NFPA 123
Standard for
Fire Prevention
and
Control in
Underground
Bituminous
Coal Mines

1999 Edition

Copyright © National Fire Protection Association, Inc. One Batterymarch Park Quincy, Massachusetts 02269

IMPORTANT NOTICE ABOUT THIS DOCUMENT

NFPA codes and standards, of which the document contained herein is one, are developed through a consensus standards development process approved by the American National Standards Institute. This process brings together volunteers representing varied viewpoints and interests to achieve consensus on fire and other safety issues. While the NFPA administers the process and establishes rules to promote fairness in the development of consensus, it does not independently test, evaluate, or verify the accuracy of any information or the soundness of any judgments contained in its codes and standards.

The NFPA disclaims liability for any personal injury, property or other damages of any nature whatsoever, whether special, indirect, consequential or compensatory, directly or indirectly resulting from the publication, use of, or reliance on this document. The NFPA also makes no guaranty or warranty as to the accuracy or completeness of any information published herein.

In issuing and making this document available, the NFPA is not undertaking to render professional or other services for or on behalf of any person or entity. Nor is the NFPA undertaking to perform any duty owed by any person or entity to someone else. Anyone using this document should rely on his or her own independent judgment or, as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstances.

The NFPA has no power, nor does it undertake, to police or enforce compliance with the contents of this document. Nor does the NFPA list, certify, test or inspect products, designs, or installations for compliance with this document. Any certification or other statement of compliance with the requirements of this document shall not be attributable to the NFPA and is solely the responsibility of the certifier or maker of the statement.

NOTICES

All questions or other communications relating to this document and all requests for information on NFPA procedures governing its codes and standards development process, including information on the procedures for requesting Formal Interpretations, for proposing Tentative Interim Amendments, and for proposing revisions to NFPA documents during regular revision cycles, should be sent to NFPA headquarters, addressed to the attention of the Secretary, Standards Council, National Fire Protection Association, 1 Batterymarch Park, P.O. Box 9101, Quincy, MA 02269-9101.

Users of this document should be aware that this document may be amended from time to time through the issuance of Tentative Interim Amendments, and that an official NFPA document at any point in time consists of the current edition of the document together with any Tentative Interim Amendments then in effect. In order to determine whether this document is the current edition and whether it has been amended through the issuance of Tentative Interim Amendments, consult appropriate NFPA publications such as the *National Fire Codes*® Subscription Service, visit the NFPA website at www.nfpa.org, or contact the NFPA at the address listed above.

A statement, written or oral, that is not processed in accordance with Section 16 of the Regulations Governing Committee Projects shall not be considered the official position of NFPA or any of its Committees and shall not be considered to be, nor be relied upon as, a Formal Interpretation.

The NFPA does not take any position with respect to the validity of any patent rights asserted in connection with any items which are mentioned in or are the subject of this document, and the NFPA disclaims liability of the infringement of any patent resulting from the use of or reliance on this document. Users of this document are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, is entirely their own responsibility.

Users of this document should consult applicable federal, state, and local laws and regulations. NFPA does not, by the publication of this document, intend to urge action that is not in compliance with applicable laws, and this document may not be construed as doing so.

Licensing Policy

This document is copyrighted by the National Fire Protection Association (NFPA). By making this document available for use and adoption by public authorities and others, the NFPA does not waive any rights in copyright to this document.

- 1. Adoption by Reference Public authorities and others are urged to reference this document in laws, ordinances, regulations, administrative orders, or similar instruments. Any deletions, additions, and changes desired by the adopting authority must be noted separately. Those using this method are requested to notify the NFPA (Attention: Secretary, Standards Council) in writing of such use. The term "adoption by reference" means the citing of title and publishing information only.
- 2. Adoption by Transcription A. Public authorities with lawmaking or rule-making powers only, upon written notice to the NFPA (Attention: Secretary, Standards Council), will be granted a royalty-free license to print and republish this document in whole or in part, with changes and additions, if any, noted separately, in laws, ordinances, regulations, administrative orders, or similar instruments having the force of law, provided that: (1) due notice of NFPA's copyright is contained in each law and in each copy thereof; and (2) that such printing and republication is limited to numbers sufficient to satisfy the jurisdiction's lawmaking or rule-making process. B. Once this NFPA Code or Standard has been adopted into law, all printings of this document by public authorities with lawmaking or rule-making powers or any other persons desiring to reproduce this document or its contents as adopted by the jurisdiction in whole or in part, in any form, upon written request to NFPA (Attention: Secretary, Standards Council), will be granted a nonexclusive license to print, republish, and vend this document in whole or in part, with changes and additions, if any, noted separately, provided that due notice of NFPA's copyright is contained in each copy. Such license shall be granted only upon agreement to pay NFPA a royalty. This royalty is required to provide funds for the research and development necessary to continue the work of NFPA and its volunteers in continually updating and revising NFPA standards. Under certain circumstances, public authorities with lawmaking or rule-making powers may apply for and may receive a special royalty where the public interest will be served thereby.
- **3. Scope of License Grant** The terms and conditions set forth above do not extend to the index of this document. (For further explanation, see the Policy Concerning the Adoption, Printing, and Publication of NFPA Documents, which is available upon request from the NFPA.)

NFPA 123

Standard for

Fire Prevention and Control in Underground Bituminous Coal Mines

1999 Edition

This edition of NFPA 123, Standard for Fire Prevention and Control in Underground Bituminous Coal Mines, was prepared by the Technical Committee on Mining Facilities and acted on by the National Fire Protection Association, Inc., at its Fall Meeting held November 16–18, 1998, in Atlanta, GA. It was issued by the Standards Council on January 15, 1999, with an effective date of February 4, 1999, and supersedes all previous editions.

Changes other than editorial are indicated by a vertical rule in the margin of the pages on which they appear. These lines are included as an aid to the user in identifying changes from the previous edition.

This edition of NFPA 123 was approved as an American National Standard on February 4, 1999.

Origin and Development of NFPA 123

In 1978 the Technical Committee on Mining Facilities, through its membership and current Mine Safety and Health Administration regulations, identified the need for guidance in fire prevention and control in underground coal mines. The first edition of NFPA 123 was developed through several subcommittee and committee meetings and was officially released as the 1987 edition.

A variety of important changes were included in the 1990 edition of NFPA 123. Most important among these were the addition of new criteria that specifically addressed protective signaling systems and automatic sprinkler systems used in underground bituminous coal mines. This material was developed in conjunction with the NFPA Technical Committees responsible for these fire protection systems, in accordance with the NFPA Standards Council policy on jurisdictional scope issues.

The 1995 edition incorporated the requirements that were previously included in NFPA 124, Standard for Fire Protection of Diesel Fuel and Diesel Equipment in Underground Mines, which was withdrawn. Further changes included editorial corrections and revisions that provided consistency with other NFPA mining related standards.

The 1999 edition clarifies the proper type of fire extinguishers to be used. Also, the references to fixed fire extinguishing systems have been changed to fixed fire protection systems because not all systems extinguish the fire. A reference to NFPA 25, *Standard for the Inspection, Testing, and Maintenance of Water-Based Fire Protection Systems*, has also been added.

Technical Committee on Mining Facilities

Larry J. Moore, *Chair* Factory Mutual Research, CO [I]

William R. Bragg, Levitt Safety (Eastern) Ltd, Ontario, Canada [M]

Rep. Fire Equipment Mfrs. Inst. of Canada

Byron G. Brumbaugh, ASARCO Inc., AZ [U] Matt Bujewski, Johnson & Higgins, MO [I]

Michael C. Diliberto, Diliberto & Assoc., Inc., CO [SE]

Richard A. Dressler, Bucyrus-Erie Co., WI [M] Tim Gierer, Alltype Fire Protection Co., MO [IM]

Rep. Nat'l Assn. of Fire Equipment Distributors Inc.

Howard R. Healey, Sedgwick James of Illinois, IL [I]

A. Donald Holden, M&M Protection Consultants, PA [I]

Karl D. Houser, Gypsum Assn., DC [M]

Will B. Jamison, Consulting Engr, PA [SE]

Thomas Kaylor, Chubb Group of Insurance Cos., WV [I]

Thomas Jay Knight, Kerr-McGee Corp., OK [U]

Joseph A. Lamonica, Bituminous Coal Operators Assn.

(BCOA), DC [U]

James W. McCollum, Caterpillar Inc., IL [M]

Donald G. McConnell, Cyprus Amax Coal Co., IL [U]

J. W. Nugent, Colorado Division of Mines, CO [E]

Douglas Rice, Central Sprinkler Corp., PA [M]

Rep. Nat'l Fire Sprinkler Assn.

Ben W. Sheppard, Echo Bay Mines, CO [U]

Barry A. Stewart, Science Applications Int'l Corp. (SAIC),

NV [SE]

Bruce Watzman, Nat'l Mining Assn., DC $[\mathrm{U}]$

Pat Worley, Energy West Mining Co., UT [U]

Alternates

 ${\bf J.\,J.\,Kenny},\,{\bf M\&M}$ Protection Consultants, Vancouver, Canada $[{\bf I}]$

(Alt. to A. D. Holden)

Jeff Murphy, Johnson & Higgins, WA [I] (Alt. to M. Bujewski)

Richard P. Bielen, NFPA Staff Liaison

This list represents the membership at the time the Committee was balloted on the text of this edition. Since that time, changes in the membership may have occurred. A key to classifications is found at the back of this document.

NOTE: Membership on a committee shall not in and of itself constitute an endorsement of the Association or any document developed by the committee on which the member serves.

Committee Scope: This Committee shall have primary responsibility for documents on requirements for safeguarding life and property against fire, explosion, and related hazards associated with underground and surface coal and metal and nonmetal mining facilities and equipment.

CONTENTS 123–3

Contents

Chapte	er 1 Introduction	4-3	Transfer and Transport of Combustible	
1-1	Scope		Liquids	23- 9
	Purpose	4-4	Areas for the Storage of Combustible Liquids	
	General	4.5	in Portable Containers	43 –10
	Definitions	4-3	Storage	23 –10
		4-6	Mobile Equipment for the Storage,	
Chapte	er 2 Fire Prevention		Transport, and Dispensing of Combustible	
-	Housekeeping		Liquids	
	Cutting and Welding	4-7	Dispensing Combustible Liquids 12	23 –1
	Flammable Vapors	Chante	er 5 Fire Protection)3_ 1
	Underground Maintenance Shops 123– 7		Portable Fire Extinguishers	
			Water Supply for Mine Fire Protection 12	
	Hydraulic Fluids		Fire-Protective Signaling Systems	
	•	5-4	Fire Protection Systems	23 –13
2-7	Risk Management	5-5	Fire Suppression for Self-Propelled	
			Equipment	23 –16
_	er 3 Flammable Liquids	5-6	Fire Fighting and Control	23 –16
3-1	General	5-7	Training 12	23 –1′
3-2	Flammable Liquid Containers			
	Flammable Liquid Storage Areas 123– 8	Chapte	er 6 Referenced Publications	23 –1′
3-4	Dispensing Flammable Liquids	Appen	dix A Explanatory Material	23 –18
Chapte	er 4 Combustible Liquids	Appen	dix B Referenced Publications	23 _9
4-1	General	ppen	2 Italiana I wantania	,5 4
4-2	Combustible Liquid Containers and Tanks 123–9	Index		23 –29

NFPA 123

Standard for

Fire Prevention and Control in Underground Bituminous Coal Mines

1999 Edition

NOTICE: An asterisk (*) following the number or letter designating a paragraph indicates that explanatory material on the paragraph can be found in Appendix A.

Information on referenced publications can be found in Chapter 6 and Appendix B.

Chapter 1 Introduction

1-1* Scope.

1-1.1* This standard covers minimum requirements for reducing loss of life and property from fire in underground bituminous coal mines.

1-1.2 This standard does not apply to the following:

- (a) Diesel fuel that has been modified with additives that reduce the flash point to less than 100°F (37.8°C)
- (b) Modified or unmodified diesel fuel used at altitudes where the flash point drops to less than 100°F (37.8°C)
- (c) Explosion hazards
- (d) Storage of flammable and combustible liquids produced in underground coal mines
- (e) Methane drainage systems
- (f) Spontaneous combustion
- 1-1.3 This standard is based on the current state of the art. Application to existing installations is not mandatory. Nevertheless, operating mines are urged to adopt those features of this standard that are considered applicable and reasonable for existing installations.
- **1-1.4** Nothing in this standard is intended to prevent the use of systems, methods, or devices of a quality, reliability, strength, fire resistance, effectiveness, durability, or safety equivalent to those prescribed by this standard. Technical justification or demonstration of equivalency shall be provided to the authority having jurisdiction.
- **1-2 Purpose.** This standard was prepared for the use and guidance of those charged with designing, constructing, installing, examining, approving, operating, or maintaining fire prevention, fire protection, or fire-fighting equipment in underground bituminous coal mines.

1-3 General.

- 1-3.1 Because of the uniqueness of underground bituminous coal mines, provisions in this standard might differ from commonly accepted fire protection standards and guides devised for other types of occupancies.
- 1-3.2 Only those skilled in fire protection are competent to design and supervise the installation of mine fire protection systems. It might be necessary for those responsible for the storage of flammable and combustible liquids and the use of diesel-powered equipment within underground bituminous coal mines to consult an experienced fire protection specialist.

1-4 Definitions.

Approved.* Acceptable to the authority having jurisdiction.

Atmospheric Tank. A storage tank that has been designed to operate at pressures that range from atmospheric through 0.5 psi (a gauge pressure of 3.5 kPa).

Authority Having Jurisdiction.* The organization, office, or individual responsible for approving equipment, an installation, or a procedure.

Boiling Point.* The boiling point of liquid at a pressure of 14.7 psia (760 mm Hg).

Closed Container. A container sealed by means of a lid or other device so that neither liquid nor vapor can escape from it at ambient temperatures.

Combustible. Capable of undergoing combustion.

Combustible Liquid. A liquid having a flash point at or above 100°F (37.8°C).

Combustible liquids shall be subdivided as follows:

- (a) Class II liquids shall include those having flash points at or above 100°F (37.8°C) and below 140°F (60°C).
- (b) Class IIIA liquids shall include those having flash points at or above 140°F (60°C) and below 200°F (93.4°C).
- (c) Class IIIB liquids shall include those having flash points at or above 200°F (93.4°C).

Combustible Liquid Storage Area — **Fixed.** An area used for storage of Class II and Class III combustible liquids that is infrequently moved, and where the aggregate quantity present shall not exceed 5000 gal (18,925 L). Handling of liquids incidental to transfer can take place within a storage area.

