indicated in 11.1, after 1 s when touching the pins of the plug and/or receptacle. Test shall be conducted in accordance with 12.2.3.

11.10.3DV D1 Modification of 11.10.3:

- 11.10.3DV.1 Equipment that is to be cord-connected to the power supply shall be provided with hard-service or junior hard-service flexible cord, such as Type S, SJ, or the equivalent, that is rated for the temperature and voltage involved.
- 11.10.3DV.2 Exception: Such equipment is not required to be provided with a hard service or junior hard service type cord if the cord is 14 AWG or smaller and complies with a) and b) or a) and c) as noted:
 - a) Power-Supply Cord Tests as outlined in Annex DVF, and
 - the application or design of the equipment is such that it does not allow the use of a hard service or junior hard service cord, and the previously evaluated cord will not be subjected to abuses seen in general use cord application; or
 - c) The cord is used in circuits which comply with Isolated Secondary Circuits, Annex DVD.

11.11 Switching devices

Switching devices shall be used within their ratings, according to IEC 60947-5-1, or equipment utilizing them shall be subjected to the overload and endurance tests specified in 12.2.4 and 12.2.5, respectively. The same sample shall be subjected first to the overload test and then the endurance test. The dielectric withstand test specified in 12.2.1 shall immediately follow the endurance test or the overload test when conducted alone.

The endurance test shall not be conducted on solid-state output devices for general or resistive use.

11.12 Components

Components shall comply with the applicable safety requirements of the relevant IEC product standard(s) or shall have been approved by a recognized testing authority for conformity with applicable safety requirements and need not be re-tested.

Where no relevant IEC component standard exists, or where components are used in circuits not in accordance with their specified ratings, the components shall be tested under the worst- case conditions occurring in the equipment.

NOTE Components are parts of PLC-system units; for example, capacitors, resistors, printed circuit boards, relays, transformers, switches.

11.12DV D2 Modification to 11.12:

- 11.12DV.1 A component of a product covered by this standard shall comply with the requirements for that component. See Annex <u>DVB</u> for a list of standards covering components used in the products covered by this standard.
- 11.12DV.2 A component is not required to comply with a specific requirement that:
 - a) Involves a feature or characteristic not required in the application of the component in the product covered by this standard, or
 - b) Is superseded by a requirement in this standard.
- 11.12DV.3 A component shall be used in accordance with its rating established for the intended conditions of use.

11.13 Battery requirements

Battery cases or compartments shall be designed to protect against accumulation of flammable gases or damage from spilling of corrosive liquid as applicable.

Rechargeable and non-rechargeable batteries, if used in the PLC, shall be provided with suitable protection, internal or external to the battery cell, so as to minimize the risk of battery explosion. Parameters to be considered in the design should include temperature, possibility/ prevention of reverse current flow, limited discharge, etc.

Means shall be provided to prevent charging and to limit the discharge current of nonrechargeable batteries in both normal and single-fault conditions.

Compliance shall be verified by performance of the test in 12.3.1.

11.14 Maximum voltage and minimum voltage

The equipment shall operate as intended without an increased risk of fire or electric shock when subjected to maximum voltage or minimum voltage conditions. This requirement shall be verified by 12.1.5.

11.15 Markings and identification

Markings as indicated below shall be visible from the exterior of enclosed equipment, or be visible after removing a cover or opening a door without the aid of a tool, if the cover or door is intended to be removed or opened by an operator. For open equipment, markings are permitted to be on any surface that becomes visible after removal of the equipment from the rack or panel.

For all equipment, as a minimum, the information marked on the device shall identify the manufacturer (the company bringing the product to market) and the device. The remaining information shall be provided in the data sheet, supplied with the device.

The following information shall be provided by the manufacturer:

- manufacturer's name, trademark or other identification,
- model/catalogue number, type designation or name,
- hardware serial number or series and/or revision level (see 1.2), and date code or equivalent,
- information on replaceable fuses, including current, voltage and type,
- live parts (see 11.15.2) and protective earth terminals (see 11.15.3) markings shall be as required.
- 11.15DV D2 Modify 11.15 by adding the following requirements:
- 11.15DV.1 The requirements for the markings are provided below. The location for the markings is specified in Table 11.15DV.4.1.

Table 11.15DV.1.1 Marking locations

		1	u: a a a b
Clause	CO.	Locat	
Reference	Required Marking ^a	Enclosed	Open
	General		
11.15.6	Specific load marking, indicating intended use	В	D
11.7.2DV	Enclosure environmental type rating	В	-
11.15	Manufacturers name, trademark, or identifier, electrical rating, catalog number or equivalent	В	D
11.15DV.3	Marking for more than one factory	E	E
11.15DV.4	Instructions for assembly in different combinations	G	G
11.15DV.5	Marking for use with other parts of a system	G	G
<u>11.15.1</u>	Torque values marking for field terminals	G	G
<u>11.15.3</u>	Terminal connection of ground supply conductor	G	G
<u>4.1.1DV</u>	Enclosure ambient when rated ambient temperature is other than 25°C	G	G
Annex DVD.1.5.3	Marking for supplementary fuse near fuse holder	В	F

Table 11.15DV.1.1 Continued

Clause		Locat	ions ^b
Reference	Required Marking ^a	Enclosed	Open
Annex DVA.2.3.1.1	Field wiring terminal marking for wire type (Al, Cu)	G	G
Annex <u>DVA.2.3.2.1</u>	Temperature rating of field installed conductors	G	G
Annex DVA.2.3.3.1	Temperature rating marking is not required for field installed control circuit conductors	-	-
Annex DVA.2.3.4.1	Marking for proper connections	G	G
Annex <u>DVA.2.2.1.1</u>	Field wiring terminal not intended to receive conductor one size larger.	G	G
Annex DVA.3.1	Marking for low voltage field wiring		G
Annex DVD.1.4	Secondary circuit supplied from a Class 2 transformer or power source in the field	В	D
Annex DVE.3.8.1	Equipment with special fitting for connection	G	G
Annex DVE.3.8.1	Equipment for nonmetal-enclosed wiring system	G	G
	CAUTIONARY MARKINGS		
Table 55	Placement of cautionary markings instructing operator or servicing instructions	В	F
	ACCESSORIES		
Annex DVE.3.10	Accessories available for equipment	Н	Н
Annex DVE.3.10	New accessories for existing product	I	I
Annex DVE.3.10	Manufacturer name, rating and catalog number of accessory	D	D
Annex DVE.3.10	Accessories provided with instructions	G	G

