

TECHNICAL REPORT

ISO/TR
21276

First edition
2018-04

Clean cookstoves and clean cooking solutions — Vocabulary

Fourneaux et foyers de cuisson propres — Vocabulaire

STANDARDSISO.COM : Click to view the full PDF of ISO/TR 21276:2018

Reference number
ISO/TR 21276:2018(E)

© ISO 2018

COPYRIGHT PROTECTED DOCUMENT

© ISO 2018

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Fax: +41 22 749 09 47
Email: copyright@iso.org
Website: www.iso.org

Published in Switzerland

Contents

	Page
Foreword	iv
Introduction	v
1 Scope	1
2 Normative references	1
3 Terms and definitions	1
3.1 Appliances	1
3.2 Fuel	2
3.3 Metrics	5
3.4 Pollutants	8
3.5 Testing	9
3.6 Social measures	10
4 Schematic illustrations	11

STANDARDSISO.COM : Click to view the full PDF of ISO/TR 21276:2018

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see the following URL: www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 285, *Clean cookstoves and clean cooking solutions*.

Introduction

The purpose of this document is to establish a precise vocabulary for cookstove technology and testing. To establish commonalities among cooking systems with differing boundaries, this document repeats definitions found in other products of ISO/TC 285.

Confirming acceptable cookstove performance in any particular aspect requires not only a vocabulary definition of that aspect, but also specific measurement techniques and methods for determining a performance indicator, as well as social agreements on the quantitative values of such indicators that correspond to suitable performance; these concerns are addressed in other documents of ISO/TC 285.

STANDARDSISO.COM : Click to view the full PDF of ISO/TR 21276:2018

STANDARDSISO.COM : Click to view the full PDF of ISO/TR 21276:2018

Clean cookstoves and clean cooking solutions — Vocabulary

1 Scope

This document defines terms for use in documents prepared by ISO/TC 285. Basic schematic illustrations are also provided to demonstrate relationships among certain concepts defined herein.

This document deliberately excludes some information that could be useful in the practice of testing and evaluation. Designation of specific products, even as examples, is avoided so that the document stays up-to-date and inclusive.

2 Normative references

There are no normative references in this document.

3 Terms and definitions

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at <https://www.iso.org/obp>
- IEC Electropedia: available at <http://www.electropedia.org/>

3.1 Appliances

3.1.1

batch-loaded cookstove

cookstove (3.1.7) into which fuel is infrequently loaded during operation

3.1.2

built in-place cookstove

cookstove (3.1.7) in which the majority of assembly and/or construction takes place where it will be used

3.1.3

candidate cookstove

*cookstove (3.1.7) being considered by a *target community* (3.6.16)*

3.1.4

clean cookstove

cookstove (3.1.7) that reduces emissions to an acceptable level when fed with a defined fuel or fuels

Note 1 to entry: The determination of an acceptable level of emissions depends on programmatic goals, and includes consideration of health and *environmental impacts* (3.6.7) and best available technology.

3.1.5

continuously fed cookstove

cookstove (3.1.7) in which fuel is constantly or frequently fed during operation

3.1.6

cooking vessel

pot or container in which food or water is heated and prepared

3.1.7

cookstove

appliance primarily employed for the cooking of food, but which can also be employed for space or water heating, or other purposes

3.1.8

griddle cookstove

comal cookstove

plancha cookstove

cookstove (3.1.7) in which the majority of cooking occurs by placing the food directly on a heated surface, usually a metal or ceramic plate

Note 1 to entry: The griddle cookstove has regional names such as “plancha cookstove”, “comal cookstove” and “mittad”.

3.1.9

improved cookstove

cookstove (3.1.7) proposed for a geographic region or *target community* (3.6.16), which has been shown to outperform a *baseline* (3.3.1) with respect to primary criteria that can include *emission factors* (3.3.9), *energy efficiency* (3.3.11), *durability* (3.3.8) and/or *safety* (3.3.22)

3.1.10

pot skirt

device that encircles a *cooking vessel* (3.1.6) for the purpose of increasing heat transfer to the vessel

Note 1 to entry: The pot skirt can be part of cookstove design, part of the pot design or an accessory.

