

AEROSPACE INFORMATION 400 Commonwealth Drive, Warrendale, PA 15096-0001 **REPORT**

SAE AIR984

REV. C

Issued Reaffirmed Revised

1969-04 1989-05 1997-05

Superseding AIR984B

Submitted for recognition as an American National Standard

Air Bleed Objective for Helicopter Turbine Engines

FOREWORD

Changes in this revision are format/editorial only.

1. SCOPE:

This SAE Aerospace Information Report (AIR) defines the helicopter bleed air requirements which may be obtained through compressor extraction and is intended as a guide to engine designers.

2. REFERENCES:

There are no referenced publications specified herein

- 3. GENERAL:
- 3.1 Bleed air on helicopter installations may be used as a source of heated air for the following
 - a. Engine inlet de-icing and anti-icing
 - b. Cabin conditioning and pressurization
 - Windshield de-fogging de-frosting, and anti-icing
- A secondary use is for a small power source for driving one to two accessories and possible cross starting for multi-engine installation.

SAE Technical Standards Board Rules provide that: "This report is published by SAE to advance the state of technical and engineering sciences. The use of this report is entirely voluntary, and its applicability and suitability for any particular use, including any patent infringement arising therefrom, is the sole responsibility of the user."

SAE reviews each technical report at least every five years at which time it may be reaffirmed, revised, or cancelled. SAE invites your written comments and suggestions.

SAE AIR984 Revision C

4. DISCUSSION:

- 4.1 It is recognized that, in general, compressor bleed air is an inefficient source of power. It is necessary, therefore, to limit bleed extraction to those uses in which an overall advantage to the helicopter will accrue. As a source of energy for those applications listed in and, bleed air performs a service that could otherwise require considerably more equipment with increased weight, cost, size, and complexity; otherwise, its use should be limited to the conditions where the reduction in engine power is not detrimental to helicopter performance. This document is not all encompassing and the engine manufacturer should consider specific bleed air requirements for engine ground idle operation with the helicopter rotor locked.
- If the use of bleed air for cabin conditioning during hot weather proves desirable to overall helicopter 4.2 optimization, it is recommended that engine designers consider anticipated compressor bleed air Withefull PDF need.
- 5. DEFINITIONS:

5.1 BTU/hour (KW) = $W_{BL} \times C_p (T_{BL} - T_{ambient})$

where:

= Weight of bleed air in pounds/hour (kg/s) W_{BL}

= Specific heat at constant pressure in BTU/lb - °F (KJ/kg - °C) C_{p}

= Bleed port air temperature, °F (°C) T_{BL} = Freestream air temperature, °F (°C)

Bleed Energy = BTU/hour (KW)

- 5.2 Assume sea level or note if otherwise.
- 6. QUALITATIVE OBJECTIVE
- To be acceptable for the purpose of cabin conditioning and pressurization, the bleed air must be free 6.1 of detrimental contamination. The engine manufacturer should address the problem of bleed air contamination resulting from compressor bearing seal failures. This requirement is imposed on FAA certificated helicopters by FAR 29.831 (b) and (d). Approved test methods for assaying air samples may be obtained from one of the following:
 - a. American Industrial Hygiene Association, 14125 Prevost, Detroit, Michigan Request "Hygiene Guide for (name of substance)."
 - b. "The Chemistry of Industrial Toxicology," 2nd edition Henry B. Elkins, John Wiley and Son, Inc., 1959, Chapter 17, pp 280-416, Analytical Methods and Procedures.
 - c. "Analytical Chemistry of Industrial Poisons, Hazards and Solvents," M. B. Jacobs.
 - d. "Chemical Methods in Industrial Hygiene," F. H. Goldman, M. B. Jacobs, Interscience Publisher, 1953.
 - e. MIL-E-8593A.

SAE AIR984 Revision C

7. QUANTITATIVE OBJECTIVE:

- 7.1 The primary requirement for bleed air is for environmental control. It is expedient to specify the requirement in terms of BTU per hour per horsepower. This leaves the pressure, temperature, and mass flow at which bleed air is supplied to the discretion of the engine designer. It is desirable to provide the same bleed energy determined from the curves in Figure at all gas generator operating conditions down to flight idle power (i.e. 100% power turbine speed zero output torque). Specific stated engine operating conditions may require other considerations. Currently, helicopter environmental control units require bleed air at entry pressure levels of 3 to 4 atmospheres.
- 7.2 Figure shows a range of heat requirements as a function of the ambient temperature. Curve A is a minimum requirement for de-icing or anti-icing for an airframe induction system. Curve B shows the relationship of bleed energy requirements for cabin conditioning.
- 7.3 It is considered that the objective for future engine designs is to provide bleed capacity described by the total of curves A and B. The quantities of energy recommended by curves A and B may collectively amount to an impractically large flow of compressor bleed air when applied to certain low pressure ratio engines. In such cases, it is recommended that the engine designer provide at least sufficient air for curve A.
- 7.4 Generally, the extraction of bleed air for the purpose of driving accessories is not recommended, principally for the reason that helicopter hot day performance is affected adversely. Satisfactory installation may be possible in the case of accessories requiring bleed air only while on the ground or where the power required is very small. It is not considered necessary to stipulate an additional increment of bleed air for these purposes beyond the heating requirements. Any continuous power demand for running accessories is considered an individual installation problem and beyond the scope of this information report.
- 7.5 The engine manufacturer should take the responsibility of precluding surge or other engine malfunctions anywhere within the specified bleed air extraction range. It is desirable that the engine be provided with automatic safeguards to preclude detrimental engine overtemperature during bleed air usage.
- 7.6 It is desired that the engine manufacturer provide a single bleed port at each compressor station for which bleed is available. A single bleed port minimizes the complexity of the helicopter pneumatic plumbing; therefore, full bleed capability should be available from any single port.
- 7.7 The engine manufacturer should establish a maximum bleed flow allowable for the failed airframe plumbing condition.

SAE AIR984 Revision C

8. NOTES:

The change bar (I) located in the left margin is for the convenience of the user in locating areas where technical revisions, not editorial changes, have been made to the previous issue of this document. An (R) symbol to the left of the document title indicates a complete revision of the document.

SAEMORM.COM. Click to view the full Polit of airosoft.

PREPARED BY SAE COMMITTEE S-12, HELICOPTER POWERPLANT