Table 11.15DV.1.1 Continued on Next Page

Table 11.15DV.1.1 Continued

Clause		Locat	tions ^b
Reference	Required Marking ^a	Enclosed	Open

- ^{a)} These are a brief summary of marking requirements. For complete details see the specific requirement reference.
- ^{b)} For marking locations identified below, "A" is the highest order of location, and "I" is the lowest order of location. At the option of the manufacturer, a higher order of location category is able to be used.
 - A) Marking shall be visible when the enclosure cover is on and the door is closed.
 - B) Marking shall be visible
 - 1) When the enclosure cover is removed or the door is open;
 - 2) When other devices are mounted nearby as intended; and
 - 3) When devices are installed side by side. The marking shall not be obscured by attachments such as a disconnect switch operating handle.
 - C) Not used.
 - D) Marking is visible when the device is mounted singularly. The marking is able to be on the side of the device, and need not be visible when the device is mounted next to other devices.
 - E) Marking is able to be anywhere on the device and is not required to be visible after installation.
 - F) Marking is on a separable, self-adhesive permanent label that is shipped with the device. For a device that is installed in an enclosure, the marking shall be on the inside of the enclosure.
 - G) Marking is shipped separately with the device.
 - H) Marking is provided on a separate sheet and is available from the manufacturer. The separate sheet is not required to be shipped with the product.
 - I) Marking is shipped separately with kit.
- 11.15DV.2 Cautionary markings Cautionary markings shall be located on a part that is not capable of being removed without impairing the operation or appearance of the equipment. A cautionary marking intended to instruct the operator shall be legible and visible to the operator during normal operation of the equipment. A marking that provides servicing instructions shall be legible and visible when such servicing is being performed.
- 11.15DV.3 Where the manufacturer produces or assembles at more than one factory, each finished item of equipment shall have a distinctive marking to identify the particular factory.
- 11.15DV.4 For equipment intended for assembly in different combinations, all components shall be marked with a part number. The basic equipment shall be provided with instructions referencing all components able to be assembled together.
- 11.15DV.5 A device that has been investigated as a part of a system shall be marked to identify other parts of the system with which it is intended to be used. A family designation for the other parts of the system is sufficient.
- 11.15DV.6 Accessories When accessory parts are not factory installed on equipment, the equipment markings shall include identification of an accessory to be attached in the field, or a reference to a separate publication that identifies all such accessories.

- 11.15DV.7 For a new accessory designed for an existing product, the accessory shall be marked with the identification of the equipment on which it is intended to be used.
- 11.15DV.8 An accessory that is not shipped from the factory in the same carton as the equipment with which it is intended to be used shall be plainly marked with:
 - a) The manufacturer's name, trademark, or other descriptive marking by which the organization responsible for the product may be identified;
 - b) The electrical rating, unless the accessory electrical rating is marked on the equipment for which it is intended;
 - c) The catalog number or equivalent; and
 - d) Shall be provided with installation and wiring instructions.

11.15.1 External wiring terminals identification

External wiring terminals shall be marked to indicate the proper connections for the power supply, load, control circuit, and the like, or a wiring diagram coded to the terminal marking shall be provided. A marking or manufacturer's installation instructions shall be provided to identify the temperature rating of field wiring to be connected to the wiring terminals.

11.15.2 Live parts

A live part exceeding SELV limits and likely to be mistaken as dead-metal (non-energized metal) and exposed to service personnel shall be marked with the following "dangerous voltage" symbol:

NOTE Symbol according to IEC 60417-5036.

11.15.3 Protective earth terminals markings

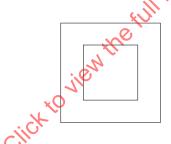
The protective earth terminal markings shall be durable and clearly identifiable.

The identification shall be achieved by the notation PE or by a graphical symbol for use on equipment or by the colour green-yellow.

NOTE 1 Notation PE according to 5.3 of IEC 60445.

NOTE 2 In North America the colour green only is also acceptable.

The graphical symbol to be used shall be:


NOTE Symbol according to IEC 60417-5019.

11.15.3DV D1 Modification to 11.15.3:

A pressure wire connector intended for connection of a field-installed equipment grounding conductor shall be green-colored or plainly identified, such as being marked G, GR, GRD, GND, GRND, Ground, Grounding, or the like. The symbol (IEC Publication 417, Symbol 5019) may be used.

11.15.4 Equipment protected by double/reinforced insulation

Equipment protected throughout by double/reinforced insulation (Class II) shall be marked with the following symbol unless it is provided with a protective terminal.

Equipment, which is only partially protected by double/reinforced insulation, shall not bear this symbol.

NOTE Symbol according to IEC 60417-5172.

11.15.4DV D2 Modification to 11.15.4:

Not applicable for permanently connected equipment.

11.15.5 Equipment supplied by SELV/PELV

Equipment intended to only be energized by a SELV or PELV source of supply shall be so marked on equipment and/or provided in product literature.

11.15.5DV D1 Modification to 11.15.5:

Equipment intended to only be energized from a isolated secondary source, as defined in Annex DVD shall be marked as required in Annex DVD.

11.15.6 Rating information

Equipment shall be marked with the following as applicable:

- rated voltage(s) or range of voltage in volts (V);
- rated frequency in hertz (Hz);
- kind of supply system (a.c., d.c., or a.c./d.c. or the symbols 5032, 5031 or 5033 from IEC 60417);
- number of phase conductors if more than one;
- rated current in amperes (A); and/or
- rated input and/or output power in watts (W) or volt-amperes (VA).

For open-type equipment, the information shall be marked on the equipment or in the manual.

11.15.6DV D2 Modify 11.15.6 by adding the following:

Equipment shall be marked and the markings shall be located as specified in <u>Table</u> 11.15DV.1.1.

11.16 Requirements for safety type tests and verifications

Test and verifications for safety shall be performed by the manufacturer, in accordance with Clause 12.

11.16DV D1 Modification of 11.16:

Test and verifications for safety shall be performed in accordance with Clause 12.

11.17 Requirements for safety routine tests and verifications

Safety routine tests or an equivalent verification method (see specifically clause $\underline{13}$) shall be performed by the manufacturer, in accordance with $\underline{13.1}$ and $\underline{13.3}$.

11.17.1 Requirement for dielectric strength verification

Protection against electric shock shall be verified between (1) non-SELV circuits and SELV circuits, (2) non-SELV circuits and accessible conductive parts, and (3) isolated non-SELV circuits. This verification shall be performed by one of the following approaches.

Routine dielectric withstand testing of the product in accordance with <u>13.2</u>.

Verification, during product development, that all of the relevant insulating materials and creepage and clearance distances of the product and that all isolating components meet one of the following:

- the component requirements of 11.12,
- 100 % dielectric withstand tested,
- verification by measurement to meet the required creepage and clearance distances.

11.17.1DV D2 Modify 11.17.1 by adding the following:

Routine Dielectric Strength Verification testing is not required for permanently connected equipment.