Combustible Liquid Storage Area — Mobile. Self-propelled or mobile equipment fitted with suitable containers or tanks and other related fixtures used for the storage, transport, and dispensing of Class II and Class III combustible liquids. The aggregate quantity of combustible liquid carried on such equipment shall not exceed 1000 gal (3785 L).

Combustible Liquid Storage Area — Portable. An area used for storage of Class II and Class III combustible liquids that is periodically moved, and where the aggregate quantity present shall not exceed 1000 gal (3785 L). Handling of liquids incidental to transfer can take place within a storage area.

Container. Any vessel of 60 gal (227 L) capacity or less.

Diesel-Powered Equipment. Any device powered by a diesel engine.

Dry-Pipe Sprinkler System. A system employing automatic sprinklers attached to a piping system containing air or nitrogen under pressure, the release of which (as from the opening of a sprinkler) permits the water pressure to open a dry-pipe valve. The water then flows into the piping system and out the opened sprinklers.

Fire Detector. An automatic device designed to detect the presence of fire and initiate action.

Fire-Resistant Construction. Masonry walls or equivalent having at least a 1-hour fire rating, including compressible materials having an equivalent fire resistance capability.

Fire Risk Assessment. The evaluation of the relative danger of the start and spread of fire; generation of smoke, gases, or toxic fumes; and the possibility of explosion or other occurrence endangering the lives and safety of personnel or causing significant damage to property.

INTRODUCTION 123–5

Fixed Fire Suppression System. A total flooding or local application system consisting of a fixed supply of extinguishing agent permanently connected for fixed agent distribution to fixed nozzles that are arranged to discharge an extinguishing agent into an enclosure (total flooding), directly onto a hazard (local application), or a combination of both; or an automatic sprinkler system.

Flammable Liquid. A liquid having a flash point below 100°F (37.8°C) and having a vapor pressure not exceeding 40 psi (276 kPa) absolute at 100°F (37.8°C) and shall be known as a Class I liquid.

Class I liquids shall be subdivided as follows:

- (a) Class IA shall include those having flash points below 73°F (22.8°C) and having a boiling point below 100°F (37.8°C).
- (b) Class IB shall include those having flash points below 73°F (22.8°C) and having a boiling point at or above 100°F (37.8°C).
- (c) Class IC shall include those having flash points at or above 73°F (22.8°C) and below 100°F (37.8°C).

Flammable Liquid Storage Area. Area used for storage of Class I liquids.

Flash Point.* The minimum temperature at which a liquid emits vapor in sufficient concentration to form an ignitible mixture with air near the surface of the liquid with the container as specified by appropriate test procedures and apparatus as follows:

The flash point of a liquid having a viscosity less than 45 Saybol + Universal seconds (SUS) at 100°F (37.8°C) or a flash point of 200°F (93.4°C) or higher shall be determined in accordance with ASTM D 56, Standard Method of Test for Flash Point by the Tag Closed Cup Tester.

The flash point of a liquid having a viscosity of 45 SUS or more at 100°F (37.8°C) or a flash point of 200°F (93.4°C) or higher shall be determined in accordance with ASTM D 93, Standard Method of Test for Flash Point by the Pensky-Martens Closed Tester.

Hand Hose Line System. A hose and nozzle assembly connected by fixed piping or connected directly to a supply of extinguishing agent.

Hydrant. A valved hose connection.

Inby. A mining term that means in the direction of the face of the mine or further into the mine.

Intrinsically Safe. Approved equipment incapable of releasing enough electrical or thermal energy under normal or abnormal conditions to cause ignition of a flammable mixture of methane or natural gas and air of the most easily ignitible composition.

Labeled. Equipment or materials to which has been attached a label, symbol, or other identifying mark of an organization that is acceptable to the authority having jurisdiction and concerned with product evaluation, that maintains periodic inspection of production of labeled equipment or materials, and by whose labeling the manufacturer indicates compliance with appropriate standards or performance in a specified manner.

Liquid. For the purpose of this document, any material with fluidity greater than that of 300 penetration asphalt when tested in accordance with ASTM D 5, *Standard Method of Test for Penetration of Bituminous Materials*.

Listed.* Equipment, materials, or services included in a list published by an organization that is acceptable to the authority having jurisdiction and concerned with evaluation of products or services, that maintains periodic inspection of production of listed equipment or materials or periodic evaluation of services, and whose listing states that either the equipment, material, or service meets identified standards or has been tested and found suitable for a specified purpose.

Low Pressure Tank. A storage tank designed to withstand an internal pressure above 0.5 psig (3.5 kPa) but not more than 15 psig (102.4 kPa).

Mine Operator. The highest ranking person responsible for conduct of work at a mine.

Mobile Equipment. Wheeled, skid-mounted, track-mounted, or rail-mounted equipment capable of moving or being moved.

Noncombustible. Material that, in the form in which it is used under the conditions anticipated, will not ignite, burn, support combustion, or release flammable vapors when subjected to fire or heat. Materials reported as noncombustible when tested in accordance with ASTM E 136, *Test Method for Behavior of Materials in a Vertical Tube Furnace at 750°C*, shall be considered noncombustible materials.

Operating Area. An area where mining of coal is taking place or area where construction is underway.

Outby. A mining term that means in the direction away from the face of the mine or toward the outside of the mine; opposite of inby.

Permissible Equipment. A completely assembled machine or accessory for which formal approval has been issued, allowing operation in a potentially explosive methane and air–mixture environment.

Pipeline System. An arrangement of piping, valves, connections, and allied equipment installed in a mine for the purpose of transporting, transferring, or dispensing flammable or combustible liquids.

Portable Extinguisher. A portable device carried or on wheels and operated by hand containing an extinguishing agent that can be expelled under pressure for the purpose of suppressing or extinguishing fire.

Portable Tank. Any closed vessel having a liquid capacity of over 60 gal (227 L), but less than 1000 gal (3785 L), and not intended for fixed installation.

Pressure Vessel. Any fired or unfired vessel within the scope of the applicable section of the ASME *Boiler and Pressure Vessel Code*.

Safety Can. An approved container, of not more than 5 gal (18.9 L) capacity, having a spring-closing lid and spout cover and so designed that it will safely relieve internal pressure when subjected to fire exposure.

Self-Closing Door. A door that, when opened and released, returns to the closed position.

Self-Propelled. Equipment that contains a motive power train as an integral part.

Shall. Indicates a mandatory requirement.

Should. Indicates a recommendation or that which is advised but not required.

Standard. A document, the main text of which contains only mandatory provisions using the word "shall" to indicate requirements and which is in a form generally suitable for mandatory reference by another standard or code or for adoption into law. Nonmandatory provisions shall be located in an appendix, footnote, or fine-print note and are not to be considered a part of the requirements of a standard.

Suitable. That which is appropriate and has the qualities or qualifications to meet a given purpose, occasion, condition, function, or circumstance.

Tank. A closed vessel having a liquid capacity in excess of 60 gal (227 L).

Chapter 2 Fire Prevention

2-1 Housekeeping.

- **2-1.1** Maintenance and operating practices shall minimize leakage and prevent the accidental release of flammable or combustible liquids. Spillage shall not be allowed to accumulate in quantities that could create a fire hazard and shall be cleaned up promptly.
- **2-1.2** Where flammable or combustible liquids are used or handled, means shall be provided to dispose of leakage or spills safely.
- **2-1.3** Combustible material shall not be allowed to accumulate in nondesignated areas. Appropriate waste receptacles shall be provided for combustible refuse.
- **2-1.4** Routes designated for access to fire protection equipment shall be kept clear of obstructions.
- **2-1.5** Air volume and velocity shall be sufficient to dilute, render harmless, and carry away flammable or explosive concentrations of vapors.
- **2-1.6** Excessive amounts of coal dust shall be cleaned up, covered, or inerted with rock dust.

2-2 Cutting and Welding.

- **2-2.1** Cutting and welding shall be performed only by persons instructed in precautions and procedures for safe operation.
- **2-2.2** Cutting and welding equipment shall be maintained in good operating condition with all necessary safeguards in place and functioning.
- **2-2.2.1** Flashback and backflow preventers shall be installed at the outlets of all pressure regulators and on the hose connections used in cutting, welding, brazing, and soldering torches.
- **2-2.2.2** Manifolding of cylinders containing gases used for cutting and welding shall be permitted only in well-ventilated shops. The equipment shall be electrically grounded and maintained in accordance with the safety precautions provided by the manufacturer.
- **2-2.3** When transporting compressed gas cylinders for cutting or welding, they shall be as follows:
- (a) Disconnected from regulators

Exception: Cylinders, regulators, hose, and torches that are protected adequately against damage shall not be required to be disconnected during transport to prevent possible contamination of the system by coal dust and air.

- (b) Protected with a metal cap or headband (fence-type metal protector around the valve stem)
- (c) Secured by devices that will hold the cylinders in place during transit on conveyor belts or mobile or self-propelled equipment
- (d) Placed in electrically insulated, substantial containers designed to hold the cylinders during transit on a trolley wire haulage system
- (e) Clearly labeled "empty" or "MT" if the gas has been expended
- **2-2.4** Valves on unattended compressed gas cylinders shall be closed. Where located in other than underground shops, compressed gas cylinders not in use shall have the regulators removed, and the valves shall be protected by covering with protective metal caps, by tank design, or by other approved equivalent protection.
- **2-2.5** Compressed gas shall be used only for its intended purpose. Compressed oxygen shall not be used to blow coal dust from clothing or machinery.
- **2-2.6*** Cutting or welding shall not be performed on or within containers or tanks that have stored combustible or flammable materials until such containers or tanks have been purged and cleaned thoroughly or have been inerted.
- **2-2.7** Cutting or welding shall not be performed within 50 ft (15.2 m), measured horizontally, of explosives, blasting agents, or flammable or combustible liquid storage areas unless separated by a suitable noncombustible barrier.
- **2-2.8** Before cutting and welding operations are undertaken, the following precautions shall be observed.
- **2-2.8.1** The immediate area shall be suitably cleaned, wetted down with water, or coated with rock dust. Open gear cases and combustible machine components located close to cutting or welding operations shall be covered with noncombustible material.
- **2-2.8.2*** Fire extinguishing equipment including multipurpose (ABC) dry chemical extinguishers, rock dust, or water hose shall be within 25 ft (7.6 m) of the cutting or welding operation. In the case of a portable fire extinguisher, a single unit having a nominal capacity of 20 lb (9.1 kg) with a minimum rating of 4-A:40-B:C shall be within 25 ft (7.6 m) of the cutting or welding operation.
- **2-2.8.3** Tests for methane gas (CH₄) shall be made before cutting or welding in any area where methane gas is likely to be present. Subsequent tests shall be made to monitor changes in methane concentration during the cutting and welding operation. Cutting or welding shall not be allowed to begin or continue unless the concentration is less than 1 percent by volume.
- **2-2.8.3.1** Where cutting or welding is necessary inby the last open crosscut, a continuous fire watch shall be maintained.
- **2-2.8.3.2** Where inby equipment to be modified or repaired can be moved, it shall be moved outby the last open crosscut before cutting or welding.
- **2-2.8.4** Adequate ventilation shall be established prior to, and maintained during, cutting or welding.
- **2-2.8.4.1** Cutting or welding on equipment or within enclosed areas of the equipment shall not be performed in the presence of atmospheres containing flammable mixtures of gases, vapors, or liquids, or combustible mixtures of dust in suspension.

FIRE PREVENTION 123–7

- **2-2.8.4.2** Flammable and combustible liquids shall not be dispensed within 50 ft (15.2 m) of cutting or welding operations. Freshly painted surfaces shall be allowed to dry sufficiently so that ignitible vapor is not present before cutting or welding.
- **2-2.8.5** Compressed gas cylinders shall be secured in the upright position or angled with the valve end higher for proper and safe operation during cutting and welding.
- **2-2.9** Compressed gas cylinders stored underground shall meet the requirements of this section.
- **2-2.9.1** Compressed gas cylinders shall be placed in storage areas designated for the purpose. These areas shall be constructed of noncombustible material or shall be well rockdusted and free of trash and combustible or flammable liquids.
- **2-2.9.2** Compressed gas cylinders shall be stored and secured in an upright position or angled with the valve end elevated.
- **2-2.9.3** Compressed gas cylinders shall be protected against damage from falling material, contact with power lines and energized electrical machinery, and heat from cutting or welding operations.
- **2-2.9.4** The valves of the compressed gas cylinder shall be closed tightly and protected from physical damage when not in use.
- **2-2.9.5** Compressed gas cylinders shall not be stored or left unattended inby the last open crosscut.
- **2-2.10** Upon completion of cutting or welding, a fire watch shall be maintained until all material has cooled sufficiently to allow touching with a bare hand.
- **2-2.10.1** Fire watchers shall have fire extinguishing equipment readily available and shall be trained in its use.
- **2-2.10.2** Fire watchers shall be familiar with the facilities and the procedures for sounding an alarm in the event of a fire.
- **2-3 Flammable Vapors.** Precautions shall be taken to prevent the ignition of flammable vapors. Potential sources of ignition shall include, but are not limited to, the following:
- (a) Open flames
- (b) Smoking
- (c) Cutting and welding
- (d) Hot surfaces
- (e) Frictional heat
- (f) Static, electrical, and mechanical sparks
- (g) Spontaneous ignition, including heat-producing chemical reactions
- (h) Radiant heat

2-4 Underground Maintenance Shops.

- **2.4.1*** Underground maintenance shops that are intended for use longer than 6 months shall be enclosed structures of fire-resistant construction, including floor, roof, roof supports, doors, and door frames, or shall be protected with an automatic fire suppression system. (See Chapter 5 for information on fire suppression systems.)
- **2-4.2** The shop area shall be ventilated directly to a return.
- **2-5* Belt Conveyors.** Belt conveyors installed in underground coal mines shall, as a minimum, meet all the requirements of this section.

2-5.1 Conveyor belts shall be approved.

- **2-5.2** Entries in which belt conveyors are installed shall be kept reasonably free of accumulations of coal and coal dust and shall be rock-dusted as needed.
- **2-5.3** All belt conveyors shall be equipped with an approved slippage switch system designed to shut down the belt if slippage develops between the drive pulley(s) and the belt. On each new installation, the slippage switch system shall be tested before the conveyor is used for the transport of coal. Thereafter, the slippage switch system shall be tested weekly.
- **2-5.4** All conveyor belts shall be equipped with an approved interlock system that will shut down inby belt conveyors or other coal-feeding equipment if any conveyor in the system should stop or reduce its normal speed.
- 2-5.5* Fixed combustible material such as posts, cribbing, and roof supports shall be guarded from contact by the belt with noncombustible material or shall be located at least half the width of the belt from any idler or pulley. Guarding for machinery in the drive area and at other points along the belt shall be made of noncombustible material.
- **2-5.6** New belt conveyor installations shall use a support structure without a deck between the upper and lower belt flights.

