

AEROSPACE MATERIAL SPECIFICATION

SAE,

AMS 7205F

Issued Noncurrent NOV 1952 FEB 2003

Superseding AMS 7205E

Spring Pins, Tubular Carbon Steel

NONCURRENT NOTICE

This specification has been declared "NONCURRENT" by the Aerospace Materials Division, SAE, as of February 2003. It is recommended, therefore, that this specification not be specified for new designs.

"NONCURRENT" refers to those specifications which have previously been widely used and which may be required on some existing designs in the future. The Aerospace Materials Division, however, does not recommend these specifications for future use in new designs. Each of these "NONCURRENT" specifications is available from SAE upon request.

SAE Technical Standards Board Rules provide that: "This report is published by SAE to advance the state of technical and engineering sciences. The use of this report is entirely voluntary, and its applicability and suitability for any particular use, including any patent infringement arising therefrom, is the sole responsibility of the user."

SAE reviews each technical report at least every five years at which time it may be reaffirmed, revised, or cancelled. SAE invites your written comments and suggestions.

Copyright 2003 SAE International

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of SAE.

TO PLACE A DOCUMENT ORDER: Tel: 877-606-7323 (inside USA and Canada)

Tel: 724-776-4970 (outside USA)

Fax: 724-776-0790 Email: custsvc@sae.org http://www.sae.org

SAE WEB ADDRESS:

1. SCOPE:

1.1 Type:

This specification covers tubular-shaped pins, fabricated from carbon steel, having a full-length longitudinal slot to permit flexure when inserted into a hole.

1.2 Application:

Primarily to provide a pin with sufficient flexure to remain tight against the surface of a hole into which it has been inserted, after adjusting itself to the hole tolerances.

2. APPLICABLE DOCUMENTS:

The following publications form a part of this specification to the extent specified herein. The latest issue of Aerospace Material Specifications (AMS) shall apply. The applicable issue of other documents shall be as specified in AMS 2350.

2.1 SAE Publications:

Available from Society of Automotive Engineers, Inc., 400 Commonwealth Drive, Warrendale, PA 15096.

2.1.1 Aerospace Material Specifications:

AMS 2350 - Standards and Test Methods

AMS 2370 - Quality Assurance Sampling of Carbon and Low-Alloy Steels, Wrought Products Except Forgings and Forging Stock

AMS 5120 - Steel Strip, 0.68 - 0.80C (SAE 1074)

AMS 5121 - Steel Strip, 0.90 - 1.04C (SAE 1095)

2.1.2 SAE Standards and Recommended Practices: J496 - Spring Type Straight Pins

2.2 ASTM Publications:

Available from American Society for Testing and Materials, 1916 Race Street, Philadelphia, PA 19103.

ASTM B117 - Salt Spray (Fog) Testing

ASTM E18 - Rockwell Hardness and Rockwell Superficial Hardness of Metallic Materials

2.3 Government Publications:

Available from Commanding Officer, Naval Publications and Forms Center, 5801 Tabor Avenue, Philadelphia, PA 19120.

2.3.1 Military Standards:

MIL-STD-794 - Parts and Equipment, Procedures for Packaging and Packing of

3. TECHNICAL REQUIREMENTS:

3.1 Material:

Shall be steel strip conforming to AMS 5120 or AMS 5121.

3.2 Condition:

Austempered, zinc phosphate treated, and oiled.

3.3 Properties:

Pins shall conform to the following requirements:

PDF of ams1205f 3.3.1 Shear Strength: Shall be as specified in Table I, determined in accordance with SAE J496.

TABLE I

Nominal Pin Diameter	Hole Diameter	Double Shear Strength
Inch	Vinch	lb, min
0.062	0.062 - 0.065	425
0.078	0.078 - 0.081	650
0.094	0.094 - 0.097	1,000
0.125	0.109 - 0.112	1,840
0.141	0.125 - 0.129	2,200
0.156	0.156 - 0.160	2,880
0.188	0.187 - 0.192	4,140
0.219	0.219 - 0.224	5,640
0.250	0.250 - 0.256	7,360
0.312	0.312 - 0.318	11,500
0.375	0.437 - 0.445	16,580
0.438	0.437 - 0.445	20,000
0.500	0.500 - 0.510	25,800
-		

