

SURFACE VEHICLE STANDARD

J1113™-1

APR2023

Issued 1995-07
Revised 2023-04

Superseding J1113-1 OCT2018

Electromagnetic Compatibility Measurement Procedures and Limits
for Components of Vehicles, Boats (up to 15 m), and Machines (Except Aircraft)
(16.6 Hz to 18 GHz)

RATIONALE

Document revised to reflect changes to other SAE Standards within the SAE J1113 series.

FOREWORD

This SAE Standard brings together methodology for testing the electromagnetic emissions and immunity characteristics of vehicular modules and components. The writers of this series of documents have participated extensively in the drafting of ISO TC 22 Subcommittee 3 and CISPR Subcommittee D documents.

By intent, the methods and limits of this document closely resemble the counterpart international standards.

SAE J1113-1 General and Definitions

SAE J1113-2 [Withdrawn as a complete standard. Reserved for use as an exception document for SAE differences from ISO 11452-10.]

SAE J1113-3 [Withdrawn as a complete standard. Reserved for use as an exception document for SAE differences from ISO 11452-7.]

SAE J1113-4 Conducted Immunity-Bulk Current Injection (BCI) Method

SAE J1113-5 through -10 reserved for future use

SAE J1113-11 Immunity to Conducted Transients on Power Leads

SAE J1113-12 Electrical Interference by Conduction and Coupling - Coupling Clamp

SAE J1113-13 Immunity to Electrostatic Discharge

SAE J1113-14 through -20 reserved for future use

SAE J1113-21 Road Vehicles - Electrical Disturbances by Narrowband Radiated Electromagnetic Energy - Component Test Method - Absorber Lined Chamber [Withdrawn as a complete standard. Reserved for use as an exception document for SAE differences from ISO 11452-2.]

SAE Executive Standards Committee Rules provide that: "This report is published by SAE to advance the state of technical and engineering sciences. The use of this report is entirely voluntary, and its applicability and suitability for any particular use, including any patent infringement arising therefrom, is the sole responsibility of the user."

SAE reviews each technical report at least every five years at which time it may be revised, reaffirmed, stabilized, or cancelled. SAE invites your written comments and suggestions.

Copyright © 2023 SAE International

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of SAE.

TO PLACE A DOCUMENT ORDER: Tel: 877-606-7323 (inside USA and Canada)
Tel: +1 724-776-4970 (outside USA)
Fax: 724-776-0790
Email: CustomerService@sae.org
<http://www.sae.org>

SAE WEB ADDRESS:

For more information on this standard, visit
https://www.sae.org/standards/content/J1113/1_202304/

SAE J1113-22	[Withdrawn as a complete standard. Reserved for use as an exception document for SAE differences from ISO 11452-8.]
SAE J1113-23	Withdrawn
SAE J1113-24	[Withdrawn as a complete standard. Reserved for use as an exception document for SAE differences from ISO 11452-3.]
SAE J1113-25	Withdrawn
SAE J1113-26	Immunity to AC Power Line Electric Fields
SAE J1113-27	Immunity to Radiated Electromagnetic Fields - Mode Stir Reverberation Method
SAE J1113-28	[Withdrawn as a complete standard. Reserved for use as an exception document for SAE differences from ISO 11452-11.]
SAE J1113-29 through -40	reserved for future use
SAE J1113-41	[Withdrawn as a complete standard. Reserved for use as an exception document for SAE differences from IEC CISPR 25.]
SAE J1113-42	[Withdrawn as a complete standard. Reserved for use as an exception document for SAE differences from the emissions portion of ISO 7637-2.]

1. SCOPE

This SAE Standard covers the measurement of voltage transient immunity and within the applicable frequency ranges, audio (AF) and radio frequency (RF) immunity, and conducted and radiated emissions.

By reference, ISO 11452-3, ISO 11452-7, ISO 11452-8, ISO 11452-10, ISO 11452-11, ISO 11452-2, and the emissions portion of ISO 7637-2 are adopted in place of SAE J1113-24, SAE J1113-3, SAE J1113-22, SAE J1113-2, SAE J1113-28, SAE J1113-21, and SAE J1113-42, respectively. In the event that an amendment is made, or a new edition is published, the new ISO document shall become part of this standard 6 months after the publication of the ISO document. SAE reserves the right to identify exceptions to the published ISO document with the exceptions to be documented in SAE J1113-24, SAE J1113-3, SAE J1113-22, SAE J1113-2, SAE J1113-28, SAE J1113-21, and SAE J1113-42, respectively.

By reference, IEC CISPR 25 is adopted as the standard for the measurement of component emissions. In the event that an amendment is made, or a new edition is published, the new IEC document shall become part of this standard 6 months after the publication of the IEC document. SAE reserves the right to identify exceptions to the published IEC document with the exceptions to be documented in SAE J1113-41.

Emissions from intentional radiators are not controlled by this document. (See applicable appropriate regulatory documents.) The immunity of commercial mains powered equipment to over voltages and line transients is not covered by this document.

2. REFERENCES

2.1 Applicable Documents

The following publications form a part of this specification to the extent specified herein. Unless otherwise indicated, the latest issue of SAE publications shall apply.

2.1.1 SAE Publications

Available from SAE International, 400 Commonwealth Drive, Warrendale, PA 15096-0001, Tel: 877-606-7323 (inside USA and Canada) or +1 724-776-4970 (outside USA), www.sae.org

SAE J1113-2	[Withdrawn as a complete standard. Reserved for use as an exception document for SAE differences from ISO 11452-10.]
SAE J1113-3	[Withdrawn as a complete standard. Reserved for use as an exception document for SAE differences from ISO 11452-4.]
SAE J1113-4	Immunity to Radiated Electromagnetic Fields - Bulk Current Injection (BCI) Method
SAE J1113-11	Immunity to Conducted Transients on Power Leads
SAE J1113-12	Electrical Interference by Conduction and Coupling - Capacitive and Inductive Coupling via Lines Other than Supply Lines
SAE J1113-13	Electromagnetic Compatibility Measurement Procedure for Vehicle Components - Part 13: Immunity to Electrostatic Discharge
SAE J1113-21	Electromagnetic Compatibility Measurement Procedure for Vehicle Components - Part 21: Immunity to Electromagnetic Fields, 30 MHz to 18 GHz, Absorber-Lined Chamber [Withdrawn as a complete standard. Reserved for use as an exception document for SAE differences from ISO 11452-2.]
SAE J1113-22	[Withdrawn as a complete standard. Reserved for use as an exception document for SAE differences from ISO 11452-8.]
SAE J1113-24	[Withdrawn as a complete standard. Reserved for use as an exception document for SAE differences from ISO 11452-3.]
SAE J1113-26	Electromagnetic Compatibility Measurement Procedure for Vehicle Components - Immunity to AC Power Line Electric Fields
SAE J1113-27	Electromagnetic Compatibility Measurements Procedure for Vehicle Components - Part 27 - Immunity to Radiated Electromagnetic Fields - Reverberation Method
SAE J1113-28	[Withdrawn as a complete standard. Reserved for use as an exception document for SAE differences from ISO 11452-11.]
SAE J1113-41	[Withdrawn as a complete standard. Reserved for use as an exception document for SAE differences from IEC CISPR 25.]
SAE J1113-42	[Withdrawn as a complete standard. Reserved for use as an exception document for SAE differences from the emissions portion of ISO 7637-2.]
SAE J1812	Function Performance Status Classification for EMC Immunity Testing

2.1.2 IEEE Publications

Available from IEEE Operations Center, 445 and 501 Hoes Lane, Piscataway, NJ 08854-4141, Tel: 732-981-0060, www.ieee.org.