3.1.11

retained heat cooker

insulated container that can accommodate one or more *cooking vessels* (3.1.6) that have been previously heated on a *cookstove* (3.1.7)

3.1.12

traditional cookstove

type of *cookstove* (3.1.7) or three-stone open fire that has been in long existence in a region and has been established from generation to generation

3.1.13

water heating cookstove

cookstove (3.1.7) designed to transfer heat to water for space heating and other purposes

3.2 Fuel

3.2.1

as fired

condition of a fuel immediately before testing in a *cookstove* (3.1.7)

3.2.2

as received

condition of a fuel as it is received for testing in a *cookstove* (3.1.7)

3.2.3

ash

residue remaining after combustion of a fuel under specified analytical conditions, typically expressed as a percentage of the mass of dry matter in fuel

3.2.4

ash solids

portion of the *remaining solids* (3.2.23) that has negligible recoverable *heating value* (3.2.16)

3.2.5**biofuel**

material of biological origin used as fuel, including, but not limited to, wood, agricultural residues, dung, biogas and processed lignocelluloses

EXAMPLE Charcoal, briquettes, pellets.

3.2.6**burn sequence**

combustion of fuel in a *cookstove* (3.1.7) from *ignition* (3.2.18) to an end point defined in a specific protocol

3.2.7**char**

carbonaceous residue resulting from pyrolysis or incomplete combustion

Note 1 to entry: The composition of *residual fuel* (3.2.24) is largely char, see [Clause 4](#).

3.2.8**combustible mass**

portion of the fuel consisting of fixed carbon and volatile components, excluding *ash* (3.2.3) and moisture, which can potentially be combusted

3.2.9**conventional fuel**

fuel or fuels regularly employed by the *target community* (3.6.16)

3.2.10**dry fuel**

fuel from which all moisture has been removed by heating to 3 °C above the local boiling point

3.2.11**dry basis**

basis for calculation of sample quality characteristics, in which the mass of the sample without water content is used

Note 1 to entry: The dry basis is expressed in per cent.

3.2.12**exhaust**

gases and suspended *particulate matter* (3.4.7) resulting from the combustion process

3.2.13**fly ash**

ash (3.2.3) that is entrained in the *exhaust* (3.2.12)

3.2.14**fossil fuel**

carbonaceous material derived from geological deposits, including coal, peat, natural gas and liquid fuels

3.2.15**fugitive emissions**

emissions that come from a cookstove into the cooking environment as opposed to those removed from the cookstove via a chimney

3.2.16

heating value

calorific value

energy per unit mass released in the complete combustion of a sample of fuel, $\text{MJ}\cdot\text{kg}^{-1}$

Note 1 to entry: When determining heating value, the state of the fuel, as defined by the *as fired* (3.2.1), *as received* (3.2.2) or *dry fuel* (3.2.10) conditions shall be recorded, and the heating value shall be stated as either *higher heating value* (3.2.17) or *lower heating value* (3.2.20).

3.2.17

higher heating value

measured value of the energy of combustion of a fuel burned in oxygen in a bomb calorimeter under such conditions that all the water of the reaction products is in the form of liquid water at $15\text{ }^{\circ}\text{C}$, $\text{MJ}\cdot\text{kg}^{-1}$

3.2.18

ignition

start of a period of combustion

3.2.19

kindling

readily ignitable material used for starting a fire

3.2.20

lower heating value

calculated value of the energy of combustion of a fuel burned in oxygen in a combustion bomb under such conditions that all the water of the reaction products remain as water vapour at $150\text{ }^{\circ}\text{C}$, $\text{MJ}\cdot\text{kg}^{-1}$

Note 1 to entry: The *heating value* (3.2.16) at constant pressure is generally used.

3.2.21

raw fuel

mass of the unburned fuel supplied to a *cookstove* (3.1.7) during the course of the *burn sequence* (3.2.6)

Note 1 to entry: Raw fuel is expressed in kilograms.

3.2.22

recovered fuel

material that has a usable energy content that remains after a *burn sequence* (3.2.6) is completed

3.2.23

remaining solids

solids, excluding *fly ash* (3.2.13), remaining at the completion of a *burn sequence* (3.2.6)

Note 1 to entry: Remaining solids are a mixture of *ash solids* (3.2.4) and *recovered fuel* (3.2.22), see [Clause 4](#).

3.2.24

residual fuel

portion of the *recovered fuel* (3.2.22) that is not *reused fuel* (3.2.25)

3.2.25

reused fuel

material separated from the *recovered fuel* (3.2.22) that has properties such that it can be employed in a subsequent *burn sequence* (3.2.6) in the same *cookstove* (3.1.7)

Note 1 to entry: Reused fuel comprises primarily partially burned fuel and can include some *char* (3.2.7), see [Clause 4](#).

