

AEROSPACE MATERIAL **SPECIFICATION**

AMS6492

REV. A

Issued Revised 2009-09 2013-11

Superseding AMS6492

Steel Bars, Forgings, and Tubing 1.0Cr - 3.25Ni - 0.40Mo (0.17 - 0.22C) Aircraft Quality

(Composition similar to UNS K41910)

RATIONALE

AMS6492A results from a Five Year Review and update of this specification.

1. SCOPE

Form

This specification covers an aircraft-quality, low-alloy steel in the form of bars forgings, mechanical tubing, and forging

1.2 Application

These products have been used typically for carburized parts requiring high minimum core hardness with a narrow range, reduced distortion and subject to magnetic particle inspection standards, but usage is not limited to such applications.

APPLICABLE DOCUMENTS

The issue of the following documents in effect on the date of the purchase order forms a part of this specification to the extent specified herein. The supplier may work to a subsequent revision of a document unless a specific document issue is specified. When the referenced document has been cancelled and no superseding document has been specified, the last published issue of that document shall apply.

2.1 **SAE Publications**

Available from SAE International, 400 Commonwealth Drive, Warrendale, PA 15096-0001, Tel: 877-606-7323 (inside USA and Canada) or 724-776-4970 (outside USA), www.sae.org.

AMS2251 Tolerances, Low-Alloy Steel Bars

AMS2253 Tolerances, Carbon and Alloy Steel Tubing

AMS2259 Chemical Check Analysis Limits, Wrought Low-Alloy and Carbon Steels

AMS2301 Steel Cleanliness, Aircraft Quality, Magnetic Particle Inspection Procedure

SAE Technical Standards Board Rules provide that: "This report is published by SAE to advance the state of technical and engineering sciences. The use of this report is entirely voluntary, and its applicability and suitability for any particular use, including any patent infringement arising therefrom, is the sole responsibility of the user."

SAE reviews each technical report at least every five years at which time it may be revised, reaffirmed, stabilized, or cancelled. SAE invites your written comments and suggestions.

Copyright © 2013 SAE International

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of SAE.

TO PLACE A DOCUMENT ORDER: Tel: 877-606-7323 (inside USA and Canada)

Tel:

+1 724-776-4970 (outside USA) Fax: 724-776-0790

Email: CustomerService@sae.org

http://www.sae.org

SAE values your input. To provide feedback on this Technical Report, please visit http://www.sae.org/technical/standards/AMS6492A

SAE WEB ADDRESS:

AMS2370	Quality Assurance Sampling and Testing, Carbon and Low-Alloy Steel Wrought Products and Forging Stock	
AMS2372	Quality Assurance Sampling and Testing, Carbon and Low-Alloy Steel Forgings	
AMS2806	Identification, Bars, Wire, Mechanical Tubing, and Extrusions, Carbon and Alloy Steels and Corrosion and Heat-Resistant Steels and Alloys	
AMS2808	Identification, Forgings	
AS1182	Standard Stock Removal Allowance, Aircraft-Quality and Premium Aircraft-Quality Steel, Bars and Mechanical Tubing	

2.2 ASTM Publications

Available from ASTM International, 100 Barr Harbor Drive, P. O. Box C700, West Conshohocken, PA 19428-2959, Tel: 610-832-9585, www.astm.org.

ASTM A 255	Determining Hardenability of Steel
ASTM A 370	Mechanical Testing of Steel Products
ASTM E 381	Macroetch Testing Steel Bars, Billets, Blooms and Forgings.
ASTM E 112	Determining Average Grain Size
ASTM E 350	Chemical Analysis of Carbon Steel, Low-Alloy Steel, Silicon Electrical Steel, Ingot Iron, and Wrought Iron
ASTM E 384	Knoop and Vickers Hardness of Materials

3. TECHNICAL REQUIREMENTS

3.1 Composition

Shall conform to the following percentages by weight shown in Table 1, determined by wet chemical methods in accordance with ASTM E 350, by spectrochemical methods, or by other analytical methods acceptable to purchaser.

Element min max Carbon 0.17 0.22 Manganese 0.30 0.60 Silicon 0.40 **Phosphorus** 0.020 Sulfur 0.015 Chromium 0.80 1.20 Nickel 3.00 3.50 Molybdenum 0.30 0.60

TABLE 1 – COMPOSITION

3.1.1 Check Analysis

Composition variations shall meet the applicable requirements of AMS2259.