ANSI/IEEE STD 100 Standard Dictionary of Electrical and Electronic Terms

IEEE C63.2 Electromagnetic Noise and Field Strength Instrumentation, 10 kHz to 40 GHz Specifications

IEEE C63.4 American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz

IEEE C95.1 IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz - Description

2.1.3 IEC Publications

Available from IEC Central Office, 3, rue de Varembe, P.O. Box 131, CH-1211 Geneva 20, Switzerland, Tel: +41 22 919 02 11, www.iec.ch.

CISPR 25 Fourth Edition 2016-10 Vehicles, boats and internal combustion engines - Radio disturbance characteristics - Limits and methods of measurement for the protection of on-board receivers

IEC 60050-161 International Electrotechnical Vocabulary - Electromagnetic Compatibility

IEC 60050-726 International Electrotechnical Vocabulary - Transmission Lines and Waveguides

2.1.4 ISO Publications

Copies of these documents are available online at <https://webstore.ansi.org/>.

ISO 7637-1 Road Vehicles - Electrical Interference by Conduction and Coupling: Part 1 - Definitions and General

ISO 7637-2 Road Vehicles - Electrical Interference by Conduction and Coupling: Part 2 - Vehicles with Nominal 12 V or 24 V Supply Voltage - Electrical Transient Conduction Along Supply Lines Only

ISO 7637-3 Road Vehicles - Electrical Disturbance by Conduction and Coupling: Part 3 - Vehicles with Nominal 12 V or 24 V Supply Voltage - Electrical Transient Transmission by Capacitive and Inductive Coupling Via Lines Other Than Supply Lines

ISO 10605 Road Vehicles - Electrical Disturbances from Electrostatic Discharges

ISO 11452-1 Road Vehicles - Component Test Methods for Electrical Disturbances from Narrowband Radiated Electromagnetic Energy - Part 1: General and Definitions

ISO 11452-2 Road Vehicles - Component Test Methods for Electrical Disturbances from Narrowband Radiated Electromagnetic Energy - Part 2: Absorber-Lined Chamber

ISO 11452-3 Road Vehicles - Component Test Methods for Electrical Disturbances from Narrowband Radiated Electromagnetic Energy - Part 3: Transverse Electromagnetic Mode (TEM) Cell

ISO 11452-4 Road Vehicles - Component Test Methods for Electrical Disturbances from Narrowband Radiated Electromagnetic Energy - Part 4: Bulk Current Injection (BCI)

ISO 11452-5 Road Vehicles - Component Test Methods for Electrical Disturbances from Narrowband Radiated Electromagnetic Energy - Part 5: Stripline

ISO 11452-7 Road Vehicles - Component Test Methods for Electrical Disturbances from Narrowband Radiated Electromagnetic Energy - Part 7: Direct Radio Frequency (RF) Power Injection

ISO 11452-8 Road Vehicles - Component Test Methods for Electrical Disturbances from Narrowband Radiated Electromagnetic Energy - Part 8: Immunity to Magnetic Fields

ISO 11452-9 Road Vehicles - Component Test Methods for Electrical Disturbances from Narrowband Radiated Electromagnetic Energy - Part 9: Portable Transmitters

ISO 11452-10 Road Vehicles - Component Test Methods for Electrical Disturbances from Narrowband Radiated Electromagnetic Energy - Part 10: Immunity to Conducted Disturbances in the Extended Audio Frequency Range

ISO 11452-11 Road Vehicles - Component Test Methods for Electrical Disturbances from Narrowband Radiated Electromagnetic Energy - Part 11: Reverberation Chamber

2.2 Related Publications

The following publications are provided for information purposes only and are not a required part of this SAE Technical Report.

2.2.1 SAE Publications

Available from SAE International, 400 Commonwealth Drive, Warrendale, PA 15096-0001, Tel: 877-606-7323 (inside USA and Canada) or +1 724-776-4970 (outside USA), www.sae.org.

SAE HS-3600 Surface Vehicle Electromagnetic Compatibility (EMC) Standards Manual

2.2.2 ANSI Accredited Publications

Copies of these documents are available online at <https://webstore.ansi.org/>.

ANSI C63.5 American National Standard for Electromagnetic Compatibility - Radiated Emissions Measurements in Electromagnetic Interference (EMI) Control - Calibration of Antennas (9 kHz to 40 GHz)

ANSI C63.14 American National Standard Dictionary for Technologies of Electromagnetic Compatibility (EMC), Electromagnetic Pulse (EMP), and Electrostatic Discharge (ESD) (Dictionary of EMC/EMP/ESD Terms and Definitions)

ANSI C63.16 Methodologies and Criteria for Electronic Equipment

2.2.3 CISPR Publications

Available from American National Standards Institute, 25 West 43rd Street, New York, NY 10036-8002, Tel: 212-642-4900, www.ansi.org.

CISPR 22 Limits and Methods of Measurement of Radio Interference Characteristics of Information Technology Equipment

2.2.4 ISO Publications

Copies of these documents are available online at <https://webstore.ansi.org/>.

ISO TR 10305 Generation of Standard EM Fields for Calibration of Power Density Meters - 20 kHz to 1000 MHz

2.2.5 IEEE Publications

Available from IEEE Operations Center, 445 and 501 Hoes Lane, Piscataway, NJ 08854-41411331, Tel: 732-981-0060, www.ieee.org.

IEEE C63.5	American National Standard for Electromagnetic Compatibility - Radiated Emissions Measurements in Electromagnetic Interference (EMI) Control - Calibration of Antennas (9 kHz to 40 GHz)
IEEE C63.14	American National Standard Dictionary for Technologies of Electromagnetic Compatibility (EMC), Electromagnetic Pulse (EMP), and Electrostatic Discharge (ESD) (Dictionary of EMC/EMP/ESD Terms and Definitions)
IEEE C63.16	Methodologies and Criteria for Electronic Equipment
IEEE STD 211	IEEE Standard Definition of Terms for Radio Wave Propagation
IEEE STD 291	IEEE Standard Methods for Measuring Electromagnetic Field Strength of Sinusoidal Continuous Waves, 30 Hz to 30 GHz

2.2.6 Other Publications

Kinderman, J., Blink, R., Eisenlord, D., Laskowski, M. et al., "Implementation of EMC Testing of Automotive Vehicles," SAE Technical Paper 810333, 1981, <https://doi.org/10.4271/810333>.

Vrooman, G., "An Indoor 60 Hz to 40 GHz Facility for Total Vehicle EMC Testing," SAE Technical Paper 831011, 1983, <https://doi.org/10.4271/831011>.

Adams, J. W., Taggart, H. E., Kanda, M., and Shafer, J., "Electromagnetic Interference (EMI) Radiative Measurements for Automotive Applications," NBS Tech. Note 1014, June 1979.

Tippet, J. C., Chang, D. C., and Crawford, M. L., "An Analytical and Experimental Determination of the Cutoff Frequencies of Higher-Order TE Modes in a TEM cell," NBSIR 76-841, June 1976.

Tippet, J. C., Modal Characteristics of Rectangular Coaxial Transmission Line, Thesis submitted June 1978 for degree of Doctor of Philosophy to University of Colorado, Electrical Engineering Dept., Boulder, CO.

Nichols, F. J., and Hemming, L. H., "Recommendations and Design Guides for the Selection and Use of RF Shielded Anechoic Chamber in the 30-1000 MHz Frequency Range," IEEE Inter. Symposium on EMC, Boulder, CO, August 18-20, 1981, pp 457-464.