т.	\Box		''	31)
TΑ	ĸı	_	<i>''</i>	٠ı ۱

	(-)	
Nominal Pin Diameter	Hole Diameter	Double Shear Strength
Millimetres	Millimetres	kN, min
1.59	1.57 - 1.65	1.89
1.98	1.98 - 2.06	2.89
2.38	2.39 - 2.46	4.45
2.78	2.77 - 2.84	6.27
3.18	3.18 - 2.84	8.18 💪
3.57	3.57 - 3.68	9.79
3.97	3.96 - 4.06	12.81
4.76	4.75 - 4.88	18.41
5.56	5.56 - 5.69	25.09
6.35	6.35 - 6.50	31.74
7.94	7.92 - 8.08	51.60
9.52	9.52 - 9.70	73.75
11.11	11.10-11.30	88.96
12.70	12.70-12.95	114.76

- 3.3.2 Hardness: Shall be 83 87 HR15N or equivalent determined in accordance with ASTM E18 on a prepared flat surface on the pin OD.
- 3.3.3 Microstracture: Shall be bainite, determined by microscopic examination of a polished and etched specimen.
- 3.3.4 Ductility: Pins shall withstand, without cracking, squeezing in a vise until the gap closes. Pins which have been tested for shear strength shall show a ductile shear with no longitudinal cracks longer than 0.250 in. (6.35 mm) or one-third the total length of the pin, whichever is less.
- 3.3.5 Insertion: Pins shall withstand being inserted in the minimum hole size shown on the drawing without the sides of the gap touching. The hole in the ring gage used for this test shall have a basic diameter equal to the minimum hole shown on the drawing and a tolerance of ± 0.0003 in. (±0.008 mm).
- 3.3.6 Corrosion Resistance: Pins shall withstand, without showing definite rusting, exposure for 72 hr to salt spray test conducted in accordance with ASTM B117.

3.4 Quality:

Pins, as received by purchaser, shall be sound, clean, smooth, and free from foreign materials and from internal and external imperfections detrimental to their performance.

3.5 Tolerances:

- 3.5.1 Minimum Average Diameter: Shall be as shown on the drawing, determined by averaging three measurements made at the angular locations, with respect to the slot, shown on the drawing. Measurements shall be made at midlength of pins 1 in. (25 mm) or less in length and at least 1/2 in. (12.5 mm) from the end of pins over 1 in. (25 mm) in length. Minimum diameter shall be as shown on the drawing, determined by means of a "no-go" ring gage having a length of hole not greater than 0.125 in. (3.2 mm).
- 3.5.2 Maximum Diameter: Shall be not greater than shown on the drawing, determined by means of a "go" ring gage having length of hole not greater than 0.125 in. (3.18 mm).
- 3.5.3 Straightness: Shall be such that pins will pass freely through the appropriate ring gage constructed to meet the following requirements:
- 3.5.3.1 The maximum ID of the gage shall be equal to the maximum diameter shown on the drawing of the pin plus the straightness tolerance of Table II. The length of the gages shall depend on the straightness tolerance and shall be as follows:

	-	TABLE II	
Nominal Pin Leng	th Stra	aightness Tolerance	Length of Gage
Inches		Onch	Inches
Up to 1.000	, incl	0.007	0.995 - 1.005
Over 1.000 to 2.000	, incl 📈	0.10	1.995 - 2.005
Over 2.000	Click	0.13	2.995 - 3.005
	O,		

TABLE II (SI)

Nominal Pin Length	Straightness Tolerance	Length of Gage
Millimetres	Millimetre	Millimetres
Up to 25.40, incl	0.18	25.28 - 25.52
Over 25,40 to 50.80, incl	0.25	50.68 - 50.92
Over 50.80	0.33	76.08 - 76.32

4. QUALITY ASSURANCE PROVISIONS:

4.1 Responsibility for Inspection:

The vendor of pins shall supply all samples and shall be responsible for performing all required tests. Results of such tests shall be reported to the purchaser as required by 4.4. Purchaser reserves the right to perform such confirmatory testing as he deems necessary to ensure that the pins conform to the requirements of this specification.