Exception: Belts that carry the load of the belt on a low-friction metal deck without rollers.

2-6 Hydraulic Fluids.

- 2-6.1 Fire-resistant hydraulic fluid shall be approved.
- **2-6.2** Unattended hydraulic equipment shall employ fireresistant hydraulic fluid unless protected by an automatic fire suppression system.
- **2-6.3** Where fire-resistant fluids are required, samples of in-use fire-resistant fluids of the invert emulsion-type shall be collected quarterly. These samples shall be tested individually to determine if the water content will make the fluid fire resistant. When a sample indicates that the water content is insufficient for the fluid to be fire resistant, the fluid shall be replaced or water shall be added to restore the fire resistance of the fluid. When water is added to the hydraulic system of any machine, a sample shall be taken and analyzed within 24 hours.

2-7 Risk Management.

2-7.1* Fire Risk Assessment.

- **2-7.1.1** A fire risk assessment shall be performed on all electrical or diesel-powered fixed, mobile, and self-propelled equipment by the mine operator or the operator's designated agent. This assessment shall include evaluation of the risk potential for the start and spread of a fire and the generation of smoke, gases, or toxic fumes that could endanger the lives and safety of personnel or cause unacceptable damage to property.
- **2-7.1.2** A separate fire risk assessment for each piece of equipment shall be required only when variations in design, use, condition, and environment change the fire potential.
- **2-7.1.3** If the assessment identifies unacceptable risks, further assessment shall include an evaluation of each of the following:
- (a) Methods for minimizing or eliminating existing hazardous fire conditions
- (b) Use of detection and early fire-warning devices

- (c) Normal and emergency means of egress from the equipment or areas and evacuation to a safe location
- (d) Compartmentalization of equipment or isolation of areas to prevent or contain the spread of fire
- (e) Availability of fire-fighting personnel and existing fire suppression equipment
- (f) Spread of equipment fire to combustible materials in proximity
- (g) Ventilation control structures to contain or redirect products of combustion to the return
- (h) Any other devices or procedures necessary to protect life and property
- **2-7.2 Fire Risk Reduction.** Fire risk reduction practices shall follow the principles of minimizing ignition sources and reducing exposure of combustible materials to ignition sources. Paragraphs 2-7.2.1.1 and 2-7.2.2 delineate risk reduction practices.

2-7.2.1 Equipment Modification.

- **2-7.2.1.1*** All equipment shall be analyzed to determine whether fire risks can be reduced through equipment modification. Some examples include physical barriers between fuel and ignition sources, thermal shields over hot surfaces, hydraulic hose and electrical wiring harness rerouting, and power shutoffs.
- **2-7.2.1.2** Modifications affecting fire risk of equipment shall be analyzed to determine whether such modifications decrease or increase fire risk.
- **2-7.2.2 Equipment, Inspection, and Maintenance.** Hydraulic lines, coolant lines, lubrication lines, fuel lines, and electrical wiring, mechanical components, and fire prevention devices shall be inspected and maintained in proper condition in accordance with the manufacturers' recommendations.

Chapter 3 Flammable Liquids

3-1 General.

- **3-1.1** Wherever possible, the underground storage of flammable liquids shall be minimized.
- **3-1.2*** Electrical equipment in flammable liquid storage areas shall be Class I, Division 1 as specified in NFPA 70, *National Electrical Code*®, or shall be classified "permissible" electrical equipment.
- **3-1.3** Flammable liquids in storage shall be kept in closed containers.
- **3-1.4** Flammable liquids shall be permitted to be used only where there are no open flames or other sources of ignition within the possible path of vapor travel in flammable concentrations.
- **3-1.5** Flammable liquid containers shall be returned to a flammable liquid storage area after use.
- **3-1.6** All aerosol cans shall be treated as containing flammable liquids unless otherwise specifically identified.
- **3-1.7** Individual aerosol cans that are used regularly in normal operations shall be permitted on mobile equipment or in tool cabinets. Such cans shall be protected from mechanical damage.

3-2 Flammable Liquid Containers.

- **3-2.1** Flammable paints shall be stored only in original containers or cans of not over 5 gal (3.8 L) capacity. All other flammable liquids shall be transferred while on the surface to a listed safety can.
- **3-2.2** Safety cans containing Class IA flammable liquids shall not exceed 2 gal $(7.6\,\mathrm{L})$ capacity.
- **3-2.3** All flammable liquid containers shall be clearly labeled with the word "flammable."
- **3-2.4** Flammable liquid containers shall be stored in a stable manner.

3-3 Flammable Liquid Storage Areas.

- **3-3.1** Flammable liquids shall be stored in noncombustible cabinets or areas specifically designed and constructed for such purpose.
- **3-3.1.1** Noncombustible storage cabinets shall be listed or approved, or shall meet the requirements specified in Section 4-3 of NFPA 30, *Flammable and Combustible Liquids Code*.
- **3-3.1.2** Flammable liquid storage areas shall meet the requirements of 4-5.1, 4-5.2, and 4-5.5.
- **3-3.2** In operating areas, containers of flammable liquids and aerosol cans shall be stored at least 25 ft (7.6 m) away from potential ignition sources such as energized trolley wire, energized electrical equipment, and other operating equipment.
- **3-3.3** The aggregate quantity of flammable liquids, including aerosol cans, in a flammable liquid storage area shall not exceed 60 gal (227 L).

3-4 Dispensing Flammable Liquids.

- **3-4.1** Flammable liquids shall be drawn from or transferred into containers within a storage area using only the following methods:
- (a) From safety cans
- (b) From a container by means of a device that draws through an opening in the top of the container
- (c) By gravity through a listed or approved self-closing valve or self-closing faucet
- **3-4.2** Transferring flammable liquids by means of pressurizing a container with air shall be prohibited. Transferring flammable liquids by pressure of inert gas shall be permitted only if controls, including pressure relief devices, are provided to limit the pressure so it cannot exceed the design pressure of the container.
- **3-4.3** Where electrically powered pumps are used to transfer flammable liquids, a clearly identified and accessible switch or circuit breaker shall be provided at a location remote from dispensing devices, including remote pumping systems, to shut off the power to all dispensing devices in the event of an emergency.
- **3-4.4** Where flammable liquids are dispensed from containers, the containers shall be provided with approved vents, bonding, and flame arresters.
- **3.4.5** At least one portable fire extinguisher having a nominal capacity of 20 lb $(9.1~{\rm kg})$ with a minimum rating of 10-A:60-B:C shall be located not more than 40 ft $(12.2~{\rm m})$ from any area where flammable liquid is dispensed.

Chapter 4 Combustible Liquids

4-1 General.

- **4-1.1** Combustible liquids in use, such as diesel fuel in the fuel tanks of diesel-powered vehicles, hydraulic fluid in the reservoirs of hydraulic equipment, and lubricating oil in the lubrication reservoirs of operating equipment, are not covered in this chapter.
- **4-1.2** Combustible liquids in approved tanks or containers meeting the following requirements shall not require any special consideration and are exempt from the requirements for storage areas:
- (a) Class II combustible liquids stored in containers meeting the requirements of this chapter and not exceeding 60 gal (227 L)
- (b) Class III combustible liquids stored in containers or approved tanks as specified in this chapter and not exceeding 660 gal (2498 L)
- **4-1.3** Combustible liquid containers shall be stored as follows:
- (a) Drums holding 55 gal (208 L) and 30 gal (114 L) shall be set vertically and not over 1 drum high.
- (b) Drums holding 16 gal (60.6 L) shall be set vertically and not over 2 drums high.
- (c) Pails holding 5 gal (18.9 L) shall be set vertically and not over 4 pails high.
- (d) Cartons holding grease cartridges shall not be stacked over 3 cartons high.
- (e) Containers shall be kept closed during storage.
- **4-1.4** Ventilation shall be provided wherever combustible liquids are stored to prevent the accumulation of ignitible vapors.

4-2 Combustible Liquid Containers and Tanks.

- **4-2.1** Tanks for handling combustible liquids shall be substantially constructed, fitted with filler caps and vents, and shall have discharge valves that are protected in the event of derailment or ribbing of the vehicle.
- **4-2.2** Shipping containers and portable tanks for combustible liquids authorized by the U.S. Department of Transportation or conforming to the requirements of NFPA 386, *Standard for Portable Shipping Tanks for Flammable and Combustible Liquids*, shall be acceptable as storage containers.
- **4-2.3** Shipping containers larger than 5 gal (18.9 L) shall be provided with vacuum and pressure relief.
- **4-2.4** Containers and portable tanks for combustible liquids shall conform to the capacity limitations as defined in Section 1-4
- **4-2.5** Combustible liquid storage tanks intended for fixed installation and engineered portable tanks shall be of materials compatible with the liquid stored and shall be designed and built in accordance with good engineering practices.
- **4-2.6*** Atmospheric tanks shall be built in accordance with good engineering practices.
- $\mbox{\bf 4-2.7}$ The operating pressure of storage tanks shall not exceed their design working pressure.
- **4-2.8*** Low pressure tanks shall be built in accordance with good engineering practices.

- **4-2.9** The operating pressure of the vessel shall not exceed the design working pressure.
- **4-2.10*** Pressure vessels shall be built in accordance with good engineering practices.
- **4-2.11** Storage tanks shall be vented to prevent the development of vacuum or pressure sufficient to distort the shell or roof of the tank as a result of filling or emptying and atmospheric temperature changes. Protection shall also be provided to prevent overpressure from any filling source exceeding the design pressure of the tank.
- **4-2.12*** Storage tank vents shall be at least as large as the filling or withdrawing lines but no less than $1^1/_4$ in. (2.18 cm) nominal inside diameter. If more than one fill or withdraw line can be used simultaneously, the vent capacity shall be based on the maximum anticipated simultaneous flow.
- **4-2.13** Vent pipes shall be constructed to drain toward the tank without sags or traps to collect liquid.
- 42.14 Connections for all tank openings shall be liquidtight.
- **4-2.15** Each connection to a tank through which liquid normally can flow shall be provided with an internal or external valve located as close as practicable to the shell of the tank.
- **4-2.16** Tanks containing combustible liquids shall be provided with a means for quick cutoff of flow in the event of fire in the vicinity of the tank.
- **4-2.17** Openings for manual gauging, if independent of the fill pipe, shall be kept closed when not gauging. Each such opening for any liquid shall be protected against liquid overflow and possible vapor release by means of a spring-loaded check valve or other appropriate device. Substitutes for manual gauging are acceptable.

4-3 Transfer and Transport of Combustible Liquids.

- **4-3.1** The terms *transfer* and *transport* shall be used synonymously to mean movement of combustible liquid in closed containers, tanks, safety cans, or pipelines between underground locations. Included in this section are the storage requirements for combustible liquid in an operating area.
- **4-3.2** Combustible liquid shall be permitted to be transferred into the mine by pipeline, portable tank, closed container, or safety can.
- **43.3** When combustible liquid is transferred into the mine, it shall be transported or transferred directly to the storage area or location where it will be used.
- **4-3.4*** Pipeline systems used for combustible liquid transfer shall be permitted to be either wet- or dry-pipe installations.
- **4-3.4.1** Piping, valves, and fittings used for combustible liquid transfer shall be suitable for the expected working pressures and structural stresses. Piping, valve, and fitting burst strengths shall be at least four times the static pressure. The mechanical and thermal stresses of the pipeline caused by exposure to fire shall be considered in the selection of components and design of the pipeline system.
- **4-3.4.2** A manual shutoff valve shall be installed in the pipeline at the surface storage tank and at the point of underground discharge. An additional shutoff valve also shall be installed in each branch line where the branch line joins the main line.

- **4-3.4.3** The pipeline system shall be guarded so as to be protected against physical damage. Guarding by choice of location shall be considered an acceptable practice.
- **4-3.4.4** Combustible liquid pipeline transfer systems shall be maintained in good working order.
- **4-3.4.5** A fire risk assessment shall be conducted for the location(s) intended for installation of combustible liquid pipeline systems. (See A-2-7.1 and Figure A-2-7.1.)
- **4-3.5** Combustible liquid shall not be transported in the same conveyance with personnel unless the items are secured or small and can be carried safely by hand.
- **4-3.6** Combustible liquid containers or tanks loaded on rail or trackless vehicles shall be secured against shifting and damage during transit.
- **4-3.7** Rail or trackless vehicles that carry supplies for production areas in addition to combustible liquids shall have provisions for securing or separating those supplies from the lubricants so that, in the event of derailment or ribbing, the supplies will not puncture containers or tanks.
- **4-3.8** Vehicles carrying combustible liquids shall be kept reasonably clean of accumulations of oil, grease, and other combustible material. Spilled combustible liquids shall be cleaned up promptly. Any remaining residue shall be covered with an oil absorbent or rock dust.
- **4-3.9** Combustible liquid containers or tanks shall be at least 12 in. (30.5 cm) below energized trolley wires, or protected from contacting the wire by insulation, while being transported by trolley wire-powered systems.
- **4-3.10*** The quantity of combustible liquid in containers or tanks off-loaded from transport vehicles and stored in an operating area shall not exceed a 3-day supply for normal operations in that area.

Exception: A single tank or container with a capacity exceeding a 3-day supply shall be permitted.

4-4 Areas for the Storage of Combustible Liquids in Portable Containers.

- **4-4.1** Portable combustible liquid storage areas shall be a minimum of 100 ft (30.5 m) from explosives' magazines, electrical substations, shops, working faces, or other combustible liquid storage areas, or shall be separated by unexcavated coal or rock or a masonry bulkhead. The storage area, unless equipped with an approved fire protection system, shall be a minimum of 100 ft (30.5 m) from any shaft station and 25 ft (7.6 m) from energized trolley wire.
- **4-4.2** A portable combustible liquid storage area shall be recessed or otherwise located and protected from accidental damage by mobile equipment or blasting.
- **44.3** The storage area shall be vented to the return.
- **4-4.4** The aggregate quantity of Class II and Class III combustible liquids in a combustible liquid storage area for portable containers shall not exceed 1000 gal (3785 L).

4-5 Fixed Areas for Combustible Liquid Storage.

- **4-5.1** Fixed combustible liquid storage areas shall be located as follows:
- (a) A minimum of 100 ft (30.5 m) from explosive magazines, electrical substations, shaft stations, and shops.