3. DEFINITIONS

The definitions listed below apply to certain terms used in the various parts of SAE J1113 and are not intended to be an exhaustive list. For more information, check other resources such as IEC publications 60050(161) and 60050(726) and the latest editions of ANSI/IEEE Dictionaries of Technological terms. Definitions without a source reference were defined within the SAE committee activities.

3.1 ABSORBER-LINED SHIELDED ENCLOSURE (ALSE)

A shielded room with absorbing material on its internal ceiling and walls.

NOTE: The common practice is to have the metallic floor of the ALSE exposed (semi-anechoic condition), or absorbing material may be placed over the entire floor area (fully anechoic condition). (Adapted from ISO 11452-1.)

3.2 AMPLITUDE MODULATION (AM)

The process by which the amplitude of a carrier wave is varied following a specified law. The result of the process is an AM signal. (Adapted from ISO 11452-1.)

3.3 ARTIFICIAL NETWORK (AN); LINE IMPEDANCE STABILIZATION NETWORK (LISN)

A network inserted in the supply leads of apparatus to be tested which provides, in a given frequency range, a specified load impedance for the measurement of disturbance voltages and which isolates the apparatus from the power supply in that frequency range. (Adapted from IEC 60050-161-04-05.)

3.4 BENCH TESTING

Bench testing is component testing performed in a laboratory or test facility.

3.5 BOND

A connection between conductive parts or surfaces that assures that the required electrical conductivity will be achieved.

3.6 BROADBAND ARTIFICIAL NETWORK (BAN)

Device used in power, signal and control lines that presents a controlled impedance to the DUT over a specified frequency range while allowing the DUT to be interfaced to its support system. (Adapted from ISO 11452-1.)

3.7 BULK CURRENT

Total amount of common mode current in a harness. (Refer to ISO 11452-1.)

3.8 BULK CURRENT INJECTION PROBE

A device for injecting current in a conductor without interrupting the conductor and without introducing significant impedance into the associated circuits.

3.9 BURST

Transient comprised of a complex series of transient voltage variations. (Refer to ISO 7637-1.)

3.10 BURST CYCLE TIME

Time between the start of the first pulse of two consecutive bursts. (Refer to ISO 7637-1.)

3.11 BURST DURATION

Time during which a complex series of transient variations occurs during a single burst. (Refer to ISO 7637-1.)

3.12 CAN

Controller Area Network.

3.13 CLASS

A performance level agreed upon by the purchaser and the supplier and documented in the test plan. (Refer to CISPR 25, 1st Edition.)

3.14 CONDUCTED SUSCEPTIBILITY THRESHOLD

Conducted susceptibility threshold is defined as the level of conducted interference at which the device under test (DUT) responds undesirably or experiences performance degradation. For conducted susceptibility bench testing, a representative number of conducted interference waveforms are artificially generated and injected into the DUT to determine the threshold level of susceptibility.

3.15 COUPLING

A means or a device for transferring power between systems. (Adapted from IEC 60050-726-14-01.)

3.16 CURRENT PROBE (MEASURING OR MONITORING)

A device for measuring the current in a conductor without interrupting the conductor and without introducing significant impedance into the associated circuits. (Adapted from IEC 60050-161-04-35.)

3.17 DAMPED SINUSOID

A waveform composed of a sine wave having a decaying amplitude envelope. The waveform occurs when a pulse excites a circuit having a condition of resonance.

3.18 DEGRADATION (OF PERFORMANCE)

An undesired departure in the operational performance of any device, equipment, or system from its intended performance.

NOTE: The term "degradation" can apply to temporary or permanent failure. (IEC 60050-161-01-19.)

3.19 DEVICE

1. An electrical or electronic component, module, subassembly, or system. Each could include a wiring harness(es).
2. Machine driven by an internal combustion engine which is not primarily intended to carry persons or goods. Devices include, but are not limited to, chainsaws, irrigation pumps, snow blowers, air compressors, and landscaping equipment (see Machine). (Refer to CISPR 25.)

3.20 DEVICE UNDER TEST (DUT)

The device, equipment, or system being evaluated.

3.21 DIRECTIONAL COUPLER

A three- or four-port device consisting of two transmission lines coupled together in such a manner that a single traveling wave in any one transmission line will induce a single traveling wave in the other; the direction of propagation of the latter wave being dependent upon that of the former. (Refer to IEC 60050-726-14-02.)

3.22 ELECTROMAGNETIC COMPATIBILITY (EMC)

The ability of an equipment or system to function satisfactorily in its electromagnetic environment without introducing intolerable electromagnetic disturbances to anything in that environment. (Refer to IEC 60050-161-01-07.)

3.23 ELECTROMAGNETIC ENVIRONMENT

The totality of electromagnetic phenomena existing at a given location. (Refer to IEV 60050-161-01-01.)

3.24 ELECTROMAGNETIC IMMUNITY (TO A DISTURBANCE)

The ability of a device, equipment, or system to perform without degradation in the presence of an electromagnetic disturbance. (Adapted from IEC 60050-161-01-20.)

3.25 ELECTROMAGNETIC INTERFERENCE

Degradation of the performance of an equipment, transmission channel, or system caused by an electromagnetic disturbance.

NOTE: The English words "interference" and "disturbance" are often used indiscriminately. (Refer to IEC 60050-161-01-06.)

3.26 ELECTROMAGNETIC SUSCEPTIBILITY

The inability of a device, equipment, or system to perform without degradation in the presence of an electromagnetic disturbance.

NOTE: Susceptibility is the lack of immunity. (Refer to IEC 60050-161-01-21.)

3.27 ELECTROSTATIC DISCHARGE (ESD)

A transfer of electric charge between bodies of different electrostatic potential in proximity or through direct contact. (Refer to IEC 60050-161-01-22.)

3.28 FORWARD POWER

That power supplied by the output of an amplifier (or generator). (Refer to ISO 11452-1.)

3.29 FUNCTION PERFORMANCE STATUS AND FUNCTION PERFORMANCE STATUS CLASSIFICATIONS

3.29.1 FUNCTION PERFORMANCE STATUS

Expected performance objectives for the function of the device under test subjected to test conditions, agreed between the customer and the supplier which is specified in the test plan. (Refer to ISO 11452-1.)

3.29.2 FUNCTIONAL PERFORMANCE STATUS CLASSIFICATIONS

See Appendix A for definitions of functional performance status classifications, the associated regions of performance, and performance objectives.

3.30 GLOW DISCHARGE

A portion of the transient waveform characterized by a short fall time preceded by a relatively longer rise time. The waveform occurs at the end of the initial switch arc of the on-to-off switching operation of inductive loads. There may be a single or multiple occurrence of this waveform.

3.31 GROUND (REFERENCE) PLANE

A flat conductive surface whose potential is used as a common reference. (Refer to IEC 60050-161-04-36.)

3.32 IMMUNITY LEVEL

The maximum level of a given electromagnetic disturbance incident on a particular device, equipment, or system for which it remains capable of operating at a required degree of performance. (Refer to IEC 60050-161-03-14.)

3.33 INDUCTIVE KICK

A portion of the transient waveform which occurs during the on-to-off switching operation of inductive loads at the end of the initial switch arc. It is characterized by an exponential wave shape with negative voltage amplitude.

3.34 INFORMATIVE APPENDIX

Applies here to classify an appendix that contains information that is advisory or explanatory in nature, as opposed to being mandatory.