3.2.26

reused fuel in

reused fuel (3.2.25) from a prior *burn sequence* (3.2.6) that is added to the *raw fuel* (3.2.21) to make up the *total fuel* (3.2.27)

3.2.27**total fuel**

sum of the masses of the *raw fuel* (3.2.21) and the *reused fuel in* (3.2.26)

3.2.28**wet basis**

basis for describing the composition of a fuel sample as the ratio of the mass of a component to the mass of the fuel in its *as received* (3.2.2) or *as fired* (3.2.1) state

Note 1 to entry: The wet basis is expressed in per cent.

3.3 Metrics

3.3.1**baseline**

status of a market, community or *cooking system* (3.5.4) prior to intervention, determined by measurements and metadata

3.3.2**burn rate**

rate at which test fuel is consumed in a *cookstove* (3.1.7)

Note 1 to entry: The burn rate is expressed in kg [*dry basis* (3.2.11)] per hour.

3.3.3**char energy productivity**

ratio of the energy of usable *char* (3.2.7) produced to the *fuel energy in* (3.3.14)

Note 1 to entry: When determining char energy productivity, the protocol should clearly specify the methodology for determining the usable char.

3.3.4**char mass productivity**

ratio of the mass of usable *char* (3.2.7) produced to the mass of dry *raw fuel* (3.2.21)

Note 1 to entry: When determining char mass productivity, the protocol should clearly specify the methodology for determining the usable char.

3.3.5**cooking efficiency**

energy efficiency (3.3.11) for *cookstoves* (3.1.7) used only for cooking

Note 1 to entry: Energy efficiency for *space heating* (3.5.12) can differ from cooking efficiency for cookstoves.

3.3.6**cooking power**

rate of energy delivered to the contents of a *cooking vessel* (3.1.6) over any chosen period during the course of a *cooking sequence* (3.5.3) or other task

Note 1 to entry: The cooking power is expressed in kilowatts.

3.3.7**cooking time**

elapsed time from the time when the food is placed on the *cookstove* (3.1.7) to the time when the food is removed from the cookstove

Note 1 to entry: If multiple cookstoves are used, the cooking time shall be taken from the first placement to the final removal.

Note 2 to entry: The cooking time is expressed in seconds.

3.3.8

durability

ability of a *cookstove* (3.1.7) to continue to be operated for an extended period safely (see 3.3.21) and with minimal loss of performance under conditions typical of those found in the *target community* (3.6.16)

3.3.9

emission factor

ratio of the mass of a pollutant emitted to a defined measure that quantifies the activity emitting the pollutant

Note 1 to entry: Examples of these defined measures are the *useful energy delivered* (3.3.26), the mass of the dry *raw fuel* (3.2.21) or the *fuel energy in* (3.3.14).

3.3.10

emission rate

mass of an air pollutant emitted per unit time

Note 1 to entry: The emission rate is expressed in grams per second.

3.3.11

energy efficiency

ratio of the *useful energy delivered* (3.3.26) to the *fuel energy in* (3.3.14)

Note 1 to entry: This metric is not appropriate by itself for calculating fuel savings when a *cookstove* (3.1.7) produces *char* (3.2.7) that is conserved for use as fuel.

Note 2 to entry: When determining energy efficiency, the use of either *lower heating value* (3.2.20) or *higher heating value* (3.2.17) shall be recorded and should be specified by the protocol. It is essential to record this selection because it affects the calculation of efficiency.

Note 3 to entry: The *firepower* (3.3.13) at which the efficiency is determined should be clearly specified.

3.3.12

exergy efficiency

ratio of the *useful energy delivered* (3.3.26) to the *fuel energy used* (3.3.15)

3.3.13

firepower

rate of energy release from the combustion of the fuel over a specified period in the *burn sequence* (3.2.6)

Note 1 to entry: When determining firepower, protocol should identify calculations performed, either with the assumption of complete combustion or with formulae accounting for incomplete combustion.

Note 2 to entry: Firepower is expressed in kilowatts.

3.3.14

fuel energy in

product of the *heating value* (3.2.16) of the *raw fuel* (3.2.21) and the mass of the raw fuel *as fired* (3.2.1)

Note 1 to entry: When calculating fuel energy in, heating value shall be defined as either *lower heating value* (3.2.20) or *higher heating value* (3.2.17).

Note 2 to entry: Means for including the *kindling* (3.2.19) in the fuel energy in should be specified by protocol.

Note 3 to entry: Fuel energy in is expressed in kilojoules.

3.3.15

fuel energy used

fuel energy in (3.3.14) less the product of the *heating value* (3.2.16) of the *residual fuel* (3.2.24) and its mass

Note 1 to entry: Fuel energy used is expressed in kilojoules.