- (b) A minimum of 100 ft (30.5 m) from other flammable or combustible liquid storage areas or separated by unexcavated coal, rock, or masonry bulkhead. The masonry bulkhead shall be a minimum thickness of 4 in. (10.2 cm) of blocks or 2 in. (5.1 cm) of reinforced gunite.
- (c) A minimum of 100 ft (30.5 m) from any working face and out of the line of sight of blasting, or a minimum of 500 ft (152 m), within line of sight, from any working face to avoid damage from fly rock.
- (d) A minimum of 25 ft (7.6 m) from normally energized trolley wire.
- **4-5.2** All fixed combustible liquid storage areas shall be enclosed and protected by an automatic fire suppression system.
- **4-5.2.1** All fixed combustible liquid storage area enclosures shall be of fire-resistive construction, including floor, roof, roof supports, doors, and door frames. Exposed coal within all fixed combustible liquid storage areas shall be covered with noncombustible materials such as gunite, shotcrete, or preformed masonry. Bulkheads, if used, shall be tightly sealed and shall be built of, or covered with, noncombustible materials.
- **4-5.2.2** All fixed combustible liquid storage area enclosures shall be constructed to provide for suitable spill containment or shall be provided with a suitable floor drain to direct spilled liquid to a containment sump or vessel.
- **4-5.2.3** All openings to the storage area enclosures shall be sealed with substantial, fire-resistive stoppings. The access opening through which containers are moved shall be located on the intake side. All openings shall be equipped with self-closing metal doors. A metal personnel access door shall be provided at the opposite end of the storage area.
- **4-5.2.4** The storage area enclosure shall be vented to the return.
- **4-5.3*** Tanks shall rest on the ground or on foundations made of concrete, masonry, piling, or steel. Tank foundations shall be designed to prevent accumulation of combustible liquid under the tank, to minimize the possibility of uneven settling of the tank, and to minimize corrosion in any part of the tank resting on the foundation.
- **4-5.4** All piping, valves, and fittings shall be suitable for the expected working pressures and structural stresses.
- **4-5.5** Fixed combustible liquid storage areas shall have exhaust directed to an exhaust ventilating system. Adequate ventilation shall be provided to prevent the accumulation of ignitible vapors.
- **4-5.6** Empty or idle combustible pallet storage within the combustible liquid storage area shall be limited to a maximum pile size of $250 \, \mathrm{ft^2} \, (23.2 \, \mathrm{m^2})$ and a maximum storage height of 7 ft (2.1 m). Idle pallet storage shall be separated from combustible liquids by at least 4 ft (1.2 m).
- **4-5.7** The aggregate quantity of Class II and Class III combustible liquids in a fixed combustible liquid storage area shall not exceed 5000 gal (18,925 L).
- 4-6 Mobile Equipment for the Storage, Transport, and Dispensing of Combustible Liquids.
- **4-6.1** Where combustible liquids are stored on mobile equipment such as mobile service trucks, the equipment shall be parked at fixed or portable combustible liquid storage areas when not in use.

FIRE PROTECTION 123–11

4-6.2 The aggregate quantity of combustible liquids carried on mobile equipment shall not exceed 1000 gal (3785 L).

4-7* Dispensing Combustible Liquids.

- **4-7.1** Combustible liquids shall be permitted to be dispensed through the application of positive pressure to containers or tanks only where they are certified as pressure vessels.
- **4-7.2** Where electrically powered pumps are used to dispense combustible liquids, a clearly identified and accessible switch or circuit breaker shall be provided at a location remote from dispensing devices, including remote pumping systems, to shut off the power to all dispensing devices in an emergency.
- **4-7.3** Dispensing nozzles shall be of the self-closing type without a latch-open device.
- **4-7.4** Combustible liquids shall not be dispensed within 50 ft (15.2 m) of cutting or welding operations.
- **4-7.5** At least one portable fire extinguisher having a nominal capacity of 20 lb (9.1 kg) with a minimum rating of 10-A:60-B:C shall be located not more than 40 ft (12.2 m) from any area where combustible liquid is dispensed.
- **4-7.6** Dispensing combustible liquid from containers or tanks shall be accomplished by an approved transfer pump or by gravity flow. Where needed, containers or tanks shall be equipped with an approved vent. If a manual valve is used, it shall be of the self-closing type.
- **4-7.7** Spillage shall be cleaned up promptly. Remaining residue shall be covered with an oil absorbent or rock dust.

Chapter 5 Fire Protection

5-1 Portable Fire Extinguishers.

5-1.1 General Requirements.

- **5-1.1.1*** Portable fire extinguishers used in underground coal mines shall be listed, multipurpose (ABC) dry chemical types having a minimum nominal capacity of 10 lb (4.6 kg) of extinguishing agent and shall meet the requirements of NFPA 10, *Standard for Portable Fire Extinguishers*.
- **5-1.1.2** Portable extinguishers shall be kept in their designated places.
- **5-1.1.3** Extinguishers shall be located conspicuously where they will be readily accessible in the event of fire.

Exception: In areas where visual obstruction cannot be completely avoided, visible markings shall be provided to indicate the location.

- **5-1.1.4** Extinguishers subject to dislodgment shall be installed in brackets specifically designed for this problem.
- **5-1.1.5** Extinguishers shall be protected from physical damage. Damaged extinguishers shall be repaired, replaced, or removed from service.
- **5-1.1.6** At least one hand-portable fire extinguisher having a nominal capacity of 20 lb (9.1 kg) with a minimum rating of 10-A:60-B:C shall be located outside of, but not more than 10 ft (3.0 m) from, the opening into each flammable and combustible storage area and maintenance shop. The installation of manual or automatic fire suppression systems shall not waive this requirement.

5-1.1.7 Where portable fire extinguishers are provided within flammable and combustible storage areas, travel distance to a portable extinguisher shall not exceed 40 ft (12.2 m).

5-1.2 Selection and Application.

- **5-1.2.1** Multipurpose (ABC) dry chemical extinguishers shall be provided for protection of the following:
- (a) Ventilation doors on trolley wire-supplied track haulageways
- (b) Pumps and pump rooms
- (c) Conveyor belt drives
- (d) Belt head loading equipment
- (e) Air compressors
- (f) Electrical equipment such as transformers, load centers, rectifiers, circuit breakers, generators, and starters
- (g) Rotary dump areas
- (h) Battery-charging areas
- (i) Intervals of 100 ft (15.2 m) along a long wall face unless washdown hose are present
- (j) Flammable and combustible liquid storage areas
- (k) Mobile equipment used for the storage, transport, and dispensing of combustible liquids
- (l) Electric or diesel-powered mobile equipment
- (m) Self-propelled equipment
- **5-1.2.2** The installation of an automatic or manually operated fire suppression system shall not eliminate the requirement for a portable fire extinguisher.
- 5-1.2.3* At least one multipurpose (ABC) dry chemical extinguisher having a minimum nominal capacity of 30 lb (13.6 kg) of agent, or two multipurpose (ABC) dry chemical extinguishers having a minimum nominal capacity of 20 lb (13.6 kg) of agent each, shall be provided in each working section of a mine, including the headgate of a longwall face. If the coal seam is exceptionally gaseous and gas blowers are present, two multipurpose (ABC) dry chemical extinguishers having a minimum nominal capacity of 20 lb (13.6 kg) of agent each shall be provided.

5-1.3 Inspection and Maintenance.

- **5-1.3.1** Portable fire extinguishers shall be inspected, maintained, and recharged as specified in NFPA 10, *Standard for Portable Fire Extinguishers*, Chapter 4, and shall include the requirements of 5-1.3.2 through 5-1.3.9.
- **5-1.3.2*** Portable fire extinguishers shall be inspected visually at least monthly. The visual inspection shall confirm the following:
- (a) The extinguisher is in its designated place.
- (b) The tamper seals are intact.
- (c) The extinguisher gauge is in the operable range (if extinguisher is stored pressure-type).
- (d) There is no obvious physical damage or condition to prevent operation.
- **5-1.3.3** Extinguishers shall be subjected to a thorough maintenance examination at least once every 12 months.
- **5-1.3.4** Maintenance procedures shall include a thorough examination of the extinguisher, including mechanical parts, extinguishing agent, and means of expulsion.
- **5-1.3.5** Any detected troubles or impairments shall be corrected or replaced immediately by competent personnel.

- **5-1.3.6** Each extinguisher shall have a durable tag or label securely attached on which the date of the maintenance services shall be recorded.
- **5-1.3.7** All extinguishers shall be recharged after any discharge.
- **5-1.3.8** All extinguishers shall be recharged as deemed necessary through inspection or maintenance.
- **5-1.3.9** Portable extinguishers shall be hydrostatically tested at intervals not exceeding those specified in NFPA 10, *Standard for Portable Fire Extinguishers*, Chapter 5.

5-2 Water Supply for Mine Fire Protection.

5-2.1 General Requirements.

5-2.1.1* Water distribution lines shall extend from the surface to each operating area.

Exception: Water lines that extend from a suitable underground supply of water shall be permitted, provided the power for the pump(s) is not interrupted during a fire.

- **5-2.1.2** The operator shall choose the entry in which the water line is located, and it shall be adequately protected by the choice of location.
- **5-2.1.3** Water flow and ventilation airflow shall be in the same direction, unless suitable provision is made to ensure the availability of fire-fighting water on the upwind side of a fire in the entry containing the water line.
- **5-2.1.4** Where applicable, water lines shall be protected against freezing.
- **5-2.1.5** Water lines that are 2 in. (5 cm) or larger in diameter shall be joined with flanges, mechanical grooved fittings, threaded fittings, or other suitable fittings. At least every third joint shall be capable of allowing limited motion and emergency rearrangement.
- **5-2.1.6** Pipe and fittings shall be of substantial construction and shall be adequate for the water pressure intended.
- **5-2.1.7*** Water lines shall be equipped with shutoff valves at intervals not exceeding $5000 \, \mathrm{ft} \, (1525 \, \mathrm{m})$. A shutoff valve shall be provided in each branch line at the point where it is coupled to the main water line.

5-2.2 Water Demand.

- **5-2.2.1*** All coal mine water systems shall be capable of simultaneously supplying 3 hose streams, each with a flow rate of at least 50 gpm (3.2 L/sec), and a nozzle pressure of at least 50 psi (a gauge pressure of 345 kPa) for a total of 150 gpm (9.6 L/sec), applied through the maximum expected lay of hose.
- **5-2.2.2*** The mine water system shall be capable of supplying the required hose stream water demand continuously for 24 hours or the sprinkler water demand continuously for 2 hours, whichever is the greater supply.

5-2.3 Hydrants.

- **5-2.3.1*** Hydrants suitable for supplying water to a fire hose shall be provided on the water line at intervals not exceeding 500 ft (152.5 m).
- **5-2.3.2** Hydrants shall be located at or close to an accessible crosscut(s). Stopping(s) in such crosscut(s) shall be fitted with a man door. If staggered crosscuts are used, hydrant locations

- and crosscuts with man doors shall be located to provide a favorable route for laying a fire hose to parallel entries.
- **5-2.3.3** At least one hydrant shall be located upwind of the area protected by an automatic sprinkler system. Fire hose of sufficient length to reach all points of the sprinklered area with an adjustable nozzle shall be stored close to the hydrant.
- **5-2.3.4*** Multiple hydrant assemblies, with the tools needed for their installation, shall be provided as part of each cache of emergency materials.
- **5-2.4 Maintenance.** The water supply system shall be maintained operable.

5-3* Fire-Protective Signaling Systems.

5-3.1 General Requirements.

- **5-3.1.1*** All fire detectors shall be approved for the intended use and installed in accordance with NFPA 72, *National Fire Alarm Code*®, or the manufacturers' instructions.
- **5-3.1.2*** All signaling systems shall be approved for the intended use.
- **5-3.1.3** Fire detectors and related signaling system components used to initiate an audible or visual alarm, automatic activation of a fire suppression system, or equipment shutdown shall be approved for the intended use.
- **5-3.1.4** Fire detectors shall be listed for the application.
- **5-3.1.5*** Signaling system input, alarm, and releasing circuits shall be supervised. The presence of a fault, alarm, or release shall initiate a signal in the protected area and remotely in a constantly attended location. This signal shall indicate which condition has occurred.

Exception: A trouble signal shall not be required when the main power supply is intentionally shut off during periods of mine inactivity.

- **5-3.1.6** A sprinkler system with a water flow switch connected to the signaling system shall be permitted in lieu of fire detection, but only in the area covered by the sprinkler system.
- **5-3.1.7*** All components of protective signaling systems used inby the last open crosscut or in return air shall be classified as permissible or intrinsically safe.

5-3.2 Selection and Application.

- **5-3.2.1*** Fire detectors shall be installed over all belt conveyors and at all unattended automatic belt heads (where mine cars are loaded automatically).
- **5-3.2.2** Compartment sizes and contours, airflow patterns, obstructions, and other characteristics of the protected area shall determine the placement, type, sensitivity, and, where applicable, the number of detectors.

5-3.3 Inspection, Maintenance, and Testing.

5-3.3.1 All fire detection systems and associated equipment shall be tested after installation according to the manufacturer's or designer's instruction manual.

Exception: Testing shall not require the discharge of any associated fire suppression system.

5-3.3.2 The detection system shall be inspected visually in accordance with an approved schedule according to conditions determined by the mine operator.

FIRE PROTECTION 123–13

5-3.3.3 At least every 12 months, all fire detection systems, including alarms, shutdowns, and other associated equipment, shall be examined and checked thoroughly for proper operation in accordance with the manufacturer's or designer's instruction manual. Deficiencies shall be corrected, and the system shall be retested for proper operation.

5-4* Fire Protection Systems.

5-4.1 General Requirements.

- **5-4.1.1** Mining equipment requiring a fixed fire protection system shall be protected by a system with the capacity to suppress the largest anticipated fires in the protected areas and shall be as follows:
- (a) Listed or approved for the purpose.
- (b) Suitably located or guarded so as to be protected against physical damage.
- (c)* Either automatically or manually actuated. Automatically actuated systems also shall have a manual actuator capable of being activated from the operator's compartment or other accessible location.
- (d) Provided with agent distribution hose or pipe secured and protected against damage, including abrasion and corrosion.
- (e) Provided with discharge nozzle blowoff caps or other devices or materials to prevent the entrance of moisture, dirt, or other material into the piping. The discharge nozzle protective device shall blow off, blow out, or open upon agent discharge.
- (f) The automatic fire protection system shall be installed so that system actuation causes shutdown of the protected equipment.

