

AEROSPACE MATERIAL Society of Automotive Engineers, Inc. SPECIFICATION

AMS 6357E

Superseding AMS 6357D

Issued Revised 10/1/45 1/15/76

STEEL SHEET, STRIP, AND PLATE 0.50Cr - 0.55Ni - 0.25Mo (0.33 - 0.38C) (SAE 8735)

SCOPE:

400 COMMONWEALTH DRIVE, WARRENDALE, PA. 15096

- Form: This specification covers an aircraft-quality, low alloy steel in the form of sheet, strip, and plate.
- 1.2 Application: Primarily for general use where welding and moderate tensile properties are required. Sheet and strip are extensively used where minimum tensile strength of 180,000 psi (1241 MPa) is required in sections up to 0.125 in. (3.18 mm) thick and proportionately lower strength is required in heavier thicknesses.
- APPLICABLE DOCUMENTS: The following publications form a part of this specification to the extent specified herein. The latest issue of Aerospace Material Specifications (AMS) shall apply. The applicable issue of other documents shall be as specified in AMS 2350.
- 2.1 SAE Publications: Available from Society of Automotive Engineers, Inc., 400 Commonwealth Drive, Warrendale, PA 15096.
- 2.1.1 Aerospace Material Specifications:

AMS 2252 - Tolerances, Alloy Steel Sheet, Strip, and Plate

AMS 2259 - Chemical Check Analysis Limits, Wrought Low-Alloy and Carbon Steels

AMS 2301 - Aircraft Quality Steet Cleanliness, Magnetic Particle Inspection

Procedure

AMS 2350 - Standards and Test Methods

AMS 2370 - Quality Assurance Sampling of Carbon and Low Alloy Steels,

Wrought Products Except Forgings and Forging Stock

ASTM Publications Available from American Society for Testing and Materials, 1916 Race Street, Philadelphia, PA 19103.

ASTM A370 Mechanical Testing of Steel Products

ASTM E112 - Estimating the Average Grain Size of Metals

ASTM E350 - Chemical Analysis of Carbon Steel, Low-Alloy Steel, Silicon Electrical Steel, Ingot Iron, and Wrought Iron

- Government Publications: Available from Commanding Officer, Naval Publications and Forms Center, 5801 Tabor Avenue, Philadelphia, PA 19120.
- 2.3.1 Federal Standards:

Federal Test Method Standards No. 151 - Metals; Test Methods

2.3.2 Military Standards:

MIL-STD-163 - Steel Mill Products, Preparation for Shipment and Storage

AMS 6357E

3. TECHNICAL REQUIREMENTS:

3.1 Composition: Shall conform to the following percentages by weight, determined by wet

chemical methods in accordance with ASTM E350, by spectrographic methods in accordance with Federal Test Method Standard No. 151, Method 112, or by other approved analytical methods:

min	max
0.33 -	0.38
0.75 -	1.00
0.15 -	0.35
	0.025
	0.025
0.40 -	0.60
0.40 -	0.70
0.20 -	0.30
	0.35
	0.33 - 0.75 - 0.15 - 0.40 - 0.40 -

3.1.1 Check Analysis: Composition variations shall meet the applicable requirements of AMS 2259.

3.2 <u>Condition</u>: The product shall be supplied in the following condition; hardness shall be determined in accordance with ASTM A370:

3.2.1 Sheet and Strip: Cold finished, bright or atmosphere annealed, and descaled if necessary; or hot rolled, annealed if necessary, and descaled; having hardness not higher than 98 HRB or equivalent.

3.2.2 Plate: Hot rolled, annealed if necessary, and descaled, having hardness not higher than 24 HRC or equivalent.

3.3 <u>Properties:</u> The product shall conform to the following requirements; hardness and bend testing shall be performed in accordance with ASTM A370:

3.3.1 Grain Size: Predominantly 5 or finer with occasional grains as large as 3 permissible, ASTM E112, McQuaid-Ehn test.

3.3.2 Decarburization

3.3.2.1 Product Under 0.045 In. (1.14 mm) in Nominal Thickness: The method of test and the allowance shall be as agreed upon by purchaser and vendor.

3.3.2.2 Product 0.045 to 0.375 In. (1.14 to 9.52 mm), Excl, in Nominal Thickness:

3.3.2.2.1 Specimens: Shall be the full thickness of the product except that specimens from plate over 0.249 in. (6.32 mm) thick shall be slices approximately 0.250 in. (6.35 mm) thick cut parallel to and preserving one original surface of the plate. Recommended specimen size is 1 x 4 in. or 25 x 100 millimetres.