3.3.16**heat flux****density of heat flow**

useful energy delivered (3.3.26) divided by a specified area of the *cooking vessel* (3.1.6) and by the time during which it is delivered

Note 1 to entry: Heat flux is expressed in kilowatts per square metre.

3.3.17**lost heat**

fuel energy in (3.3.14) less the sum of the *useful energy delivered* (3.3.26) and the *residual fuel energy* (3.3.20)

Note 1 to entry: Lost heat is expressed in kilojoules.

3.3.18**maximum cooking power**

highest *cooking power* (3.3.6) for which a *cookstove* (3.1.7) is designed or can be operated safely

Note 1 to entry: The maximum cooking power is expressed in kilowatts.

3.3.19**minimum cooking power**

lowest *cooking power* (3.3.6) for which a *cookstove* (3.1.7) is designed

Note 1 to entry: The minimum cooking power is expressed in kilojoules.

3.3.20**residual fuel energy**

product of the *heating value* (3.2.16) of the *residual fuel* (3.2.24) and its mass

Note 1 to entry: When determining residual fuel energy, the heating value shall be defined as either *lower heating value* (3.2.20) or *higher heating value* (3.2.17), consistent with the heating value as defined in *fuel energy* in (3.3.14).

Note 2 to entry: The residual fuel energy is expressed in kilojoules.

3.3.21**safe**

having the capacity to be used at an acceptable level of risk of harm

3.3.22**safety**

ability of a *cookstove* (3.1.7) to be operated at an acceptable level of risk of harm

3.3.23**simmering**

condition achieved during some *cooking sequences* (3.5.3) when the energy input to the *cooking vessel* (3.1.6) closely balances the heat loss from the cooking vessel and its contents in order to maintain the contents at a temperature near the local boiling point

3.3.24**time use**

time, including perceived and actual, spent on a defined task, such as fuel collection and preparation, food preparation and cooking, or cleaning and maintenance, including among household members

Note 1 to entry: Time use is expressed in units of s.

3.3.25**turn down ratio**

ratio of the *maximum cooking power* (3.3.18) to the *minimum cooking power* (3.3.19)

3.3.26

useful energy delivered

energy that provides the services desired by the *cookstove* (3.1.7) user, especially for heating the contents of a *cooking vessel* (3.1.6)

Note 1 to entry: When cookstoves are used for both cooking and *space heating* (3.5.12), the useful energy delivered can include heat delivered to a living space.

Note 2 to entry: The determination of the useful energy delivered depends on the cooking practice and the purpose of the relevant performance metric. Depending on these factors, the useful energy delivered may include all or a fraction of the energy transferred to the cooking vessel.

Note 3 to entry: Energy transferred to the contents of a cooking vessel includes the energy that raises the temperature of the contents and the latent heat of evaporation of water from the vessel.

Note 4 to entry: The useful energy delivered is expressed in kilojoules.

3.4 Pollutants

3.4.1

black carbon

particulate carbonaceous material less than 2,5 µm in diameter, containing mostly carbon by mass and measured by its high absorption of visible light

3.4.2

carbon monoxide

toxic gas formed during the incomplete combustion of carbonaceous material

3.4.3

elemental carbon

particulate carbonaceous material emitted during combustion that demonstrates a refractory nature according to a defined thermal-optical protocol

3.4.4

exposure

contact of an organism with a chemical, physical or biological agent at levels above those normally found in the organism's environment

3.4.5

household air pollution

presence of trace substances in the atmosphere of living spaces that are not a part of the normal composition of clean air

3.4.6

organic carbon

carbonaceous material emitted during combustion in which the carbon is chemically bonded to hydrogen and possibly also to oxygen, nitrogen, sulphur or other elements

3.4.7

particulate matter

solids and liquids of a sufficiently small size to be suspended in air

3.4.8

PM_{2,5}

fine *particulate matter* (3.4.7) such that the aerodynamic equivalent diameter of the particles is less than or equal to 2,5 µm

3.4.9

PM₁₀

particulate matter (3.4.7) such that the aerodynamic equivalent diameter of the particles is less than or equal to 10 µm

3.5 Testing

3.5.1

calibration

comparison and adjustment to a standard of known accuracy

3.5.2

composite test sequence

test sequence that covers a range of behaviours

3.5.3

cooking sequence

operation of a *cookstove* (3.1.7) that uses the heat released during a *burn sequence* (3.2.6) for the preparation of food or the heating of water, with a recorded or prescribed series of power level settings, durations and *cooking vessel* (3.1.6) utilisations

Note 1 to entry: The cooking sequence commences with the placement of the first cooking vessel on the cookstove and ends when the last vessel is removed. The entire cooking sequence is normally embedded within a burn sequence, though in special cases *retained heat cookers* (3.1.11) might continue cooking after the fire has been extinguished or while additional cooking tasks are undertaken.

