

SURFACE VEHICLE RECOMMENDED PRACTICE

J2284™-5

NOV2022

Issued Revised 2016-09 2022-11

Superseded by J2284-5 SEP2016

High-Speed CAN (HSC) for Vehicle Applications at 500 kbps with CAN FD Data at 5 Mbps

RATIONALE

ISO 11898-1 secondary sample point provides a method to delay the receive sample of transmitted data to ensure proper reception of CAN FD messages when transmitting. Currently, the usage of this is defined in OEM-specific documents. CAN diagnostic tool vendors generally don't have access to the OEM documents. If this is missed especially at 5 Mbps data rate, there may be CAN bus errors which are likely to cause the tool to go bus off. SAE J2534 references SAE J2284-4 for CAN requirements for 5 Mbps CAN FD and they would like to see it updated to include this information.

FOREWORD

The objective of SAE J2284-5 is to define a level of standardization in the implementation of a 500 kbps arbitration bus with CAN FD data at 5 Mbps for a point to point connection between a vehicle and off board tools using the controller area network (CAN) protocol. The goal is to achieve a standard electronic control unit (ECU) physical layer, data link layer, and media design criteria which will allow ECU and tool manufacturers to satisfy the needs of multiple end users with minimum modification to a basic design. Likewise, end users will benefit in lower ECU cost achieved from the high volumes of the basic design.

TABLE OF CONTENTS

1.	SCOPE	4
2.	REFERENCESApplicable Documents	1
2. 2.1	Applicable Documents	4 1
2.1.1	SAE Publications	
2.1.1	ISO Publications	4
2.1.2 2.1.3	Other Publications	4 5
2.1.3	Other Publications	5
3.	DEFINITIONS	5
0.		
4.	ACRONYM8	9
		•
5.	SYSTEM LEVEL ATTRIBUTES OF THE NETWORK	10
5.1	Message Format	
5.2	Communication Rate	
5.3	Basic Communication Network Parameters	
5.4	Topology and Termination	
5.4.1	Single On-Board ECU Configuration	
5.4.2	Additional Requirements	13
5. 4 .2 5.5	Unshielded Media	
5.6	Communication/Survivability Under Faulted Conditions	
0.0	Communication/Out vivability Officer 1 dutied Conditions	

SAE Executive Standards Committee Rules provide that: "This report is published by SAE to advance the state of technical and engineering sciences. The use of this report is entirely voluntary, and its applicability and suitability for any particular use, including any patent infringement arising therefrom, is the sole responsibility of the user."

SAE reviews each technical report at least every five years at which time it may be revised, reaffirmed, stabilized, or cancelled. SAE invites your written comments and suggestions.

Copyright © 2022 SAE International

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of SAE.

TO PLACE A DOCUMENT ORDER: 877-606-7323 (inside USA and Canada) Tel:

+1 724-776-4970 (outside USA) Tel:

Fax: 724-776-0790

Email: CustomerService@sae.org

http://www.sae.org

For more information on this standard, visit

SAE WEB ADDRESS:

https://www.sae.org/standards/content/J2284/5 202211/

5.7	EMC Criteria	14
5.8	Off-Board Tool Requirements	
5.8.1	Off-Board Tool Capacitive Load	
5.8.2	Off-Board Tool Propagation Delay	
5.9	Off-Board Tool Cable Requirements	
5.9.1	Cable Length	
5.9.2	Cable Propagation Delay	
5.9.3	Cable Configuration	
0.0.0	Cable Comiguration	
6.	ECU REQUIREMENTS	16
6.1	Absolute Maximum Ratings	
6.1.1	Direct Voltage Connection	
6.1.2	Unpowered Storage Temperature	
6.2	DC Operating Parameters	
6.2.1	DC Parameters - Output Behavior - Recessive Bus State - Bus Disconnected	17 18
6.2.2	DC Parameters - Output Behavior - Dominant Bus State - Bus Disconnected	10
6.2.3	DC Parameters - Output Behavior - ECU unpowered/Bus Bias Off - Bus Disconnected	
6.2.4		
6.2. 4 6.2.5	DC Parameters - Input Behavior - Bus Disconnected	۱۶
6.2.6	DC Parameters - Recessive Bus State - Normal Operating Mode - Bus Connected	20
6.2.7	DC Parameters - Necessive Bus State - Normal Operating Mode - Bus Connected	20
6.3	ECI Internal Canacitanes	20
6.4	ECU Internal CapacitanceTermination	۱ ک 21
6.5	Connector Parameters	۱ ∠
6.6	Bit Timing Requirements	۱ ک
6.6.1	Nominal Bit Time (t _{BIT})	22
6.6.2	Data Bit Time	22
6.6.3	Data Sample Mode	22 22
6.6.4	CAN Bit Timing and Register Settings	22
6.6.5	Transmitter Delay Compensation	24
6.7	Massage Transmission and Recention	24 24
6.8	FCIT Configuration Requirements	24 25
6.9	Message Transmission and Reception	25
0.9	Lieutionagnetic compatibility (Livo)	20
7.	CAN COMPONENT REQUIREMENTS	25
7.1	Bus Transceiver Requirements	
7.2	Bus Controller Requirements	
7.3	Microcontroller Requirements and Preferences	
7.0		
8.	NOTES	31
8.1	Revision Indicator	31
0.1	Trevision indicator	
Figure 1	Single on-board ECU configuration A	12
Figure 2	Single on-board ECU configuration B	12
Figure 3	Off-board tool parameters	
i iguic o	On board tool parameters	
Table 1	Basic communication network parameters	11
Table 2	Network topology requirements	
Table 3	Physical media parameters for unshielded twisted pair	
Table 4	Fault behavior	
Table 5	Off-board tool capacitive load (without cable load)	
Table 6	Off-board tool propagation delay (loop delay without cable delay)	
Table 7	Off-board tool cable length	
Table 8	Off-board tool cable propagation delay (one-way delay without off-board tool delay)	
Table 9	ECU maximum bus wire voltage - no damage to ECU (12 V system)	
Table 10	ECU operating parameters - CAN data communication	
Table 11	ECU DC parameters - output behavior recessive - bus disconnected	
Table 12	ECU DC parameters - output behavior dominant - bus disconnected	
Table 13	FCU DC parameters - input behavior - FCU uppowered/bus bias off - bus disconnected	

Table 14	ECU DC parameters - input behavior - bus disconnected	20
Table 15	ECU AC parameters - output behavior - bus disconnected	
Table 16	ECU DC parameters - recessive bus state - bus connected	
Table 17	ECU DC parameters - dominant bus state - bus connected	
Table 18	ECU internal capacitance - ECU disconnected	21
Table 19	ECU termination characteristics	21
Table 20	ECU connector characteristics	
Table 21	ECU CAN bit timing - min/max	23
Table 22	ECU CAN register settings for first standard time quanta	
Table 23	ECU CAN register settings for second standard time quanta	
Table 24	ECU - basic CAN interface functional requirements	25
Table 25	Bus transceiver - basic requirements	26
Table 26	Bus transceiver - maximum bus pin voltage - no damage to transceiver (12 V system)	26
Table 27	Bus transceiver - general operating conditions	27
Table 28	Bus transceiver - DC parameters - output behavior - recessive/off state	
Table 29	Bus transceiver - DC parameters - output behavior - dominant state	28
Table 30	Bus transceiver - DC parameters - input behavior/threshold - sleep mode absent	28
Table 31	Bus transceiver - DC parameters - input behavior/threshold - sleep mode present	28
Table 32	Bus transceiver - AC parameters	29
Table 33	Bus transceiver - AC parameters	30

SAEMORM. Click to view the full right of 1228

SCOPE

This SAE Recommended Practice will define the physical layer and portions of the data link layer of the open systems interconnection model (ISO 7498) for a 500 kbps arbitration bus with CAN FD data at 5 Mbps high-speed CAN (HSC) protocol implementation. Both ECU and media design requirements for networks will be specified. Requirements will primarily address the CAN physical layer implementation.