11.17.2 Requirement for protective earthing verification

The manufacturer shall verify protective earthing continuity between the protective earthing interface/port and all operator accessible metal parts intended to be earthed, in accordance with the test described in 13.3.

11.17.2DV D2 Modify 11.17.2 by adding the following:

Routine Protective Earthing Verification testing is not required for permanently connected equipment.

11.18 Requirements for information on safety

Information on safety shall be provided by the manufacturer, in accordance with Clause 14.

12 Safety type tests and verifications

12.101DV D2 Addition:

Where electrical testing is required to be conducted at rated voltage, the values noted in Table 12.101DV.1 shall be used.

Table 12.101DV.1
Values of voltage for tests

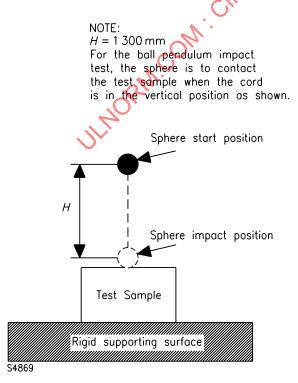
	Oly	Voltage rating of equipment ^a				
	110 – 120	220 – 240	254 – 277	380 – 415	440 – 480	560 – 600
Required test voltage	120	240	277	415	480	600

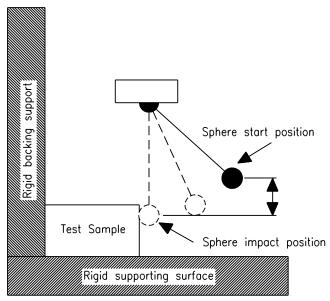
^a When the rating of the equipment does not fall within any of the indicated voltage ranges, it is to be tested at its rated voltage.

12.1 Safety-related mechanical tests and verifications

12.1.1 Impact withstand test

Table 56 Impact withstand test (1)


Reference test	IEC 60950
Selection of sample(s)	Enclosed equipment with voltage greater than SELV/PELV
Exceptions	Test performed neither on hand-held equipment nor on displays nor lamps
Description of the test	See Figure 13
Number of trials	One per surface
Verification after the test	Perform the operator accessibility test (12.1.2 and 12.1.3)
	Perform the dielectric withstand test (12.2.1)
(1) The unit may be non-functioning before and after the test.	6


The impact is imparted to the sample by a solid, smooth steel sphere approximately 50 mm in diameter and with a mass of 500 g \pm 25 g (see Figure 12).

Top surface: The sphere is to fall freely from rest through a vertical distance of 1 300 mm to the top surface.

Vertical surfaces: The sphere is suspended by a cord and swings as a pendulum dropping through a vertical distance H of 1 300 mm to the sphere impact position.

Figure 12
Impact withstand test procedure

12.1.1DV D2 Modify 12.1.1 by adding the following:

Enclosed equipment shall comply with the impact requirements in Annex <u>DVE</u> based on the enclosure type rating.

12.1.2 Operator accessibility tests

Table 57
Operator accessibility tests (1)

Reference tests	IEC 60529		
Selection of sample(s)	Enclosed equipment		
Number of samples	One equipment of each type		
Preconditioning	Clean and new		
Details of mounting/support	According to manufacturer's specifications		
Drain/ventilation holes	Configuration used in operating conditions		
Moving parts test	Equipment energized and operating		
Electrical shock test	Equipment de-energized		
Test description The jointed test finger (IP2X) and, where applicable, the test p shall not make contact with any hazardous live part or any moving part (except smooth rotating shafts)			
(1) For open equipment, no test is required, and the user is respond	nsible for the safety of the equipment.		

Unless obvious, determination of whether a part is operator-accessible shall be made as specified in 12.1.3. The jointed test finger (Figure C.1) and test pin (Figure C.2) shall be applied without force unless a force is specified. Parts are considered to be accessible if they can be touched with a jointed test finger or test pin, or if they could be touched in the absence of any covering which is not considered to provide suitable insulation.

For equipment accepting plug-in modules, parts are not considered to be accessible if they cannot be touched with the jointed test finger (see 12.1.3) up to a depth of 180 mm from the opening in the equipment. Nor are they considered accessible if they are at a depth of more than 180 mm from the opening.

If the operator is intended to perform any actions in normal use (with or without a tool) which will increase the accessibility of parts, such actions shall be taken before performing the examinations of 12.1.3. Examples include removing covers, opening doors, adjusting controls, replacing consumable material, and removing parts.

12.1.2DV D2 Modify 12.1.2 by adding the following:

Accessibility requirements for enclosed equipment are as defined in Annex DVE.

12.1.3 General examination of openings

The jointed test finger (Figure C.1) shall be applied in every possible position. Where a part could become accessible by applying a force, the jointed test finger, made rigid, shall be applied with a force of 10 N. The

force shall be exerted by the tip of the jointed test finger, made rigid, so as to avoid wedge and lever action. The test shall be applied to all outer surfaces, including the bottom.

The test pin (<u>Figure C.3</u>) shall be inserted in any openings above parts, which are hazardous live. The test pin shall be suspended freely and allowed to penetrate up to 100 mm. The additional safety measures of <u>11.1.7</u> for protection in single-fault condition are not required solely because a part is accessible by this test only.

The test pin (<u>Figure C.4</u>) shall be inserted through holes intended to give access to pre-set controls which require the use of a screwdriver or other tool. The test pin shall be applied in every possible direction through the hole. Penetration shall not exceed 3 times the distance from the enclosure surface to the control shaft or 100 mm, whichever is smaller.

12.1.3DV D2 Modify 12.1.3 by adding the following:

Accessibility requirements for enclosed equipment are as defined in Annex DVE.

12.1.4 Wire flexing test

The flexing test applies to wiring subject to flexing during operation or maintenance, and where conductors are solid or insulation is less than 0,8 mm thick.

Test procedure: The flexing test consists of flexing the wire/cable assembly between the 2 extreme points of travel for the cable.

Number of flexing cycles:

500, if flexing occurs under normal use;

25, if flexing occurs only during maintenance operations;

Pass/fail criteria:

The wiring shall be considered acceptable if, after this test, the insulation passes the application of the dielectric withstand test (\$\frac{1}{2}.2.1\$) and the following insulation breakdown test method).

Insulation breakdown test method:

The wiring being tested is removed from the equipment and the portion of the cable having been flexed is wrapped with a conductive foil. The applicable test voltage as given in <u>Table 58</u> or <u>Table 59</u> as appropriate is then applied between each conductor in turn and the common connection of all other conductors and this conducting foil.

