# NFPA 259 Standard Test Method for Potential Heat of Building Materials

1998 Edition



Copyright © National Fire Protection Association, Inc. One Batterymarch Park Quincy, Massachusetts 02269

### IMPORTANT NOTICE ABOUT THIS DOCUMENT

NFPA codes, standards, recommended practices, and guides, of which the document contained herein is one, are developed through a consensus standards development process approved by the American National Standards Institute. This process brings together volunteers representing varied viewpoints and interests to achieve consensus on fire and other safety issues. While the NFPA administers the process and establishes rules to promote fairness in the development of consensus, it does not independently test, evaluate, or verify the accuracy of any information or the soundness of any judgments contained in its codes and standards.

The NFPA disclaims liability for any personal injury, property or other damages of any nature whatsoever, whether special, indirect, consequential or compensatory, directly or indirectly resulting from the publication, use of, or reliance on this document. The NFPA also makes no guaranty or warranty as to the accuracy or completeness of any information published herein.

In issuing and making this document available, the NFPA is not undertaking to render professional or other services for or on behalf of any person or entity. Nor is the NFPA undertaking to perform any duty owed by any person or entity to someone else. Anyone using this document should rely on his or her own independent judgment or, as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstances.

The NFPA has no power, nor does it undertake, to police or enforce compliance with the contents of this document. Nor does the NFPA list, certify, test or inspect products, designs, or installations for compliance with this document. Any certification or other statement of compliance with the requirements of this document shall not be attributable to the NFPA and is solely the responsibility of the certifier or maker of the statement.

# **NOTICES**

All questions or other communications relating to this document and all requests for information on NFPA procedures governing its codes and standards development process, including information on the procedures for requesting Formal Interpretations, for proposing Tentative Interim Amendments, and for proposing revisions to NFPA documents during regular revision cycles, should be sent to NFPA headquarters, addressed to the attention of the Secretary, Standards Council, National Fire Protection Association, 1 Batterymarch Park, P.O. Box 9101, Quincy, MA 02269-9101.

Users of this document should be aware that this document may be amended from time to time through the issuance of Tentative Interim Amendments, and that an official NFPA document at any point in time consists of the current edition of the document together with any Tentative Interim Amendments then in effect. In order to determine whether this document is the current edition and whether it has been amended through the issuance of Tentative Interim Amendments, consult appropriate NFPA publications such as the *National Fire Codes*® Subscription Service, visit the NFPA website at www.nfpa.org, or contact the NFPA at the address listed above.

A statement, written or oral, that is not processed in accordance with Section 5 of the Regulations Governing Committee Projects shall not be considered the official position of NFPA or any of its Committees and shall not be considered to be, nor be relied upon as, a Formal Interpretation.

The NFPA does not take any position with respect to the validity of any patent rights asserted in connection with any items which are mentioned in or are the subject of this document, and the NFPA disclaims liability for the infringement of any patent resulting from the use of or reliance on this document. Users of this document are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, is entirely their own responsibility.

Users of this document should consult applicable federal, state, and local laws and regulations. NFPA does not, by the publication of this document, intend to urge action that is not in compliance with applicable laws, and this document may not be construed as doing so.

# **Licensing Policy**

This document is copyrighted by the National Fire Protection Association (NFPA). By making this document available for use and adoption by public authorities and others, the NFPA does not waive any rights in copyright to this document.

- 1. Adoption by Reference—Public authorities and others are urged to reference this document in laws, ordinances, regulations, administrative orders, or similar instruments. Any deletions, additions, and changes desired by the adopting authority must be noted separately. Those using this method are requested to notify the NFPA (Attention: Secretary, Standards Council) in writing of such use. The term "adoption by reference" means the citing of title and publishing information only.
- **2. Adoption by Transcription—A.** Public authorities with lawmaking or rule-making powers only, upon written notice to the NFPA (Attention: Secretary, Standards Council), will be granted a royalty-free license to print and republish this document in whole or in part, with changes and additions, if any, noted separately, in laws, ordinances, regulations, administrative orders, or similar instruments having the force of law, provided that: (1) due notice of NFPA's copyright is contained in each law and in each copy thereof; and (2) that such printing and republication is limited to numbers sufficient to satisfy the jurisdiction's lawmaking or rule-making process. **B.** Once this NFPA Code or Standard has been adopted into law, all printings of this document by public authorities with lawmaking or rule-making powers or any other persons desiring to reproduce this document or its contents as adopted by the jurisdiction in whole or in part, in any form, upon written request to NFPA (Attention: Secretary, Standards Council), will be granted a nonexclusive license to print, republish, and vend this document in whole or in part, with changes and additions, if any, noted separately, provided that due notice of NFPA's copyright is contained in each copy. Such license shall be granted only upon agreement to pay NFPA a royalty. This royalty is required to provide funds for the research and development necessary to continue the work of NFPA and its volunteers in continually updating and revising NFPA standards. Under certain circumstances, public authorities with lawmaking or rule-making powers may apply for and may receive a special royalty where the public interest will be served thereby.
  - 3. Scope of License Grant—The terms and conditions set forth above do not extend to the index of this document.

(For further explanation, see the Policy Concerning the Adoption, Printing, and Publication of NFPA Documents, which is available upon request from the NFPA.)

# Copyright © 1998 NFPA, All Rights Reserved

### **NFPA 259**

# Standard Test Method for Potential Heat of Building Materials

### 1998 Edition

This edition of NFPA 259, Standard Test Method for Potential Heat of Building Materials, was prepared by the Technical Committee on Fire Tests and acted on by the National Fire Protection Association, Inc., at its Fall Meeting held November 17–19, 1997, in Kansas City, MO. It was issued by the Standards Council on January 16, 1998, with an effective date of February 6, 1998, and supersedes all previous editions.

This edition of NFPA 259 was approved as an American National Standard on March 31, 1998.

# Origin and Development of NFPA 259

This standard is based on a test method developed at the National Bureau of Standards in 1961. Consideration of the test method by the NFPA was begun in 1973 culminating in the standard that was adopted in 1976, reconfirmed in 1981, and revised at the 1986 Fall Meeting. The 1993 edition was a reconfirmation of the 1987 edition.