Requirements will focus on a minimum standard level of performance from the High-Speed CAN (HSC) implementation. All ECUs and media shall be designed to meet certain component level requirements in order to ensure the HSC implementation system level performance at 500 kbps arbitration bus with CAN FD Data at 5 Mbps. The minimum performance level shall be specified by system level performance requirements or characteristics described in detail in Section 6 of this document.

This document is designed such that if the electronic control unit (ECU) requirements defined in Section 6 are met, then the system level attributes should be obtainable.

This document will address only requirements which may be tested at the ECU and media level. No requirements which apply to the testing of the HSC implementation as integrated into a vehicle are contained in this document. However, compliance with all ECU and media requirements will increase the possibility of communication compatibility between separately procured components and will greatly simplify the task of successfully integrating an HSC communication system in a vehicle.

REFERENCES

2.1 Applicable Documents

The following publications form a part of this specification to the extent specified herein. Unless otherwise indicated, the latest issue of SAE publications shall apply.

2.1.1 SAE Publications

Available from SAE International, 400 Commonwealth Drive, Warrendale, PA 15096-0001, Tel: 877-606-7323 (inside USA and Canada) or +1 724-776-4970 (outside USA), www.sae.org.

SAE J551-15 Vehicle Electromagnetic Immunity - Electrostatic Discharge (ESD)

SAE J1213-1 Glossary of Vehicle Networks for Multiplexing and Data Communications

SAE J1930 Electrical/Electronic Systems Diagnostic Terms, Definitions, Abbreviations, and Acronyms -

Equivalent to ISO/TR 15031-2

SAE J1962 Diagnostic Connector

SAE J2190 Enhanced E/E Diagnostic Test Modes

SAE J2962-2 Communication Transceivers Qualification Requirements - CAN

SAE 970295 CAN Bit Timing Requirements

2.1.2 ISO Publications

Copies of these documents are available online at https://webstore.ansi.org/.

ISO 7498	Data Processing Systems - Open Systems Interconnection Standard Reference Model
----------	---

ISO 7637-1 Road Vehicles - Electrical Disturbance by Conduction and Coupling

ISO 10605 Road Vehicles - Test Methods for Electrical Disturbances from Electrostatic Discharge

ISO 11451-2	Road Vehicles - Vehicle Test Methods for Electrical Disturbances from Narrowband Radiated Electromagnetic Energy - Part 2: Off-Vehicle Radiation Sources
ISO 11452-4	Road Vehicles - Component Test Methods for Electrical Disturbances from Narrowband Radiated Electromagnetic Energy - Part 4: Harness Excitation Methods
ISO 11898-1:2015(E)	Road Vehicles - Interchange of Digital Information - Controller Area Network (CAN), Part 1: Data Link Layer and Physical Signaling
ISO 11898-2:2016(E)	Road Vehicles - Interchange of Digital Information - Controller Area Network (CAN), Part 2: High-Speed Medium Access Unit
ISO 14229	Road Vehicles - Diagnostic Systems - Specification of Diagnostic Services
ISO 26262	Road Vehicles - Functional Safety

2.1.3 Other Publications

CISPR 25 Limits and Methods of Measurement of Radio Disturbance Characteristics for the Protection of

Receivers Used On-Board Vehicles

AUTOSAR Release 4.2.2, www.autosar.org.

DEFINITIONS

The definitions provided in SAE J1213-1 apply to this document. Additional or modified definitions, acronyms, and abbreviations included in this document or relevant to the communication of information in a vehicle are catalogued in this section.

3.1 ARBITRATION BIT TIME

See nominal bit time (3.23).

3.2 BUS TERMINATION

Elements in a subnet (per default two) that implement presence of a defined resistance between CAN_H and CAN_L.

3.3 CAN H

The CAN_H bus wire is fixed to a mean voltage level during the recessive state and is driven in a positive voltage direction during the dominant bit state.

3.4 CAN L

The CAN_L bus wire is fixed to a mean voltage level during the recessive state and is driven in a negative voltage direction during the dominant bit state.

3.5 CAN ACTIVITY FILTER TIME

Duration for which the bus needs to be continuously in the same state to enable the signal to pass the bus wake-up filter.

3.6 CAN BUS

Subnet where a number of ECUs communicate via a two-wire link (CAN_H, CAN_L) and where the controller area network (CAN) protocol is used as data link layer (DLL).

3.7 CAN IDENTIFIER

Bit pattern of 11 bits or 29 bits, located at the beginning of a message that denotes message content and also reflects message priority.

3.8 CLASSICAL CAN MESSAGE

Bus message according to ISO 11898:1993/Amd.1:1995(E). Bus message according to ISO 11898-1:2015(E) where the FDF bit is dominant, also known as CAN 2.0.

3.9 CAN FD MESSAGE

Bus message according to ISO 11898-1:2015(E) where the FDF bit is recessive. A CAN FD message typically employs different bit rates in the data field and in the arbitration field.

3.10 DATA BIT TIME

Length of a single bit in those parts of CAN FD messages where a dedicated separately configurable data bit time is used. The data bit time is not used anywhere in classical CAN messages and is not used in those CAN FD messages where the BRS bit is dominant.

3.11 DATA LINK LAYER (DLL)

Provides the reliable transfer of information across the physical layer. This includes message qualification and error control.

3.12 DATA SAMPLE POINT (tsample)

The sample point is the time within the bit period at which the single bit sample captures the state of the bus. The programmable bit sample point is located between t_{SEG1} and t_{SEG2} Equation 1 shows the relationship of t_{SAMPLE} to t_{SEG2}:

$$t_{SAMPLE} = t_{BIT} - t_{SEG2}$$
 (Eq. 1)

3.13 DIAGNOSTIC CONNECTOR

Provides the electrical connection between off-board and on-board ECUs. For some vehicles, the diagnostic connector is the SAE J1962 connector.

3.14 DISABLING OF DLC MATCHING

When this functionality is supported and active, then the bus transceiver will not compare message data length code (DLC) values as to whether or not they match to configured DLC values when scanning messages for presence of valid wake-up requests.

3.15 DOMINANT STATE

The dominant state is represented by a differential voltage greater than a minimum threshold between the CAN_L and CAN_H bus wires. The dominant state overwrites the recessive state and represents a logic "0" bit value.

3.16 ELECTRONIC CONTROL UNIT (ECU)

An on- or off-vehicle electronic assembly from which CAN SAE J2284-5 messages may be sent and/or received.