3.35 LOAD DUMP

An exponentially decaying positive transient produced by the alternator when the load presented by the battery or any other large current load is suddenly removed.

3.36 MODULATION FACTOR (m)

The ratio of the peak variation of the envelope to the reference value. The reference value is usually taken to be the amplitude of the un-modulated wave. The value of m varies between 0 and 1.

3.37 NET POWER

Forward power in Watts minus reflected power in Watts at the same location on the transmission line. (Refer to ISO 11452-1.)

3.38 NORMATIVE APPENDIX

An appendix containing information whose use is mandatory when applying this document.

3.39 POLARIZATION (OF A WAVE OR FIELD VECTOR)

The property of a sinusoidal electromagnetic wave or field vector defined at a fixed point in space by the direction of the electric field strength vector or of any specified field vector; when this direction varies with time, the property may be characterized by the locus described by the extremity of the considered field vector. (Refer to IEC 60050-726-04-01.)

3.40 PULSE DURATION

From ISO 7637-1.

Time from the instant the absolute value of the pulse rises above 10% of the absolute value of the peak amplitude to the instant it falls below 10% of this.

3.41 QUALITY FACTOR "Q"

If a DUT has a frequency response with a center frequency f_{DUT} and a -3 dB bandwidth (BW), Q is defined as the ratio of f_{DUT}/BW .

3.42 REFLECTED POWER

Power reflected by the load due to impedance mismatch between RF source and the load. (Adapted from ISO 11452-1.)

3.43 RF BOUNDARY

An element of an EMC test set-up that separates that part of the harness and/or peripherals that is included in the RF environment and that part that is excluded. It may consist of, for example, ANs, BANs, filter feed-through pins, RF absorber coated wire, and/or shielding.

3.44 RF DISTURBANCE POWER

RF power measured with a current transformer of an absorbing clamp and an RF measuring instrument. It may be measured (as the RF disturbance voltage) in a peak or quasi-peak mode.

3.45 RIPPLE

Regular or irregular variations in voltage around the nominal DC voltage level during steady state operation of the system.

3.46 RIPPLE PEAK

The greatest variations due to ripple above and below the nominal DC level are called the upper peak and lower peak, respectively. Peak-to-peak ripple is the difference between the upper peak and lower peak voltages.

3.47 SHALL

Used to express a command; i.e., conformance with the specific recommendation is mandatory and deviation is not permitted. The use of the word "shall" is not qualified by the fact that compliance with the document is considered voluntary.

3.48 SHIELDED ENCLOSURE/SCREENED ROOM

A mesh or sheet metallic housing designed expressly for the purpose of separating electromagnetically the internal and external environment. (Refer to IEC 60050-161-04-37.)

3.49 SOURCE RESISTANCE

The output resistance of the source.

3.50 SPIKE

A transient that exceeds peak ripple for a period less than 150 μ s. Spikes are sometimes high-frequency oscillations resulting from sudden load variations.

3.51 STANDING WAVE RATIO (in a transmission line) (SWR); VOLTAGE STANDING WAVE RATIO (VSWR)

The ratio, along a transmission line, of a maximum to an adjacent minimum magnitude of a particular field component of a standing wave. (Adapted from IEC 60050-726-07-09.)

NOTE: SWR or VSWR is usually measured in terms of line voltage or line current.

3.52 SURGE

A non-oscillatory transient that exceeds peak ripple, is infrequent, and has a duration equal to or greater than 150 μ s.

3.53 TEST PLAN

The test plan is a document provided by the test requester to define the tests to be done, the object of the testing, the device under test (DUT) operating status, the conditions for the test, and performance objectives. It completely guides the implementation of the test, by reference to the standard test procedure, or by detailing revisions or additions for the specific DUT.

3.54 TIME BETWEEN BURSTS

The time between the end of one burst and the start of the next one. (Refer to ISO 7637-1.)

3.55 TRANSIENT

A temporary increase or decrease of voltage or current. Transients may take the form of spikes or surges. Specific transient parameters include:

3.55.1 AMPLITUDE

The maximum voltage excursion beyond ripple peak.

3.55.2 WIDTH (T)

The time from the instant the transient reaches 10% of its maximum amplitude to the instant it falls below that value. (Refer to ISO 7637-1.)

3.55.3 INTERVAL BETWEEN TRANSIENTS

The time between the end of one transient and the beginning of the next (both measured at 10% of the maximum amplitude).

3.55.4 REPETITION RATE

The number of surges, spikes, or pulses per unit time.

3.55.5 RISE TIME (T_R), FALL TIME (T_F)

The time required for the instantaneous transient amplitude to increase from 10 to 90% (T_R) or decrease from 90 to 10% (T_F) of the maximum amplitude, respectively. (Refer to ISO 7637-1.)

3.56 TRANSMISSION LINE SYSTEM (TLS)

Field-generating device that works in a similar way to a transverse electromagnetic mode (TEM) wave generator. (Refer to ISO 11452-1.)

3.57 TEM MODE; TRANSVERSE ELECTROMAGNETIC MODE

A mode in which both the longitudinal components of the electric and magnetic field strength vectors are everywhere zero. (Adapted from IEC 60050-726-03-08.)

3.58 TRANSVERSE ELECTROMAGNETIC (TEM) CELL

An enclosed system, often a rectangular coaxial line, in which a wave is propagated in the transverse electromagnetic mode to produce a specified field for testing purposes. (Refer to IEC 60050-161.)

3.59 VEHICLE; ELECTRIC VEHICLE

A ground vehicle which includes an electric machine utilized for propulsion. Electric vehicles include but are not limited to battery electric vehicles (BEV), hybrid electric vehicles (HEV), plug-in hybrid electric vehicles (PHEV), and fuel cell electric vehicles (FCEV).

SAENORM.COM : Click to view the full PDF of J1113-1-202304

4. OVERVIEW OF TEST METHODS

4.1 Immunity

NOTE: The attributes of the immunity tests are shown in Table 1.

Table 1 - Immunity test attributes

SAE Part	Test Type	Frequency Range	Relevant International Standard
SAE J1113-1	Introduction	NA	ISO 11452-1
SAE J1113-2 ⁽¹⁾	Conducted immunity (withdrawn)	30 Hz to 250 kHz	ISO 11452-10
SAE J1113-3 ⁽²⁾	Conducted immunity (withdrawn)	250 kHz to 400 MHz	ISO 11452-7
SAE J1113-4	Bulk current immunity	1 to 400 MHz	ISO 11452-4
SAE J1113-11	Power lead immunity	NA	ISO 7637-2
SAE J1113-12	Coupled immunity	NA	ISO 7637-3
SAE J1113-13	Electrostatic discharge	NA	ISO 10605
SAE J1113-21 ⁽⁶⁾	Radiated immunity (withdrawn)	30 MHz to 18 GHz	ISO 11452-2
SAE J1113-22 ⁽³⁾	Magnetic field (withdrawn)	16.6 Hz to 50 kHz	ISO 11452-8
SAE J1113-23	Strip-line (withdrawn)		ISO 11452-5
SAE J1113-24 ⁽⁴⁾	Radiated immunity-TEM cell (withdrawn)	10 kHz to 200 MHz	ISO 11452-3
SAE J1113-26	Ac power line-electric fields	60 Hz	NA
SAE J1113-27	Radiated immunity - reverberation	500 MHz to 2 GHz	NA
SAE J1113-28 ⁽⁵⁾	Radiated immunity reverb - tuned Handheld transmitter test (withdrawn)	400 MHz to 18 GHz	ISO 11452-11 Draft ISO 11452-9

⁽¹⁾ SAE J1113-2 is reserved for use to document differences from ISO 11452-10. At the present time, SAE J1113-2 is not used.