The 1998 edition was completely rewritten incorporating editorial changes with the elimination of nonmandatory language. The only significant technical change was the incorporation of the requirement of two tests for a product to determine its heat of combustion. There is a maximum 10 percent variation permitted; otherwise, a third test is required.

A new Appendix A has been added providing explanatory material. A new Appendix C containing material extracted from Appendix C of NFPA 220, *Standard on Types of Building Construction*, has been added for informational purposes.

### **Technical Committee on Fire Tests**

**Jesse J. Beitel,** *Chair* Hughes Assoc. Inc., MD [SE]

April L. Berkol, ITT Sheraton Corp., NY [U]

Rep. American Hotel & Motel Assn.

John A. Blair, The DuPont Co., DE [M]

Rep. Society of the Plastics Industry Inc.

William P. Chien, State of New York Dept. of Fire Prevention & Control, NY [E]

William E. Fitch, Omega Point Laboratories Inc., TX [RT]

Sam W. Francis, American Forest & Paper Assn., PA [M]

Thomas W. Fritz, Armstrong World Industries Inc., PA [M]

James R. Griffith, Southwest Research Inst., TX [RT]

Marcelo M. Hirschler, GBH Int'l, CA [SE]

**Alfred J. Hogan,** Reedy Creek Improvement District, FL [E] Rep. Fire Marshals Assn. of North America

Karl D. Houser, Gypsum Assn., DC [M]

William E. Koffel, Koffel Assoc. Inc., MD [SE]

**James R. Lawson,** U.S. Nat'l Inst. of Standards and Technology, MD [RT]

**Gerald E. Lingenfelter,** American Ins. Services Group Inc., NY [I]

William S. Metes, Underwriters Laboratories Inc., IL [RT]

George E. Meyer, Warnock Hersey, Inc., CA [RT]

John W. Michener, Milliken Research Corp., SC [M]

Rep. American Textile Mfrs. Inst. Inc.

James A. Milke, University of Maryland, MD [SE]

James C. Norris, Union Carbide Corp., TN [M]

**John Roberts,** Underwriters Laboratories of Canada, ON, Canada [RT]

**T. Hugh Talley,** Hugh Talley Co., TN [M]

Rep. Upholstered Furniture Action Council

David K. Tanaka, Factory Mutual Research Corp., MA [I]

Richard P. Thornberry, The Code Consortium, Inc., CA [SE]

Robert J. Wills, American Iron & Steel Inst., AL [M]

Peter J. Gore Willse, Industrial Risk Insurers, CT [I]

Rep. Industrial Risk Insurers

### Alternates

**Delbert F. Boring, Jr.,** American Iron & Steel Inst., OH [M] (Alt. to R. J. Wills)

**Tony Crimi,** Underwriters Laboratories of Canada, ON, Canada [RT]

(Alt. to J. Roberts)

Philip J. DiNenno, Hughes Assoc. Inc., MD [SE]

(Alt. to J. J. Beitel)

**Richard G. Gann,** U.S. Nat'l Inst. of Standards and Technology, MD [RT]

(Alt. to J. R. Lawson)

**Richard D. Gottwald,** Society of the Plastics Industry Inc., DC [M]

(Alt. to J. A. Blair)

Marc L. Janssens, Southwest Research Inst., TX [RT] (Alt. to J. R. Griffith)

**Gene V. Paolucci,** Yasuda Fire & Marine Insurance Co. of America, NY  $\left[ I \right]$ 

(Alt. to G. E. Lingenfelter)

William A. Thornberg, Industrial Risk Insurers, CT [I] (Alt. to P. J. G. Willse)

**James J. Urban,** Underwriters Laboratories Inc., IL [RT] (Alt. to W. S. Metes)

Kay M. Villa, American Textile Mfrs. Inst. Inc., DC [M] (Alt. to J. W. Michener)

Joe Ziolkowski, American Furniture Mfrs Assoc., NC [M] (Alt. to T. H. Talley)

### Nonvoting

**Robert H. Barker,** American Fiber Mfrs. Assn., DC [M] (Alt. to T. L. Jilg)

James F. Hoebel, U.S. Consumer Product Safety Commission, MD

Tod L. Jilg, Hoechst Celanese Corp., NC [M] Rep. to American Fiber Mfrs. Assn. Herman H. Spaeth, Novato, CA

(Member Emeritus)

### Walter P. Sterling, NFPA Staff Liaison

This list represents the membership at the time the Committee was balloted on the text of this edition. Since that time, changes in membership may have occurred. A key to classifications is found at the back of this document.

NOTE: Membership on a committee shall not in and of itself constitute an endorsement of the Association or any document developed by the committee on which the member serves.

**Committee Scope:** This Committee shall have primary responsibility for documents on fire testing procedures for reviewing existing fire test standards and recommending appropriate action to NFPA; for recommending the application of and advising on the interpretation of acceptable test standards for fire problems of concern to NFPA technical committees and members; and for acting in a liaison capacity between NFPA and the committees of other organizations writing fire test standards. This Committee does not cover fire tests that are used to evaluate extinguishing agents, devices, or systems.