3.17 ECU Delay (t_{ECU})

An ECU's loop delay includes the following four delays:

- a. Transmitter propagation delay (t_{TX}, this includes device delay and slew).
- b. Receiver propagation delay (t_{RX}).
- c. Receiver logic delay (tLOGIC).
- d. Common mode choke (tchk, optional, Includes both Tx and Rx choke delays).

$$t_{ECU} = (t_{TX} + t_{RX} + t_{LOGIC} + t_{CHK})$$
 (Eq. 2)

3.18 FD Receive/FD Transmit

Status flags indicating whether the bus controller employs CAN FD data bit timing presently.

3.19 HANDLE

Hardware object label of one or multiple LLC frames (LPDU). Identifies hardware element used for transaction. Used to facilitate cancellation of pending message transmission requests.

3.20 MEDIA

The physical entity which conveys the electrical (or equivalent means of communication) transmission between ECUs on the network (e.g., unshielded twisted pair wires). Media is defined as all elements between the connector pins of the communicating ECUs through which the signals pass.

3.21 MEDIA DELAY (t_{BUS})

Media delay is defined as the time required for a signal to pass through the media at the longest specified distance (see Table 1 in 5.3, Table 2 in 5.4, and Table 3 in 5.5).

3.22 MUST

The word "must" is used to indicate that a binding requirement exists on components or devices which are outside the scope of this specification.

3.23 NOMINAL BIT TIME

Length of a single bit in classical CAN messages. Length of a single bit in CAN FD messages except where data bit timing applies. Also known as arbitration bit time.

3.24 PCS STATUS

Indicates what logical level is presently being received or transmitted and whether or not CAN FD data bit timing applies presently. For details, refer to ISO 11898-1:2015(E).

3.25 PHYSICAL LAYER

Concerns the transmission of an unstructured bit stream over physical media: deals with the mechanical, electrical, functional, and procedural characteristics to access the physical media.

3.26 PROTOCOL

Formal set of conventions or rules for the exchange of information between ECUs. This includes the specification of frame administration, frame transfer, and physical layer.

3.27 RADIATED EMISSIONS

Radiated emissions consists of energy that emanate from the CAN bus wires. Electric field strength in dbµV/m is the typical measure of radiated emissions.

3.28 RADIATED IMMUNITY

A property that ensures that the CAN bus wires will not suffer degraded functional operation within its intended electromagnetic environment.

3.29 RECESSIVE STATE

The recessive state is represented by an inactive state differential voltage that is approximately 0. The recessive state represents a logic "1" bit value.

3.30 PROPAGATION DELAY (tprop)

Part of bit cell that serves compensation of data signal delay times in a network. Because CAN is an arbitrating protocol, the propagation delay must take into account the time required for a signal to make a complete round trip from one CAN controller to another and back. This translates to Equations 3 or 4.

$$t_{PROP} = 2(t_{TX} + t_{RX} + t_{LOGIC} + t_{CHK} + t_{BUS})$$
 (Eq. 3)

or

$$t_{PROP} = 2(t_{ECU} + t_{BUS})$$
 (Eq. 4)

3.31 SECONDARY SAMPLE POINT (SSP)

Sample point that applies to data bit timing in CAN FD (BRS = recessive) messages when the transmitter delay compensation functionality is configured to be enabled/active. The transmitting bus controller automatically determines/adapts/delays the location of the sample point based on observed data signal delay of the particular transmitter implementation, unless transmitter delay compensation disabled.

3.32 SELECTIVE WAKE-UP BUS TRANSCEIVER

Not applicable for this 5 Mbps data bit rate network which is defined as a two node network.

3.33 SHALL

The word "shall" is to be used in the following ways:

- a. To state a binding requirement on the CAN interfaces which comprise the ECU, which is verifiable by external manipulation and/or observation of an input or output.
- b. To state a binding requirement upon an ECU that is verifiable through a review of the document.

3.34 SHOULD

The word "should" is used to denote a preference or desired conformance.

3.35 SPLIT BUS TERMINATION

Bus termination where the resistance between CAN_H and CAN_L is split into two parts of equal value. Resistance center tap connected to ground via a capacitor unless otherwise specified.

3.36 SYNCHRONIZATION JUMP WIDTH (tsuw)

This time interval is the maximum amount of time by which t_{SEG1} may be lengthened or t_{SEG2} shortened to compensate for synchronization differences between ECUs on the CAN network. This is accomplished automatically in the CAN controller as a basic part of the protocol. However, the amount of skew tolerated is adjustable by software programming.

3.37 SYNCHRONIZATION SEGMENT (tsync seg)

This time interval is used to synchronize all ECUs on the bus. If all ECUs are fully synchronized, then all bit edges occur in this interval, which has a fixed period of one time quantum.

3.38 TIME QUANTUM (tQ)

This is the basic unit of time for bit timing. This time is derived from the microcontroller's oscillator clock and is programmable based on the CAN controller's divide register values.

3.39 TRANSMITTER DELAY COMPENSATION (TDC)

For data bit timing in CAN FD messages the transmitting CAN controller automatically will compensate the signal delay caused by the ECU-internal transmitter implementation, unless TDC functionality disabled. Functionality inactive for arbitration bit timing in CAN FD messages and generally inactive in classical CAN messages. For details, refer to ISO 11898-1:2015(E).

3.40 TSEG1 (tseg1)

This time interval is used to compensate for positive phase errors in synchronization between ECUs on the network. If an edge occurs during this interval, tseg1 is lengthened to compensate for synchronization differences with other ECUs on the CAN network. Tseg1 is equivalent to the combination of the Prop Seg and Phase Seg1 parts of the bit period defined in ISO 11898-1:2015(E).

3.41 TSEG2 (tseg2)

This time interval is used to compensate for negative phase errors in synchronization between ECUs on the network. If an edge occurs during this interval, t_{SEG2} is shortened to compensate for synchronization differences with other ECUs on the CAN network. T_{SEG2} is equivalent to the Phase Seg2 part of the bit period defined in ISO 11898-1:2015(E).

3.42 WILL

The word "will" is used to state an immutable law of physics.

ACRONYMS

ASIL Automotive safety integrity level

BRS Bit rate switch

CAN Controller area network

CAN FD CAN with flexible data rate

CAN ID CAN identifier

DLC Data length code

ECU Electronic control unit

EMC Electromagnetic compatibility

ESD Electrostatic discharge

ESI Error status indicator

FD Flexible data rate (message format)

FDF Flexible data rate format

HSC High-speed CAN

ISO International Standardization Organization

kbps Kilobits per second

LLC Logical link control (layer)

LPDU LLC protocol data unit (frame)

MAC Media access control (layer)

Megabits per second Mbps

NOP Non-operating (only survival is demanded)

OBD II On-board diagnostics (level 2)

PCS Physical coding sub-layer

IIIPDF 05:3284 5 202211 Resistive load between CAN H and CAN R_L

Bus termination resistance (125 Ω nominal) Rz

Vbatt Power supply for the ECUs present in a communication network (12 V nominal)

Differential bus voltage (VDiff = VCAN H - VCAN L) V_{Diff}

5. SYSTEM LEVEL ATTRIBUTES OF THE NETWORK

This section describes system level performance attributes of a 500 kbps HSC network for automotive vehicle applications. It is up to the particular system owner to ensure that network level limits in this chapter are met. This HSC network is based on ISO 11898-1 and ISO 11898-2 releases stated in 2.1.2 with the modifications and additions described as follows:

5.1 Message Format

All ECU CAN interfaces shall, at a minimum, conform to the ISO 11898-1 and ISO 11898-2 releases as stated in 2.1.2. For details, see Sections 6 and 7 of this document.

