NFPA 386

PORTABLE SHIPPING TANKS FOR FLAMMABLE & COMBUSTIBLE LIQUIDS 1979

Copyright @ 1979

All Rights Reserved

NATIONAL FIRE PROTECTION ASSOCIATION, INC.

470 Atlantic Avenue, Boston, MA 02210

NOTICE

All questions or other communications relating to this document should be sent only to NFPA Headquarters, addressed to the attention of the Committee responsible for the document.

For information on obtaining Formal Interpretations of the document, proposing Tentative Interim Amendments, proposing amendments for Committee consideration, and appeals on matters relating to the content of the document, write to the Assistant Vice President — Standards, National Fire Protection Association, 470 Atlantic Avenue, Boston, MA 02210.

Licensing Provision — This document is copyrighted by the National Fire Protection Association (NFPA).

- 1. Adoption by Reference Public authorities and others are urged to reference this document in laws, ordinances, regulations, administrative orders or similar instruments. Any deletions, additions and changes desired by the adopting authority must be noted separately. Those using this method are requested to notify the NFPA (Attention: Assistant Vice President Standards) in writing of such use. The term "adoption by reference" means the citing of title and publishing information only.
- 2. Adoption by Transcription A. Public authorities with law-making or rule-making powers only, upon written notice to the NFPA (Attention: Assistant Vice President Standards), will be granted a royalty-free license to print and republish this document in whole or in part, with changes and additions, if any, noted separately, in laws, ordinances, regulations, administrative orders or similar instruments having the force of law, provided that: (1) due notice of NFPA's copyright is contained in each law and in each copy thereof; and, (2) that such printing and republication is limited to numbers sufficient to satisfy the jurisdiction's law-making or rule-making process. B. Public authorities with advisory functions and all others desiring permission to reproduce this document or its contents in whole or in part in any form shall consult the NFPA.

All other rights, including the right to vend, are retained by NFPA.

(For further explanation, see the Policy Concerning the Adoption, Printing and Publication of NFPA Documents which is available upon request from the NFPA.)

Statement on NFPA Procedures

This material has been developed under the published procedures of the National Fire Protection Association, which are designed to assure the appointment of technically competent Committees having balanced representation. While these procedures assure the highest degree of care, neither the National Fire Protection Association, its members, nor those participating in its activities accepts any liability resulting from compliance or noncompliance with the provisions given herein, for any restrictions imposed on materials or processes, or for the completeness of the text.

NFPA has no power or authority to police or enforce compliance with the contents of this document and any certification of products stating compliance with requirements of this document is made at the peril of the certifier.

See Official NFPA Definitions at the back of this pamphlet.

© 1979 NFPA, All Rights Reserved

Standard for Portable Shipping Tanks for Flammable and Combustible Liquids

NFPA 386 - 1979

1979 Edition of NFPA 386

This 1979 edition of NFPA 386, Standard for Portable Shipping Tanks for Flammable and Combustible Liquids, was prepared by the Technical Committee on Transportation of Flammable Liquids and was adopted by the National Fire Protection Association, Inc. on November 13, 1979, at its Fall Meeting in Phoenix, Arizona. It was released by the Standards Council for publication on December 3, 1979.

Origin and Development of NFPA 386

This standard was first officially adopted in 1970, and revised in 1974. Amendments to this edition, other than editorial, are indicated by lines in the margin of the pages in which they appear.

Correlating Committee on Flammable Liquids

Paul C. Lamb, Chairman Englewood, NJ

Martin F. Henry, † Secretary National Fire Protection Association

G. E. Cain, Hercules Inc. (Rep. Manufacturing Chemists Association)

Donald M. Johnson, Standard Oil Company of California (Rep. Western Oil & Gas Association)

F. Owen Kubias, Glidden Durkee Div., SCM Corp.

Steven Landon, Washex Machinery Corp. (Rep. Laundry-Cleaners Allied Trades Association)