3.5.4

cooking system

combination of *cookstove* (3.1.7), fuel, cooking equipment, cooking environment (including ventilation) and cooking practice

3.5.5

dilution system

apparatus that mixes a sample stream with air, nitrogen or other gases of known composition in a controllable ratio

3.5.6

dilution tunnel

device in which ambient or cleaned air is mixed with an emission stream at a controlled and measured volumetric flow rate

3.5.7

field testing

observation or measurement of any part or parts of a *cooking system* (3.5.4) conducted under various actual use conditions, instead of under controlled conditions in a laboratory

3.5.8

gravimetric method

quantification of a sample of *particulate matter* (3.4.7) through the direct measurement of mass

3.5.9

laboratory testing

measurement of product performance quantified under controlled and documented conditions, where performance can be replicated by duplicating those conditions

3.5.10

pot swapping

testing method whereby water is heated in a series of *cooking vessels* (3.1.6) that are replaced successively as the contents reach a specified temperature

3.5.11

procedure

systematic method specified for accomplishing certain tasks related to the testing or assessment of *cookstoves* (3.1.7)

3.5.12

space heating

delivery of useful heat from a heat source into a surrounding or adjacent living space

3.5.13

stove stacking

practice of a household using more than one *cookstove* (3.1.7)

3.5.14

water heating test

test of a *cookstove* (3.1.7) or *water heating cookstove* (3.1.13) that uses one or more *cooking vessels* (3.1.6) or heat exchangers containing water that are heated to a specified temperature less than the local boiling point during a defined set of *burn sequences* (3.2.6)

3.6 Social measures

3.6.1

adoption

condition in which a user employs an *improved cookstove* (3.1.9) regularly and maintains it

Note 1 to entry: Use of the term “adoption” should be accompanied by protocols defining the duration over which the improved cookstove should be employed and maintained to achieve adoption.

3.6.2

agency

ability to define one's goals and act upon them

3.6.3

economic impact

net change, either positive or negative, in an economic activity, including industrial output, value added, wealth, personal income, jobs and resources

3.6.4

employment

occupation for which people are paid either in cash or in kind

3.6.5

empowerment

process of the expansion of people's ability to make strategic life choices in a context where this ability was previously denied to them

3.6.6

entrepreneur

one who seeks to generate value through the creation or expansion of economic activity, by identifying and exploiting new products, processes or markets

3.6.7

environmental impact

positive, neutral or negative effect on the social or material environment in a given area resulting from a change

3.6.8

food security

condition when all people, at all times, have physical and economic access to sufficient, *safe* (3.3.21) and nutritious food that meets their dietary needs and food preferences

3.6.9

gender

culturally and socially constructed roles and responsibilities of different sexes that exist in families, societies and cultures, and the power relations that exist between different sexes

3.6.10**gender impact**

results that differ according to the sex of the participant/recipient or that affect *gender* (3.6.9) relationships and perceptions

3.6.11**livelihood**

capabilities, assets, income and activities required to obtain the necessities of life

3.6.12**quality of life**

individuals' objective and perceived position in life in the context of the culture and value systems in which they live and in relation to their goals, expectations, standards and concerns, and the sum of the above as expressed in their community

3.6.13**social impact**

positive and negative consequences of any actions to improve cooking that can alter or affect the ways in which people live

3.6.14**stakeholders**

those involved in the development of *clean cookstoves* (3.1.4)

3.6.15**sustained adoption**

state in which there has been *adoption* (3.6.1) for an extended period of time

3.6.16**target community**

social group that regularly employs *cookstoves* (3.1.7) and has expressed a willingness to consider the introduction of *improved cookstoves* (3.1.9)

3.6.17**well-being**

individual's sense of his or her *quality of life* (3.6.12)

4 Schematic illustrations

Figures 1 and 2 illustrate the relationships among selected concepts defined in Clause 3.

Definitions for terms in Figure 1 are numbered within Clause 3 as follows:

- ash solids (3.2.4);
- cookstove (3.1.7);
- exhaust (3.2.12);
- fly ash (3.2.13);
- raw fuel (3.2.21);
- recovered fuel (3.2.22);
- remaining solids (3.2.23);
- residual fuel (3.2.24);
- reused fuel (3.2.25);
- reused fuel in (3.2.26);