⁽²⁾ SAE J1113-3 is reserved for use to document differences from ISO 11452-7. At the present time, SAE J1113-3 is not used.

⁽³⁾ SAE J1113-22 is reserved for use to document differences from ISO 11452-8. At the present time, SAE J1113-22 is not used.

⁽⁴⁾ SAE J1113-24 is reserved for use to document differences from ISO 11452-10. At the present time, SAE J1113-24 is not used.

⁽⁵⁾ SAE J1113-28 is reserved for use to document differences from ISO 11452-11. At the present time, SAE J1113-28 is not used.

⁽⁶⁾ SAE J1113-21 is reserved for use to document differences from ISO 11452-2. At the present time, SAE J1113-21 is not used.

NOTE: Future systems may require new tests.

4.2 Emissions

NOTE: The attributes of the emissions tests are shown in Table 2.

Table 2 - Emissions test attributes

SAE Part	Test Type	Frequency Range	Relevant International Standard
SAE J1113-41 ⁽¹⁾	RF emission (withdrawn)	150 kHz to 2.5 GHz	P/O IEC CISPR 25
SAE J1113-42 ⁽²⁾	Conducted transients (withdrawn)	NA	P/O ISO 7637-2

⁽¹⁾ SAE J1113-41 is reserved for use to document differences from IEC CISPR 25. At the present time, SAE J1113-41 is not used.

⁽²⁾ SAE J1113-42 is reserved for use to document differences from ISO 7637-2. At the present time, SAE J1113-42 is not used.

NOTE: Future systems may require new tests.

5. STANDARD EMISSIONS TEST REQUIREMENTS AND CONDITIONS

Test conditions for the component emissions tests are defined in IEC CISPR 25.

Unless otherwise specified, tolerance for all test conditions and test parameters shall be $\pm 10\%$.

6. STANDARD IMMUNITY TEST PROCEDURE

The common characteristics for all the immunity test parts of this document are described in this section.

Unless otherwise specified, tolerance for all test conditions and test parameters shall be $\pm 10\%$.

6.1 Test Conditions

6.1.1 Test Temperature and Supply Voltage

The ambient temperature during the test shall be $23^{\circ}\text{C} \pm 5^{\circ}\text{C}$. The supply voltage during the test shall be $13\text{ V} \pm 1\text{ V}$ for 12-V electrical systems and $(26\text{ V} \pm 2\text{ V}$ for 24-V electrical systems. If other values are agreed upon, those values shall be documented in the test report. (Refer to ISO 11452-1.)

6.1.2 Modulation

The characteristics of the system determines the type and frequency of modulation. If no values are agreed upon between the users of this document, the following shall be used:

- a. No modulation (CW).
- b. 1 kHz sinewave amplitude modulation (AM) 80%. (See Appendix B.)

6.1.3 Dwell Time

At each frequency, the DUT shall be exposed to the test level for, at least, the minimum response time needed to control the DUT and monitor response. In all cases, this minimum time of exposure shall be 2 seconds minimum.

6.1.4 Frequency Steps

Two methods are presented. The logarithmic steps are based on the Q of the DUT and is, therefore, the preferred method. The linear method is based on a fixed maximum frequency step size.

6.1.4.1 Logarithmic Method (Preferred)

Setting the immunity test frequencies using a logarithmic relationship is a technique that produces equally spaced frequency steps on a logarithmic scale. The number of steps per octave or decade, are based on the expected Q of the DUT. The values agreed upon by the users of this standard shall be documented in the test report. The method of generating this frequency list is developed in Appendix C. Sample frequency lists are included. Typical values of Q have been included in Appendix C, Table C1.

6.1.4.2 Linear Method (Alternate)

Table C1 in Appendix C illustrates the maximum frequency step size applicable to SAE J1113 immunity tests using the linear step technique. Apply the steps according to the applicable frequency range of each SAE J1113 parts (-2, -3, -4, -24, -27, and -28). Smaller step sizes are encouraged.

6.1.5 Test Signal Quality

The intent of narrowband immunity test is to expose the DUT to a single frequency. Often, certain test frequencies will produce significant harmonics of the fundamental. To ensure that harmonics do not skew the results, either do not test at any frequency that produces harmonics above -12 dBc or carefully document the condition in the test report. If a frequency is skipped due to harmonics, enter it in the test report.

6.1.6 Threshold of Response

If a response or event is observed when applying or approaching the required test level, reduce the power 10 dB. Start incrementing the net power at a slow rate (typically 0.1 dB per 2 seconds) until the event is observed. Record this power level as the threshold value. The dwell time at each power increment should be determined by the response time of the DUT or 2 seconds whichever is longer.

6.2 Test Methods

Immunity testing is commonly done using either one of two different techniques: (a) substitution, and (b) closed-loop leveling. This paragraph explains the control parameters of each.

- a. The substitution method: The substitution method uses forward power as the reference parameter that sets the test level during the characterization and the immunity test. The specific test level (E-field, current, voltage, or power) is characterized at each frequency per 6.1.4, by adjusting the forward power to produce the desired test level. This number is recorded and used as the reference parameter for the immunity test. This is done in an empty chamber (absorber lined shielded enclosure, TEM cell, tri-plate, etc.) for immunity testing and with a characterization test fixture for bulk current injection. The DUT test is conducted by subjecting the DUT to the test levels at each frequency as determined in terms of forward power in the characterization phase.
- b. The closed-loop leveling method: This method does not require a characterization prior to the test; however, a pre-characterized sensor must be used to monitor the control parameter throughout the duration of the test. The signal generator level is adjusted based upon input from the control parameter until the desired test level is obtained.

6.2.1 Characterization

Verification of test item parameters shall be performed in accordance with individual test method's requirements. The test level versus frequency data shall be established using a CW signal. The method and results for each characterization point shall also be documented.

6.2.2 Tests with a DUT

CAUTION: Hazardous radio frequency voltages and fields may exist within the test area. Care should be taken to ensure that the requirements for limiting the exposure of humans to RF energy are met. IEEE C95.1 is the U.S. National Standard addressing exposure of humans to electromagnetic fields. (The National Council on Radiation Protection (NCRP) has a similar standard which is more stringent in the microwave region.)

The test shall employ the following process

- a. At each frequency, increase the level, linearly or logarithmically, up to the chosen test level. The rate of increase of the test level shall be controlled to ensure that excessive overshoot does not occur. The test level parameter is Forward Power (see Appendix A for guidance to set test level parameters):
 1. The forward power, related to the test signal severity level, for the substitution method. (See Equation 1.)

$$\text{Forward Power (Test)} = \text{Forward Power (Characterization)} \left[\frac{\text{Test Level}}{\text{Characterization Level}} \right]^k \quad (\text{Eq. 1})$$

where:

Forward power is in Watts

with $k = 1$ for power test levels, and $k = 2$ for field, current, or voltage test levels

2. The test signal severity level, set to the desired field, current, voltage, or power for the closed-loop leveling method.

Table 3 gives the CW and AM test levels for the substitution method and for the closed-loop leveling method.

Table 3 - CW and AM test levels

Method	CW	AM
Substitution method	Forward power	Peak forward power same as CW
Closed-loop leveling method	Test signal severity level	Test signal severity level

⁽¹⁾ Where m is the modulation factor ($0 \leq m \leq 1$).