William R. Rucinski, Department of State Police, MI

W. J. Smith, Underwriters Laboratories Inc. E. G. Sommer, Exxon Research & Engineering Company (Rep. American Petroleum Institute)

Nonvoting Ing. Gert Magnus, Ph.D, Branddirektor

†Nonvoting

Technical Committee on Transportation of Flammable Liquids

William R. Rucinski, Chairman
Department of State Police, MI
(Rep. Fire Marshals Association of North America)

Martin F. Henry,† Secretary National Fire Protection Association

- E. N. Ekstrand, Phillips Petroleum Company (Rep. American Petroleum Institute)
- R. M. Graziano, Association of American Railroads
- Clifford J. Harvison, National Tank Truck Carriers, Inc.
- Donald M. Johnson, Standard Oil Company of California (Rep. Western Oil & Gas Association)
- Oliver W. Johnson, Ph.D, Palo Alto, CA
- Harold T. Rock, Tennessee Eastman Company (Rep. Manufacturing Chemists Association)
- E. C. Sommer, Exxon Research & Engineering Company (Rep. American Petroleum Institute)
- Michael P. Wilson, American Insurance Association
- Robert W. Zube, Brown Tank Co. (Rep. Steel Tank Institute)

Alternates

- Gilbert L. Gerwatowski, Department of State Police (Alternate to W. R. Rucinski)
- W. M. Miller, American Petroleum Institute (Alternate to E. N. Ekstrand)
- A. B. Rosenbaum, III, National Tank Truck Carriers, Inc. (Alternate to C.-J. Harvison) P. J. Student, Association of American Railroads (Alternate to R. M. Graziano)

Nonvoting

David B. Goodman, U.S. Department of Transportation
Paul Seay, Department of Transportation

†Nonvoting

This list represents the membership at the time the Committee was balloted on the text of this edition. Since that time, changes in the membership may have occurred.

Contents

	er I General Provisions	386-	5
1-1	Scope and Application	386-	5
1-2	Definitions	386-	6
	er 2 Design and Construction of Portable Ship-		
ping	Tanks	386-	8
2-1	Basic Design	386-	8
2-2	Construction Materials	386-	8
2-3	Construction of Tanks	386-1	0
2-4	Tests	386 -1	0
Chapte	er 3 Appurtenances	386-1	1
3-1	Acceptability and Protection	386 -1	1
	Vents	386-1	
Chapte	er 4 Operation and Use	386-1	3
4-1	Filling and Emptying	386-1	3
4-2	Designation of Contents	386-1	
4-3	Transporting Vehicle	386 -1	

Standard for Portable Shipping Tanks for Flammable and Combustible Liquids

NFPA 386 — 1979

Chapter 1 General Provisions

1-1 Scope and Application.

- 1-1.1 This standard applies to portable shipping tanks with capacity larger than 60 gal (227.1 L) and not exceeding 660 gal (2498.1 L) used for the transportation of normally stable flammable and combustible liquids having a flash point below 200°F (93.4°C) and handled at temperatures below their boiling point.
 - NOTE: Normally stable materials are those having the relative capacity to resist changes in their chemical composition which would produce violent reactions or detonations despite exposure to air, water, heat, including the normal range of conditions encountered in handling, storage, or transportation. Unstable (reactive) flammable and combustible liquid shall mean a liquid which in the pure state or as commercially produced or transported will vigorously polymerize, decompose, condense, or will become self-reactive under conditions of shock, pressure, or temperature.
- 1-1.2 Attention is directed to the fact that cutback asphalts can have flash points in the range of Class I liquids. Also liquids having a flash point higher than 200°F (93.4°C) may assume the characteristics of lower flash point liquids when heated. Under such conditions it shall be appropriate to apply the provisions of this standard unless otherwise specifically exempted.
- 1-1.3 Additional safeguards may be necessary for portable shipping tanks used in the transportation of liquids having special properties which dictate safeguards in addition to those specified here.
- 1-1.4 This standard does not apply to:
- 1-1.4.1 The use of portable shipping tanks as storage containers. See Flammable and Combustible Liquids Code, NFPA 30, for information on storage.
- 1-1.4.2 Drums as defined by the United States Department of Transportation when constructed according to specifications of the United States Department of Transportation.