12.1.5 Temperature test

Temperatures shall be measured while the equipment is generating its maximum dissipation. This dissipation may be caused by some combination of load current, input voltage, input frequency, I/O duty cycle, etc. The equipment shall be mounted in its normal-use position in a test ambient temperature equal to its maximum rated operating air temperature (see <u>Table 2</u>). However, the equipment may be at lower test ambient if the measured temperatures are increased by the difference between the equipment's maximum rated operating temperature and the actual test ambient. Steady-state conditions shall be achieved. The test ambient shall be monitored either at a point not more than 50 mm from the plane of the

equipment's air flow entry point or at 1 point not more than 25 mm above and 1 point not more than 25 mm below the equipment with the ambient equal to the average of the 2 monitored temperatures. The environment surrounding the equipment under test shall not be subject to air movement caused by sources not part of the equipment under test.

Wiring should be the smallest size suitable for the maximum current rating of the equipment and manufacturer's instructions.

The temperature test shall be followed by the dielectric withstand test (12.2.1).

- 12.1.5DV D2 Modify 12.1.5 by adding the following:
- 12.1.5DV.1 Enclosed equipment is to be tested in the enclosure provided by the manufacturer.
- 12.1.5DV.2 Open type equipment shall be mounted in an enclosure considered representative of the intended use. The maximum enclosure dimensions are to be determined by one of the following methods:
 - a) 150 percent of the dimensions of the device that is, length, width, and height;
 - b) The intended enclosure, which may be larger than indicated in a) provided the size is marked on the device or a separate stuffer sheet provided with the device by the manufacturer.
 - c) Open type industrial control equipment is not required to be tested in an enclosure when marked with a surrounding air temperature rating.
- 12.1.5DV.3 The thermocouple method for temperature measurement consists of the determination of temperature by use of a potentiometer type instrument and thermocouples that are applied to the hottest accessible parts. The thermocouples are to be made of wires not larger than 24 AWG (0.21 mm²). The thermocouples and related instruments are to be accurate and calibrated in accordance with good laboratory practice. The thermocouple wire is to conform with the requirements for special tolerance thermocouples specified in the Initial Calibration Tolerances for Thermocouples table in Temperature Measurement Thermocouples, ANSI/ISA MC96.1.
- 12.1.5DV.4 Athermocouple junction and adjacent thermocouple lead wire are to be securely held in good thermal contact with the surface of the material of which the temperature is being measured. In most cases, adequate thermal contact will result from securely taping or cementing the thermocouple in place; but if a metal surface is involved, brazing or soldering the thermocouple to the metal may be necessary.

12.1.6 Protective coating test

The test shall be conducted in accordance with the Type A coating requirements in IEC 60664-3 or shall be approved by a recognized testing authority for conformity with applicable safety requirements.

12.1.7 Rigidity test

The equipment shall be held firmly against a rigid support and subjected to a force of 30 N applied by the hemispherical end of a hard rod of 12 mm diameter. The rod is applied to any part of the enclosure, which

is accessible when the equipment is used, and which could cause a hazard if distorted. For equipment with a non-metallic enclosure, the test is performed at an ambient temperature of 40 °C.

Verification shall be in accordance with criteria 12.1.2 during and after the application of the force.

12.1.7DV D1 Modify 12.1.7 by indicating the following:

Not applicable.

12.1.8 Clearance and creepage verification

Clearance and creepage requirements of <u>11.4</u> shall be verified by mechanical measurement where possible. Manufacturer's specifications (drawings, etc.) may be used in lieu of product samples.

12.1.9 Field-wiring terminals constructional verification

Terminals shall be designed to the requirements of 11.8. This shall be verified by fully inserting a stranded conductor with an 8 mm length of insulation removed with 1 of the strands free. The strand shall not touch parts of different polarity or accessible conductive parts, when bent in every possible direction without tearing back the insulation or making sharp bends around barriers.

12.2 Safety-related electrical tests

CAUTION:

It may be necessary to install an external impedance (a filter) to protect the test equipment that is connected to the basic PLC-system being tested.

12.2.1 Dielectric withstand verification test

Dielectric withstand testing is performed on an equipment sample preconditioned for 48 h at 40 $^{\circ}$ C \pm 2 $^{\circ}$ C and 92,5 $^{\circ}$ RH \pm 2,5 $^{\circ}$ RH. The dielectric withstand testing must be performed within 1 h of the completion of the preconditioning.

Subclause 6.8.2 of IEC 61010-1 provides an alternate preconditioning method which may be utilized.

Preconditioning is not required for dielectric withstand testing following other tests.

One of the 3 test types – impulse, a.c., or d.c. – shall be performed at the test voltage specified in <u>Table 58</u> or <u>Table 59</u>. The test voltage is based on the highest working voltage of the circuits involved. The choice of <u>Table 58</u> or <u>Table 59</u> is based on the insulation requirement specified in 11.1.

Test characteristics:

Impulse test, according to IEC 60060-1 and the following conditions:

Waveshape: 1,2/50 μ s Source impedance: 500 Ω ± 10 % Source energy: 0,5 J ± 20 %

Length of connection: $\leq 2 \text{ m}$ Time between two impulses: $\geq 5 \text{ s}$

AC voltage test

Test time: 1 min

Voltage signal: starting from 0 V (zero crossing)

Short-circuit current: ≤ 5 mA

DC voltage test

Test time: 1 min
Short-circuit current: ≤ 5 mA

NOTE In general, preference should be given to the impulse test; however, where filter capacitors are used (line-to-earth), the d.c. test is recommended.

The dielectric test voltage is applied between

- a) isolated non-SELV circuits,
- b) isolated non-SELV circuits and SELV circuits and
- c) isolated non-SELV circuits and accessible conductive parts.

The tests are carried out on each unit and module connected in the test circuit as shown in <u>Figure 13</u>. If required, tests can be carried out on individual modules with the remaining modules removed. All mechanical switches shall be in the tor closed position. Any accessible insulating part of an enclosure shall be covered with metal foil and the foil considered an accessible conductive part.

There shall be no unintentional flashover or breakdown of the insulation during the test (an intentional flashover is one which might be the result of the normal action of a surge suppression device incorporated in the equipment). Eventual operation of protecting devices provided on the units shall not be considered as a failure.

Dielectric withstand testing need not be performed between

- a) SELV/PELV circuits and accessible parts, or
- b) SELV circuits and other SELV circuits.

Exceptions:

These tests need not be done on units (parts of the basic PLC-system) which have been tested separately according to the relevant standards, provided

- the values given in Table 58 or Table 59 have been met, and
- their dielectric strength is not impaired by assembly.