Exception: Paragraphs 5-4.1.1(c) and (e) shall not apply to automatic water-based sprinkler systems.

5-4.1.2 Fire protection systems shall be in accordance with the applicable NFPA standards.

Exception: Where the nature of coal mines does not allow the NFPA standards to be followed, plans must be approved by the authority having jurisdiction.

5-4.2 Applications.

- **5-4.2.1*** The following equipment and facilities shall be protected by approved automatic fire protection systems satisfying the requirements of 5-4.2.2 through 5-4.3.5:
- (a)* Drive areas of belt conveyors, including drive motor(s), reducer, head pulley, tail pulley, belt storage unit, controls, discharge chute (to next belt), and takeup, including its power unit

Exception: The tail pulley at the system loading point shall not require an automatic fire protection system.

- (b) Flammable and combustible liquid storage areas
- (c) Maintenance shops
- (d) Unattended hydraulic equipment, unless fire-resistant hydraulic fluid is used
- (e) Unattended electrical equipment such as enclosed electric motors, controls, transformers, rectifiers, and other equipment that does not have a hydraulic system

Exception No. 1: Equipment located on noncombustible material and spaced at least 2 ft (0.61 m) from coal or other combustible material.

Exception No. 2: Equipment located on noncombustible material and separated from coal or other combustible material by a fire-resistive layer or wall.

- (f)* Air compressors. Air compressors shall be protected by one of the following:
 - 1. An automatic water-based fixed fire protection system.
 - 2. A person in constant attendance, within the line of sight of the compressor, and equipped with a portable fire extinguisher in addition to the requirement of 5-4.2.1 for an automatic fire protection system.
 - 3. Containment within an enclosure. Such an enclosure shall be constructed of noncombustible materials, ventilated to prevent overheating of the compressor, designed to provide containment of any possible fire involving the compressor, and protected by an automatic fire protection system in accordance with 5-4.2.1.
- **5-4.2.2** Where high-expansion foam is used, provision shall be made to supply uncontaminated air for foam making.
- **5-4.2.3** Automatic fixed fire protection systems, other than automatic water-based fixed fire protection systems, shall be as follows:
- (a) Approved for the application
- (b) Installed, operated, inspected, and maintained in accordance with the applicable NFPA document
- (c) Equipped with one or more manual actuators accessible for quick actuation and maintained in operable condition
- (d) In compliance with the requirements of 5-5.1(a), (b), and (d) through (h)

5-4.3 Sprinkler System Requirements.

- **5-4.3.1*** Automatic water-based fixed fire protection systems installed for the protection of Class I or Class II liquid storage areas shall be of the foam-water type.
- **5-4.3.2*** Where the requirements of Section 5-4 are satisfied by installing automatic sprinkler systems, such systems shall comply with the following:
- (a) An indicating, full-flow, slow-opening water control valve shall be located at the tap of the water line supplying the sprinkler system. When the sprinkler system is put into operation, the valve shall be sealed in the open position.
- (b) A water flow switch or alarm valve, with associated inspector's test connection, capable of detecting the flow through one opened sprinkler shall be installed in the piping feeding the sprinklers. The alarm device shall be connected to an alarm system that will alarm at a constantly attended location and shall identify the sprinkler system involved. In drypipe automatic sprinkler systems, the alarm system shall be activated by flow through a dry-pipe valve, and paddle-type water flow switches shall not be used.
- (c) Sprinklers shall be standard orifice pendent, upright, or sidewall-type automatic sprinklers [usually $^1/_2$ in. (1.27 cm), 175°F to 225°F (79°C to 107°C)]. Sprinklers shall be installed in the upright position on a dry-pipe system.

CAUTION

Some automatic sprinklers might not withstand the water pressure that can be encountered in deep mines. Information on the effect of high water pressure on automatic sprinklers can be found in U.S. Bureau of Mines Report of Investigations 9451, "Effect of Pressure on Leakage of Automatic Sprinklers."

- (d)*For sprinkler systems installed to protect the equipment and facilities indicated in 5-4.2.1(a), sprinklers shall be placed no more than 10 ft (3.05 m) apart. For sprinkler systems installed to protect equipment and facilities indicated in 5-4.2.1(b) through (f), sprinklers shall be spaced no more than 12 ft (3.66 m) apart, and the protection of any one sprinkler shall not exceed 100 ft 2 (9.3 m 2).
- (e)*Sprinklers shall be located so that the discharge will not be obstructed. Sprinkler deflectors shall be located at a distance below the roof of not less than 1 in. (2.54 cm) nor greater than 20 in. (50.8 cm). Roof cavities containing combustible material such as wood or coal in the area to be protected shall be protected by installing upright sprinklers within the cavity at the top of riser pipes so that the deflectors are within 20 in. (50.8 cm) of the roof.
- (f)* Piping in sprinkler systems shall comply with 5-2.1.5 and 5-2.1.6. Nonmetallic pipe shall not be used downstream of the sprinkler control valve unless investigated and approved for this purpose.
- (g) Hangers supporting sprinkler piping shall be metallic. At least one hanger shall be attached to each length of pipe.
- (h) Provision shall be made to drain all parts of the system properly. Drain connections shall be sized as shown in Table 5-4.3.2(h).

Table 5-4.3.2(h) Sizes of Drain Connections

Riser or Main Size	Size of Drain Connection
Up to 2 in.	$^{3}/_{4}$ in. or larger
$2^{1}/_{2}$ in. $-3^{1}/_{2}$ in.	$1^{1}/_{4}$ in. or larger
4 in. and larger	2 in. only

Note: For SI units: 1 in. = 2.54 cm.

Trapped piping sections shall be equipped with auxiliary drains or otherwise arranged to facilitate draining.

- **5-4.3.3** Wet-pipe sprinkler systems shall not be used where chance of freezing exists.
- **5-4.3.4** Where danger of freezing exists, sprinkler systems filled with antifreeze solution shall be permitted and shall meet the following requirements:
- (a)*If automatic sprinkler systems are connected to public water supplies or to piping supplying water for drinking, antifreeze solutions other than water solutions of pure glycerine [chemically pure (CP) or United States Pharmacopeia (USP)

- 96.5 percent grade] or propylene glycol shall not be used. The glycerine-water and propylene glycol-water mixtures provided in Table 5-4.3.4(a) shall be permitted to be used.
- (b) If automatic sprinkler systems are not connected to public water systems or to piping supplying water for drinking, the commercially available materials provided as shown in Table 5-4.3.4(b) shall be permitted to be used in antifreeze solutions
- (c)*A soft-seat check valve shall be connected to the tee in the water line feeding the automatic sprinkler system. The water control valve [see 5-4.3.2(b)] shall be connected close to the discharge side of the check valve.
- (d) A $^1/_4$ -in. (6.35-mm) soft-seat relief valve made of corrosion-resistant bronze or stainless steel shall be connected to the sprinkler piping near the shutoff valve. The relief valve shall be set to open at a pressure of 200 psi (1.379 kPa) above the maximum water-line pressure (i.e., the maximum system pressure).
- (e)*A suitable air chamber shall be connected to the piping. The connection port to the chamber shall be fitted with a small, high-pressure, corrosion-resistant ball valve. The connection from the ball valve to the sprinkler piping shall be permitted to use a small diameter hydraulic hose having a working pressure of at least the maximum system pressure. The air chamber shall be filled with compressed air at a pressure equal to the maximum water-line pressure. Where connected to the system piping, the air chamber shall be oriented so that the connection port is located at the bottom of the chamber. With the shutoff valve still closed, the sprinkler piping shall be filled with the antifreeze solution. High points of the piping shall be vented to obtain reasonably complete filling. The valve on the air chamber shall be opened and sealed. If possible, the pressure of the antifreeze solution shall be raised to the line pressure before the shutoff valve is opened and sealed. Finally, the system shall be checked carefully for leaks.
- (f)* With all other fill, drain, and vent valves closed, a highpressure air compressor shall be connected to a valve opening and pressure in the piping shall be raised at least to the waterline pressure. The valve at the opening shall be closed and the valve shall be plugged. The system shall be checked carefully for leaks, especially in the area of the piping where the air is believed to exist. If the pressure gauge shows that the system is still tight after 24 hours, the shutoff valve shall be opened, making the system operational. The shutoff valve shall be sealed in the open position.

Table 5-4.3.4(a) Water-Based Solutions^a

		Specific	Freezing		
Material	Solution (by volume)	Gravity at 60°F (15.6°C)	(°F)	(1°C)	
Glycerine	50% water	1.133	-15	-26.1	
C.P. or U.S.P. grade ^b	40% water	1.151	-22	-30.0	
	30% water	1.165	-40	-40.0	
Propylene glycol	70% water	1.027	+9	-12.8	
	60% water	1.034	-6	-21.1	
	50% water	1.041	-26	-32.2	
	40% water	1.045	-60	-51.1	

^aHydrometer scale 1.000 to 1.200 (subdivisions 0.002).

 $^{^{\}rm b}$ C.P. Chemically pure. U.S.P. United States Pharmacopeia 96.5%.

FIRE PROTECTION 123–15

Table 5-4.3.4(b) Antifreeze Solutions to Be Used if Public Water Is Not Connected to Sprinklers^a

		Specific	Freezing			
Material	Solution (by volume)	Gravity at 60°F (15.6°C)	(°F)	(1°C)		
Glycerine	If glycerine is used	d, see Table 5-4.3.4(a	ι).			
Diethylene glycol	50% water	1.078	-13	-25.0		
, 0,	45% water	1.081	-27	-32.8		
	40% water	1.086	-42	-41.1		
Ethylene glycol	61% water	1.056	-10	-23.3		
, 0,	56% water	1.063	-20	-28.9		
	51% water	1.069	-30	-34.4		
	47% water	1.073	-40	-40.0		
Propylene glycol	If propylene glyco	l is used, see Table 5	5-4.3.4(a).			
Calcium chloride	Lb CaC1 ₂ per					
80% "flake"	gal of water					
Fire protection grade ^b	2.83	1.183	0	-17.8		
Add corrosion inhibitor	3.38	1.212	-10	-23.3		
of sodium bichromate	3.89	1.237	-20	-28.9		
¹ / ₄ oz/gal water	4.37	1.258	-30	-34.4		
	4.73	1.274	-40	-40.0		
	4.93	1.283	-40	-45.6		

^aHydrometer scale 1.000 to 1.200 (subdivisions 0.002).

- (g) Sprinkler systems filled with antifreeze solution shall employ antifreeze solution mixtures that are rated for the lowest temperature to which the sprinkler system could be exposed.
- (h)*The antifreeze solution shall be mixed and tested before being pumped into the sprinkler system piping.
- (i) A pressure gauge shall be provided in a protected location on the downstream side of the shutoff valve.
- **5-4.3.5*** Where danger of freezing exists, a dry-pipe sprinkler system shall be permitted and shall meet the following requirements:
- (a) The dry-pipe valve and its accessories shall be installed in a separate area and shall be protected against freezing and mechanical injury. If this area is ventilated with return air, all electrical components shall be permissible or intrinsically safe (see A-5-3.1.7).
- (b) Water pressure shall be regulated not to exceed the maximum pressure specified by the manufacturer of the drypipe valve.
- (c) The dry-pipe valve shall be installed in accordance with the manufacturer's instructions.
- (d) Mechanical grooved couplings, including gaskets used on dry-pipe systems, shall be listed for dry-pipe service.
- (e) Operation of the dry-pipe system and supervision of the system, including pressure of the air supply, shall be signaled to an attended location. Such signaling shall be permitted to utilize alarm systems serving fire detection equipment.
- (f) The system air supply shall be provided from a reliable source such as a dedicated compressor and shall be equipped with an air maintenance device.

5-4.4 Inspection, Maintenance, and Testing.

- **5-4.4.1** All fire suppression systems shall be tested after installation in accordance with the manufacturer's or designer's instruction manual. Testing shall not require the discharge of suppressant unless there is no other satisfactory manner in which the reliability and integrity of the system can be verified.
- **5-4.4.2** Between regular maintenance examinations or tests, the fire suppression system shall be inspected visually, following a schedule determined by the mine operator.
- **5-4.4.3** At least every 12 months, all fire suppression systems, including alarms, shutdowns, and other associated equipment, shall be examined and checked thoroughly for proper operation in accordance with the manufacturer's or designer's instruction manual. Deficiencies shall be corrected, and the system or affected portion of the system shall be retested for proper operation.
- **5-4.4.4** The mine operator or mine operator's designee shall be provided with a copy of the manufacturer's installation and maintenance manual or owner's manual that describes system operation, required maintenance, and recharging.
- **5-4.4.5** Fire suppression systems, including foam-water sprinklers, installed in accordance with the requirements of this standard shall be maintained in accordance with the manufacturer's instructions or designer's recommendations.
- **5-4.4.6** All persons who inspect, test, operate, or maintain fire suppression systems shall be trained thoroughly. Annual refresher training shall be provided.

5-4.4.7 New Automatic Sprinkler System Testing.

5-4.4.7.1 Flushing of Water-Line Connections. Water-line connections and lead-in connections shall be flushed at the

^bFree from magnesium chloride and other impurities.

maximum flow rate available before connection is made to the sprinkler piping in order to remove foreign material. Flushing shall be continued until the water is clear.

5-4.4.7.2 Flow Testing of Sprinkler Systems. Wet-pipe closed automatic sprinkler systems shall be flow-tested by operating flow through the maximum number of sprinklers expected to open, but not through fewer than eight open sprinklers (all sprinklers if the system contains fewer than eight). If the residual pressure measured downstream of the opened sprinklers is 10 psi (68.9 Pa) or greater, the system is acceptable.

Exception No. 1: Closed sprinkler systems installed to protect areas where the water discharge could damage the area or its contents shall not be required to be tested by operating flow through opened sprinklers. Instead, an alternative test, operating flow through a 2-in. (5.08-cm) valve test connection, shall be permitted to be used.

Exception No. 2: Portable sprinkler systems that are frequently or occasionally dismantled and reinstalled in new areas shall be flow-tested following the initial installation.

5-4.4.8 Tests of Dry-Pipe Sprinkler Systems.

5-4.4.8.1 Where there is no risk of freezing, new dry-pipe systems shall be flow-tested in accordance with 5-4.4.7.2 and hydrostatically tested in accordance with 5-4.4.8. A dry-pipe valve shall be tested according to manufacturer's recommendations.

5-4.4.8.2* Where there is risk of freezing in dry-pipe systems, an air pressure of 40 psi (276 kPa) shall be pumped up and allowed to stand 24 hours, and all leaks that allow a loss of pressure over $1^{1}/_{2}$ psi (10.3 kPa) during the 24 hours shall be stopped.