NOTE: For construction and use of portable shipping tanks exceeding 660 gal (2498.1 L) capacity, reference may be made to the specifications of the United States Department of Transportation or equivalent authorities having jurisdiction.

1-2 Definitions.

Asphalt. The term asphalt shall include other materials having similar characteristics when heated above ambient temperatures.

Baffle. A nonliquidtight partition in a portable shipping tank.

Compartment. A liquidtight division in a portable shipping tank.

Flash Point shall mean the minimum temperature of a liquid at which sufficient vapor is given off to form an ignitible mixture with the air near the surface of the liquid or within the tank used as determined by appropriate test procedure and apparatus as specified.

The flash point of liquids having a viscosity less than 45 SUS at 100°F (37.8°C) and a flash point below 200°F (93.4°C) shall be determined in accordance with the Standard Method of Test for Flash Point by the Tag Closed Tester, ASTM D-56-73.*

The flash point of liquids having a viscosity of 45 SUS or more at 100°F (37.8°C) or a flash point of 200°F (93.4°C) or higher shall be determined in accordance with the Standard Method of Test for Flash Point by the Pensky-Martens Closed Tester, ASTM D-93-73.*

Liquid shall mean, for the purpose of this standard, any material which has a fluidity greater than that of 300 penetration asphalt when tested in accordance with the Test for Penetration for Bituminous Materials, ASTM D-5-71.* When not otherwise identified, the term liquid shall include both flammable and combustible liquids.

Combustible Liquid shall mean a liquid having a flash point at or above 100°F (37.8°C).

Combustible liquids shall be subdivided as follows:

Class II Liquids shall include those having flash points at or above 100°F (37.8°C) and below 140°F (60°C).

Class IIIA Liquids shall include those having flash points at or above 140°F (60°C) and below 200°F (93.4°C).

Class IIIB Liquids shall include those having flash points at or above 200°F (93.4°C).

^{*}Available from American Society for Testing and Materials, 1916 Race St., Philadelphia, PA 19103.

This standard does not cover Class IIIB liquids (see 1-1.1). Where the term combustible liquids is used in this standard, it shall mean only Class II and Class IIIA liquids.

NOTE: The upper limit of 200°F (93.4°C) is given because the application of this standard does not extend to liquids having flash points above 200°F (93.4°C) and should not be construed as indicating that liquids with higher flash points are noncombustible.

Flammable Liquids shall mean a liquid having a flash point below 100°F (37.8°C) and having a vapor pressure not exceeding 40 psi (absolute) at 100°F (37.8°C) and shall be known as a Class I liquid.

Class I Liquids shall be subdivided as follows:

Class IA shall include those having flash points below 73°F (22.8°C) and having a boiling point below 100°F (37.8°C).

Class IB shall include those having flash points below 73°F (22.8°C) and having a boiling point at or above 100°F (37.8°C).

Class IC shall include those having flash points at or above 73°F (22.8°C) and below 100°F (37.8°C).

NOTE: This classification does not apply to:

1. Liquids without flash points that may be flammable under some conditions, such as certain halogenated hydrocarbons and mixtures containing petroleum fractions and hydrocarbons.

2. Mists, sprays or foams.

Portable Shipping Tank shall mean any container having a liquid capacity in excess of 60 U.S. gal (227.1 L) and not exceeding 660 U.S. gal (2498.1 L) which is readily movable from place to place either with or without special handling equipment and which is not permanently attached to its transporting vehicle.

Vapor Pressure shall mean the pressure measured in psi (kPa) absolute exerted by a volatile liquid, as determined by the Standard Method of Test for Vapor Pressure of Petroleum Products (Reid Method), ASTM D-323-72.*

^{*}Available from American Society for Testing and Materials, 1916 Race St., Philadelphia, PA 19103.