Table 58
Dielectric withstand voltages for impulse a.c. power-frequency and d.c. tests for basic/supplementary insulation (5)

Working voltage of circuit (1)	Test voltages for 0-2 000 m		
AC V r.m.s. or d.c. V		V	
For basic and supplementary insulation	1,2/50 µs impulse peak (2)	AC	DC
To basic and supplementary insulation		1 min	1 min
0 < U _e ≤ 50 (3)	500	350	500
50 < U _e ≤ 100 (4)	800	490	700
100 < U _e ≤ 150	1 500	820	1 150
150 < <i>U</i> _e ≤ 300	2 500	1 350	1 900
300 < U _e ≤ 600	4 000	2 200	3 100
300 < U _e ≤ 600	6 000	3 250	4 600

- (1) Working voltage at the field wiring terminals of the device or circuit.
- (2) Three positive and 3 negative impulses at least 1 s between each.
- (3) For d.c. products this range ends at 60 V.
- (4) For d.c. products this range begins at 60 V.
- (5) No test is needed for SELV/PELV circuits/units.

Table 58DV D1 Modify Table 58 by replacing this with Table 58DV:

Table 58DV
Dielectric withstand voltages for impulse a.c. power-frequency and d.c. tests for basic/supplementary insulation (5)

Working voltage of circuit (1)	<u>(</u>) т	est voltages for 0 – 2000	m
AC V r.m.s. or d.c. V		V	
For basic and supplementary	1,2/50 µs Impulse	AC	DC
Insulation	peak (2)	1 min	1 min
$0 < U_{\rm e} \le 50$ (3)	-	500	707
50 < U _e ≤ 250 (4)	-	1000	1414
250 € V e ≤ 600	-	1000 + 2 <i>U</i> _e	$(1000 + 2 U_e)^* \sqrt{2}$
600 < U _e ≤ 1000	-	2000 + 2.25 U _e	$(2000 + 2.25 U_e)^*\sqrt{2}$

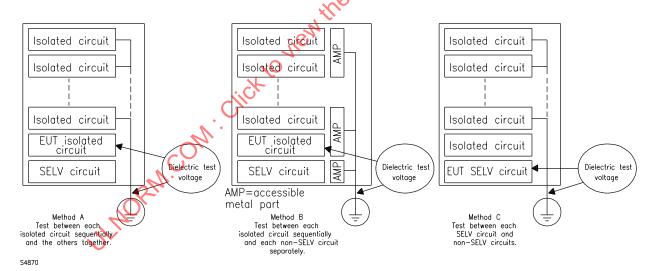

- (1) Working voltage at the field wiring terminals of the device or circuit.
- (2) Three positive and 3 negative impulses at least 1 s between each.
- (3) For d.c. products this range ends at 60 V.
- (4) For d.c. products this range begins at 60 V.
- (5) No test is needed for SELV/PELV circuits/units.

Table 59 Dielectric withstand voltages for impulse a.c. power frequency and d.c. tests for double/reinforced insulation (5)

Working voltage of circuit (1)	Test voltages for 0-2 000 m				
AC V r.m.s. or d.c. V		v			
For double/reinforced insulation	1,2/50 µs impulse peak (2)	AC 1 min	DC 1 min		
$0 < U_{\rm e} \le 50 (3)$	850	510	720		
50 < <i>U</i> _e ≤ 100 (4)	1 360	740	1 050		
100 < U _e ≤ 150	2 550	1 400	1 950		
150 < U _e ≤ 300	4 250	2 300	3 250		
300 < U _e ≤ 600	6 800	3 700	5 250		
600 < U _e ≤ 1 000	10 200	5 550	7 850		
(1) Working voltage at the field wiring terminals of t	he device or circuit.	2			
(2) Three positive and 3 negative impulses at least	1 s between each.	1/2			
(3) For d.c. products this range ends at 60 V.					
(3) For d.c. products this range ends at 60 V. (4) For d.c. products this range begins at 60 V.					
(5) No test is needed for SELV/PELV circuits/units.					
		N.			

- (1) Working voltage at the field wiring terminals of the device or circuit.
- (2) Three positive and 3 negative impulses at least 1 s between each.
- (3) For d.c. products this range ends at 60 V.
- (4) For d.c. products this range begins at 60 V.
- (5) No test is needed for SELV/PELV circuits/units.

Figure 13 Dielectric withstand test procedures

12.2.1DV.1 D2 Modify 12.2.1 by adding the following:

Dielectric testing is conducted immediately following the temperature test.

12.2.1DV.2 D1 Modify 12.2.1 by adding the following:

Table 59 is not applicable.

12.2.2 Protective earthing continuity test

Test description: A constant current of 30 A for at least 2 min shall be injected between the earthing terminal or contact and each of the accessible metal parts intended to be earthed. The current shall be maintained or adjusted accordingly during the test to 30 A. Any convenient low voltage not exceeding 12 V can be used. The voltage drop shall be measured between the points of current flow, care being taken that the contact resistance between the tip of the measuring probe and the metal part underneath does not influence the test results.

Pass/fail criteria: The calculated resistance shall not exceed 0,1 Ω .

12.2.3 Stored energy injury risk test

Equipment shall be so designed that at an external point of disconnection of the mains supply, there is no risk of electric shock from stored charge on capacitors connected to the mains circuit.

Compliance is checked by inspection of the equipment and relevant circuit diagrams, taking into account the possibility of disconnection of the supply with the on/off switch in either position (if present).

Equipment shall be considered to comply if any capacitor having a rated capacitance exceeding 0,1 µF and connected to the external mains circuit, has a means of discharge resulting in a time constant not exceeding

- 1 s for pluggable equipment,
- 10 s for permanently connected equipment.

The relevant time constant is the product of the effective capacitance in microfarads and the effective discharge resistance in megohms. Where it is difficult to determine the effective capacitance and resistance values, a measurement of voltage decay may be used. In 1 time constant the voltage will have decayed to 37 % of its original value.

12.2.4 Overload test

Switching devices shall close and open a test circuit having the current, voltage, and power factor values given in <u>Table 60</u>. Fifty cycles, each consisting of 1 closed and 1 open action, shall be completed using a timing of 1 s on, 9 s off. After completion of the 50 cycles, the equipment shall be subjected to the endurance test in <u>12.2.5</u>, if required by <u>11.11</u>.

Table 60 Overload test circuit values

Intended us	e Current	Voltage	Power factor
AC general u	se 1,5 × rated	d Rated	0,75 to 0,80
DC general u	se 1,5 × rated	d Rated	1,0

Table 60 Continued

Intended use	Current	Voltage	Power factor
AC resistance	1,5 × rated	Rated	1,0
Pilot duty	Rated (1)	1,1 × rated (2)	<0,35

⁽¹⁾ Unless otherwise specified, the inrush current shall be 10 times the steady-state current.