All ECUs intended for use in a subnet according to SAE J2284-5 shall, at a minimum, be passive to CAN FD format frames, meaning shall not send error frames against and shall not increase ECU-internal error counters when syntactically correct CAN FD format frames with bit rates stated below in this document are present.

All ECUs that utilize the 11-bit base frame identifier shall be, at a minimum, passive to the 29-bit extended frame identifier. All SAE J2284-5 compliant ECUs that support OBD II requirements shall fully support a 29-bit extended frame identifier.

The encoding of the 11-bit identifier field shall be vehicle manufacturer-specific. The CAN requirement (refer to CAN 2.0 protocol specification and superseded ISO 11898-1 CAN documents) specifying that the seven most significant bits (ID-28 - ID-22) must not be all recessive shall not be enforced in hardware by SAE J2284-5. CAN protocol implementations shall be capable to transmit and receive all identifier bit combinations without any restrictions.

The maximum message frame shall consist of the CAN identifier (CAN ID) plus 64 data bytes.

5.2 Communication Rate

Classical CAN messages and CAN FD messages where the bit BRS is dominant shall utilize a single communication rate of 500 kbps. CAN FD messages where the bit BRS is recessive shall utilize a communication rate of 500 kbps for arbitration, end of frame fields, and syntax error notifications and shall utilize 5 Mbps for message data fields (i.e., from sample point of BRS bit to sample point of CRC delimiter bit).

5.3 **Basic Communication Network Parameters**

The intent of this standard is to specify data communication for networks with these properties.

Table 1 - Basic communication network parameters

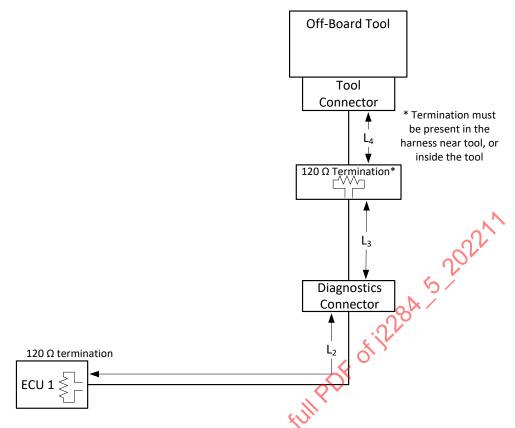
Parameter	Symbol	Minimum	Maximum	Units	Conditions
Number of nodes (bus interfaces)	N_{nd}	2	2	1	(1)
Data communication operating ground offset voltage	V _{GND-OP}		2	Volts	(2)
Network level overall differential resistive load	RL	50	65	Ω	(3)
(Wiring) Resistance between any two bus transceiver CAN_H to CAN_H (CAN_L to CAN_L) pins				Ω	(4)
Maximum propagation time between any two ECUs	t _{BUS}	100	100	ns	(5)

⁽¹⁾ Directly connected within a particular subnet.

5.4 **Topology and Termination**

The wiring topology of this network supports a linear structure, including daisy-chain configurations, and including bus cable stubs. The bus shall be terminated in a way so that the network level overall resistive load between the CAN H and CAN L wires will be consistent to line item R_L in Table 1. Termination shall be located at each end of the bus. Termination units shall establish a defined resistance between the CAN_H and CAN_L wires. Two bus termination units shall be present in a subnet. Each of two termination units shall meet the requirements stated in 6.4.

Single On-Board ECU Configuration 5.4.1


The topology requirements for a network containing a single ECU on-board the vehicle and a single ECU off-board the vehicle (e.g., an OBD scan tool) are specified in Figures 1 and 2 and in Table 2. Note that presence of bus termination is needed; otherwise, the network will not work.

⁽²⁾ Between any two ECUs in a subnet.

⁽³⁾ Between CAN H and CAN L.

⁽⁴⁾ Intends to reflect the bus wiring resistive behavior.

⁽⁵⁾ Includes one way wiring delay and node loading delay

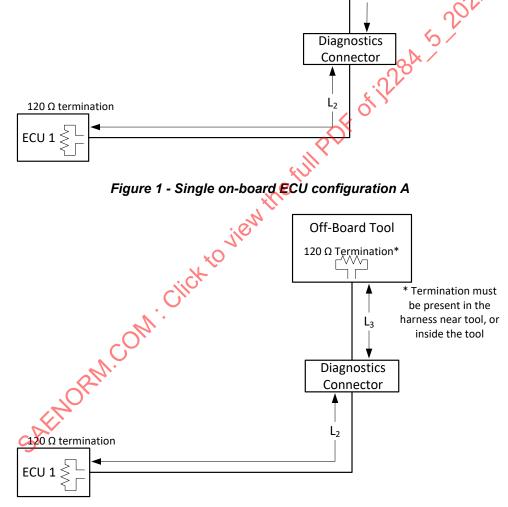


Figure 2 - Single on-board ECU configuration B

Table 2 - Network to	ooloav reauirements
----------------------	---------------------

Parameter	Symbol	Minimum	Nominal	Maximum	Unit	Comments
In-vehicle cable stub length	L ₂	0.1		5	Meter	Cable length between the diagnostic connector and on-board ECU shall be limited to said value
Off-board cable stub length	L ₃	0		5	Meter	Cable length between the diagnostic connector and off-board tool/node shall be limited to said value
Termination distance from tool	L ₄	0		0.1	Meter	Cable length between tool connector and termination resistance

The purpose of the ECU minimum distance requirement is to ensure that wires are twisted in-between ECUs and/or splices. This does not apply to multiple nodes in the same ECU.

For topology and termination requirements for tools, see 5.8.

5.4.2 Additional Requirements

- a. There shall be a single bus termination in the on-board ECU. Acceptable implementations are a split bus termination.
- b. There shall be a bus termination in the off-board tool or in the off-board bus wiring harness, close to the off-board tool. Acceptable implementations are a single 120 Ω terminator or alternatively a split bus termination. Non-terminating ECUs can be optional connections.

5.5 Unshielded Media

The network shall operate using a shielded or unshielded twisted wire pair. The bus cable details are specified in Table 3.

Table 3 - Physical media parameters for unshielded twisted pair

Symbol	Minimum	Nominal	Maximum	Units	Conditions
Z	90	115	140	Ω	f = 1 MHz
RLENGTH) .	120	mΩ/m	Single conductor
tDELAY	Oly		5.3	ns/m	Wire only
RATETWIST	33)	40		Twists/m	360 degrees

Parameter values in Table 3 apply over operating conditions and product lifetime, unless otherwise indicated.

5.6 Communication/Survivability Under Faulted Conditions

No damage to ECUs when one, and only one at a time, of the below listed failures becomes present. See Table 4.