Chapter 2 Design and Construction of Portable Shipping Tanks

2-1 Basic Design.

- 2-1.1 Portable shipping tanks shall be of all welded construction and fabricated in accordance with good engineering practice.
- 2-1.2 Portable shipping tanks built under Specifications of the United States Department of Transportation shall be permitted when used in accordance with the conditions specified by the United States Department of Transportation.
- 2-1.3 The material used in the construction of tanks shall be compatible with the chemical characteristics of the liquid to be transported. In case of doubt, the supplier or producer of the liquid, or other competent authority, shall be consulted as to the suitability of the material to be used in construction.
- 2-1.4 Tank Mountings. Tanks shall be designed and fabricated with mountings to provide a secure base while in transit. "Skids" or similar devices shall be deemed to be included within this requirement.
- 2-1.5 Safety Factor. All tank mountings such as skids, fastenings, brackets, and lifting or hold-down lugs shall be permanently secured to tanks and shall be designed to withstand static loadings in any direction equal to twice the weight of the tank and attachments when filled with the product being carried without significant permanent deformation.

2-2 Construction Materials.

2-2.1 Steel used in the construction of mild steel (MS) tanks shall meet the following minimum requirements:

Yield Point, minimum	25,000 lbs per sq in.
Ultimate Strength, minimum	45,000 lbs per sq in.
Minimum Elongation, standard 2-in. (50.8-mm) sampl	e20 percent

2-2.2 Steel used in the construction of low alloy low carbon (high tensile) steel (HS) tanks shall meet the following minimum requirements:

Yield Point, minimum45,000	lbs per sq in.
Ultimate Strength, minimum	lbs per sq in.
Minimum Elongation, standard 2-in. (50.8-mm) sample	25 percent

2-2.3 Steel used in the construction of stainless steel (SS) tanks shall meet the following minimum requirements:

Yield Point, minimum	5,000 lbs per sq in.
Ultimate Strength, minimum	0,000 lbs per sq in.
Minimum Elongation, standard 2-in, (50.8-mm) sample	30 percent

2-2.4 Aluminum used in the construction of tanks of aluminum alloys for high strength welded construction shall meet the following minimum requirements:

All sheets for shells including tops and bottoms, baffles, and bulkheads of portable shipping tanks shall be of aluminum alloys (commercial designation) 5052, 5454, 5154, 5086, 5254, or 5652, conforming to American Society for Testing and Materials Specification B209-73.* All bulkheads, baffles, tops and bottoms and other shell stiffeners may use O temper (annealed) or stronger tempers. All shells shall be of H32 temper or H34 temper, except that when shell thicknesses of 0.250 in. or thicker are used, the H112 temper is additionally permitted.

2-2.5 Material thickness shall not be less than shown in the following table:

	Manf. Std. Gage Number**				Approx. Thick. Decimal In.		
	Gage No. MS	Approx. Thick. Deci- mals of In.	Gage No. HS	Approx. Thick. Deci- mals of In.	Gage No. SS	Approx. Thick. Deci- mals of In.	AL
Cylindrical			7			_	
120-300	13	0.0897	14	0.0747	14	0.0747	.090
301÷450	13	0.0897	14	0.0747	14	0.0747	.125
451-660	11	0.1196	12	0.1046	12	0.1046	.125
Bottoms of vertical							
and ends of hori-	_		_				
zontal tanks	7	0.1793	7	0.1793	10	0.1345	.250
Tops of vertical	_						
tanks	13	0.0897	14	0.0747	14	0.0747	.125
Cubical Tanks Sides and Tops							
120-300	11	0.1196	12	0.1046	14	0.0747	.250
301-500	9	0.1495	10	0.1345	12	0.1046	.250
501-660	7	0.1793	7	0.1793	12	0.1046	.250
Bottoms							
120-300	7	0.1793	7	0.1793	12	0.1046	.250
301-500	7	0.1793	7	0.1793	10	0.1345	.250
501-660	7	0.1793	7	0.1793	10	0.1345	.3125

^{**}Manufacturers Standard Gage and approximate equivalent thickness in decimals of inch.