Table 60DV D2 Modify Table 60 by replacing with the Table 60DV:

Table 60DV Overload test circuit values

Intended use	Current	Voltage	Power factor
AC general use	1,5 × rated	Rated	0,75 to 0,80
DC general use	1,5 × rated	Rated 6	1,0
AC resistance	1,5 × rated	Rated	1,0
DC resistance	1,5 × rated	Rated	1,0
AC pilot duty	Rated (1)	1,1 × rated (2)	<0,35
DC pilot duty	Rated (a)	1,1 × rated (2)	1,0

⁽¹⁾ Unless otherwise specified, the inrush current shall be 10 times the steady-state current.

Pass/fail is determined by test completion without electrical/dielectric/mechanical breakdown of the equipment.

12.2.5 Endurance test

After completion of the overload test in 12.2.4, the switching device is to close and open a test circuit having the current, voltage, and power factor values given in Table 61. A total of 6 000 cycles, consisting of 1 closing and 1 opening, shall be completed. The cycle timing shall be 1 s on and 9 s off, except for the first 1 000 cycles of the pilot duty test. The first 1 000 cycles of the pilot duty test shall be at a rate of 1 cycle per second except that the first 10 to 12 cycles are to be as fast as possible.

The endurance test need not be conducted on solid-state output devices for general or resistive use.

Table 61
Endurance test circuit values

Intended use	Current	Voltage	Power factor
AC general use	Rated	Rated	0,75 to 0,80
DC general use	Rated	Rated	1,0
AC resistance	Rated	Rated	1,0
Pilot duty (1)	Rated	Rated	<0,35

⁽²⁾ Set up the EUT at its rated voltage and current and then increase the voltage by 10 % without further adjustment of the load.

⁽²⁾ Set up the EUT at its rated voltage and current and then increase the voltage by 10 % without further adjustment of the load.

Table 61DV D2 Modify Table 61 by replacing with Table 61DV:

Table 61DV Endurance test circuit values

Intended use	Current	Voltage	Power factor
AC general use	Rated	Rated	0,75 to 0,80
DC general use	Rated	Rated	1,0
AC resistance	Rated	Rated	1,0
DC resistance	Rated	Rated	1,0
AC pilot duty (1)	Rated	Rated	<0,35
DC pilot duty (1)	Rated	Rated	1,0

(1) The test circuit is identical to the overload test circuit except that the voltage is the rated voltage.

Pass/fail is determined by test completion without electrical/dielectric/mechanical breakdown of the equipment.

12.3 Single-fault condition test - General

Equipment and its circuit diagram shall be examined to determine fault conditions that are liable to result in hazards. These fault conditions shall be applied while the equipment is operating under least favourable normal conditions. Some of the specific single-fault condition tests are covered in 12.3.1, 12.3.2, and 12.3.3.

The equipment shall be operated until further change as a result from the applied fault is unlikely. This is normally limited to 1 h. If at the end of 1 h there is an indication that there is a risk of spread of fire, electric shock or injury to persons, the test shall be continued until 1 of these hazards does occur or for a maximum period of 4 h.

For open equipment, a wire mesh cage that is 1,5 times the size of the device may be provided to simulate the intended enclosure. The outer enclosure or wire mesh cage (if any) and any grounded or exposed dead-metal parts are to be connected through a 3 A fast-acting (non-time delay) fuse to the supply circuit pole least likely to arc to ground.

The fault conditions shall be applied only 1 at a time in any convenient order. Multiple simultaneous faults shall not be applied.

After application of each fault condition, there shall be

- a) no emission of flame or molten material nor ignition of cotton loosely placed around the item under test,
- b) no accessible hazardous live parts, and
- c) no opening of the 3 A fuse.

12.3.1 Single-fault condition – Breakdown of components test

Individual components, such as capacitors, diodes or other solid-state components, shall be short- or open-circuited.

Exception: The test is not required

- if circuit analysis indicates that no other component or portion of the circuit will be seriously overloaded as a result of the assumed open-circuiting or short-circuiting of another component;
- for components whose failure may result in increased risk of fire or electric shock and that have previously been investigated and found suitable for the application.

12.3.2 Single-fault condition - Protective impedance test

If a protective impedance is formed by combination of components, each component shall be short-circuited or open-circuited, whichever is less favourable.

If a protective impedance is formed by the combination of basic insulation and a current or voltage-limiting device, both the basic insulation and the current- or voltage-limiting device shall be subjected to single faults, applied 1 at a time. Basic insulation shall be short-circuited and the current- or voltage-limiting device shall be short-circuited or open-circuited, whichever is less favourable.

12.3.2DV D2 Modify 12.3.2 by adding the following:

Isolated secondary circuit tests are as described in Annex DVD.

12.3.3 Single-fault condition – Mains transformers test

The secondary windings of mains transformers shall be short-circuited, 1 winding at a time.

Current limiting impedances or overcurrent protection devices, which are directly connected to any secondary winding, shall be connected during this test.

12.3.3DV D2 Modify 12.3.3 by indicating the following:

Not applicable.

12.102DV D2 Addition:

12.102DV1 Printed Wiring Board Abnormal Operation Test

12.102DV.1.1 For other than providing isolation between different circuits or in a safety circuit, creepage and clearance spacings between traces of different potentials on a printed wiring board are not required to comply with the spacing requirements of this Standard when:

- a) The printed wiring board material has a flammablility rating of at least V-0
- b) The printed wiring board base material has a minimum Comparative Tracking Index of 100 and
- c) The equipment complies with the following.

12.102DV.1.2 As a result of this test, there shall be no emission of flame or molten metal nor ignition of cotton loosely placed over all openings of ventilated equipment or totally around open type equipment.

12.102DV.1.3 The outer enclosure of the equipment and any exposed dead metal parts, normally intended to be earthed, are disconnected from earth and are to be connected through a 3 A fuse to the supply circuit pole least likely to arc to earth (usually the neutral pole). The 3 A fuse shall not open.

12.102DV.1.4 Overcurrent protection required to be used with the equipment is allowed to open.

12.102DV.1.5 A sample of the equipment employing the PWB is to be wired as intended to an electrical supply circuit sized and protected to simulate end-use conditions. When the spacings between live parts on the PWB are less than those specified, they are to be shortcircuited one at a time.

Modify 13 by indicating the following:

Routine tests are not applicable for fixed equipment

ielectric withstand test

f insulation 12.102DV.1.6 When the circuit is interrupted by the opening of a component, or of a PWB

13 Safety routine tests

13.1 Dielectric withstand test

Safety of insulation and/or barriers is established according to the requirements of Clause 11. Manufactured quality of the insulation and/or barriers must also be established according to one of the following methods.

1) Routine dielectric withstand testing of the product in accordance with 13.2.

When this method is chosen, the tests of 13.2 shall only be performed on equipment that has operator-accessible hazardous live parts.

Unless it can be shown that subsequent manufacturing cannot invalidate the results of these tests, these tests shall be performed on fully assembled modules or equipment.

2) Verification that all isolating components used in the production of modules or equipment are 100 % dielectric withstand tested as components or are supplied as meeting the component requirements of 11.12.