Table 4 - Fault behavior

Description of Failure	Communication Behavior
ECU loss of power or ground (includes low battery condition)	Data communication is not possible
CPU goes into reset, while its physical layer and IC is still powered	Data communication is not possible
CAN_H wire open	Data communication is not required
CAN_L wire open	Data communication is not required
CAN_H shorted to battery	Data communication may be possible with reduced signal to noise ratio; data communication is not required when Vbatt is greater than the maximum allowed common mode voltage
CAN_L shorted to battery	Data communication is not possible
CAN_H shorted to ground	Data communication is not possible
CAN_L shorted to ground	Data communication may be possible with reduced signal to noise ratio
CAN_H shorted to CAN_L	Data communication is not possible
Bus is stuck in a dominant state	Data communication is not possible
CAN_H and CAN_L concurrently shorted to ground	Data communication is not possible
CAN_H and CAN_L concurrently shorted to battery	Pata communication is not possible
CAN_H ECU terminal connected to CAN_L wire and CAN_L ECU terminal connected to CAN_H wire	Data communication is not required with the ECU incorrectly connected to the bus
Loss of one termination	Depending on bus wire length, and bit timing margin, data communication may be possible with reduced signal to noise ratio

Where Table 4 suggests "data communication is not required" and the application allows, then the ECU may enter low-power mode until there is a valid wake-up condition.

5.7 EMC Criteria

The ECU EMC requirements as specified in 6.9 are intended to satisfy vehicle level EMC compliance when tested in accordance with CISPR 25, ISO 11451-2, and ISO 10605.

5.8 Off-Board Tool Requirements

The SAE J2284-5 bus shall be wired to the diagnostic connector, and the following requirements apply:

- a. Unless otherwise indicated, the off-board tool shall meet the requirements for on-board ECUs stated in Section 6 in this document.
- b. The off-board tool shall be one of the two allowable bus nodes.
- c. the off-board tool shall be a terminated node on the CAN network.
- d. The distance between the diagnostic connector and any on-board (ECU) shall be limited to L₃ in Table 2.

5.8.1 Off-Board Tool Capacitive Load

See Figure 3 and Table 5.

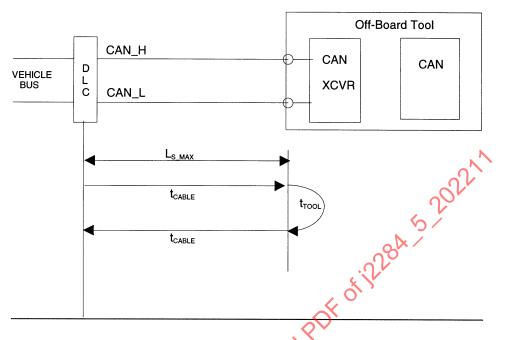


Figure 3 - Off-board tool parameters

The specified values for the off-board tool capacitive load do not include the capacitive load of the off-board tool cable.

Table 5 - Off-board tool capacitive load (without cable load)

Term	Min	Nomina	Max	Remark
C _{diff}	_	iic k	50 pF	CAN_H to CAN_L
Ccan_H, Ccan_L	_	. C.,—	100 pF	CAN_H/CAN_L to ground potential

5.8.2 Off-Board Tool Propagation Delay

The value given in Table 6 for the off-board tool propagation delay does not include the cable propagation delay. This requirement is based upon the most critical timing when operating at the baud rate of 500 kbps. The off-board tool propagation delay (loop delay) includes the following four delays:

- a. Transmitter propagation delay (t_{TX}) , this includes device delay and slew.
- b. Receiver propagation delay (t_{RX}).
- c. Receiver logic delay.

$$t_{TOOL} - t_{TX} + t_{RX} + t_{LOGIC} + t_{CHK}$$
 (Eq. 5)

Table 6 - Off-board tool propagation delay (loop delay without cable delay)

Term	Min	Nominal	Max	Remark
t _{TOOL}	_		340 ns	Loop delay of off-board tool

5.9 Off-Board Tool Cable Requirements

The off-board tool cable shall provide interconnection between the vehicle DLC and the CAN interface of the off-board tool (see 6.8).

5.9.1 Cable Length

The off-board tool cable length is defined to be the length of the cable between the DLC and the off-board tool CAN interface. See Table 7.

Table 7 - Off-board tool cable length

Term	Min	Nominal	Max	Remark
Ls_max	_	_	5 m	Off-board tool cable length
ole Propagation D	elay			2021
propagation delay	is defined as a	one-way delay. See	e Table 8.	\$ / A
	Table 9	Off board tool oo	bla nyanawat	ion door

5.9.2 Cable Propagation Delay

The cable propagation delay is defined as a one-way delay. See Table 8.

Table 8 - Off-board tool cable propagation delay (one-way delay without off-board tool delay)

Term	Min	Nominal	Max	Remark
tCABLE	_	_	30 ns	Off-board tool cable delay

5.9.3 Cable Configuration

The following requirements apply to the off-board tool cable.

- No other wires shall be twisted with either CAN conductor CAN_H or CAN_L.
- The CAN H and CAN L conductors shall be of the same length, traverse the same path for the entire distance.
- CAN H and CAN L conductors shall not be included in any wire bundle containing radiating wires which induce more than 0.5 V differential signal between the CAN H and CAN L conductors.
- The off-board cable may be shielded. If it is shielded, the shield shall be grounded at one end only.
- The off-board tool cable shall meet the requirements for twisting and characteristic impedance; see 5.5.

ECU REQUIREMENTS

This section describes the electrical requirements for an ECU on an HSC network. The requirements described are designed to support the design goals described in Section 5. Parameter values in this specification apply over operating conditions and product lifetime, unless otherwise indicated. Parameter values in this section are measured at the connector pins of the particular ECU, unless otherwise indicated.

Absolute Maximum Ratings 6.1

Network related electrical components within the ECU shall not suffer permanent damage. Ability to perform network communications under these conditions is out of scope (not required).

6.1.1 **Direct Voltage Connection**

The table below states requirements on ECUs intended for use in networks powered with a voltage of 12 V nominal. Abbreviation NOP stands for non-operating (survival). See Table 9.

Table 9 - ECU maximum bus wire voltage - no damage to ECU (12 V system)

			J	J	,	•	,	
/mbol	Minimum	Maximum	Units		Condi	tions		
	42.0	27.0	\/alta	All ECLIe +	_ 120			

Symbol	Minimum	Maximum	Units	Conditions
VCAN_H_ECU-NOP	-13.0	27.0	Volts	All ECUs, t = 120 seconds
VCAN_L_ECU-NOP	-13.0	27.0	Volts	All ECUs, t = 120 seconds
V _{Diff_ECU-NOP1}	-5.0	7.0	Volts	All ECUs, t = 120 seconds
V _{Diff_ECU-NOP2}	n/a	10.0	Volts	All ECUs: t = 10 ms Non-terminating ECUs: t = 120 seconds

Table 5 reflects maximum and minimum voltages which shall not cause damage when connected to CAN bus outputs of an ECU. These limits apply for when an ECU is attempting to transmit message, receive messages, and for bus idle. These limits also apply to all operating modes of an ECU including regular communication, sleep, scanning messages for presence of valid wake-up request, and unpowered (Vbatt disconnected, Vbatt = 0 V) conditions. Successful transfer of messages between bus nodes is not expected when stated minimum or maximum voltages are present (WDiff = VCAN H - VCAN L). Maximum value for V_{Diff-NOP1} selected so that bus termination power dissipation will be below 500 mW.