CONTENTS **259**–3

# **Contents**

| Chapter | 1 General                      | 259- | 4 | Chapter | 6 Calculating Potential Heat 2                     | <b>259</b> – (  |
|---------|--------------------------------|------|---|---------|----------------------------------------------------|-----------------|
| 1-1     | Scope                          | 259- | 4 | 6-1     | Calculations with Not More than 5 Percent          |                 |
| 1-2     | Significance                   | 259- | 4 |         | Residue 2                                          | 259- (          |
| 1-3     | Definitions                    |      |   | 6-2     | Calculations with More than 5 Percent              |                 |
| 1-4     | Test Method Summary            | 259- | 4 |         | Residue 2                                          | 59- '           |
| 1-5     | Test Limitations               | 259- | 4 | 6-3     | Test Variation 2                                   | 59_ ′           |
| 1-6     | Units                          | 259– | 4 | 6-4     | Reporting Units 2                                  |                 |
| Chapter | 2 Test Apparatus and Materials | 259- | 4 | Chapter | 7 Report                                           | 259– ′          |
| 2-1     | Oxygen Bomb Calorimeter        | 259– | 4 | 7-1     | Required Information 2                             |                 |
| 2-2     | Electric Muffle Furnace        | 259- | 5 | , -     | Trequired Information                              |                 |
| 2-3     | Combustion Promoter            | 259– | 5 | Chapter | 8 Referenced Publications                          | .59- <i>7</i>   |
| Chapter | 3 Test Specimens               | 259- | 5 | Annondi | ix A Explanatory Material 2                        | , so            |
| 3-1     | Specimens                      | 259– | 5 | Append  | ix A Explanatory Material                          | ,33– ,          |
| Chapter | 4 Oxygen Bomb Calorimeter Test |      |   | Append  | ix B Application of Potential Heat                 |                 |
| •       | Procedure                      | 259- | 5 |         | Data 2                                             | 259– 8          |
| 4-1     | Specimen Preparation           | 259- | 5 |         |                                                    |                 |
| 4-2     | Test Procedure                 | 259– | 5 | Append  | ix C Potential Heat of Selected Building Materials | 50 10           |
|         |                                |      |   |         | Widterials                                         | ,33–1(          |
| Chapter | 5 Electric Muffle Furnace Test |      |   |         | ' D D C   ID II' ('                                | PO 10           |
|         | Procedure                      |      |   | Append  | ix D Referenced Publications                       | ; <b>59</b> –1( |
| 5-1     | Specimen Preparation           | 259– | 6 |         |                                                    |                 |
| 5-9     | Test Procedure                 | 959_ | 6 | Index   | 9                                                  | 59-19           |

# **NFPA 259**

### **Standard Test Method for**

# **Potential Heat of Building Materials**

# 1998 Edition

NOTICE: An asterisk (\*) following the number or letter designating a paragraph indicates that explanatory material on the paragraph can be found in Appendix A.

Information on referenced publications can be found in Chapter 8 and Appendix D.

### Chapter 1 General

- **1-1\* Scope.** This method of test provides a means of determining, under controlled laboratory conditions, the potential heat of building materials subjected to a defined high-temperature exposure condition.
- **1-2\* Significance.** This test method yields a property-type measurement of the amount of heat that can potentially be given off by building materials when exposed to a heat source at 1382°F (750°C).

### 1-3 Definitions.

**Potential Heat of a Material.** As determined by this test method, potential heat of a material is the difference between the gross heat of combustion per unit mass of a representative specimen of the material and the heat of combustion per unit mass of any residue remaining after exposure of a representative specimen of the material to a defined heat source using combustion calorimetric techniques.

**Shall.** Indicates a mandatory requirement.

**Should.** Indicates a recommendation or that which is advised but not required.

**Standard.** A document, the main text of which contains only mandatory provisions using the word "shall" to indicate requirements and which is in a form generally suitable for mandatory reference by another standard or code or for adoption into law. Nonmandatory provisions shall be located in an appendix, footnote, or fine-print note and are not to be considered a part of the requirements of a standard.

1-4 Test Method Summary. One of four specimens removed from the material to be evaluated shall be pulverized, pelleted, and combusted in a high-pressure oxygen atmosphere. This determines the gross heat of combustion per unit mass of the material. Another specimen shall be heated in air for two hours at a temperature of 1382°F (750°C). The resulting residue of this specimen, if any, shall be ground or pulverized, mixed with a combustion promoter, and pelleted for combusting in the same manner as the first specimen. After correcting for the heat produced by the combustion promoter, the difference in the measured heat per unit mass of the first specimen and the residue, if any, of the second specimen is the potential heat of the material as defined in Section 1-3. Figure 1-4 schematically illustrates the test procedure.

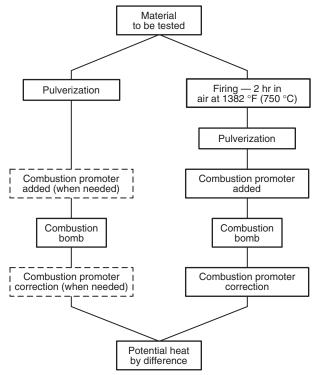



Figure 1-4 Schematic diagram of test procedure for potential heat measurements.

### 1-5 Test Limitations.

- 1-5.1\* This test method is not intended to measure heat release rates of materials.
- **1-5.2** Nonhomogeneous or layered materials greater than 3 in. (76 mm) in thickness cannot be tested in accordance with this test method due to specimen size limitations.
- 1-5.3 This test method shall be performed in a controlled environment under controlled laboratory conditions in order to obtain material property data for use in evaluating the fire hazard of building materials. These data alone do not describe the fire hazard of a material's specific end use or predict its response to real fires.
- **1-6 Units.** Metric units of measurement in this standard are in accordance with the modernized metric system known as the International System of Units (SI). Two units (liter and bar), outside of but recognized by SI, are commonly used in international fire protection.
- **1-6.1** If a value for measurement as given in this standard is followed by an equivalent value in other units, the first stated is to be regarded as the requirement. A given equivalent value is considered to be approximate.
- **1-6.2** The conversion procedure for the SI units has been to multiply the quantity by the conversion factor and then round the result to the approximate number of significant digits.

### Chapter 2 Test Apparatus and Materials

**2-1 Oxygen Bomb Calorimeter.** An oxygen bomb calorimeter shall be used to determine the gross heat of combustion of one test specimen. Either the isoperibol bomb calorimeter specified

in ASTM D 3286, Test Method for Gross Calorific Value of Solid Fuel by the Isoperibol Bomb Calorimeter, or the adiabatic bomb calorimeter specified in ASTM D 2015, Test Method for Gross Calorific Value of Solid Fuel by the Adiabatic Bomb Calorimeter, shall be used.