When this method is chosen, it must be used in conjunction with

- a) verification by type tests that dielectric strength requirements of 11.1.4 are met;
- b) verification that creepage and clearance distances of 11.4 are met by the product during design;
- c) Automated assembly and quality controlled manufacturing processes that assure consistency of the manufactured product.

13.1DV D2 Modify 13.1(1) second paragraph as follows:

When this method is chosen, the tests of 13.2 shall only be performed on equipment that has operator-accessible conductive parts.

13.2 Dielectric withstand verification test

The test voltage specified in <u>Table 62</u> shall be applied between hazardous live terminals and circuits, and all accessible conductive parts including terminals intended to be connected to circuits of other equipment which are not hazardous live but which are accessible. One of the tests in <u>Table 62</u> shall be carried out.

Table 62
Routine dielectric withstand test (5)

Working voltage of circuit (1)	Test voltages for 0 – 2 000 m		
	1,2/50 µs impulse peak	AC 6	DC
AC V r.m.s. or d.c. V	(2)	2 \$	2 s
<i>U</i> _e ≤ 30	No test required	No test required	No test required
$30 < U_{\rm e} \le 50 (3)$	500	√ 0350	500
50 < U _e ≤ 100 (4)	800	490	700
100 < <i>U</i> _e ≤ 150	1 500	820	1 150
150 < U _e ≤ 300	2 500	1 350	1 900
300 < U _e ≤ 600	4 000	2 200	3 100
600 < U _e ≤ 1 000	6 000	3 250	4 600

- (1) Working voltage at all the operator-accessible terminals of the device or circuit.
- (2) Three positive and 3 negative impulses at least 1 s between each.
- (3) For d.c. products this range ends at 60 V
- (4) For d.c. products this range begins at 60 V
- (4) For d.c. products this range begins at 60 V

13.3 Protective earthing test

A simple continuity test shall be made between the protective earthing interface/port and all operator-accessible metal parts, intended to be earthed. The test shall be performed on all non-SELV/PELV rated voltage units.

The resistance shall not exceed 0,1 Ω .

14 Safety information to be provided by the manufacturer

The manufacturer's data shall include the following information as a minimum.

- Protective earthing requirements and recommendations concerning personnel safety circuits.
- Requirements for the maintenance of protective devices, such as protective earthing circuits, overcurrent protective devices, and batteries utilized for memory back-up, etc.
- If the PLC-system is provided as "open equipment", a suitable enclosure is required to provide the necessary level of safety and environmental protection and guidelines for mounting, spacing, and/or internal barriers or shields if needed for safety.

- Precautionary instructions, if removal of any module while the equipment is in operation can affect safety related to electrical shock, fire hazard and electrical damage.
- A statement of the intended use of the PLC-system relative to overvoltage category as defined in 3.43.
- Isolation potentials between channel and other circuits (including ground) and between channels under normal condition.

Information to be made available can be in other than printed form.

14.1 Information on evaluation of enclosures for open equipment (power dissipation)

The manufacturer's documents shall provide information to allow the evaluation of the power dissipation of every PLC configuration, subassembly and module and provide information regarding minimum spacing required to assure adequate cooling under normal service conditions.

14.1DV D2 Modify 14.1 to indicate the following:

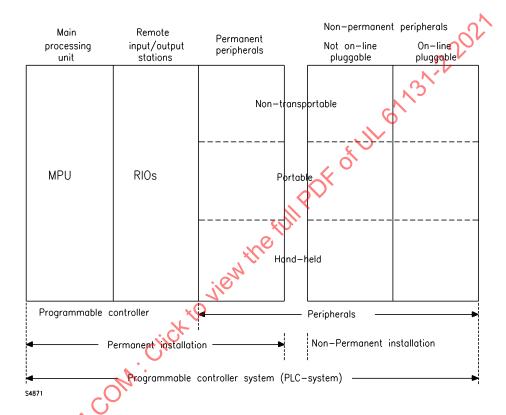
Not applicable.

14.2 Information on mechanical terminal connection

The manufacturer shall provide the following information through convenient documentation and/or marking.

- Type, cross-sectional area and material of the conductors that may be connected to the PLC-system.
- Recommendations for use of shielded cables, and how they are to be connected and earthed.

14.2DV D2 Modify 14.2 by adding the following:


Terminal wire size, temperature rating and torque requirements as specified in Annex <u>DVA</u> must be provided by the manufacturer.

Annex A (informative)

Illustration of PLC-system hardware definitions

<u>Figure A.1</u> illustrates the hardware in the PLC-system as defined for the purposes of IEC 61131-1 and IEC 61131-2.

Figure A.1
Programmable controller system (PLC-system)

Portable and hand held peripherals have specific requirements and have to be distinguished from permanently installed peripherals (see <u>4.2.3</u>).

Annex B (informative)

Digital input standard operating range equations

The following equations were used to generate Table 7 (with some exceptions explained in the notes).

DC equations

$U_{\rm H\; max} = 1,25\; U_{\rm e}$ $U_{\rm H\; min} = 0,8\; U_{\rm n} - U_{\rm d} - 1 \text{V}$ $U_{\rm T\; max} = U_{\rm H\; min}$ $U_{\rm L\; max} = U_{\rm H\; min} \; \text{for} \; I \leq I_{\rm T\; min}$ $U_{\rm T\; min} = 0,2\; U_{\rm n}$ $U_{\rm L\; max} = U_{\rm T\; min} \; \text{for} \; I > I_{\rm T\; min}$ $U_{\rm L\; min} = -3\; \text{V} \; (\text{DC 24}\; \text{V})$ $U_{\rm L\; min} = -6\; \text{V} \; (\text{DC 48}\; \text{V})$

 $I_{L \min} = ND$ (Not defined)

Type 1 inputs:

$$I_{\text{H max}} = I_{\text{T max}} = I_{\text{L max}} = 15 \text{ mA}$$

 $I_{\text{H min}} \approx I_{\text{T min}} + 1 \text{ mA}$

$$I_{\text{T min}} \approx U_{\text{H max}}/Z$$

 $I_{\text{T min}} \approx U_{\text{H max}}/Z$

Type 2 inputs:

$$I_{H \text{ max}} = I_{T \text{ max}} = I_{L \text{ max}} = 30 \text{ mA}$$
 $I_{H \text{ min}} = I_{m} + 1 \text{ mA} = 6 \text{ mA}$
 $I_{T \text{ min}} = I_{r} = 1,5 \text{ mA}$
 $U_{d} = \text{d.c. 8 V}$