- a. Both methods use a constant peak test level for CW and AM tests. The relationship between AM forward power and CW characterized forward power results from this principle. (See Appendix B.)
- b. Maintain the test level for the minimum response time needed to exercise the DUT (this minimum time of exposure shall be greater or equal to 2 seconds).
- c. As necessary, decrease the test level by at least 20 dB before moving to the next frequency. The rate of decrease of the level shall be controlled to avoid non-reproducible susceptibilities.

NOTE: Turning off the signal generator may cause non-reproducible susceptibilities of the DUT.

- d. Step to the next frequency.

6.3 Test Severity Levels

For both substitution and closed-loop leveling methods, and for CW and AM tests, the test severity levels of this document are expressed in terms of equivalent RMS (root-mean-square) value of an unmodulated wave.

EXAMPLE: Test severity level of 20 V/m rms means that CW and AM tests will be conducted for a 28 V/m peak value.

CAUTION: Field strength measurement of AM modulated wave. When using devices such as oscilloscopes, non-frequency selective voltmeters, or broadband field strength sensors to measure a modulated immunity test signal; correction factors shall be applied to adjust the reading to represent the equivalent RMS value for the peak of the modulation envelop. Modulation correction is determined by dividing the reading of a continuous wave (CW) signal by the reading for a modulated signal (AM) of the same peak amplitude. The modulation correction might vary with frequency, amplitude, waveshape, and the modulation frequency.

6.4 Artificial Loads

For module level testing, it is desirable that the module be connected to the sensors and loads used in its production application. However, some loads and sensors are not convenient to use because of size, cooling requirements, duty cycle, etc. It is therefore acceptable to use an electrical equivalent load for these devices provided the artificial loads have the same impedance characteristics as the actual devices over the frequency band under test. For example, a motor can be replaced with a network of two resistors, an inductor and a capacitor.

6.5 Grounding and Shielding

Establishing uniform measurement conditions at radio frequencies requires that consistent grounding practices be followed. Unless otherwise called out in the test procedure or plan, the following grounding practice shall be applied. The DUT, artificial networks, and terminating loads shall:

- a. Be placed on a metallic ground plane having the following minimum dimensions:
 1. Thickness: 0.5 mm copper, brass, bronze, or galvanized steel sheet.
 2. Length: 1000 mm or underneath the entire equipment plus 500 mm, whichever is larger.
 3. Width: Width of the equipment plus 200 mm on each side.

- b. Be bonded to the ground plane as in its intended installation.
- c. Not otherwise be grounded, unless required in the DUT installation instructions. The artificial networks shall be bonded to the ground plane unless otherwise specified in the test procedure or plan. No shielding is to be used other than that called out in the installation instructions.

6.6 Power Supply

The continuous supply source shall have an internal resistance R_s less than 0.01Ω DC and an internal impedance $Z_s = R_s$ for frequencies less than 400 Hz. The output voltage shall not deviate more than 1 V from 0 to maximum load (including inrush current) and shall recover 63% of its maximum excursion within 100 ms. The superimposed ripple voltage, V_r , shall not exceed 0.2 V peak-to-peak and have a maximum frequency of 400 Hz.

If a standard power supply (with sufficient current capacity) is used in bench testing to simulate the battery, it is important that the low internal impedance of the battery also be simulated. When a battery is used, a charging source is needed to achieve the specified reference levels.

NOTE: Ensure that the charging source does not affect the test.

7. NOTES

7.1 Revision Indicator

A change bar (I) located in the left margin is for the convenience of the user in locating areas where technical revisions, not editorial changes, have been made to the previous issue of this document. An (R) symbol to the left of the document title indicates a complete revision of the document, including technical revisions. Change bars and (R) are not used in original publications, nor in documents that contain editorial changes only.

PREPARED BY SAE ELECTROMAGNETIC COMPATIBILITY (EMC) STANDARDS COMMITTEE

APPENDIX A - FUNCTION PERFORMANCE STATUS CLASSIFICATION (BASED ON SAE J1812) (INFORMATIVE)

A.1 SCOPE AND FIELD OF APPLICATION

This appendix provides a general method for defining function performance status classification for automotive electronic devices. This criteria is used to set limits for tests specified in this series of documents.

A.2 GENERAL

Components or systems shall only be tested with the conditions, as described in the main part of the document, representing the simulated automotive electromagnetic environments to which the devices would actually be subjected. This will help to assure a technically and economically optimized design for potentially susceptible components and systems.

It should also be noted that this appendix is not intended to be a product specification and cannot function as one. Nevertheless, using the concepts described in this appendix and by careful application and agreement between manufacturer and supplier, this document could be used to describe the functional status requirements for a specific device. This could then, in fact, be a statement of how a particular device could be expected to perform under the influence of the specified interference signals.

A.3 ESSENTIAL ELEMENTS OF FUNCTION PERFORMANCE STATUS CLASSIFICATION

Three elements are required to describe a function performance status classification. They can be generically applied to all immunity testing for electromagnetic disturbances (both conducted and radiated). These elements are:

A.3.1 Test Method and Test Signal

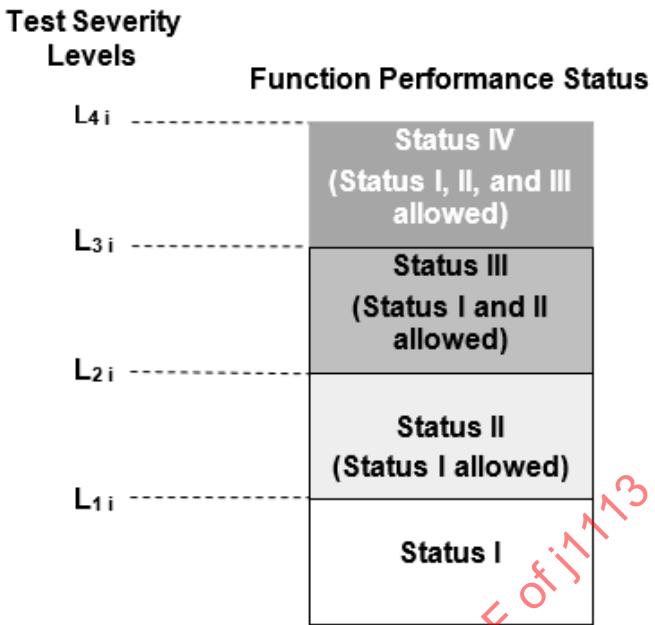
This element refers to the respective test signal(s) applied to the device under test and the method of test. This information is contained in the appropriate section of each part of this document.

A.3.2 Function Performance Status

This element defines the expected performance objectives for the function of the device under test subjected to the test conditions. The four Function Performance status(s) of the function (expected behavior of the function observed during test) are listed below:

1. Status I: Normal performance within the specification limits during and after exposure to a disturbance.
2. Status II: Temporary degradation or loss of function or performance that which is self-recoverable after the disturbance is removed.
3. Status III: Temporary degradation or loss of function or performance which requires operator intervention or system reset after the disturbance is removed.
4. Status IV: The device/function shall not have sustained any damage after the disturbance is removed.

A.3.3 Test Signal Level


This element defines the specification of test signal level and essential parameters. The test signal severity level is the stress level (voltage, volts per meter, etc.) applied to the device under test.

A.4 APPLICATION OF FUNCTION PERFORMANCE STATUS AND TEST SIGNAL SEVERITY LEVEL

This illustration demonstrates the relationship between the test signal severity levels and their corresponding function performance status. In other words, based on the table listed below:

The function must exhibit: Status I performance up the severity level L_{1i} , Status II (Status I allowed) performance up to the severity level L_{2i} , etc.