- **2-2 Electric Muffle Furnace.** An electric muffle furnace shall be used to heat the other test specimens. A small opening or port shall be provided in the furnace for the insertion of an air supply tube.
- **2-2.1 Specimen Container.** The specimen container shall consist of a fused silica or ceramic container having a  $1^1/_4$ -in. (32-mm) inside diameter and a length of 4 in. (102 mm). These dimensions shall be considered nominal.
- **2-2.2 Specimen Container Cap.** The specimen container shall be provided with a cap that shall be made of material similar to the specimen container. The cap shall be snug fitting. An opening in the cap shall be provided for insertion of the air supply tube and shall be sized to allow a loose fit of the air supply tube.
- **2-2.3 Air Supply Tube.** The air supply tube shall be made of porcelain, fused silica, or corrosion-resistant metal. The air supply tube shall have a minimum inside diameter of  $^3/_{16}$  in. (5 mm), and its length shall be sufficient to extend beyond the opening in the specimen container cap.
- **2-2.4** Wire Specimen Holder. The wire specimen holder shall be formed to hold the test specimen away from the walls of the specimen container to allow free airflow around the test specimen. Corrosion-resistant wire shall be used to construct the holder. (See Figure 2-2.4.)

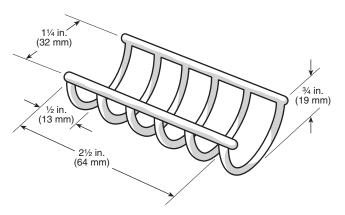



Figure 2-2.4 Wire specimen holder for muffle furnace firing.

- **2-2.5 Specimen Container Support.** The specimen container support shall be made of fire brick or similar material, shaped to hold the specimen container and the specimen container cap in alignment with the small opening or port in the electric muffle furnace, allowing the air supply tube to be inserted through the small opening or port into the specimen container.
- **2-3\* Combustion Promoter.** The combustion promoter used in the oxygen bomb calorimeter shall be benzoic acid (Standard Reference Material SRM 39i obtained from the National Institute of Standards and Technology) as the standard material for calorimetric determinations.

# **Chapter 3 Test Specimens**

- **3-1 Specimens.** A total of four conditioned representative test specimens shall be taken from the test material: one for the oxygen bomb calorimeter test procedure and three for the electric muffle furnace test procedure. For the sizes of the test specimens, see 4-1.2 and Section 5-1.
- **3-1.1** Each test specimen shall be conditioned until it has reached a constant mass within  $\pm 2.2 \times 10^{-6}$  lb (1 mg) in an environment maintained at  $73^{\circ}F \pm 2^{\circ}F$  ( $23^{\circ}C \pm 1^{\circ}C$ ) and 50 percent  $\pm 5$  percent relative humidity.
- **3-1.2** If the test material is a composite, nonhomogeneous, or layered material, the various components of the test material shall be contained in each test specimen in the same proportions as in the test material.

# Chapter 4 Oxygen Bomb Calorimeter Test Procedure

# 4-1 Specimen Preparation.

- **4-1.1\*** One test specimen shall be pulverized or otherwise made into a powder form. The resultant powder shall be able to pass through a 60-mesh (0.25-mm) screen. The resulting mass of the test specimen shall not be less than 0.022 lb (10 g) of powder.
- **4-1.2** The thickness of the test specimen used in this test procedure shall not be smaller than  $^{1}/_{2}$  in.  $\times$  3 in. (13 mm  $\times$  76 mm).
- **4-1.3\*** During the pulverizing of the test specimen, care shall be taken to avoid segregation or separation of components. For composite, nonhomogeneous, or layered materials, a representative specimen shall be obtained by combining samples of material from each component or layer and from different locations in each component or layer. The resultant powder shall consist of an intimate mixture of all the components of the material in the same proportions (mass fractions) as the original test specimen.
- **4-1.4** A pellet having a mass of approximately 0.0022 lb (1 g) shall be prepared from an intimate mixture of the powder made from the test specimen.
- **4-1.5** All masses shall be measured to within  $\pm 2.2 \times 10^{-7}$  lb (0.1 mg) and recorded.
- **4-1.6\*** The pellet shall be made in accordance with the method for the particular pelleting press used and shall be of a shape convenient for the specimen cup. The pellet shall not be compressed more than is necessary to prevent its disintegration during preparation for combusting in the oxygen bomb calorimeter.

### 4-2 Test Procedure.

- **4-2.1** A minimum of two test procedures shall be performed. (See Section 6-3.)
- **4-2.2\*** The pellet shall be placed in the oxygen bomb calorimeter and tested in accordance with ASTM D 3286, *Test Method for Gross Calorific Value of Solid Fuel by the Isoperibol Bomb Calorimeter*, or ASTM D 2015, *Test Method for Gross Calorific Value of Solid Fuel by the Adiabatic Bomb Calorimeter*.
- **4-2.3** If, after being fired in the oxygen bomb, the pellet is found to have burned completely or to have left residue or ash that has a mass less than 1 percent of the original pellet mass,

the heat of combustion shall be computed. In this case, procedures set forth in 4-2.4 shall not be applicable. The mass of the residue and the heat of combustion shall be recorded.

- **4-2.4\*** If the pellet does not burn, or a residue or ash that has a mass of 1 percent or more of the original pellet mass remains after the firing, another approximate 0.0022 lb (1 g) pellet shall be prepared using approximately equal portions of the original powdered test specimen and a standard specimen of combustion promoter. The mass of the residue shall be recorded.
- **4-2.4.1** Each portion of the pellet shall have its mass measured to within  $\pm 2.2 \times 10^{-7}$  lb (0.1 mg) prior to pelletizing and recorded.
- **4-2.4.2** The pellet's mass shall be measured to within  $\pm 2.2 \times 10^{-7}$  lb (0.1 mg) and recorded.
- **4-2.4.3** The pellet prepared with the combustion promoter shall be tested in accordance with 4-2.2.
- **4-2.5** In calculating the heat of combustion for the test specimen tested in accordance with 4-2.4, a correction for the heat of combustion of the combustion promoter present in the pellet shall be applied to the measured heat given off by the specimen. The gross heat of combustion of the test specimen shall then be computed and recorded.
- **4-2.6** A second test shall be conducted on another pellet made from the same test specimen in accordance with this chapter.
- **4-2.7** If the heat of combustion of the two test specimens differs by more than 10 percent of the larger value, then a third test shall be conducted on another pellet made from the same test specimen in accordance with this chapter.