2.3.2.2.2 Procedure: Specimens shall be hardened by austenitizing and quenching; preferably, they shall not be tempered but, if tempered, the tempering temperature shall be not higher than 300°F (149°C). During heat treatment, specimens shall be protected by suitable atmosphere or medium or by suitable plating to prevent carburization or further decarburization. Protective plating, if used, shall then be removed from specimens of product 0.045 to 0.250 in. (1.14 to 6.35 mm), excl, in nominal thickness and a portion of the specimen shall be ground to a depth of 0.050 in. (1.27 mm) or one-half thickness, whichever is less. Specimens from product 0.250 to 0.375 in. (6.35 to 9.52 mm), excl, in nominal thickness shall be ground to remove 0.020 in. (0.51 mm) of metal from the original surface of the plate and a portion of the specimen shall be further ground to a depth of at least one-third the original thickness of the specimen. At least three Rockwell hardness readings shall be taken on each prepared step and each group of readings averaged.

3.3.2.2.3 Allowance:

- 3.3.2.2.3.1 Product 0.045 to 0.250 In. (1.14 to 6.35 mm), Excl, in Nominal Thickness: The product shall show no layer of complete decarburization, determined microscopically at a magnification not exceeding 100X. It shall also be free from partial decarburization to the extent that the difference in hardness between the original surface and the portion ground as in 3.3.2.2.2 shall be not greater than 2 units on the Rockwell "A" scale.
- 3.3.2.2.3.2 Product 0.250 to 0.375 In. (6.35 to 9.52 mm), Excl, in Nominal Thickness: Shall be free from decarburization to the extent that the difference in hardness between the two prepared steps shall be not greater than 3 units on the Rockwell "A" scale.
- 3.3.2.3 Product 0.375 In. (9.52 mm) and Over in Nominal Thickness: The total decarburization, determined microscopically at a magnification not exceeding 100X on the as-supplied plate, shall be not greater than shown in Table I.

TABLE I

Nominal Thickness	Depth of Decarburization
Inches	Inch
0.375 to 0.500, incl	0.015
Over 0.500 to 1.000, incl	0.025
Over 1.000 to 2.000, incl	0.035
Over 2.000	As agreed upon

TABLE I (SI)

Nominal Thickness	Depth of Decarburization
Millimetres	Millimetre
9.52 to 12.70, incl	0.38
Over 12.70 to 25.50, incl	0.64
Over 25.40 to 50.80, incl	0.89
Over 50.80	As agreed upon

3.3.3 Bending: Product 0.749 in. (19.02 mm) and under in nominal thickness shall withstand, without cracking, bending through the angle indicated in Table II around a diameter equal to the nominal thickness of the product with axis of bend parallel to the direction of rolling:

TABLE II

Nomin	al Thickness Inch	Bend Angle Deg
-	to 0.249, incl to 0.749, incl	180 90

TABLE II (SI)

Nominal Thickness Millimetres	Bend Angle Rad	(0
Up to 6.32, incl Over 6.32 to 19.02, incl	3. 14 1. 57	

- 3.3.3.1 Bending requirements for plate over 0.749 in. (19.02 mm) in nominal thickness shall be as agreed upon by purchaser and vendor.
- 3.3.4 Response to Heat Treatment: Product 0.499 in. (12.67 mm) and under in nominal thickness shall have tensile strength not lower than 125,000 psi (862 MPa) or hardness not lower than 26 HRC or equivalent after being heated to 1525°F ± 10 (829.4°C ± 5.6), held at heat for 15 30 min., quenched in oil, and tempered by heating to 1000°F ± 10 (537.8°C ± 5.6), holding at heat for not less than 30 min., and cooling in air.
- 3.4 Quality:
- 3.4.1 Steel shall be aircraft quality conforming to AMS 2301.
- 3.4.2 The product shall be uniform in quality and condition, clean, sound, and free from foreign materials and from internal and external imperfections detrimental to fabrication or to performance of parts.
- 3.5 <u>Tolerances</u>: Unless otherwise specified, tolerances shall conform to all applicable requirements of AMS 2252.
- 4. QUALITY ASSURANCE PROVISIONS:
- 4.1 Responsibility for Inspection: The vendor of the product shall supply all samples and shall be responsible for performing all required tests. Results of such tests shall be reported to the purchaser as required by 4.4. Purchaser reserves the right to perform such confirmatory testing as he deems necessary to ensure that the product conforms to the requirements of this specification.
- 4.2 <u>Classification of Tests</u>: Tests to determine conformance to all technical requirements of this specification are classified as acceptance or routine control tests.
- Ø 4.3 Sampling: Shall be in accordance with AMS 2370.