In the test severity levels, the numerical index (1, 2, 3, 4) denotes the function performance status (I, II, III, IV) and the index i denotes the category (for illustration of an example, see A.5).

Figure A1 - Illustration of function performance status classification

A.5 EXAMPLE OF APPLICATION OF FUNCTION PERFORMANCE STATUS CLASSIFICATION

In certain applications, the function performance status classification is required to be expressed in multiple categories (such as critical nature of the function as related to the operation of the vehicle or frequency bands of the test signals, etc.).

This example illustrates the concept of how the function can be expressed for 3 different categories. (See Figure A2.)

Note: In the test severity levels, the numerical index (1, 2, 3, 4) denotes the function performance status (I, II, III, IV) and the index i denotes the category (1, 2, 3). For example, L_{42} is the severity level for function classified as Status IV and category 2.

Severity Levels	Category		
	1	2	3
L_{4i}	Status IV (Status I, II, III allowed)	Status IV (Status I, II, III allowed)	Status IV (Status I, II, III allowed)
L_{3i}	Status III (Status I, II allowed)	Status III (Status I, II allowed)	Status III (Status I, II allowed)
L_{2i}	Status II (Status I allowed)	Status II (Status I allowed)	Status II (Status I allowed)
L_{1i}	Status I	Status I	Status I

Status	Category 1	Category 2	Category 3
IV	L_{41}	L_{42}	L_{43}
III	L_{31}	L_{32}	L_{33}
II	L_{21}	L_{22}	L_{23}
I	L_{11}	L_{12}	L_{13}

Figure A2 - Illustration of FSPC with three categories

NOTE: Refer to SAE J1812 for additional information.

APPENDIX B - CONSTANT PEAK TEST LEVEL (BASED ON ISO 11452-1)
(INFORMATIVE)

This appendix explains the principle of constant peak test level and subsequent implications of power levels.

B.1 UNMODULATED SIGNAL

The electric field strength of an unmodulated sine wave signal ECW can be written in the form:

$$E_{CW} = E \cos(\omega t) \quad (\text{Eq. B1})$$

where:

E = peak value of ECW

ω = frequency of the unmodulated signal (CW) (e.g., RF carrier)

The mean power of the unmodulated signal is calculated:

$$P_{CW} = kE^2 \quad (\text{Eq. B2})$$

where:

P_{CW} = power for the unmodulated signal

k = proportionality factor which is constant for a specific test setup

B.2 MODULATED SIGNAL

The electric field strength of an amplitude modulated signal, EAM, can be written in the form as shown in Equation B3:

$$E_{AM} = E'[1 + m \cos(\theta t)] \cos(\omega t) \quad (\text{Eq. B3})$$

where:

E' = peak amplitude of the unmodulated signal

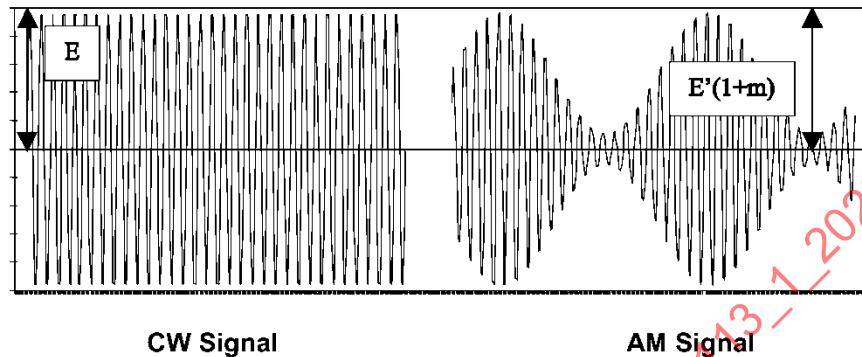
$E'(1+m) = E_{AMpeak}$ = peak amplitude of the modulated signal EAM

M = modulation factor ($0 \leq m \leq 1$)

θ = frequency of modulating signal (i.e., voice, baseband, 1 kHz CW, etc.)

ω = frequency of the unmodulated signal (CW) (e.g., RF carrier)

The total mean power in an amplitude modulated signal is the sum of the power in the carrier component [kE'^2] and the total power in the sidebands component. It may be calculated as follows:


$$P_{AM} = k \left(1 + \frac{m^2}{2} \right) E'^2 \quad (\text{Eq. B4})$$

B.3 PEAK CONSERVATION

For peak test level conservation, the peak amplitude of the unmodulated and modulated signals is defined to be identical:

$$E_{CW \text{ peak}} = E_{AM \text{ peak}} \quad (\text{Eq. B5})$$

There are two ways to adjust the signal to maintain peak conservation.

Figure B1 - Constant peak test level comparison

B.3.1 Measure the Ratio of Modulated Power to CW Power

The relationship between CW power and AM power (using peak test level conservation) is given by Equation B6:

$$\frac{P_{AM}}{P_{CW}} = \frac{k \left[\left(1 + \frac{m^2}{2}\right) E'^2 \right]}{k E^2} = \left(1 + \frac{m^2}{2}\right) \left(\frac{E'}{E}\right)^2 = \frac{\left(1 + \frac{m^2}{2}\right)}{\left(1 + m\right)^2} \quad (\text{Eq. B6})$$

Therefore:

$$P_{AM} = P_{CW} \left[\frac{2 + m^2}{2(1 + m)^2} \right] \quad (\text{Eq. B7})$$

For $m = 0.8$ (AM 1 kHz 80%), this relationship gives:

$$P_{AM} = 0.407 P_{CW} \quad (\text{Eq. B8})$$

B.3.2 Measure the Ratio of Power in the Unmodulated Peak Test Level Conservation Signal to the CW Power

The power of the peak test level conservation signal before modulation is applied can be compared to the power of the CW signal used for certification.

The relationship is:

$$\frac{P_{CW\text{BeforeModulation}}}{P_{CW}} = \left(\frac{1}{1+m} \right)^2 \quad (\text{Eq. B9})$$

Therefore:

$$P_{CW\text{beforemodulation}} = P_{CW} \left(\frac{1}{1+m} \right)^2 \quad (\text{Eq. B10})$$

for $m = 0.8$ (AM 1 kHz 80%), this relationship gives:

$$P_{CW\text{beforemodulation}} = 0.309 P_{CW} \quad (\text{Eq. B11})$$

SAENORM.COM : Click to view the full PDF of j1113-1-202304

APPENDIX C - SETTING IMMUNITY TEST FREQUENCIES IN A LOGARITHMIC SEQUENCE
(INFORMATIVE)

C.1 RELATIONSHIP BETWEEN Q AND THE NUMBER OF TEST POINT FREQUENCIES

For a decade progression, the test frequency steps are calculated as follows:

$$f_{\text{injection}} = f_{\text{initial}} \times 10^{(k/n)} \quad (\text{Eq. C1})$$

where:

$f_{\text{injection}}$ = frequency to inject

f_{initial} = start frequency

k = index number of the injection frequency (i.e., 0, 1, 2, ...)

n = number of test frequency steps per decade

Then:

$$f_{(j+1)} = f_j \times 10^{(1/n)} \quad (\text{Eq. C2})$$

Let the frequency of the maximum DUT response be midway between two adjacent test frequencies such that:

$$f_{\text{DUT}} = \frac{f_{(j+1)} + f_j}{2} \quad (\text{Eq. C3})$$

For the case of a DUT response described by a linear second order system, if $f_{(j+1)} + f_j$ define the -3 dB bandwidth of the DUT, then the Q of the system is given by:

$$Q = \left(\frac{f_{\text{DUT}}}{f_{(j+1)} - f_j} \right) = \left(\frac{1}{2} \right) \times \left(\frac{f_j \times 10^{(1/n)} + f_j}{f_j \times 10^{(1/n)} - f_j} \right) = \left(\frac{1}{2} \right) \left(\frac{10^{(1/n)} + 1}{10^{(1/n)} - 1} \right) \quad (\text{Eq. C4})$$