### **Chapter 5 Electric Muffle Furnace Test Procedure**

- **5-1 Specimen Preparation.** One test specimen of the conditioned test material shall be cut in the form of a rectangular prism  $^{1}/_{2}$  in.  $\pm$   $^{1}/_{8}$  in.  $\times$   $^{3}/_{4}$  in.  $\pm$   $^{1}/_{8}$  in.  $\times$   $2^{1}/_{2}$  in.  $\pm$   $^{1}/_{2}$  in. (13 mm  $\pm$  3 mm  $\times$  19 mm  $\pm$  3 mm  $\times$  64 mm  $\pm$  13 mm).
- **5-1.1** When a test material has a thickness less than  $^{1}/_{2}$  in. (13 mm), it shall be layered in pieces to meet the required minimum thickness for the test specimen.
- **5-1.2** When a homogeneous test material has a thickness greater than 3 in. (76 mm), it shall be cut from the material to meet the size limitations specified in Section 5-1.
- **5-1.3** Nonhomogeneous or layered materials greater than 3 in. (76 mm) in thickness shall not be tested in accordance with this test method.

# 5-2 Test Procedure.

- **5-2.1** The electric muffle furnace shall be preheated to  $1382^\circ F \pm 18^\circ F$  (750°C  $\pm$  10°C).
- **5-2.2** The mass of the test specimen shall be measured to within  $\pm 2.2 \times 10^{-7}$  lb (0.1 mg) and then placed on the wire specimen holder in the specimen container. The mass of the test specimen shall be recorded. The specimen container shall be closed using the specimen container cap and placed in the specimen container support.
- **5-2.3** The specimen container support containing the specimen on the wire specimen holder in the specimen container shall be placed in the electric muffle furnace. The muffle furnace.

- nace port shall be aligned with the air supply tube opening in the specimen container cap. The external air supply tube shall then be passed through the muffle furnace port and through the air supply tube opening in the specimen container cap into the specimen container to the test specimen.
- **5-2.4** The test specimen shall remain in the electric muffle furnace for 2 hours  $\pm 1$  minute. A regulated airflow shall be supplied to the test specimen at  $0.1 \pm 0.01$  ft<sup>3</sup>/min (47  $\pm$  5 cm<sup>3</sup>/sec) referenced to 68°F (20°C) and 30 in. Hg (101 kPa).

If ignition should occur immediately upon placing the test specimen in the electric muffle furnace, forced-air supply shall be delayed until the initial flaming has stopped.

- **5-2.5** Upon completion of the 2-hour furnace test, the specimen container with the test specimen shall be removed from the electric muffle furnace and cooled in a desiccator. After cooling to room temperature, the mass of the residue shall be determined to within  $\pm 2.2 \times 10^{-7}$  lb (0.1 mg) and recorded.
- **5-2.6** If the mass of the residue remaining after the electric muffle furnace test procedure is not more than 5 percent of the initial mass of the test specimen, the provisions of 5-2.7 shall not be applicable and the heat of combustion previously determined under the oxygen bomb calorimeter test described in Chapter 4 shall be recorded as the potential heat of the material.
- 5-2.7 If the mass of the residue remaining after the electric muffle furnace test procedure is in excess of 5 percent of the mass of the initial test specimen mass, the residue shall be pulverized into a homogeneous powder. A portion of the residue shall be mixed with an approximately equal mass combustion promoter and formed into an approximate 0.0022-lb (1-g) pellet.
- **5-2.7.1** The mass of the residue and combustion promoter used to make the pellet, and the pellet itself, shall be measured to within  $\pm 2.2 \times 10^{-7}$  lb (0.1 mg) and recorded.
- **5-2.7.2** The pellet is then treated as specified in the oxygen bomb calorimeter test procedure in Chapter 4 to determine the heat of combustion of the residue.
- **5-2.7.3** The heat of combustion of the residue per unit mass of the original test specimen shall be computed by multiplying the heat of combustion determined in 5-2.7 by the ratio of the residue mass determined in 5-2.5 to the original test specimen mass and recorded.
- **5-2.8** A second test shall be conducted on another test specimen in accordance with this chapter.
- **5-2.9** If the heat of combustion of the two test specimens differs by more than 10 percent of the larger value, then a third test shall be conducted on another test specimen in accordance with this chapter.

### **Chapter 6 Calculating Potential Heat**

**6-1 Calculations with Not More than 5 Percent Residue.** The potential heat for test specimens yielding a residue from the electric muffle furnace test procedure described in Chapter 5 having a mass of not more than 5 percent of the test specimen's initial mass shall be considered to be equivalent to the test specimen's heat of combustion as determined by the oxygen bomb calorimeter test described in Chapter 4. This value shall be recorded as the test specimen's potential heat.

APPENDIX A 259–7

### 6-2 Calculations with More than 5 Percent Residue.

- **6-2.1** For test specimens that yield a residue from the electric muffle furnace test procedure described in Chapter 5 having a mass of more than 5 percent of the initial test specimen's mass, the potential heat shall be determined as in 6-2.2.
- **6-2.2\*** The heat of combustion of the residue as determined in accordance with 5-2.7 shall be subtracted from the heat of combustion of the test specimen as determined by the oxygen bomb calorimeter test described in Chapter 4. This value shall be recorded as the potential heat of the test specimen.
- **6-3 Test Variation.** The two test procedures as required in 4-2.1 shall be within 10 percent of each other. If the test results exceed 10 percent variation, then the average of three tests shall be reported.
- **6-4\* Reporting Units.** Potential heat shall be reported as the quantity of heat per unit mass calculated in accordance with this chapter.