3.2 Condition

The product shall be supplied in the following condition; hardness and tensile strength shall be determined in accordance with ASTM A 370:

3.2.1 Bars

3.2.1.1 Bars 0.500 inch (12.70 mm) and Under in Nominal Diameter or Least Distance Between Parallel Sides

Cold finished having tensile strength not higher than 138 ksi (950 MPa) or hardness not higher than 285 HB or equivalent (See 8.2).

3.2.1.2 Bars over 0.500 inch (12.70 mm) in Nominal Diameter or Least Distance Between Parallel Sides

Hot finished and annealed, unless otherwise ordered, having hardness not higher than 285 HB or equivalent (See 8.2). Bars ordered cold finished may have hardness as high as 310 HB or equivalent (See 8.2).

3.2.1.3 Bars shall not be cut from plate.

3.2.2 Forgings

As ordered.

3.2.3 Mechanical Tubing

Cold finished, unless otherwise ordered, having hardness not higher than 285 HB, or equivalent (See 8.2). Tubing ordered hot finished and annealed or tempered shall have hardness not higher than 285 HB or equivalent (See 8.2).

3.2.4 Forging Stock

As ordered by the forging manufacturer.

3.3 Properties

The product shall conform to the following requirements; hardness, tensile, and impact testing shall be performed in accordance with ASTM A 370:

3.3.1 Macrostructure

Visual examination of transverse full cross-sections from bars, billets, tube rounds, and forging stock, etched in hot hydrochloric acid in accordance with ASTM E 381, shall show no pipe or cracks. Porosity, segregation, inclusions, and other imperfections shall be no worse than the macrographs of ASTM E 381 shown in Table 2.

TABLE 2 - MACROSTRUCTURE LIMITS

Cross-Section Area	Cross-Section Area	
Square Inches	Square Centimeters	Macrographs
Up to 36, incl	Up to 232, incl	S2 - R1 - C2
Over 36 to 133, incl	Over 232 to 858, incl	S2 - R2 - C3
Over 133	Over 858	Note 1

Note 1 Limits for larger sizes shall be agreed upon by purchaser and vendor. The purchaser shall have written approval of the agreement from the cognizant engineering organization.

3.3.1.1 If tubes are produced directly from ingots or large blooms, transverse sections may be taken from the tubes rather than tube rounds. Macroetch standards for such tubes shall be agreed upon by purchaser and vendor.

3.3.2 Average Grain Size

Shall be ASTM No. 5 or finer determined in accordance with ASTM E 112.

3.3.3 Response to Heat Treatment

3.3.3.1 Bars, Forgings and Mechanical Tubing

Specimens from the product shall have the properties shown in Table 3 after being austenitized by heating to 1515 °F \pm 25 (824 °C \pm 14), holding at heat for a time commensurate with section thickness, heating equipment, and procedure used, oil quenched to below 90 °F (32 °C) followed by tempering for 2 hours minimum at 285 °F \pm 10 (141 °C \pm 6).

TABLE 3 - MINIMUM LONGITUDINAL MECHANICAL PROPERTIES

PROPERTY	VALUE
Tensile Strength	196 ksi (1350 MPa)
Yield Strength 0.2%	145 ksi (1000 MPa)
Elongation in 4D	10%
Charpy V-notch	37 ft-lb (50 J)

3.3.3.2 Forging Stock

When a sample of stock is forged to a test coupon and heat treated as in 3.3.3.1, specimens taken from the heat treated coupon shall conform to the requirements of 3.3.3.1. If specimens taken from the stock after heat treatment as in 3.3.3.1 conform to the requirements of 3.3.3.1, tests shall be accepted as equivalent to tests of a forged coupon.

3.4 Quality

The product, as received by purchaser, shall be uniform in quality and condition, sound, and free from foreign materials and from imperfections detrimental to usage of the product.

- 3.4.1 Steel shall be aircraft-quality conforming to AMS2301.
- 3.4.2 Product ordered hot finished or cold finished or ground, turned, or polished shall, after removal of the standard stock removal allowance in accordance with AS1182, be free from seams, laps, tears, and cracks open to the machined, ground, turned, or polished surface.
- 3.4.3 Grain flow of die forgings, except in areas that contain flash-line end grain, shall follow the general contour of the forgings showing no evidence of reentrant grain flow.
- 3.5 Tolerances
- 3.5.1 Bars

In accordance with AMS2251

3.5.2 Mechanical Tubino

In accordance with AMS2253.

4. QUALITY ASSURANCE PROVISIONS

4.1 Responsibility for inspection

The vendor of the product shall supply all samples for vendor's tests and shall be responsible for the performance of all required tests. Purchaser reserves the right to sample and to perform any confirmatory testing deemed necessary to ensure that the product conforms to specified requirements.