

AEROSPACE MATERIAL SPECIFICATION

SAE,

AMS 5709G

Issued Revised Reaffirmed JUL 1963 AUG 2000 APR 2006

Superseding AMS 5709F

Nickel Alloy, Corrosion and Heat Resistant, Bars and Forgings 58Ni - 19.5Cr - 13.5Co - 4.3Mo - 3.0Ti - 1.4Al - 0.05Zr - 0.006B Consumable Electrode or Vacuum Induction Melted 1975 °F (1079 °C) Solution, Stabilization, and Precipitation Heat Treated

UNS N07001

1. SCOPE:

1.1 Form:

This specification covers a corrosion and heat resistant nickel alloy in the form of bars, forgings, and forging stock.

1.2 Application:

These products have been used typically for parts, such as pins, nuts, and turbine blades, requiring high strength up to 1500 °F (816 °C) and oxidation resistance up to 1750 °F (954 °C), but usage is not limited to such applications.

2. APPLICABLE DOCUMENTS:

The issue of the following documents in effect on the date of the purchase order forms a part of this specification to the extent specified herein. The supplier may work to a subsequent revision of a document unless a specific document issue is specified. When the referenced document has been canceled and no superseding document has been specified, the last published issue of that document shall apply.

2.1 SAE Publications:

Available from SAE, 400 Commonwealth Drive, Warrendale, PA 15096-0001.

AMS 2261 Tolerances, Nickel, Nickel Alloy, and Cobalt Alloy Bars, Rods, and Wire

MAM 2261 Tolerances, Metric, Nickel, Nickel Alloy, and Cobalt Alloy Bars, Rods, and Wire

AMS 2269 Chemical Check Analysis Limits, Nickel, Nickel Allovs and Cobalt Allovs

AMS 2371 Quality Assurance Sampling and Testing, Corrosion and Heat Resistant Steels and

Alloys, Wrought Products and Forging Stock

AMS 2374 Quality Assurance Sampling and Testing, Corrosion and Heat Resistant Steel and

Alloy Forgings

SAE Technical Standards Board Rules provide that: "This report is published by SAE to advance the state of technical and engineering sciences. The use of this report is entirely voluntary, and its applicability and suitability for any particular use, including any patent infringement arising therefrom, is the sole responsibility of the user."

FAX: (724) 776-0243

FAX: (724) 776-0790

SAE reviews each technical report at least every five years at which time it may be reaffirmed, revised, or cancelled. SAE invites your written comments and suggestions.

2.1 (Continued):

AMS 2750 Pyrometry

AMS 2806 Identification, Bars, Wire, Mechanical Tubing, and Extrusions, Carbon and Alloy

Steels and Corrosion and Heat Resistant Steels and Alloys

AMS 2808 Identification, Forgings

2.2 ASTM Publications:

Available from ASTM, 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959.

ASTM E 18 Rockwell Hardness and Rockwell Superficial Hardness of Metallic Materials

ASTM E 139 Conducting Creep, Creep-Rupture, and Stress-Rupture Tests of Metallic Materials

ASTM E 354 Chemical Analysis of High-Temperature, Electrical, Magnetic, and Other Similar Iron,

Nickel, and Cobalt Alloys

3. TECHNICAL REQUIREMENTS:

3.1 Composition:

Shall conform to the percentages by weight shown in Table 1, determined by wet chemical methods in accordance with ASTM E 354, by spectrochemical methods, or by other analytical methods acceptable to purchaser.

TABLE 1 - Composition

Element	min	max
Carbon	0.02	0.10
Manganese		0.10
Silicon		0.15
Phosphorus		0.015
Sulfur		0.015
Chromium	18.00	21.00
Cobalt	12.00	15.00
Molybdenum	3.50	5.00
Titanium	2.75	3.25
Aluminum	1.20	1.60
Zirconium	0.02	0.08
Boron	0.003	0.010
Iron		2.00
Copper		0.10
Lead		0.0005 (5 ppm)
Bismuth		0.00003 (0.3 ppm)
Selenium		0.0003 (3 ppm)
Nickel	remainder	

3.1.1 Check Analysis: Composition variations shall meet the applicable requirements of AMS 2269.

3.2 Melting Practice:

Alloy shall be produced by multiple melting using consumable electrode practice in the remelt cycle or shall be induction melted under vacuum.

3.3 Condition:

The product shall be supplied in the following condition:

- 3.3.1 Bars: Hot finished and descaled, solution, stabilization, and precipitation heat treated. Round bars shall be ground or turned.
- 3.3.2 Forgings: Solution, stabilization, and precipitation heat treated
- 3.3.3 Forging Stock: As ordered by the forging manufacturer.
- 3.4 Heat Treatment:

Bars and forgings shall be heat treated as follows; pyrometry shall be in accordance with AMS 2750.