# Chapter 7 Report

- **7-1 Required Information.** The test report shall include the following information:
- (a) Material identification code or number
- (b) Manufacturer or submitter
- (c) Date of test
- (d) Operator
- (e) Composition or generic identification of material
- (f) Material thickness in inches (milimeters)
- (g) Specimen mass in pounds (gallons)
- (h) Material color(s) and description
- Details of specimen preparation by the testing laboratory
- Number of replicate specimens tested under the same conditions
- (k) The ASTM test procedure used for the oxygen bomb calorimeter
- (l) Pellet mass in pounds (gallons)
- (m) Mass of residue, if any, remaining after the oxygen bomb calorimeter test in pounds (gallons), as described in Chapter 4
- (n) Combustion promoter used and its heat of combustion per unit mass in Btu/lb (kJ/kg)
- (o) Mass fractions of combustion promoter and test specimen, or residue for pellets in pounds (gallons), as tested in accordance with 4-2.3 and 5-2.7
- (p) Gross heat of combustion per unit mass of each pellet in Btu/lb (kJ/kg) made from the test specimen as determined in accordance with the oxygen bomb calorimeter test procedure described in Chapter 4
- (q) Mass of the residue remaining after the electric muffle furnace test in pounds (gallons), as described in Chapter 5
- (r) Gross heat of combustion per unit mass of the residue remaining after the electric muffle furnace test in Btu/ lb (kJ/kg), as described in Chapter 5 and as determined in accordance with 5-2.7
- (s) Potential heat of each specimen in Btu/lb (kJ/kg)
- (t) Potential heat of the material in Btu/lb (kJ/kg)

(u) Method used for determining the potential heat of the material in accordance with Chapter 6

# **Chapter 8 Referenced Publications**

**8-1** The following documents or portions thereof are referenced within this standard as mandatory requirements and shall be considered part of the requirements of this standard. The edition indicated for each referenced mandatory document is the current edition as of the date of the NFPA issuance of this standard. Some of these mandatory documents might also be referenced in this standard for specific informational purposes and, therefore, are also listed in Appendix D.

**8-1.1 ASTM Publications.** American Society for Testing and Materials, 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959.

ASTM D 2015, Test Method for Gross Calorific Value of Solid Fuel by the Adiabatic Bomb Calorimeter, 1995.

ASTM D 3286, Test Method for Gross Calorific Value of Solid Fuel by the Isoperibol Bomb Calorimeter, 1991a.

# Appendix A Explanatory Material

Appendix A is not a part of the requirements of this NFPA document but is included for informational purposes only. This appendix contains explanatory material, numbered to correspond with the applicable text paragraphs.

- **A-1-1 Scope.** Determinations may be made on individual homogeneous or individual composite, nonhomogeneous, or layered materials from which a representative sample can be taken.
- **A-1-2 Significance.** It is essential that the information on application of potential heat data in Appendix B be consulted prior to applying test results.
- A-1-5.1 In general, heat release rates of materials can be determined by such bench scale test methods as NFPA 263, Standard Method of Test for Heat and Visible Smoke Release Rates for Materials and Products, and NFPA 264, Standard Method of Test for Heat and Visible Smoke Release Rates for Materials and Products Using an Oxygen Consumption Calorimeter. For determining heat release rates of specific materials such as upholstered furniture and mattresses and textile wall coverings, NFPA 264A, Standard Method of Test for Heat Release Rates for Upholstered Furniture Components or Composites and Mattresses Using an Oxygen Consumption Calorimeter, and NFPA 265, Standard Methods of Fire Tests for Evaluating Room Fire Growth Contribution of Textile Wall Coverings, respectively, can be used.
- A-2-3 At least one testing laboratory has experienced some difficulty in achieving consistent results for materials that contain CaCO<sub>3</sub>, CaSO<sub>4</sub>, or CaSiO<sub>3</sub> since apparently these chemicals (inorganic salts) tend to react endothermically with the benzoic acid combustion promoter. Such a reaction has been described as follows:

$$CaSO_4 + 2C = CaS + 2CO_2$$

When this occurs, two corrections are generally required to be made to the gross heat of combustion determined by the oxygen bomb calorimetry method. They include a correction for the unburned benzoic acid as prescribed in the test procedure and a correction for the endothermic redox reaction described in the equation. Both of these corrections can be roughly estimated by quantification of sulfur in the bomb residue. Experimentation with other combustion promoters discovered that paraffin oil worked best and provided the most consistent results when such chemicals were present in the materials being evaluated.

It should be noted that this phenomenon has been found in the presence of calcium-containing materials and is probably an acid-base reaction. Therefore, it is likely to occur also with any materials that are alkaline, such as metal hydroxides, with some inorganic salts, or with some other similar chemicals as well. However, it has not been investigated with materials for which acid-base reactions do not occur. Thus, the testing laboratory should be suspicious of the use of benzoic acid when significant errors or variations occur in the gross heat of combustion determined by this method. In those cases it can be appropriate to use a paraffin oil combustion promoter. An appropriate paraffin oil should have a known heat of combustion and contain 99.5 percent paraffinic hydrocarbons. For example, a value of gross heat of combustion of 46.2 MJ/kg is referenced for a particular type of paraffin oil in The SFPE Handbook of Fire Protection Engineering. It should also be noted that the heat of combustion of paraffin oil can cover a range of values, depending on its chemical composition. The following information has not been independently verified, certified, or endorsed by the NFPA or this technical committee: The paraffin oil distributed by the Zeco Corporation as part No. 501-439, which has a heat of combustion of  $45.5 \,\mathrm{MJ/kg} \pm 0.1 \,\mathrm{MJ/kg}$ , has been found suitable by at least one laboratory.

A-4-1.1 While many materials may be suitably made into a powder form using a clean carbide double-bastard file, or mortar and pestle, or both, it may sometimes be useful to freeze (with dry ice) materials containing asphaltic, mastic, or plastic components prior to filing or to use mechanical blenders, ball or hammer mills, grinders, milling or lathe cutters, and so on. For laminated materials, it may be preferable to separate the test specimen into component layers and to grind, file, or pulverize each component separately. The powdered components then may be mixed intimately in proportion to their original mass fractions and the mixture tested, or, alternately, each component may be tested separately and the contributions of heat combined in proportion to each component's original mass fraction.