^{*}Available from American Society for Testing and Materials, 1916 Race St., Philadelphia, PA 19103.

2-3 Construction of Tanks.

- 2-3.1 Joints. All side, top and bottom joints shall be welded.
- 2-3.2 Aluminum Alloys. All welded aluminum joints shall be made in accordance with recognized good practice, and the strength of a joint shall be not less than 85 percent of that of the adjacent metal. Alloys shall be jointed by an inert gas arc welding process using aluminum-magnesium-type filler metal which is consistent with material suppliers' recommendations.
- 2-3.3 Mild Steel, High Tensile Steel, Stainless Steel. Joints shall be welded in accordance with recognized good practice and the efficiency of all joints shall be not less than 85 percent of that of the adjacent metal in the portable shipping tank.
- 2-3.3.1 Combinations of mild steel (MS), high tensile steel (HS) or stainless steel (SS) may be used in the construction of a single tank, provided that each material, where used, shall comply with the minimum requirements specified in Section 2-2 for the material used in the construction of that section of the tank. Whenever stainless steel sheets are used in combination with sheets of other types of steel, joints made by welding shall be formed by the use of stainless steel electrodes or filler metal, on condition that the stainless steel electrodes or filler metal used in the welding be suitable for use with the grade of stainless steel concerned, according to the recommendations of the manufacturer of the stainless steel electrodes or filler metal.

2-4 Tests.

- 2-4.1 Portable shipping tanks shall be tested at the time of manufacture when alteration or repairs are made which involve tank integrity and when there is an indication of necessity for a retest.
- 2-4.2 Portable shipping tanks shall be tested to a minimum pressure of 7.5 psig (517.1 kPa). Such pressure shall be maintained for a period of at least 5 minutes. Hydrostatic pressure, if used, shall be gaged at the top of the tank.

Chapter 3 Appurtenances

3-1 Acceptability and Protection.

- 3-1.1 All valves, piping, and appurtenances shall be acceptable to the authority having jurisdiction and shall be attached to the tank in a substantial manner.
- 3-1.2 All valves, piping, fittings, accessories, and safety devices shall be adequately protected against handling damage, overturn, or other mechanical forces.

3-2 Vents.

- 3-2.1 Emergency Venting for Fire Exposure. Tanks shall be provided with one or more devices installed in the top with sufficient venting capacity to limit the tank internal pressure under fire exposure conditions to 10 psig (68.95 kPa) or not to exceed 30 percent of the bursting pressure of the tank, whichever is greater. At least one pressure actuated vent shall be used. It shall be set to open at not less than 5 psig (34.47 kPa) and have a minimum through area of at least 0.44 sq in. (287.848 mm²). If fusible vents are used to meet the additional emergency venting requirements, they shall be activated by elements that operate at a temperature not less than 220°F (104.4°C) and not exceeding 300°F (148.9°C) when the tank pressure is between 5 and 10 psig (34.47 and 68.95 kPa).
- 3-2.2 Capacity. The total emergency venting capacity shall be not less than that determined from Table 3-2.2 using the entire external surface of the tank as the exposed area.
- 3-2.3 Tank Openings. Tanks shall have at least one opening in the top not less than 6 in. (152.4 mm) in diameter provided with an approved closure device. Provision shall be made to prevent cover from fully opening when there is internal pressure. The closure shall be liquid- and vapor-tight and shall be left closed while the tank is in transit. If gaskets are used, they shall be compatible with the product being transported. In addition, there shall be on the top of the tank a 1 ½-in. or larger nominal pipe size threaded opening for attaching vent piping for "off highway" use. Openings in the tank shall not release vapor or liquid at pressure below 5 psig (34.47 kPa) while the tank is in transit.