ECUs shall survive when a suppressed load dump pulse (ISO 7637-2, pulse 5b, positive voltage, maximum voltage modified see column "Maximum," line item "VCAN_H-NOP1-IC, VCAN_L-NOP1-IC" in Table 26) becomes coupled to CAN_H and CAN_L through a coupling capacitance of 1 nF each, at presence of transmit data input (TxD) patterns as will be generated by a regular CAN controller attempting to transmit messages (Table 27, line item TxD dominant duty cycle).

Unpowered Storage Temperature 6.1.2

The SAE J2284-5 electrical components within the ECU shall not suffer permanent damage if subjected to storage temperatures between -40 °C and +150 °C.

6.2 **DC** Operating Parameters

DC parameters shall be within the defined ranges for four unique conditions:

- Recessive bus state, ECU disconnected from CAN bus.
- Dominant bus state, ECU disconnected from CAN bus.
- Recessive bus state, ECU connected to maximum CAN bus.
- Dominant bus state, ECU connected to maximum CAN bus.

Compliance with the defined voltage ranges shall insure that ECUs will operate in a vehicle network application where a maximum DC offset between any two ECUs is present as stated in line item V_{GND-OP} in Table 1. Compliance shall be maintained over the following ECU operating ranges:

ECU Operating Ambient Temperature

- High Temperature -40 °C to +125 °C.
- Low Temperature -40 °C to +85 °C.

ECU Operating Parameters

Table 10 - ECU operating parameters - CAN data communication

Symbol	Minimum	Nominal	Maximum	Units	Conditions
V _{SUP1_ECU}	7	12	16	Volts	(1)
V _{SUP2_ECU}	6	12		Volts	(2)
V _{SUP3_ECU}		12	18	Volts	(3)
V _{SUP4_ECU}		12	26.5	Volts	(4)
V _{SUP5_ECU}		12	34	Volts	(5)
VCAN_H_ECU-OP, VCAN_L_ECU-OP	-12		12	Volts	(6)
Δt_{BIT_ECU}	-0.4		0.4	%	(7)
t _{RSM_ECU}			300	ms	(8)
ASIL rating	QM		В	, V	(9)

- (1) Compliance (data communication) shall be maintained over said operating static ECU supply voltage range as measured at the ECU connector power/ground pins unless otherwise specified for a particular ECU or bus interface.
- (2) Selected ECUs shall support data communication functionality down to said voltage continuously.
- (3) Selected ECUs shall support data communication functionality up to said voltage for t = 60 minutes.
- (4) Selected ECUs shall support data communication functionality up to said voltage for t = 60 seconds.
- (5) Selected ECUs shall support data communication functionality up to said voltage for t = 400 ms.
- (6) Data communication operating common-mode bus input voltage range. Applies to recessive state and to dominant state.
- (7) Tolerance of length of a CAN bit time. Internal to the CAN controller. Including PLL effects. Tolerance value is applicable over operating conditions and aging, e.g., temperature, supply voltage, and age drift, over specified ECU operating temperature, including ECU lifetime. Note that, for some off-board tools, other standards might require a different tolerance range than this standard.
- (8) Maximum time after power disconnect for resuming regular data communication operation (capability to receive and transmit CAN messages) unless otherwise specified for a particular ECU. Time counts from the point in time when supply voltage enters operating supply voltage range specified for the particular ECU/particular bus interface. Upon return of power, the ECU shall resume regular data communication (ability to successfully receive messages and ability to attempt to transmit syntactically correct messages) without any operator intervention within said time.
- (9) Selected ECUs shall be capable to support an ASIL rating of up to B (ISO 26262) at one or more selected CAN bus interfaces.

6.2.1 DC Parameters - Output Behavior - Recessive Bus State - Bus Disconnected

DC bus output behavior of a single ECU (in the absence of other bus nodes) when transmitting a recessive bus state. Transmit data input (TxD) not asserted. See Table 11.

Table 11 - ECU DC parameters - output behavior recessive - bus disconnected

Symbol	Minimum	Nominal	Maximum	Units	Conditions
V _{CAN_H_ECU-REC}	2.0	2.5	3.0	Volts	no load ⁽¹⁾
VCAN_L_ECU-REC	2.0	2.5	3.0	Volts	no load ⁽¹⁾
VDIFF_ECU_OUT-REC	-500	0	50	Millivolts	no load ⁽¹⁾
R _{DIFF_ECU-REC-NZ}	3.9		100	ΚΩ	no load ⁽²⁾
RDIFF_ECU-REC-RZ	118	125	132	Ω	no load ⁽³⁾
RIN_ECU-REC	5		50	ΚΩ	no load ⁽²⁾

⁽¹⁾ Bus bias functionality is on (active).

⁽²⁾ Applies ECUs that do not contain a termination according to 6.4. CAN transmit data input (TxD) not asserted. Applies over specified bus voltage ranges (V_{CAN_H-OP}, V_{CAN_L-OP}) stated in Table 10. Applies to powered state only.

⁽³⁾ Applies to ECUs with built in termination according to 6.4. CAN transmit data input (TxD) not asserted. Applies over specified bus voltage ranges (V_{CAN_H-OP}, V_{CAN_L-OP}) stated in Table 10. Split termination implementations are allowed with equal value 1% resistors. Minimum value 116.8 Ω when indicated so in a particular sourcing document.

6.2.2 DC Parameters - Output Behavior - Dominant Bus State - Bus Disconnected

DC bus output behavior of a single ECU (in the absence of other bus nodes) when transmitting a dominant bus state. Transmit data input (TxD) asserted. See Table 12.

Table 12 - ECU DC parameters - output behavior dominant - bus disconnected

Symbol	Minimum	Nominal	Maximum	Units	Conditions
Vcan_h_ecu-dom	2.75	3.5	4.5	Volts	(1)
Vcan_l_ecu-dom	0.5	1.5	2.25	Volts	(1)
V _{SYM_ECU}	0.9	1.0	1.1		(2)
V _{DIFF_ECU_OUT-DOM}	1.5	2.0	3.0	Volts	(1)
Ican_h_ecu-dom-sc			115	mA _	(3)
Ican_l_ecu-dom-sc	·		115	mA	(4)

⁽¹⁾ Resistive load 50 Ω < R_L < 65 Ω connected between CAN_H and CAN_L. When termination present in an ECU then load 120 Ω connected between CAN_H and CAN_L.

6.2.3 DC Parameters - Output Behavior - ECU unpowered/Bus Bias Off - Bus Disconnected

DC bus output behavior of a single ECU (in the absence of other bus nodes) when ECU unpowered and/or when bus bias functionality is off (inactive). See Table 13.

Table 13 - ECU DC parameters - input behavior - ECU unpowered/bus bias off - bus disconnected

Symbol	Minimum	Nominal	Maximum	Units	Conditions
ICAN_H_ECU_LK, ICAN_L_ECU_LK	-10) `	20	μΑ	(1)

⁽¹⁾ All power supply inputs connected to 0V. CAN_H and CAN_L connected to +5 V. Positive currents flow into the ECU.