Type 3 inputs:

$$I_{H \text{ max}} = I_{T \text{ max}} = I_{L \text{ max}} = 15 \text{ mA}$$

$$U_{H \text{ max}}/Z \le I_{H \text{ min}} \le I_{m} = 5 \text{ mA}$$

$$I_{T \text{ min}} = I_{r} = 1,5 \text{ mA}$$

$$U_{d} = \text{d.c. 8 V}$$

AC equations

$$U_{H \max} = 1,1 \ U_{e}$$

$$U_{H \min} = 0,85 \ U_{n} - U_{d} - 1V$$

$$U_{T \max} = U_{H \min}$$

$$U_{L \max} = U_{H \min} \text{ for } I \le I_{T \min}$$

$$U_{T \min} = 0,2 \ U_{n}$$

$$U_{L \max} = U_{T \min} \text{ for } I > I_{T \min}$$

$$U_{L \min} = 0$$

$$I_{L \min} = 0$$

$$(1,2)$$

Type 1 inputs:

$$I_{\text{H max}} = I_{\text{T max}} = I_{\text{L max}} = 15 \text{ mA}$$
 $I_{\text{H min}} \approx I_{\text{T min}} + 1 \text{ mA} (U_{\text{e}} \le 120 \text{ V r.m.s.}) \text{ or}$
 $I_{\text{H min}} \approx I_{\text{T min}} + 2 \text{ mA} (U_{\text{e}} > 120 \text{ V r.m.s.})$
 $I_{\text{T min}} \approx U_{\text{H max}}/Z$ (5)
 $U_{\text{d}} = 5 \text{ V (Table 8)}$ (3)

Type 2 inputs:

$$I_{H \text{ max}} = I_{T \text{ max}} = I_{L \text{ max}} = 30 \text{ mA}$$
 $I_{H \text{ min}} \approx I_{m} + 1 \text{ mA} = 6 \text{ mA}$
 $I_{T \text{ min}} \approx I_{r} = 3 \text{ mA}$ (4)
 $U_{d} = \text{a.c. } 10 \text{ V r.m.s.}$ (4)

Type 3 inputs:

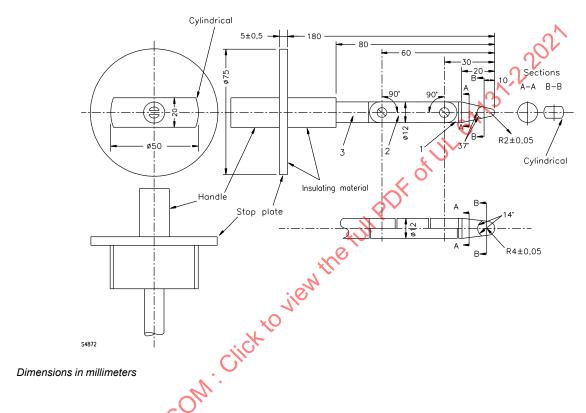
$$I_{H \text{ max}} = I_{T \text{ max}} = I_{L \text{ max}} = 15 \text{ mA}$$
 $I_{H \text{ min}} = I_{m} = 5 \text{ mA}$
 $I_{T \text{ min}} \approx I_{r} = 3 \text{ mA}$ (4)
 $U_{d} = \text{a.c. } 10 \text{ V r.m.s.}$ (4)

NOTE 1 For all a.c. 100/110/120 V r.m.s. and all a.c. 200/220/230/240 V r.m.s. inputs, U_n has been respectively selected as a.c. 100 V r.m.s. and a.c. 200 V r.m.s., in order to allow compatibility of a single module with various supply voltages.

NOTE 2 1 V drop (a.c. or d.c.) is assumed for the connecting leads.

NOTE 3 Maximum values of voltage drops, $U_{\rm d}$, of digital outputs for d.c. and a.c.

NOTE 4 These values of and $I_{\rm r}$, $U_{\rm d}$ and $I_{\rm m}$ correspond to those adopted in IEC 60947-5-2.


NOTE 5 Z = Empirical worst-case relay contact, open-contact impedance = 100 k Ω .

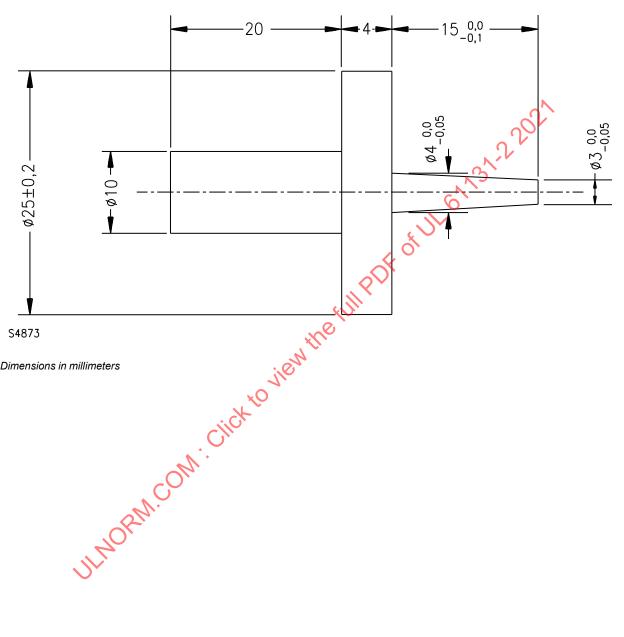
Annex C (normative)

Test tools

C.1 Jointed test finger

Figure C.1
Jointed test finger

Tolerances on dimensions without specific tolerance


- on angles: +0", -10"
- on linear dimensions: up to 25 mm, +0, -0,05 mm
- on linear dimensions: over 25 mm: ±0,2 mm

Material of finger shall be heat-treated steel and suitable insulator.

Both joints of the finger may be bent through an angle of 90° + 10° , - 0° , but in one and the same direction only.

C.2 Test pins

Figure C.2 15 mm × 3 mm test pin

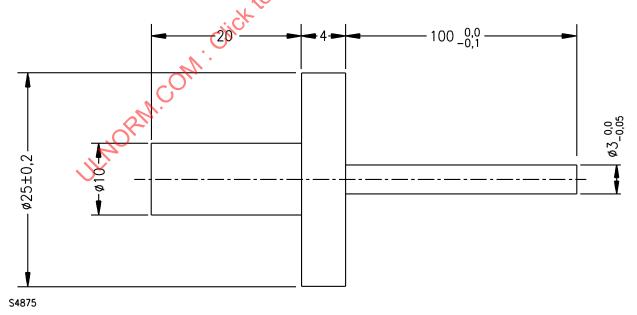

Dimensions in millimeters

Figure C.3 100 mm × 4 mm test pin

Dimensions in millimeters

Figure C.4 100 mm × 3 mm test pin

Annex CDV D2 Modification to Annex C:

In the USA, Annex **C** is informative.

ULMORIN.COM. Click to view the full POF of UL 61/31/2 2021