- 3.4.1 Solution Heat Treatment: Heat to 1975 = ± 25 (1079 °C ± 14), hold at heat for 4 hours ± 0.5, and cool at a rate equivalent to an air cool or faster.
- 3.4.2 Stabilization Heat Treatment: Heat to 1550 °F \pm 15 (843 °C \pm 8), hold at heat for 4 hours \pm 0.5, except that blade forgings shall be held at heat for 24 hours \pm 1, and cool in air.
- 3.4.3 Precipitation Heat Treatment: Heat to 1400 °F ± 15 (760 °C ± 8), hold at heat for 16 hours ± 1, and cool in air.
- 3.5 Properties:

The product shall conform to the following requirements:

- 3.5.1 Bars and Forgings:
- 3.5.1.1 Hardness: Shall be 32 to 42 HRC, or equivalent (See 8.2), determined in accordance with ASTM E 18.
- 3.5.1.2 Grain Size Uniformity: Uniformly mixed grain sizes are permissible. Segregated areas of coarse or fine grains shall not exceed 20% of any field at 100X magnification. Standards for acceptance may be agreed upon by purchaser and vendor.

- 3.5.1.3 Stress-Rupture Properties at 1500 °F (816 °C): A tensile specimen, maintained at 1500 °F ± 3 (816 °C ± 2) while a load sufficient to produce an initial axial stress of 47.5 ksi (328 MPa) or higher is applied continuously, shall not rupture in less than 23 hours. The test shall be continued to rupture without change of load. Elongation after rupture, measured at room temperature, shall be not lower than 8% in 4D. Tests shall be conducted in accordance with ASTM E 139.
- 3.5.1.3.1 The test of 3.5.1.3 may be conducted using incremental loading. In such case, the load required to produce an initial axial stress of 47.5 ksi (328 MPa) or higher shall be used to rupture or for 23 hours, whichever occurs first. After the 23 hours and at intervals of 8 to 16 hours, preferably 8 to 10 hours, thereafter, the stress shall be increased in increments of 5.0 ksi (34.5 MPa). Time to rupture and elongation requirements shall be as specified in 3.5.1.3.
- 3.5.2 Forging Stock: When a sample of stock is forged to a test coupon and heat treated as in 3.4, specimens taken from the heat treated coupon shall conform to the requirements of 3.5.1.1, 3.5.1.2, and 3.5.1.3. If specimens taken from the stock after heat treatment as in 3.4 conform to the requirements of 3.5.1.1, 3.5.1.2, and 3.5.1.3, the tests shall be accepted as equivalent to tests of a forged coupon.
- 3.6 Quality:

The product, as received by purchaser, shall be uniform in quality and condition, sound, and free from foreign materials and from imperfections detrimental to usage of the product.

- 3.6.1 Grain flow of die forgings, except in areas which contain flash-line end grain, shall follow the general contour of the forgings showing no evidence of re-entrant grain flow.
- 3.7 Tolerances:

Bars shall conform to alkapplicable requirements of AMS 2261 or MAM 2261.

- 4. QUALITY ASSURANCE PROVISIONS:
- 4.1 Responsibility for Inspection:

The vendor of the product shall supply all samples for vendor's tests and shall be responsible for the performance of all required tests. Purchaser reserves the right to sample and to perform any confirmatory testing deemed necessary to ensure that the product conforms to specified requirements.

- 4.2 Classification of Tests:
- 4.2.1 Acceptance Tests: The following are acceptance tests and shall be performed on each heat or lot as applicable:
- 4.2.1.1 Composition (3.1) of each heat.

AIVIO 37 U3G AIVIO 37 U3G	AMS 5709G	SAE	AMS 5709G
---------------------------	-----------	-----	-----------

- 4.2.1.2 Hardness (3.5.1.1), grain size uniformity (3.5.1.2), and stress-rupture properties (3.5.1.3) of each lot of bars and forgings.
- 4.2.1.3 Tolerances (3.7) of bars.
- 4.2.2 Periodic Tests: Tests of forging stock (3.5.2) to demonstrate ability to develop required properties and grain flow of die forgings (3.6.1) are periodic tests and shall be performed at a frequency selected by the vendor unless frequency of testing is specified by purchaser.
- 4.3 Sampling and Testing:

Shall be as follows:

- 4.3.1 Bars and Forging Stock: In accordance with AMS 2371, with stress rupture specimens oriented as specified for tensile specimens.
- 4.3.2 Forgings: In accordance with AMS 2374, with stress rupture specimens oriented as specified for tensile specimens.
- 4.4 Reports:

The vendor of bars and forgings shall furnish with each shipment a report showing the results of tests for chemical composition of each heat and for hardness, grain size uniformity, and stress-rupture properties of each lot and stating that the product conforms to the other technical requirements. This report shall include the purchase order number, heat and lot numbers, AMS 5709G, size, and quantity. If forgings are supplied, the size and melt source of stock used to make the forgings shall also be included.

4.5 Resampling and Retesting:

Shall be as follows:

- 4.5.1 Bars and Forging Stock: In accordance with AMS 2371, with stress rupture specimens oriented as specified for tensile specimens.
- 4.5.2 Forgings: In accordance with AMS 2374, with stress rupture specimens oriented as specified for tensile specimens.
- 5. PREPARATION FOR DELIVERY:
- 5.1 Sizes:

Except when exact lengths or multiples of exact lengths are ordered, straight bars will be acceptable in mill lengths of 6 to 24 feet (1.8 to 7.3 m) but not more than 25% of any shipment shall be supplied in lengths of 6 to 9 feet (1.8 to 2.7 m) except that for bars weighing over 25 pounds/per foot (37.2 kg/m), short lengths down to 2 feet (610 mm) may be supplied.