6.2.4 DC Parameters - Input Behavior - Bus Disconnected

DC bus input behavior of a single ECU in the absence of other bus nodes. See Table 14.

⁽²⁾ V_{SYM} = (V_{CAN_H} + V_{CAN_L})/V_{CC}, with V_{CC} being the supply voltage of the transmitter. Applies to dominant state and to recessive state and to transitions between the two states. Two times 30 Ω between CAN_H and CAN_L. Split termination concept with 4.7 nF center capacitance to ground. ECU attempts to transmit a message.

⁽³⁾ Absolute output current value. CAN_H connected to a fixed voltage (short-circuit). -3 V < V_{CAN_H} < +18 V. ECU attempts to transmit messages. Selected ECUs may have to exhibit specified bus output currents at presence of a CAN_H short-circuit (e.g., TxD dominant duty cycle according to Table 27) down to V_{CAN_H} = -5 V_O O 3 V.

⁽⁴⁾ Absolute output current value. CAN_L connected to a fixed voltage (short-circuit). -13 V < V_{CAN_L} < +18 V. ECU attempts to transmit messages (e.g., TxD dominant duty cycle according to Table 27)

Table 14 - ECU DC parameters - input behavior - bus disconnected

Symbol	Minimum	Nominal	Maximum	Units	Conditions
VDIFF_ECU_IN-REC-RG	-3		0.5	Volts	(1)
VDIFF_ECU_IN-REC-LP	-3		0.4	Volts	(2)
V _{DIFF_ECU_IN-DOM-RG}	0.9		8	Volts	(3)
VDIFF ECU IN-DOM-LP	1.15		8	Volts	(4)

⁽¹⁾ Bus interface not in sleep mode. Differential bus input voltage, bus disconnected. No time limit. ECU shall detect this as a recessive bus condition.

All line items in the Table 14 apply over operating bus voltage ranges (V_{CAN H-OP}, V_{CAN L-OP}) specified in Table 10.

6.2.5 AC Parameters - Output Behavior - Bus Disconnected

AC bus output behavior of a single ECU in the absence of other bus nodes. See Table 15.

Table 15 - ECU AC parameters - output behavior - bus disconnected

Symbol	Minimum	Nominal	Maximum	Units	Conditions
t _{DOM_ECU}	0.8		1 0	ms	(1)

⁽¹⁾ Transmit data input (TxD) continuously asserted.

6.2.6 DC Parameters - Recessive Bus State - Normal Operating Mode - Bus Connected

See Table 16.

Table 16 - ECU DC parameters - recessive bus state - bus connected

Symbol	Minimum	Nominal	Maximum	Units	Conditions
V _{CAN_H_ECU-REC})	2.5	12.0	Volts	Reference ECU ground
VCAN_L_ECU-REC	-12.0	2.5		Volts	Reference ECU ground
VDIFF_ECU_OUT-REC	-120	0	12	Millivolts	50 Ω < R _L < 65 Ω

6.2.7 DC Parameter Dominant Bus State - Normal Operating Mode - Bus Connected

See Table 17.

Table 17 - ECU DC parameters - dominant bus state - bus connected

Symbol	Minimum	Nominal	Maximum	Units	Conditions
Vcan_h_ecu-dom		3.5	12.0	Volts	Reference ECU ground
Vcan_l_ecu-rec	-12.0	1.5		Volts	Reference ECU ground
VDIFF_ECU_OUT-DOM	1.5	2.0	3.0	Volts	50 Ω < R _L < 65 Ω

⁽²⁾ Bus interface in sleep mode. Differential bus input voltage, bus disconnected. No time limit. ECU shall detect this as a recessive bus condition.

⁽³⁾ Bus interface not in sleep mode. Bus bias is on and data receiver not in a low-power mode. Differential bus input voltage, bus disconnected. No time limit. ECU shall detect this as a dominant bus condition.

⁽⁴⁾ Bus interface in sleep mode. Differential bus input voltage, bus disconnected. No time limit. ECU shall detect this as a dominant bus condition.

6.3 ECU Internal Capacitance

Capacitance of a single CAN bus interface in the absence of other bus nodes. See Table 18.

Table 18 - ECU internal capacitance - ECU disconnected

Symbol	Minimum	Nominal	Maximum	Units	Conditions
C _{CAN_H_ECU}			130	pF	f = 1 MHz
Ccan_l_ecu			130	pF	f = 1 MHz
C _{DIFF_ECU}			65	pF	f = 1 MHz

6.4 Termination

Bus terminations may be placed within ECUs. Terminations shall establish a defined resistance between the CAN_H and CAN_L wires. Each of two terminations in a network shall meet the requirements stated in Table 19. For location of terminations within a network, see 5.4.

Table 19 - ECU termination characteristics

Symbol	Minimum	Nominal	Maximum	Units 🗘	Conditions
R _{Z_ECU}	see Table 11, Rdiff_ecu-rec-rz		see Table 11, RDIFF_ECU-REC-RZ	Q Q	Each bus termination (1)
Rz2_Ecu	59		66	Ω	Split termination resistors (1)
PWR _{RZ_ECU}	500		<u> </u>	mW	For single resistor bus termination implementations (2)

⁽¹⁾ Split termination implementations are allowed with equal value 1% resistors. Minimum value 58.4 Ω when indicated so in a particular sourcing document.

Unless otherwise indicated in a particular sourcing document, ECUs shall package protect for implementation of split bus termination consisting of two equal value 1%, 400 mW resistors and one capacitor connecting from the termination center tap to ground. For terminating nodes, resistance R_{Z_ECU} as measured between CAN_H and CAN_L shall always be present, including low power and loss of power modes.

6.5 Connector Parameters

Requirements for all connectors conveying the CAN signals are specified in Table 20.

Table 20 - ECU connector characteristics

Parameter	Symbol	Minimum	Nominal	Maximum	Units	Conditions
Current	lt		40	300	mA	(1)
Contact Resistance	Rt		70	100	mΩ	

⁽¹⁾ Maximum value accommodates short-circuit current of two bus transceivers.

Connectors should have minimum length differences between CAN_H and CAN_L. Best practices for board layout should be followed to minimize differences in CAN_H and CAN_L trace lengths.

⁽²⁾ Over the entire operating ambient temperature range applicable to the position where the termination is located. Resistor power ratings need to be such that resistors will not be damaged when differential voltages stated in the two V_{Diff} line items in Table 5 are applied to CAN_H and CAN_L. Note, when termination (s) implemented with split termination resistors, then the necessary resistor power rating will be less (e.g., half) than indicated above in line item PWR_{Rz} ECU.

6.6 Bit Timing Requirements

Timing synchronization between ECUs shall be controlled by specification of the nominal (arbitration) bit time (inverse of bit rate), synchronization jump width, data sample point in the bit period, and the data sample mode. The bit period corresponds to the amount of time that a single NRZ data bit is logically driven onto the CAN bus. The data sample mode refers to the number of data samples taken within the bit period which are used to determine the NRZ data value on the CAN bus. The data sample point refers to the time period as measured from the start of the bit period to the point in the bit period where the NRZ data value is sampled. The synchronization jump width refers to the maximum amount of time by which a bit period may be shortened or lengthened to compensate for differences in bit periods and propagation delays between different ECUs on the network.