- **A-4-1.3** Any loss in the mass of the component materials during the making of the powder, including mixing and pelletizing, should be subtracted from the mass of the specimen and the combustion promoter, if used, in proportion to their original mass fractions and the corrected masses used in the heat of combustion calculations.
- **A-4-1.6** Excessively hard pellets may fracture and result in incomplete combustion when fired.
- **A-4-2.2 CAUTION:** For tests on specimens that are predominantly metallic, the use of a silica or quartz crucible is recommended. The water equivalent of the calorimeter using the appropriate crucible should be measured and used.
- **A-4-2.4** See A-4-1.3.
- **A-6-2.2** The potential heat is a measure of the heat given off by a material in the electric muffle furnace test.
- **A-6-4** Where appropriate, potential heat may be reported as the quantity of heat per unit volume or surface area. For materials such as metals where the combustion process is relatively

slow and is a function of surface area, the potential heat can be reported appropriately on a surface area basis.

# Appendix B Application of Potential Heat Data

This appendix is not a part of the requirements of this NFPA document but is included for informational purposes only.

B-1 Application of Potential Heat Data. This potential heat test method provides an assessment of one property of a material - the total heat given off that is possible with an electric muffle furnace exposure of the test specimen, under oxidizing conditions, at 1382°F (750°C). The appropriate use of this procedure must recognize its nature as a property-type test. (See A.F. Robertson in ASTM Standardization News.) In many applications, additional supporting test data by other fire test methods can be required for qualifying materials for various fire safety applications. As an example, it should be recognized that under actual fire conditions some materials release all or most of their heat very rapidly. Other materials release heat very slowly and, depending on thickness and fire conditions, can never release all the heat possible. Information on the actual end-use of the material in conjunction with additional supporting data is usually needed for classifying the material.

Some materials such as gypsum and concrete can have negative values for potential heat as determined by this test method. Such materials contain certain chemical compounds that react endothermically during the oxidation process or have water of hydration or free water, which also absorb heat. If these materials also have very little organic content, then it is possible that they will be determined to have a negative potential heat. (See Appendix C.)

**B-2** The Test Method. The potential heat test method (*see ASTM Proceedings*) makes use of oxygen bomb calorimetric measurement methods. It measures the difference between the heat of combustion of a test material as determined by an oxygen bomb calorimeter and that of the residue remaining after exposure of another test specimen to a standardized intense thermal exposure using an electric muffle furnace. Results of the test method are usually reported in terms of heat given off per unit mass of the specimen involved.

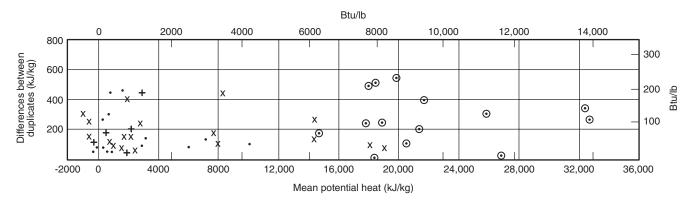
The test procedure is based on combustion of the specimen as complete as is possible within a 2-hour exposure period in an electric muffle furnace at 1382°F (750°C).

The oxygen bomb calorimetry techniques use very small test specimens of about 0.0022 lb (1 g) mass. Because of this, the sampling and specimen preparation procedures used are of considerable importance, especially with heterogeneous, layered, or composite materials. For such materials, two procedures are available to the investigator. One involves pulverizing a representative section of the complete composite and then testing the resultant mixture in the form of a small pellet. Another involves measuring the potential heat of the individual components of the material and then, on the basis of computations, deriving an overall value for the composite.

The selection of a test specimen for thermal exposure in the electric muffle furnace will, of course, depend on which of the preparation procedures is to be used.

The electric muffle furnace exposure must be severe, involving combustion of most of the oxidizable material at 1382°F (750°C); this is essential for its consideration as a property-type test method. This must be carefully considered when applying potential heat data as a basis of code or regulatory

APPENDIX B **259**–9


procedures for building or other fire safety purposes. This is especially true when life safety is of prime concern.

For example, the potential heat of two wall components can be identical, and yet in one wall the combustible component may be placed on the exposed wall surface while in the other it can be deeply buried beneath an exposed masonry construction. In the hazard presented by the wall to building occupants in the event of a fire, these walls represent two possible extremes. Thus, simple consideration of the potential heat of the wall materials yields little information on the relative fire participation hazard of the two walls. This problem is characteristic of property-type fire tests. It emphasizes the need for discretion in the use of the test methods and in the application of the resulting test data.

**B-3** Auxiliary Tests. As indicated in Section B-2, property-type fire tests are seldom comprehensive enough to form the sole basis of acceptance of materials or products. Additional tests are usually required. Examples of other types of tests of possible value in evaluating the fire hazard materials include the adiabatic furnace, a smoldering test, heat release rate calorimeter, and flame spread tests. (See J. Res. NBS, Vol. 61; ASTM STP 502, Ignition, Heat Release and Noncombustibility of Materials; ASTM E 162, Standard Test Method for Surface Flammability of Materials Using a Radiant Heat Energy Source; NFPA 255, Standard Method of Test of Surface Burning Characteristics of Building Materials; NFPA 263, Standard Method of Test for Heat and Visible Smoke Release Rates for Materials and Products; and NFPA 264, Standard Method of Test for Heat and Visible Smoke Release Rates for Materials and Products Using an Oxygen Consumption Calorimeter.) Only the flame spread and heat release rate tests have received recognition by national standards organizations. The smoldering and adiabatic furnace tests have not yet received recognition as standards, although numerous ad hoc tests of both have been conducted as the need for them has become obvious.