5-4.4.9 Sprinkler System Maintenance.

5-4.4.9.1 All sprinkler systems shall be maintained in accordance with the manufacturer's requirements or with instructions in NFPA 25, *Standard for the Inspection, Testing, and Maintenance of Water-Based Fire Protection Systems.* As a minimum, all closed sprinkler systems, except antifreeze systems, shall be retested annually by operating flow through the end fitting in all lines to remove any silt buildup. If pendent sprinklers are used on wet-type sprinkler systems, the end sprinkler on each line shall be removed and examined annually to check for silt buildup. If silt buildup is found, all sprinklers on the line shall be removed, the line flushed, and new sprinklers installed, preferably in the upright position.

5-4.4.9.2 Antifreeze Systems. Each year at the onset of freezing weather, a small amount of antifreeze shall be drawn from the drain valve and the test valve(s) and tested with a hydrometer to ensure that the solution is suitable for the lowest temperature expected. If this test shows that the solution is not suitable, the solution shall be emptied into convenient containers. The drained solution shall be brought to the proper specific gravity if it is to be reused.

5-5 Fire Suppression for Self-Propelled Equipment.

5-5.1* Fire suppression systems consisting of an agent container and a network of agent distribution hose or pipe with discharge nozzles attached shall be used to protect self-propelled equipment. The system shall comply with the following:

- (a) The system shall be sufficient to suppress any potential fire on the equipment it is intended to protect.
- (b) The fire suppression system shall be approved for the purpose. When installed, the components shall be located or guarded to protect against damage.

- (c) Fire suppression systems shall be either automatically or manually actuated. Automatically actuated systems designed to incorporate manual actuation shall be equipped with one or more such devices accessible for quick actuation and shall be maintained in operable condition.
- (d) Discharge nozzles shall be provided with blow-off caps or other suitable devices to prevent the entrance of moisture or other environmental materials into the piping. The protective device shall blow off, blow out, or open upon agent discharge.
- (e) The electrical components of systems installed on equipment that might be operated inby the last open crosscut or in return air shall be permissible or intrinsically safe (see A-5-3.1.7), as defined in Section 1-4.
- (f) A standby source of power shall be provided if electrical power is the only means of actuation.
- (g) All fire suppression equipment and systems shall be tested after installation in accordance with the manufacturer's or designer's recommendations. Testing shall not require the discharge of agent unless there is no other satisfactory way to evaluate the system.
- (h)*An installation and maintenance manual shall be provided for all fire suppression systems.
- 5-5.2* Fire suppression systems shall be provided for protection of the attended, electrically powered, self-propelled equipment such as cutting machines, continuous miners, shearers, roof and coal drills, loaders, shuttle cars, scoops, and locomotives that use hydraulic fluid.

Exception: Cutting machines, continuous miners, shearers, and other machines that are supplied water through a hose for dust control while mining shall be permitted to use this water source for fire protection, provided a diversion valve is at or outby the operator's station to permit quick and convenient diversion of water to the fire suppression nozzles.

5-6 Fire Fighting and Control.

5-6.1 Hand Hose Line Systems.

5-6.1.1* General Requirements. The mine operator shall choose the entry in which the hydrants are to be located, locate man doors, and provide sufficient fire hose to reach parallel entries where risk of fires can exist.

5-6.1.2 Selection and Application.

5-6.1.2.1* Fire hose for use in underground coal mines shall be a minimum of $1^1/2$ in. (3.8 cm) in diameter, single or multiple jacket, and of a type suitable for coal mine use. The hose shall meet the minimum applicable standards of NFPA 1961, *Standard for Fire Hose.* Hose lines employing natural fibers shall not be used in underground coal mines.

5-6.1.2.2* Fire hose, including couplings, shall be adequate for the maximum line pressure that can exist on the mine water system, or there shall be provision for limiting the line pressure to the working pressure of the hose. Nozzle flow pressure shall be adjusted to provide for safe hose control.

5-6.1.2.3* Couplings for fire hose used in underground coal mines shall have straight, iron pipe threads (referred to as NPSH) or National Standard Thread (NH, also known as NST and NS).

5-6.1.2.4 Where hose or hose-connected equipment might be brought in from outside the mine, compatible adapters shall be available.

5-6.1.2.5* Hose nozzles shall be capable of delivering a straight stream and a spray discharge.

- **5-6.1.2.6*** Fire hose shall be stored in caches, and caches shall contain sufficient hose to reach all areas covered by the hydrants that the cache will serve. Each cache shall contain at least one hose nozzle and one hose wrench.
- **5-6.1.2.7*** Caches of fire hose shall be provided at strategic locations underground as follows:
- (a) Near each intersection with an active sub-main
- (b) Near the mouth of each panel
- (c) Near and on the intake side of each conveyor belt drive
- (d) Near the entrance to each shop and storage area as defined in Sections 2-4, 3-1, and 4-1
- (e) In each operating area
- (f) At intervals not to exceed 5000 ft (1525 m) along the main haul route or travelway
- **5-6.1.2.8** Hand hose line systems, if used, shall be installed in accordance with NFPA 14, *Standard for the Installation of Stand-pipe and Hose Systems*, Sections 2-7 and 5-3, and shall be a minimum of either $1^1/_2$ in. (38.1 mm) lined or 1 in. (25.4 mm) hard rubber.
- **5-6.1.2.9** Hand hose lines designated for fire fighting and accessible to Class I or Class II liquid storage areas shall be equipped to discharge a foam-water solution and shall be installed in accordance with the applicable sections of NFPA 11, *Standard for Low-Expansion Foam*, Chapter 3.
- **5-6.1.3 Maintenance.** Caches of fire hose shall be checked at least every 6 months to ensure that the inventory of hose, nozzles, wrenches, and adapters is complete and in good condition. At least one length of hose from each cache shall be pressure-tested annually according to NFPA 1961, *Standard for Fire Hose.* The tested hose shall be tagged and dated so that a different length of hose is tested each year. If any length of hose fails the pressure test, all lengths of hose in the cache shall be tested. Hose lines that fail the test shall be replaced.

5-6.2 Portable Foam-Generating Devices.

5-6.2.1 General Requirements.

- **5-6.2.1.1** Portable foam-generating devices and associated equipment shall be approved for that purpose.
- **5-6.2.1.2** Portable foam generators, fire hose, foam concentrate, and stopping materials shall be accessible for timely transport.
- **5-6.2.2 Maintenance.** At least annually, a thorough maintenance examination of the foam-generating devices and associated equipment, including foam concentrate, shall be made by the mine operator. Operation of foam-generating equipment during training sessions conducted at least annually shall satisfy the maintenance examination requirement.
- **5-6.3 Rock Dust.** At least 240 lb (109 kg) of bagged, dry rock dust shall be stored upwind and kept available for fire fighting at or near the following areas:
- (a) Maintenance and shop areas
- (b) Combustible liquid storage area
- (c) Working section
- (d) Belt drive area
- (e) Belt-head loading area
- (f) Ventilation doors on trolley wire-supplied track haulageways

Exception: Where it is impractical to store for fire extinguishment purposes, rock dust shall be permitted to be replaced with an additional portable extinguisher having a minimum nominal capacity of 10 lb (4.6 kg) of multipurpose (ABC) dry chemical extinguishing agent.

5-6.4 Emergency Materials.

- **5-6.4.1** Emergency materials for fighting mine fires shall be readily available near the shaft bottom or other entrance to the mine. If the shaft bottom or other entrance to the mine is over 2 miles (3.22 km) from a working section, additional caches of emergency materials shall be strategically located to ensure timely access.
- **5-6.4.2** Emergency materials shall include fire hose and necessary adapters, multiple hydrants, wrenches and nozzles, brattice boards and cloth, wood posts, cap pieces, wood wedges, spad guns and spads or other specialized equipment for installing line brattice, nails, bags of sealant or cement, saws, hammers, axes, shovels, and picks.
- **5-6.4.3** Caches of emergency materials shall be checked at least every 6 months to ensure that the inventory of materials is complete.

5-7* Training.

- **5-7.1** All miners shall be instructed annually in fire prevention and fire-fighting techniques.
- **5-7.2** All employees shall be instructed in emergency evacuation procedures.
- **5-7.3** All persons who might be expected to inspect, test, operate, or maintain fire suppression systems shall be trained thoroughly in the functions they are to perform.

Chapter 6 Referenced Publications

- **6-1** The following documents or portions thereof are referenced within this standard as mandatory requirements and shall be considered part of the requirements of this standard. The edition indicated for each referenced mandatory document is the current edition as of the date of the NFPA issuance of this standard. Some of these mandatory documents might also be referenced in this standard for specific informational purposes and, therefore, are also listed in Appendix B.
- **6-1.1 NFPA Publications.** National Fire Protection Association, 1 Batterymarch Park, P.O. Box 9101, Quincy, MA 02269-9101.
 - NFPA 10, Standard for Portable Fire Extinguishers, 1998 edition.
 - NFPA 11, Standard for Low-Expansion Foam, 1998 edition.
- NFPA 14, Standard for the Installation of Standpipe and Hose Systems, 1996 edition.
- NFPA 25, Standard for the Inspection, Testing, and Maintenance of Water-Based Fire Protection Systems, 1998 edition.
 - NFPA 30, Flammable and Combustible Liquids Code, 1996 edition.
 - NFPA 70, National Electrical Code®, 1999 edition.
 - NFPA 72, National Fire Alarm Code®, 1996 edition.
- NFPA 386, Standard for Portable Shipping Tanks for Flammable and Combustible Liquids, 1990 edition.
 - NFPA 1961, Standard for Fire Hose, 1997 edition.

6-1.2 Other Publications.

6-1.2.1 ASTM Publications. American Society for Testing and Materials, 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959.

ASME Boiler and Pressure Vessel Code, 1992 edition.

ASTM D 5, Standard Method of Test for Penetration of Bituminous Materials, 1986 edition.

ASTM D 56, Standard Method of Test for Flash Point by the Tag Closed Cup Tester, 1993 edition. ASTM D 93, Standard Method of Test for Flash Point by the Pensky-Martens Closed Tester, 1990 edition.

ASTM E 136, Standard Method of Test for Behavior of Materials in a Vertical Tube Furnace at 750°C, 1993 edition.

6-1.2.2 USBM Publication. U.S. Bureau of Mines, Columbia Plaza, 2401 E Street NW, Washington, DC 20241.

Report of Investigations 9451, "Effect of Pressure on Leakage of Automatic Sprinklers," 1993.

Appendix A Explanatory Material

Appendix A is not a part of the requirements of this NFPA document but is included for informational purposes only. This appendix contains explanatory material, numbered to correspond with the applicable text paragraphs.

A-1-1 The diesel engine was developed in the 1890s by Rudolf Diesel and has proven itself a reliable workhorse of industry. Today, diesel equipment is used safely and productively in all types of underground mines worldwide. Eight years of experi-

ence has demonstrated that the technology exists to reduce fire hazards associated with diesel equipment to acceptable levels.

Diesel fuel is a combustible liquid. As with any combustible liquid, it can be safely transferred, transported, stored, and used if the physical, chemical, and hazardous properties are fully understood and the necessary precautions and safeguards are observed.

A-1-1.1 In developing this document, the data available in the "Annotated Bibliography of Coal Mine Fire Reports," prepared by the Allen Corp. of America under the U.S. Bureau of Mines Report No. J0275008, was examined. This bibliography covers the period from 1950 to mid-1977. Table A-1-1.1(a) provides data for the period from 1970 to 1977. Data from mid-1977 to 1988 were obtained from fire reports furnished by the Mine Safety and Health Administration (MSHA) in a memorandum entitled "Mine Fires During 10-Year Period" and is shown in Table A-1-1.1(b) for the period from 1978 to 1988.

The record of fires together with the record of underground coal production and percentage of production by continuous miners is shown in Tables A-1-1.1(a) and (b) and Figure A-1-1.1.

Table A-1-1.1(a) Half-Hour Fires in Underground Coal Mines from 1970 to 1977

	Year								
Description	1970	1971	1972	1973	1974	1975	1976	1977	Total
Electrical									
Mobile equipment	3	1	2	0	0	0	1	1	8
Trailing cable	6	2	0	2	0	1	2	0	13
Fixed equipment	2	0	3	1	0	0	2	1	9
Trolley wire	2	1	3	1	0	4	2	3	16
Friction									
Belt drive area	3	0	0	0	0	0	0	0	3
Belt—other areas	1	1	0	1	1	0	1	2	7
Other friction	1	0	0	0	0	0	0	0	1
Flame cutting and welding	1	1	2	1	1	0	1	0	7
Spontaneous	0	2	5	1	2	1	3	0	14
Miscellaneous	2	1	0	1	1	2	3	1	11
Unknown	2	0	0	1	0	1	0	2	6
Total	23	9	15	9	5	9	15	10	95

Table A-1-1.1(b) Half-Hour Fires in Underground Coal Mines from 1978 to 1988

						Year						
Description	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	Total
Electrical												
Mobile equipment	0	2	1	3	1	0	1	2	2	2	2	16
Trailing cable	1	1	3	1	3	0	2	0	1	0	0	12
Fixed equipment	0	0	1	0	3	2	1	0	5	2	2	16
Trolley wire	3	0	0	1	2	0	1	1	2	1	0	11
Friction												
Belt drive area	0	0	0	0	0	1	1	1	0	1	0	4
Belt—other areas	0	0	2	2	1	1	1	2	1	1	1	12
Other friction	0	0	0	0	0	0	0	0	0	3	0	3
Flame cutting and welding	1	0	2	2	5	1	3	5	3	1	3	26
Spontaneous	1	3	3	1	0	4	3	3	1	0	2	21
Miscellaneous	1	1	1	1	1	1	0	0	0	2	1	9
Unknown	0	2	1	2	0	1	0	2	1	3	2	14
Total	7	9	14	13	16	11	13	16	16	16	13	144

APPENDIX A 123–19

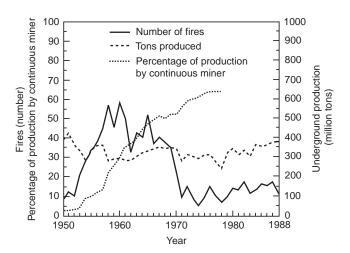


Figure A-1-1.1 Time trends for underground fires.

Analysis of the data helps to explain the seemingly unaccountable increase in fire incidents that were at a low annual figure during the early 1950s, grew rapidly from 1952 to 1960, and then returned at a somewhat slower rate to the low figure of 1971.