Tables 21, 22, and 23 specify timing requirements and briefly indicate the conditions which determine the minimum and maximum values required for SAE J2284-5 HSC implementation compliance.

6.6.1 Nominal Bit Time (tbit)

Compliance with the nominal (arbitration) bit time tolerance requirement is directly dependent on the system clock tolerance of the ECU and the programmed nominal bit time. In the typical CAN controller, the nominal bit time must be an integer multiple of the system clock periods. When the programmable nominal bit period is set to exactly 500 kbps, accuracy is only affected by the system clock tolerance. Otherwise, the accuracy is dependent upon both the deviation of the programmed bit period from nominal and the system clock tolerance. The contributions from drift or aging of the system clock source and contributions from inability to achieve the desired nominal bit time value are additive; the tolerance specification must be met after consideration of both.

6.6.2 Data Bit Time

Time quantum length shall be identical for nominal bit timing (arbitration bit rate) and for data bit timing (data bit rate used in CAN FD messages). For equations applying to data bit timing in CAN FD (BRS = recessive) messages, refer to ISO 11898-1:2015(E).

6.6.3 Data Sample Mode

The data sampling shall always be set to single sample mode. Timing constraints to support 500 kbps communication over length of cable indicated in Table 2, line item ECU Distance eliminate the option of 2 out of 3 majority sampling.

6.6.4 CAN Bit Timing and Register Settings

Table 21 defines the CAN bit timing requirements. Coordinated bit timing settings are required to maintain synchronization between ECUs during both normal and error conditions.

Table 21 -	ECU CAN	bit timing	- min/max
------------	----------------	------------	-----------

Term	Min	Nominal	Max
t _{BIT(N)} (1)	1992 ns	2000 ns	2008 ns
t _{BIT(D)} (2)	199.2 ns	200 ns	200.8 ns
t _{BUS} (3)	_	_	(3)
tLOGIC_TX + tLOGIC_RX	10 ns		95 ns
t _{TX} + t _{RX}	40 ns		255 ns
t _{ECU} ⁽⁴⁾	50 ns	_	350 ns
t _Q ⁽⁵⁾	_	_	25 ns
t _{SEG1}	(6)	(6)	(6)

- (1) Bit time output from the CAN controller for message arbitration field when CAN FD format and for entire message when Classical CAN format used. The nominal bit time and the data bit time must be a programmable, integer multiple of the system clock periods. Minimum and maximum values correspond to a clock tolerance of ±0.4%.
- (2) Bit time output from the CAN controller for message data field when CAN FD format used and BRS=R.
- (3) t_{BUS} one trip through bus wiring longest distance. Value specified in Table 1.
- (4) t_{ECU} = t_{LOGIC_TX} + t_{LOGIC_RX} + t_{TX} + t_{RX} + t_{CHK}. t_{LOGIC} reflects an interface delay between transceiver and microcontroller (includes microcontroller internal delay and PCB delay).
- (5) Time quantum length shall be identical in the message arbitration field and in the message data field.
- $^{(6)}$ t_{SEG1} = t_{BIT} 1 (t_Q) t_{SEG2}.

Tables 22 and 23 define compliant bit timing settings for the quanta which meet network assumptions outlined in Section 5.

Table 22 - ECU CAN register settings for first standard time quanta

Bit type	NQ	rto	#t _Q t _{SJW}	#t _Q t _{SEG2}
(N)	80	25 ns	16	16
(D)	8	25 ns	2	2

Table 23 - ECU CAN register settings for second standard time quanta

Bit type	No	tQ	#t _Q t _{SJW}	#tQ tsEG2
(N)	160	12.5 ns	32	32
(D)	16	12.5 ns	4	4

No reflects the number of time quanta per bit. (N) denominates nominal (arbitration) bit timing settings. (D) denominates data (field) bit timing settings. Bit settings for time quanta in Tables 22 and 23 were calculated using Equations 6 to 8:

NOTE: All ECUs in a particular subnet need to use the same sample point positions in terms of percentage into the bit cell.

NOTE: t_{BIT(N)} is always set to 2000 ns. If the ECU is unable to be programmed to allow t_{BIT(N)} nominal to be equal to 2000 ns, the offset should be taken into account in the Δf term not the t_{BIT(N)} term.

$$t_{SJW} \geq \text{maximum of } \frac{20t_{BIT}\Delta f}{1-\Delta f} \text{ or } \frac{\Delta f(20t_{BIT}-t_Q)+t_Q-t_{PROPmin}}{1+\Delta f} \tag{Eq. 6}$$

$$t_{SEG2min} \ge maximum of t_{SJW} or 2t_{Q}$$
 (Eq. 7)

$$t_{\text{SEG2max}} \leq \text{minimum of } \frac{t_{\text{BIT}}(1-25\Delta f)-t_{\text{PROPmax}}}{1-\Delta f} \text{ or } \frac{t_{\text{BIT}}-t_{\text{PROP max}}-t_{\text{Q}}-\Delta f(25t_{\text{BIT}}-t_{\text{Q}})+t_{\text{PROP min}/2}}{1-\Delta f} \tag{Eq. 8}$$

DEFINITION: Δf equals the maximum allowable deviation (either maximum or minimum) from the specified nominal bit rate divided by the specified nominal bit rate. See Tables 22 and 23 for specified values.

6.6.5 Transmitter Delay Compensation

Bus interfaces connecting to a subnet according to this standard shall perform (meaning shall support and enable) transmitter delay compensation functionality according to ISO 11898-1:2015(E), unless otherwise indicated in a particular sourcing document.

ISO 11898-1:2015(E) defines two methods for determining the secondary sample point (SSP) defined by the transmitter delay compensation mechanism. SAE J2284-5 compliant implementations shall use the method where a fixed offset is added to a measurement of the actual transmitter delay. The fixed offset shall be set to the number of t_Q necessary to achieve a value of 150 ns.

6.7 Message Transmission and Reception

Unless otherwise indicated in a particular sourcing document, bus interfaces connecting to a subnet according to this standard shall be capable of receiving without losing messages and transmitting any of these message formats at any time in any sequence, interleaved in an arbitrary fashion:

- CAN FD format with 11 bit identifier length and with message data length of up to 64 bytes.
- CAN FD format with 29 bit identifier length with message data length of up to 64 bytes.
- Classical CAN format with 11 bit identifier length with message datalength of up to 8 bytes.
- Classical CAN format with 29 bit identifier length with message data length of up to 8 bytes.

ECU becomes disconnected from power: ECU shall not disturb data communication between other ECUs; however, if that ECU is in the process of transmitting, that single message may be truncated.

ECU experiences a reset: ECU shall not disturb data communication between other ECUs.

ECU becomes re-connected to power: ECU shall not disturb data communication between other ECUs, e.g., shall not cause error frames due to power re-apply. ECU shall resume data communication without any operator intervention.

When an ECU attempts to enter a low power mode, then the ECU shall enter the low power mode and shall remain in the low power mode until there is a valid wake-up condition. In other words, the ECU shall be capable to successfully enter the low power mode even when the bus is stuck in a dominant state.

ECUs that are in a low power condition shall not disturb data communication between other bus nodes.

ECUs shall behave consistent to the requirements stated in 5.6.