B-4 Precision of the Potential Heat Test Method. The original paper on this test method (see ASTM Proceedings, Vol. 61) discussed the precision level possible within a single laboratory (repeatability). It was concluded that with technicians skilled in the procedure involved, the standard deviation of differences between duplicate determinations of potential heat would be equal to about 94 Btu/lb (219 kJ/kg). This prediction, based on early work at NBS (NIST), was later confirmed for three of the five materials tested in the interlaboratory study. (See ASTM STP 464, Interlaboratory Comparison of the Potential Heat Test Method.) In this reference, a value of 92 Btu/lb (214 kJ/kg) was reported. This value corresponds to expected repeatability between duplicates of 200 Btu/lb (465 kJ/kg) with a 95 percent confidence level.

In the original paper it was stated that this order of repeatability was independent of the potential heat measured. The basis of this claim is illustrated in a chart as Figure B-4. This figure represents plotted data of the difference between duplicate determinations of potential heat as a function of the average. Because of the precision, most of the recent measurements of potential heat have involved a single determination and thus are not useful for this plot. The materials represented by the data comprise a widely varied group. They include materials of laminated, homogeneous, and heterogeneous characteristics. Both very low and high values of potential heat are shown. Different symbols are used as a means for identification of slightly different procedures used for deriving the data. Thus, all the data above 8000 Btu/lb (18,600 kJ/ kg) represent a single calorimetric determination as permitted by the test procedure when negligible ash remains following the test specimen exposure in the electric muffle furnace. The data reproduced as dots are based on two oxygen bomb calorimetric determinations and one measurement of the heat of combustion of the ash from an electric muffle furnace-exposed test specimen. All remaining data are based on duplicate determinations of both the oxygen bomb-exposed test specimen and muffle furnace-exposed test specimen. It should be noted that all the NBS (NIST) data derived in connection with the interlaboratory study (see ASTM STP 464, Interlaboratory Comparison of the Potential Heat Test Method) are included in this figure. Thus the figure tends to confirm the predictions made with regard to reproducibility in that study.



Note: Chart represents deviation between duplicates as a function of average potential heat for a wide range of materials.

x Specified procedure, two determinations on Data points represent: both material and muffled specimen

- Specified procedure NBS data from round robin study (see ASTM STP 464)
- Specified procedure but only one test of muffled specimen
- Specified procedure for materials of low ash content, no test on muffled specimen

Figure B-4 NBS data difference between duplicate potential heat measurements, as a function of the average.

Actually the test procedure has been slightly modified from that used in the last interlaboratory test, with the objective of improving the precision on those materials that proved most difficult in the study. These changes have included more detailed instructions on the preparation of specimens from laminated materials or those of nonhomogeneous character, and the fact that four of the eleven laboratories participating in the interlaboratory study were successful in producing data for all materials that were within 200 Btu/lb (465 kJ/kg). Repeatability and reproducibility values reported, based on three of the materials, would also be applicable to the full range of materials likely to be tested in the future. These precision levels involve a repeatability within a laboratory of 200 Btu/lb (465 kJ/kg) and a reproducibility between laboratories of 500 Btu/lb (1160 kJ/kg) based on duplicate tests. Thus, the procedure appears to provide adequate precision when skilled laboratory technical work is available.

# Appendix C Potential Heat of Selected Building Materials

This appendix is not a part of the requirements of this NFPA document but is included for informational purposes only.

Table C is being reprinted here from NFPA 220, *Standard on Types of Building Construction*, as information for the user of this document.

# Appendix D Referenced Publications

**D-1** The following documents or portions thereof are referenced within this standard for informational purposes only and are thus not considered part of the requirements of this standard unless also listed in Chapter 8. The edition indicated here for each reference is the current edition as of the date of the NFPA issuance of this standard.

**D-1.1 NFPA Publications.** National Fire Protection Association, 1 Batterymarch Park, P.O. Box 9101, Quincy, MA 02269-9101.

NFPA 220, Standard on Types of Building Construction, 1995 edition.

NFPA 255, Standard Method of Test of Surface Burning Characteristics of Building Materials, 1996 edition.

NFPA 263, Standard Method of Test for Heat and Visible Smoke Release Rates for Materials and Products, 1994 edition.

NFPA 264, Standard Method of Test for Heat and Visible Smoke Release Rates for Materials and Products Using an Oxygen Consumption Calorimeter, 1995 edition.

NFPA 264A, Standard Method of Test for Heat Release Rates for Upholstered Furniture Components or Composites and Mattresses Using an Oxygen Consumption Calorimeter, 1994 edition.

NFPA 265, Standard Methods of Fire Tests for Evaluating Room Fire Growth Contribution of Textile Wall Coverings, 1994 edition.

**D-1.2 ASTM Publications.** American Society for Testing and Materials, 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959.

ASTM E 162, Standard Test Method for Surface Flammability of Materials Using a Radiant Heat Energy Source, 1994.

ASTM STP 464, Interlaboratory Comparison of the Potential Heat Test Method, Gross, D., and Natrella, M. G., pp. 127-152, 1970.

ASTM STP 502, *Ignition, Heat Release and Noncombustibility of Materials*, Parker, W. J., and Long, M. E., "Development of a Heat Release Rate Calorimeter at NBS," pp. 135-151, 1972.

ASTM Proceedings, Loftus, J. J., Gross, D., and Robertson, A. F., "Potential Heat, A Method for Measuring the Heat Release of Materials in Building Fires," Vol. 61, pp. 1336-1348, 1961.

ASTM Standardization News, Robertson, A. F., "Test Method Categorization and Fire Hazard Standards," pp. 18-20, November 1975.

**D-1.3 NIST Publication.** National Institute of Standards and Technology (formerly National Bureau of Standards), Gaithersburg, MD 20899.

Gross, D., and Robertson, A. F., "Self-Ignition Temperatures of Materials from Kinetic Reaction Data," *J. Res. NBS*, Vol. 61, no. 5, pp. 413-417, Nov. 1958.

**D-1.4 SFPE Publication.** Society of Fire Protection Engineers, 1 Liberty Square, Boston, MA 02109-4825.

The SFPE Handbook of Fire Protection Engineering, second edition, Table C-4, p. A-44, 1995.