A number of observers working in the industry during this period believe that the introduction of continuous miners in the late 1940s put demands on the existing underground direct current (dc) power systems that they could not support. Starting a dc-powered continuous miner produced a current flow that approached that of a bolted fault. The power systems that were available for a dc-powered continuous miner were unable to respond to an arcing fault. Fires resulted. The industry was not accustomed to using and maintaining the wiring and trailing cables that carried the required current capacity. Many fires originated from bad connections, bad cables, and bad splices. During this same period, there was a substantial growth in the number of belt conveyors used, and the incidence of belt fires became serious.

After 1960, the incidence of fire returned to that of the early 1950s experience. In addition to the fact that the industry was learning safe use of the new equipment, technical solutions were being developed and adopted. Most notable was the introduction of alternating current (ac) power for face equipment, first tested in the mid-1950s. By the early 1960s, the change from dc to ac was underway, and the incidence of belt fires decreased as the industry learned how to set up and maintain belt conveyors. The virtual elimination of timber for roof support in favor of roof bolts also helped to reduce fires. While the changing technology of the 1950s caused the increased incidence of fire, technical solutions adopted during the 1960s served to reduce the fire problem.

It should be noted that the data in the Allen Report available from MSHA are based upon the legal requirement that only those fires that burn for 30 minutes or longer are required to be reported. However, it is believed that a similar reduction in unreported fires also has occurred.

A-1-4 Approved. The National Fire Protection Association does not approve, inspect, or certify any installations, procedures, equipment, or materials; nor does it approve or evaluate testing laboratories. In determining the acceptability of installations, procedures, equipment, or materials, the authority having jurisdiction may base acceptance on compliance

with NFPA or other appropriate standards. In the absence of such standards, said authority may require evidence of proper installation, procedure, or use. The authority having jurisdiction may also refer to the listings or labeling practices of an organization that is concerned with product evaluations and is thus in a position to determine compliance with appropriate standards for the current production of listed items.

A-1-4 Authority Having Jurisdiction. The phrase "authority having jurisdiction" is used in NFPA documents in a broad manner, since jurisdictions and approval agencies vary, as do their responsibilities. Where public safety is primary, the authority having jurisdiction may be a federal, state, local, or other regional department or individual such as a fire chief; fire marshal; chief of a fire prevention bureau, labor department, or health department; building official; electrical inspector; or others having statutory authority. For insurance purposes, an insurance inspection department, rating bureau, or other insurance company representative may be the authority having jurisdiction. In many circumstances, the property owner or his or her designated agent assumes the role of the authority having jurisdiction; at government installations, the commanding officer or departmental official may be the authority having jurisdiction.

A-1-4 Boiling Point. Where an accurate boiling point is unavailable for the material in question, or for mixtures that do not have a constant boiling point, for the purposes of this standard, the 10 percent point of a distillation performed in accordance with ASTM D 86, *Standard Method of Test for Distillation of Petroleum Products*, can be permitted to be used as the boiling point of the liquid.

A-1-4 Flash Point. As an alternative, ASTM D 3243, *Standard Method of Tests for Flash Point of Aviation Turbine Fuels by Setaflash Closed Tester*, can be permitted to be used for testing aviation turbine fuels within the scope of this procedure.

As an alternative, ASTM D 3278, Standard Method of Tests for Flash Point of Liquids by Setaflash Closed Tester, can be permitted to be used for paints, enamels, lacquers, varnishes, and related products and their components having flash points of 32°F to 230°F (0°C to 110°C), and having a viscosity lower than 150 stokes at 77°F (25°C).

A-1-4 Listed. The means for identifying listed equipment may vary for each organization concerned with product evaluation; some organizations do not recognize equipment as listed unless it is also labeled. The authority having jurisdiction should utilize the system employed by the listing organization to identify a listed product.

A-2-2.6 For additional information, see NFPA 327, Standard Procedures for Cleaning or Safeguarding Small Tanks and Containers Without Entry, and AWS F4.1, Recommended Safe Practices for the Preparation for Welding and Cutting Containers and Piping That Have Held Hazardous Substances.

A-2-2.8.2 It is not the intent of 2-2.8.2 to allow two lower rated fire extinguishers to be used to achieve a higher overall rating.

A-2-4.1 Automatic-closing doors provide a higher level of fire protection and are therefore recommended.

A-2-5 Belt fires originating away from the drive area usually have been caused by idlers with defective or stuck bearings. Tests have shown that such idlers can become moderately hot [200°F to 300°F (93°C to 149°C)]. The subcommittee has been unable to find reliable evidence that idlers can become hot enough to ignite fire retardant belting directly.

It appears that a warm or hot idler can cause fine coal dust accumulated around the idler to ignite. Then, when the belt has been stopped, coal burning beneath the belt ignites the belting.

The key to avoiding belt fires is to prevent the accumulation of fine coal dust around idlers. If a metal deck is not provided between the carrying strand and the return strand of the belt, no coal dust accumulates around the troughing idlers. Where possible, return idlers should be supported at a substantial height above the bottom so that coal dust is not likely to build up around return idlers. With proper clearance beneath these idlers, accumulations of coal dust can be cleaned up more easily.

Slat-type, self-cleaning tail pulleys are recommended. Coal dust discharged by such pulleys should be cleaned up frequently. Good maintenance and good fire prevention both necessitate that noisy bearings, which might indicate probable failure, be changed promptly before they become hot.

Conveyor belt fires have been caused by belts that lose proper alignment, with the edge of the moving belt then contacting combustible material. Loss of alignment can result from a number of factors, including displacement of idlers or pulleys and movement of supporting structure, spillage of conveyed material, and failure of a bearing (typically on a pulley). Where alignment is affected significantly, the edge of the belt can rub abrasively on the structure and objects near the edge of the belt. If the object on which the belt rubs is metal, the metal can become worn and heated. The edge of the belt can be damaged extensively, but it is believed that the belt will not ignite. The belt will not ignite because a point on the edge of the moving belt is in contact with the metal for only a very short period and will cool before it returns to the point of contact. The metal can become quite warm; however, because it is a good conductor of heat, it will not become hot enough to ignite the belt if the belt stops. Nevertheless, if the material contacted is wood or another combustible, the combustible material could be heated by the friction of the edge of the moving belt until it ignites. Keeping combustible material away from the edge of the belt and use of alignment switches should prevent such fires.

- **A-2-5.5** To minimize potential frictional ignition, alignment switches can be permitted to be provided at intervals sufficient to prevent the belt from contacting such materials.
- **A-2-7.1** Fire Risk Assessment. Fire risk assessment for underground mining operations consists of the following four phases:
 - I. Identify the fire potential
 - II. Assess the consequences of fire
 - III. Determine the need for fire protection
 - IV. Select appropriate fire protection option(s)

The following fire risk assessment outline is a suggested procedure for identification of the elements in phases I through IV above. Additional guidance in performing risk assessment is provided in several of the publications referenced in Appendix B. Also see fire risk assessment chart in Figure A-2-7.1.

I. Identify the Fire Potential.

A. Ignition Sources.

1. High Temperature. High temperatures usually are found in the vicinity of engines, exhaust systems, turbochargers, and malfunctioning devices such as bearings, brakes, and gears.

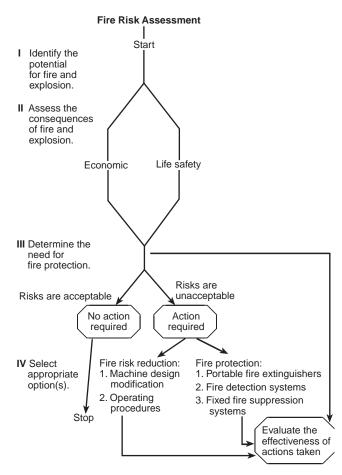


Figure A-2-7.1 Fire risk assessment chart.

- 2. *Electrical*. Batteries, generators, instrument panels, motors, pumps, switches, transformers, and wiring.
 - 3. Cutting and Welding.
- 4. Other. Smoking materials and spontaneous ignition sources are examples of other sources.

B. Fuel Sources.

- 1. Class A. Class A sources include combustible debris, wood, rags, electrical insulation, combustible minerals, upholstery, hose lines, and tires.
- 2. Class B. Class B sources include flammable and combustible liquids such as diesel fuel, starting fluids, some hydraulic fluids, coolants, grease, oil, and cleaning solvents.

C. Probability of the Coexistence of Fuel and Ignition Sources.

1. Proximity of Fuel to Ignition Sources. An analysis of equipment design can indicate areas where lubrication, hydraulic oil, or fuel lines are in proximity to ignition sources. In identifying fire risk areas, note that a combustible liquid can spray or drip onto a hot surface that is remote from the rupture or leak point. Sparks from a battery or an electrical short can ignite combustibles in another area of the machine.

Typical areas where a potential fire risk can exist include the engine compartment, exhaust system, transmission area, vehicle articulation points, parking brakes, engine pan area, and battery compartments. APPENDIX A 123–21

Thermal shields, spray shields, water-cooled exhaust compartments, hydraulic fuel and electrical line routing, and electrical harnesses can affect the potential for fire.

- 2. Fire Incident Experience. Previous fire experience on similar machines can indicate that special risks exist.
- 3. Quality of Maintenance. The quality and frequency of equipment maintenance can affect the number and severity of equipment fires. A maintenance program should consider the manufacturer's recommended guidelines, the quality of replacement parts, the competence and training of maintenance personnel, the frequency of preventive maintenance, and operating conditions.
- 4. *Housekeeping*. Accumulations of combustible materials such as oil-soaked waste, fuel spillage, excess lubricant, and coal or coal dust represent potential fire risks.
- 5. Operational Damage. Physical impact from external material at a chute or face, which can roll or slide onto equipment, can cause leaks in fuel or hydraulic lines as well as damage to electrical components and wiring.

II. Assess the Consequences of Fire.

- **A. Personnel Exposure.** Determine whether personnel can be exposed to the effects of a fire. These effects could include the following:
- 1. Direct exposure of the operator or nearby personnel to heat, smoke, and toxic fire gases from the burning equipment.
- 2. Exposure of personnel remotely located from the fire site to toxic products of combustion carried by the ventilation system. The U.S. Bureau of Mines has developed a computer simulation program that can be used to analyze the spread of combustion products by a mine ventilation system. Information on this program, including instructions for obtaining a free copy, are provided in U.S. Bureau of Mines Information Circular 9245, "A User's Manual for MFIRE: A Computer Simulation Program for Mine Ventilation and Fire Modeling."
- 3. Spread of a fire from the point of origin to other combustibles, most notably the coal, but also to timber supports, explosives, diesel fuel, and lubricants, among others. Such fires can grow in intensity, producing increased quantities of toxic combustion products, complicating fire-fighting efforts, and interfering with evacuation and rescue operations. If the coal ignites, the likelihood of extinguishing the fire without sealing all or part of the mine diminishes significantly.
- 4. Possibility of the fire causing highly complex ventilation disturbances such as throttling or reversals. Such disturbances can be extremely difficult to predict but can affect miner evacuations and fire fighting profoundly by causing the contamination of airways thought to be safe. The MFIRE computer simulation program previously described also can be used to evaluate the effects of a fire on a mine ventilation system.
- **B. Economic Risks.** Determine the economic loss resulting from a fire on a piece of equipment, including both property damage and business interruption costs, and consider the following factors:
- 1. Fire involving a single piece of equipment could cause property damage and loss of production until the fire is extinguished and the equipment is repaired or replaced.

2. Fire spread to nearby combustible material, including the coal, can have greater economic effects than the initial fire.

III. Determine the Need for Fire Protection. If the risk analysis discloses unacceptable personnel risks, economic risks, or both, appropriate fire protection options should be determined.

IV. Select Appropriate Fire Protection Option(s).

A. Hazard Reduction.

- 1. Equipment Design. Evaluate equipment to determine if the risk from the start or the spread of a fire can be reduced.
- 2. Operating Procedures. Mine operators, through implementation of company policies and procedures, can reduce the threat of fire. Examples include effective equipment maintenance programs, adequate housekeeping procedures, proper employee training, development of emergency plans, and strategies that deal with fire.
- 3. Evaluation of Hazard Reduction. Determine whether fire risk reduction practices reduce risks to acceptable levels. If risks are acceptable, no further action is necessary. If unacceptable risks still exist, action is needed either to reduce risks further or to install fire detection/suppression equipment, or a combination of both.
- **B. Fire Detection and Suppression Equipment.** Identify available fire detection and suppression equipment alternatives.
- 1. Portable Protection. Options include portable hand extinguishers, hose reels and lines, wheeled extinguishers, and skid-mounted extinguishers.

For difficult fires, larger capacity extinguishers that provide more agent, greater range, and longer discharge time are recommended. (See A-2-7.1.IV.C.1 for agent selection.)

- 2. Detection. Fire detection devices can be permitted to be used to provide early warning of fires, actuate a fire suppression system, shut down equipment, and operate other fire control systems such as ventilation devices and fire doors. (For a discussion of detector and control options, selection, and placement, see A-2-7.1.IV.C.)
 - 3. Fixed Fire Suppression Systems.
 - a. Fixed system protection can be accomplished by local application, total flooding, a combination of both, or automatic sprinklers. (See A-2-7.1.IV.C.1. for agent selection. See A-2-7.1.IV.C.2. for fixed fire suppression options.)
 - b. Compare capability with need. Identified needs should be matched with the most cost-effective approach to fire detection, fire suppression, or both.
 - c. Select Equipment. The selection of all equipment used for all detection and suppression of fires in mining equipment should be based on consideration of the environment in which the equipment functions.
 - d. Evaluate fixed fire suppression systems. Determine whether fire risk reduction complies with mandatory requirements and reduces risks to acceptable levels. If risks are within acceptable levels, no further action is necessary. If risks are not within acceptable levels, additional action is needed either to reduce fire risks or to install fire detection/suppression equipment, or a combination of both.