Table 3-2.2 Minimum Emergency Vent Capacity in Cubic Feet Free Air/Hour [14.7 PSIA (101.3 kPa) and 60°F (15.6°C)]

Exposed Area Sq Ft	Cu Ft Free Air per Hr
20 30	15,800
30	23,700
40	31,600
50	39,500
60	47,400
70	55,300
80 90	63,300
90	71,200
100	79,100
120	94,900
140	110,700
160	126,500

NOTE 1: Interpolate for intermediate sizes.

NOTE 2: The venting capacities have been calculated on the basis of 75 percent of the sq ft of the total exposed area of the cargo tank, using the formulas for heat input contained in the *Flammable and Combustible Liquids Code*, NFPA 30, where the derivation of these formulas is explained.

3-2.4 Outlet Valves, Fittings or Piping. The drawoff outlet of each tank shall be equipped with a suitable shutoff valve, located internally, designed so the valve will remain closed if the external piping is broken off.

Exception No. 1: When exterior valve or piping is provided with substantial and adequate protection against damage in handling. Bottom outlet equipment shall not extend closer than 1 in. (25.4 mm) to the bottom bearing surface of the skids or tank mountings. Discharge or drawoff valve shall be equipped with liquidtight plugs or caps while in transit.

Exception No. 2: When drawoff outlet is located on top of tank.

3-2.5 Bottom Connection. Bottom internal valves or drawoff piping shall be attached directly to a welded flange or boss except that threaded joints may be used if such opening does not exceed 2½-inch nominal pipe size.

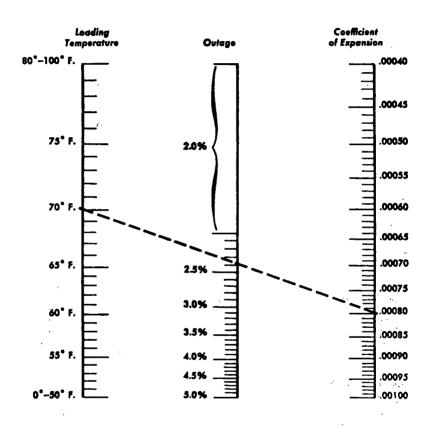
Chapter 4 Operation and Use

4-1 Filling and Emptying.

4-1.1 Outage. No tank shall be filled liquid full. To prevent leakage from or distortion of the tank by expansion of its contents due to rise of temperature while in transit, outage shall be not less than 5 percent of the total tank volume when filled, unless outage calculated by the method in 4-1.2 demonstrates a lesser outage is adequate.

NOTE: In portable containers containing alcohol, cologne spirits, high wines, or other distilled spirits of 150 proof or over, the vacant interior space must be the maximum permitted by law such as the United States Internal Revenue Regulations, Alcohol Tax Unit.

4-1.2 The chart on the following page may be used to determine the required outage when filling portable shipping tanks.


The following coefficients of expansion, per degree Fahrenheit, of the principal flammable liquids shall be used in determining outages:

Acetone Amyl acetate Benzol (benzene) Carbon bisulfide Ether Ethyl acetate Ethyl (grain) alcohol Methyl (wood) alcohol Toluol (toluene)	0.00085 .00068 .00071 .00070 .00098 .00079 .00062 .00072
Gasoline or Naphtha: 50-55° API'. 55.1-60° API'. 60.1-65° API'. 65.1-70° API'. 70.1-75° API'. 75.1-80° API'. 80.1-85° API'. 85.1-90° API'.	.00060 .00065 .00070 .00075

API (American Petroleum Institute), according to the following formula:

$$^{\circ}API = \frac{141.5}{\text{Specific Gravity}} - 131.5$$

EXAMPLE: Suppose the temperature of the liquid at time of loading is 70°F (21.1°C) and its coefficient of expansion is 0.0080; lay a ruler on the chart running from 70 degrees to 0.00080 as shown by the dotted line and the required outage is 2.4 percent where the ruler crosses the outage scale.

4-1.3 Partial Deliveries Prohibited. Portable shipping tanks shall be filled at the point of origin and, except for sampling, no product shall be withdrawn therefrom until the tank has been properly placed at its point of final use.