Therefore:

$$Q = \left(\frac{1}{2} \right) \times \left(\frac{10^{(1/n)} + 1}{10^{(1/n)} - 1} \right) \quad (\text{Eq. C5})$$

Solving for n :

$$n = \frac{1}{\log_{10} \left(\frac{2Q + 1}{2Q - 1} \right)} \quad (\text{Eq. C6})$$

Similarly, for an octave progression, the corresponding equations used for calculating the frequency steps, Q and n are:

$$f_{\text{injection}} = f_{\text{initial}} \times 2^{\left(\frac{k}{n}\right)} \quad (\text{Eq. C7})$$

where:

$f_{\text{injection}}$ = frequency to inject

f_{initial} = start frequency

k = index number of the injection frequency (i.e., 0, 1, 2, ...)

n = number of test frequency steps per octave

Therefore:

$$Q = \frac{1}{2} \times \left(\frac{2^{\left(\frac{1}{n}\right)} + 1}{2^{\left(\frac{1}{n}\right)} - 1} \right) \quad (\text{Eq. C8})$$

and:

$$n = \frac{1}{\log_2\left(\frac{2Q+1}{2Q-1}\right)} \quad (\text{Eq. C9})$$

C.2 DETERMINATION OF SOAK TIME

The soak time τ in terms of a stated total time T spent **per decade** is then:

$$\tau = \frac{T}{n} = (T) \log_{10}\left(\frac{2Q+1}{2Q-1}\right) \quad (\text{Eq. C10})$$

The soak time τ in terms of a stated total time T spent **per octave** is then:

$$\tau = \frac{T}{n} = (T) \log_2\left(\frac{2Q+1}{2Q-1}\right) \quad (\text{Eq. C11})$$

C.3 CALCULATION OF TEST FREQUENCIES USING A LOGARITHMIC PROGRESSION

Figures C1 and C2 illustrate a list of frequencies related in a logarithmic progression for two values of Q. The values of this figure can be calculated using the equations of this appendix.

C.3.1 Example 1

Figure C1 shows the list of frequencies over a decade for a Q of 36 starting at 30 MHz. (Q of 36 corresponds to 25 steps per octave or 83 steps per decade.)

30.0	30.8	31.7	32.6	33.5	34.5	35.4	36.4
37.4	38.5	39.6	40.7	41.8	43.0	44.2	45.5
46.7	48.1	49.4	50.8	52.2	53.7	55.2	56.8
58.4	60.0	61.7	63.4	65.2	67.0	68.9	70.9
72.9	74.9	77.0	79.2	81.4	83.7	86.0	88.5
90.9	93.5	96.1	98.8	102	104	107	110
114	117	120	123	127	130	134	138
142	146	150	154	158	163	167	172
177	182	187	192	198	203	209	215
221	227	233	240	247	254	261	268
276	283	291	300				

Figure C1 - List of frequencies over a decade for A Q of 36

C.3.2 Example 2

Figure C2 shows the list of frequencies over a decade for a Q of 22 starting at 30 MHz. (Q of 22 corresponds to 15 steps per octave or 50 steps per decade.)

30.0	31.4	32.9	34.4	36.1	37.8	39.5	41.1
43.4	45.4	47.5	49.8	52.1	54.6	57.2	59.8
62.7	65.6	68.7	72.0	75.3	78.9	82.6	86.5
90.6	94.9	99.3	104	109	114	119	125
131	137	144	150	157	165	173	181
189	198	207	217	228	238	250	261
274	286	300					

Figure C2 - List of frequencies over a decade for A Q of 22

Table C1 - Frequency steps and associated values of Q for the linear step method

Frequency Band	Maximum Frequency Step Size	Range of Expected Values of Q
10 to 100 kHz	10 kHz	0.6-6
100 kHz to 1 MHz	100 kHz	0.6-6
1 to 10 MHz	1 MHz	0.6-6
10 to 200 MHz	2 MHz	3-60 (9 at 30 MHz)
200 MHz to 1 GHz	20 MHz	6-30
1 to 18 GHz	200 MHz	3-90

If, at the specified test level, the vehicle exhibits a condition bordering on a response, the frequency steps in Table C1 should be reduced to identify the most critical frequencies and minimum threshold of susceptibility.

C.4 EXAMPLE OF CALCULATING N AND τ

If the user specifies a Q of 30, and the average sweep time per decade T = 20 seconds, the number of test frequency points **per decade** (n) and the corresponding soak time per test point (τ) are determined as follows:

$$n = \frac{1}{\log_{10}\left(\frac{2Q+1}{2Q-1}\right)} = \frac{1}{\log_{10}\left(\frac{2 \times 30+1}{2 \times 30-1}\right)} = 69 \text{ Points/decade}$$

(Eq. C12)

$$\tau = \frac{20 \text{ s}}{69 \text{ points/decade}} = 290 \text{ ms}$$

(Eq. C13)

SAENORM.COM : Click to view the full PDF of j1113-1_202304

APPENDIX D - EXAMPLE COMPONENT EMC TEST PLAN
(INFORMATIVE)

D.1 OVERVIEW

A comprehensive Test Plan requires collaboration between the Design Engineer, EMC Applications Engineer, and the EMC testing organization. The purpose for a test plan is to develop and document a well thought out procedure to verify that the component is robust to the anticipated electromagnetic environment that it must operate within. A secondary benefit of an EMC test plan is to provide a mechanism for ongoing enhancements and improvements to the test setup, to better correlate component testing with vehicle testing. An EMC Test Plan should be prepared with time to allow for adequate review (i.e., 60 days) prior to initiating testing.

D.2 EXAMPLE COMPONENT TEST PLAN OUTLINE

Title Page (See Figure D.1 - Example Component Test Plan Cover Page)

1.0 Introduction

- 1.1 Product Description
- 1.2 Theory of Operation
- 1.3 Physical Construction
- 1.4 EMC Specification Release
- 1.5 Approved Test Facility
- 1.6 DUT Part Number(s)
- 1.7 DUT Manufacturer(s)
- 1.8 DUT Usage

2.0 EMC Requirements Analysis

- 2.1 Critical Interface Signals
- 2.2 Potential Sources of Emissions
- 2.3 DUT Surrogate selection

3.0 Test Design and Requirements

- 3.1 DUT Operating Modes/Functional Classifications
- 3.2 Test Requirements
- 3.3 Input Requirements
- 3.4 Output Requirements
- 3.5 Test Fixture/Test Support Requirements

4.0 Test Setup

5.0 Test Report Requirements

SAENCRM.COM : Click to view the full PDF of j1113-1_202304

D.3 EXAMPLE COMPONENT TEST PLAN TEMPLATE

Test Description:	Approved Test Plan Number:	Date:
Prepared by: Product Design Engineer: EMC Applications Engineer: EMC Test Engineer:	Approved by:	
Approved by:	Approved by:	
Revision History		
Date	Description	
	Initial Test Plan Release	

This test plan is approved with the following corrections and/or added conditions:

Figure D1 - Example component test plan cover page

SAENORM.COM: Click to view the full PDF of J1113-1-202304