C. Fire Protection Agents and Equipment.

- 1. Fire Suppression Agents. The following extinguishing agents commonly are used in the mining industry:
 - a. Class A:
 - (i) Dry chemicals (ABC) with ammonium phosphate as the basic ingredient
 - (ii) Foams such as protein, fluoroprotein, aqueous film-forming, medium- and high-expansion
 - (iii) Water
 - (iv) Water-based antifreeze solution

b. Class B:

- (i) Dry chemicals (BC) with sodium bicarbonate, ammonium phosphate, potassium bicarbonate, urea-based potassium bicarbonate, or potassium chloride as the basic composition
- (ii) Foams such as protein, fluoroprotein, aqueous film-forming, medium- and high-expansion
- (iii) Carbon dioxide
- (iv) Halons (halon substitutes)
- (v) Water spray or fog
- (vi) Water-based antifreeze solution

c. Class C:

- (i) Dry chemicals (ABC or BC) with sodium bicarbonate, ammonium phosphate, potassium bicarbonate, urea-based potassium bicarbonate, or potassium chloride as the basic composition
- (ii) Carbon dioxide
- (iii) Halons (halon substitutes)
- (iv) Fixed water spray
- (v) Water fog

d. Class D:

(i) Dry powder agents composed of sodium chloride or graphite with other particulate material added. Inert materials such as dry sand and foundry flux

2. Method of Application.

- a. Portable Extinguisher. Extinguisher of the handheld or wheeled type or transportable systems consisting of a hose reel or rack, hose, and discharge nozzle connected to an extinguishing agent supply.
- b. Fixed Systems.
 - (i) Local application, consisting of a supply of extinguishing agent permanently connected to a distribution system, arranged to discharge onto a defined area or space
 - (ii) Total flooding, consisting of a supply of extinguishing agent permanently connected to a distribution system, arranged to discharge onto an enclosed space
 - (iii) A combination of items a and b above
 - (iv) Automatic sprinklers consisting of a supply of extinguishing agent (normally water) permanently connected to a distribution system to discharge the suppressant
 - (v) Water spray
 - (vi) Water fog

3. Detector Selection and Options.

- a. For guidance in selection and placement of fire detectors, see NFPA 72, National Fire Alarm Code®. Some fire detectors used in conjunction with mining equipment, but not covered in NFPA 72, include:
 - (i) Fusible Plastic Tube. A sensing element consisting of a plastic tube pressurized with inert gas. Heat from the fire causes the tube to burst, releasing the gas pressure and activating a mechanical pneumatic actuator.
 - (ii) Thermistor Strip. A line-type device with a sensing element consisting of a thin metal tube containing two electrical conductors. The conductors are separated by a thermistor material whose resistance (or capacitance) varies with temperature. By monitoring resistance (or capacitance) changes, corresponding temperature changes can be detected.
 - (iii) Metal Hydride. A line-type device with a sensing element consisting of a thin metal tube containing a hydrogen-charged metal hydride wire. The tube is sealed at one end and is connected to a sensitive pressure switch at the other end. When exposed to the heat from a fire, copious amounts of hydrogen gas are released from the metal hydride wire, actuating the pressure switch.
- b. Fire Detector Placement. Consideration should be given to the physical configuration of the area or equipment to be protected when selecting and installing detectors. For spacing information, see NFPA 72, National Fire Alarm Code.

Among the factors affecting detector performance are its proximity to a fire, ambient temperatures, climatic conditions, shock and vibration, air contamination, ventilation flows, and maintenance requirements.

4. Control Options.

- a. Depending on mining equipment configuration, use, ground speed capability, enclosures, location of operating personnel, and other factors, the following special control options should be considered:
 - (i) Mechanical or electrical equipment engine shutdown
 - (ii) Discharge time delay
 - (iii) Discharge abort switch
 - (iv) Audible and visual alarms
 - (v) Predischarge alarm
 - (vi) Detection circuit supervision
- b. Consideration should be given to the advisability of providing automatic engine shutdown on mobile equipment. Factors such as ground speed, slope braking capability, and availability of secondary steering as described in SAE J1511, Steering for Off-Road, Rubber-Tired Machines, should be included in this analysis.

APPENDIX A **123**–23

- **A-2-7.2.1.1** Modifications can affect the life expectancy and certification of equipment and equipment components. Such a modified machine might not be covered by the manufacturer's warranty or certification. Questions concerning the effect of a proposed modification should be discussed with the equipment manufacturer or the manufacturer's representative.
- **A-3-1.2** Electrical equipment classified as "permissible" is certified as meeting the requirements of Title 30, *Code of Federal Regulations*, Part 18, Chapter 1.
- A-4-2.6 Information on the design and construction of atmospheric tanks can be found in API 650, Standard for Welded Steel Tanks for Oil Storage, or UL 142, Standard for Steel Above-Ground Tanks for Flammable and Combustible Liquids, or UL 80, Standard for Steel Inside Tanks for Oil Burner Fuel.

Low pressure tanks and pressure vessels can be permitted to be used as atmospheric tanks.

- **A-4-2.8** Information on the design and construction of atmospheric tanks can be found in API 620, *Recommended Rules for the Design and Construction of Large, Welded, Low-Pressure Storage Tanks,* or the principles of the ASME *Boiler and Pressure Vessel Code,* "Code for Unfired Pressure Vessels," Section VIII, Division I.
- **A-4-2.10** Information on the design and construction of pressure vessels can be found in the ASME *Boiler and Pressure Vessel Code*, "Code for Unfired Pressure Vessels," Section VIII, Division I.
- **A-4-2.12** Information on venting can be found in API 2000, Standard for Venting Atmospheric and Low-Pressure Storage Tanks.
- **A-4-3.4** Where pressurized pipeline systems are used for combustible liquid transfer, consideration should be given to providing a pressure-sensing interlock downstream of the transfer pump discharge. This interlock should be suitable for Class I, Division 2 locations and should be arranged to shut down the pump immediately upon loss of line pressure.
- **A-4-3.10** The greatest risk of fire involving substantial quantities of combustible liquids exists when rail supply cars are being moved, especially on a trolley wire-powered rail system. In contrast, cars parked where trolley and feed wire are absent or deenergized represent a distinctly lower risk. In the opinion of the committee, limiting the storage of lubricants in operating areas to a 3-day rather than a 1-day supply reduces the frequency of transport and, as a result, the overall risk of fire.
- **A-4-5.3** Information on tank foundations can be found in Appendix E of API 650, *Standard for Welded Steel Tanks for Oil Storage*, and Appendix B of API 620, *Recommended Rules for the Design and Construction of Large*, *Welded*, *Low-Pressure Storage Tanks*.
- **A-4-7** No requirements for bonding or grounding to dissipate static electricity are included in NFPA 30, *Flammable and Combustible Liquids Code*, which does not require bonding or grounding for combustible liquids handled at temperatures below their flash points.

It is recognized, however, that certain conditions can exist that could necessitate bonding or grounding, such as those of temperature and altitude, which can reduce the flash point of diesel fuel.

For additional information on static electricity, see NFPA 77, Recommended Practice on Static Electricity.

A-5-1.1.1 Larger capacity extinguishers that provide more agent and longer discharge time are recommended.

A-5-1.2.3 It is not the intent of 5-1.2.3 to allow two lower rated fire extinguishers to be used to achieve a higher overall rating.

A-5-1.3.2 Visual inspections require documentation only at 6-month intervals.

A-5-2.1.1 Routing of water lines has caused severe problems in fighting fires at some large mines. These mines had multiple intake shafts spaced apart at considerable distances. Such a ventilation can create a neutral point between the shafts, with fresh air moving from each shaft toward the neutral point. At the original opening of one mine, a water source was established and the water line was extended as the mining developed farther away from the original opening. With the water line extended to each new intake shaft and passing through each neutral point, a condition of opposite direction of flow of air and water existed beyond each neutral point.

If a fire occurs in an area of opposite flow, the fire has to be approached in the same direction as the airflow, but the water flow is moving through the fire area. Usually water lines in a fire area are damaged or broken by falling sections of burning roof. When a water line breaks in this situation, the fire fighters are without water, and direct fire fighting is no longer possible. The fire then can be controlled only by sealing. At least one large coal mining company now provides an additional water source at each new intake shaft to ensure the ability to fight such fires.

The likelihood of this problem appears to be increasing as more mines are ventilating belt entries with air moving outby, while the water flow is inby. In some cases, mine management has recognized the problem and has developed procedures to change the direction of airflow in the event of a fire. Reversing the airflow should be done at a point close to and outby the fire to avoid pushing smoke-laden air back onto the fire. After the belt entry outby the fire has been cleared of smoke, the airflow can be reversed for the full length of the entry if desired.

Mines that obtain their water supply from an underground source also can have this problem of opposite directions of airflow and water flow. Usually there is no sure solution except to provide an alternative source of water or a large storage of water on the surface. If the power for the pumps is fed from the high-voltage system that feeds the mine and the fire damages the high-voltage cable anywhere on the system, the power can trip the entire system and shut down the pumps. Coordination of the electrical protective equipment, or even a separate power supply, might be needed to ensure that the pumps continue to supply water for fire fighting.

Even in situations where air and water are flowing in the same direction, management must recognize that water lines or hydrants in a burning entry are likely to be broken by the falling sections of burning roof. In this situation, a planned shutdown of the water line should be undertaken as soon as possible in order to install a multiple hydrant (*see A-5-2.3.4*) in the water line at a convenient location close to the fire. With the multiple hydrant in place, at least three fire hose can be served effectively from the water line.

Because of the many factors that should guide the choice of location of water lines and hydrants, it is felt that management should be properly qualified to select these locations; but it is also felt that management should be able to justify its choice. Reliability of the water supply and ability of fire hose streams to reach a fire at any location or entry served by the water line should be the criteria by which the location is chosen.

A-5-2.1.7 Shutoff valve intervals of 1000 ft (305 m) are recommended.

Indicator-type shutoff valves with labels specifying the normal operating position are recommended.

- **A-5-2.2.1** Water distribution lines generally cannot meet the capacity requirements of 5-2.2.1 unless 5-in. (12.7-cm) or 6-in. (15.24-cm) pipe is used for main water lines and 4-in. (10.16-cm) pipe is used for branch lines to producing areas. Higher nozzle pressures are recommended.
- **A-5-2.2.2** The required hose stream water demand equals a minimum supply of 216,000 gal (817,560 L).
- A-5-2.3.1 Hydrants in a coal mine normally are only a valve screwed onto a tee that is installed on the water line. In order for the female coupling of a fire hose to be connected to a male thread, a pipe nipple usually is screwed into the discharge side of the valve. The threads of steel pipe nipples generally corrode if left exposed. Brass nipples often are used instead of steel nipples. Many mines have begun to use Schedule 80 plastic nipples instead of steel. Regardless of the nipple material, the threads of the nipple should be protected against physical damage.

A properly designed system of hydrants and fire hose should make a good connection of fire hose lines to the hydrants without the need for tools.

The choice of locations for hydrants should be made to ensure that fire hose lines can be laid quickly from hydrants located on the water line through crosscuts to a fire located in any parallel entry or crosscut, rather than to provide convenience for use in the entry where the water line is located.

- A-5-2.3.4 A multiple hydrant is a short length of 3-in. (7.62-cm) or 4-in. (10.16-cm) pipe, usually with three valved outlets (hydrants) to which fire hose lines can be connected. If the mine is equipped with a foam generator for fighting fires, there should be an additional outlet to feed the generator. An alternative is to assemble the hydrants from grooved pipe fittings that also have threaded tee connections to which the valved outlets are connected. The multiple hydrants should have adapters that allow them to be connected to any of the pipe sizes in use at the mine.
- **A-5-3** Automatic detection systems and automatic sprinkler systems in mining facilities need to be specifically addressed for the following reasons:
- (a) The contents of a mine occupancy are continually changing. Most items are not fixed and are designed to be moved with the mining operation. A mine operates as a heavy-duty excavation construction site and, thus, has the same transitory nature as a construction site.
- (b) Unlike aboveground industrial occupancies, great distances are not unusual within an underground mine. Mines covering 25 sq. mi (64.75 sq. km) or greater are common.
- (c) Mines have extremely harsh and unusual environments compared to aboveground industrial occupancies. Heavy concentrations of combustible dusts, the presence of explosive gases, temperature extremes, saturated humidity conditions, standing water, unstable strata, roof-to-floor heights that vary from 28 in. to 20 ft (71 cm to 6.1 m), and complex ventilation systems are all commonplace. The possibility of abuse from heavy machinery is a common hazard.
- (d) Mining occupancies exhibit unique physical characteristics not found in any other type of occupancy. One example is the extreme pressures that can occur in a water line.

- (e) Mines employ specialized facilities, equipment, and production processes that are not utilized in other industries. Fire protection efforts that fail to consider the unusual operating characteristics and fire protection requirements of underground coal mining systems could result in nonoptimal protection or the inadvertent introduction of hazards.
- **A-5-3.1.1** An automatic fire detector is a device designed to detect the presence of fire and initiate action. For the purpose of this standard, automatic fire detectors are classified as follows:
- (a) *Heat Detector.* A device that detects an abnormally high temperature or rate of temperature rise.
- (b) *Smoke Detector.* A device that detects the visible or invisible particles of combustion.
- (c) Flame Detector. A device that detects the infrared, ultraviolet, or visible radiation produced by a fire.
- (d) Fire-Gas Detector. A device that detects gases produced by a fire.
- (e) Other Fire Detectors. Devices that detect a phenomenon other than heat, smoke, flame, or gases produced by a fire

Fire detectors should be installed as follows:

- 1. Vertical Placement. Because the hot gases from a fire will rise owing to buoyancy forces, combustion products will initially be stratified near the roof of an entry. As this stratified gas layer moves away from the fire, the resultant cooling and dilution will eventually produce a well-mixed flow of combustion products. Data from full-scale fires indicate that some degree of stratification can exist at distances of hundreds of feet from the source of the fire.
 - Because of this effect, fire detectors should be located at a vertical distance from the entry roof that does not exceed 25 percent of the average entry height. For example, in an entry with a height of 6 ft (1.8 m), the maximum distance from the roof at which a sensor should be located is $1^1/_2$ ft (0.5 m). The maximum distance refers to the location of the actual sampling intake of the detector used.
- 2. Lateral Placement. In general, the point of origin of a fire is quite unpredictable. It can occur along the floor, ribs, or roof of the entry. In order to provide optimum protection, it is recommended that the fire detectors be located within 2 ft (0.6 m) of the approximate midpoint of the entry.

For entries in which the point of origin of the fire can be better estimated (such as a belt entry), the detectors should be located in such a manner that they provide for the estimated best coverage of that entry.

- **A-5-3.1.2** Batteries charged by the mine power system should indicate the condition of the battery(ies) upon either manual or automatic activation of a battery check circuit.
- **A-5-3.1.5** For further information see NFPA 72, *National Fire Alarm Code*.
- **A-5-3.1.7** Electrical equipment classified as "permissible" or "intrinsically safe" is certified as meeting the requirements of the Title 30, *Code of Federal Regulations*, Part 18, Chapter 1.
- **A-5-3.2.1** The detector wiring and detectors should be installed on one side of the conveyor belt to allow safe maintenance and repair of the circuit wiring without shutting down the conveyor belt.