
Information technology — Cloud
computing — Common technologies
and techniques

ISO/IEC TS
23167

First edition
2020-02

Reference number
ISO/IEC TS 23167:2020(E)

TECHNICAL
SPECIFICATION

© ISO/IEC 2020

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 23
16

7:2
02

0

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

﻿

ISO/IEC TS 23167:2020(E)
﻿

ii� © ISO/IEC 2020 – All rights reserved

COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2020
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting
on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address
below or ISO’s member body in the country of the requester.

ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Fax: +41 22 749 09 47
Email: copyright@iso.org
Website: www.iso.org

Published in Switzerland

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 23
16

7:2
02

0

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

﻿

ISO/IEC TS 23167:2020(E)
﻿

Foreword...v
Introduction...vi
1	 Scope.. 1
2	 Normative references... 1
3	 Terms and definitions.. 1
4	 Symbols and abbreviated terms.. 4
5	 Overview of common technologies and techniques used in cloud computing..................................... 4

5.1	 General.. 4
5.2	 Technologies.. 5

5.2.1	 General.. 5
5.2.2	 Infrastructure capabilities type of cloud services.. 5
5.2.3	 Platform capabilities cloud services.. 6
5.2.4	 Application capabilities type cloud services... 6

5.3	 Techniques... 6
6	 Virtual machines and hypervisors.. 6

6.1	 General.. 6
6.2	 Virtual machines and system virtualization... 7
6.3	 Hypervisors.. 7

6.3.1	 General.. 7
6.3.2	 Type I hypervisors... 8
6.3.3	 Type II hypervisors... 8

6.4	 Security of VMs and hypervisors.. 9
6.5	 VM images, metadata and formats.. 10

7	 Containers and container management systems (CMSs)...11
7.1	 General... 11
7.2	 Containers and operating system virtualization...11

7.2.1	 Description of containers... 11
7.2.2	 Container daemon..12
7.2.3	 Container resources, isolation and control...13

7.3	 Container images and filesystem layering.. 14
7.3.1	 Image purpose and content.. 14
7.3.2	 Filesystem layering..15
7.3.3	 Container image repositories and registries...16

7.4	 Container management systems (CMSs).. 17
7.4.1	 General... 17
7.4.2	 Common CMS capabilities... 17

8	 Serverless computing..19
8.1	 General... 19
8.2	 Functions as a service... 20

8.2.1	 Overview... 20
8.2.2	 Functions within FaaS...20
8.2.3	 Serverless frameworks...21
8.2.4	 FaaS relationship to microservices and containers...21

8.3	 Serverless databases.. 22
9	 Microservices architecture..22

9.1	 General... 22
9.2	 Advantages and challenges of microservices... 23
9.3	 Specification of microservices... 25
9.4	 Multi-layered architecture.. 25
9.5	 Service mesh... 28
9.6	 Circuit breaker.. 30

© ISO/IEC 2020 – All rights reserved� iii

Contents� Page

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 23
16

7:2
02

0

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

﻿

ISO/IEC TS 23167:2020(E)
﻿

9.7	 API gateway... 30
10	 Automation...30

10.1	 General... 30
10.2	 Automation of the development lifecycle.. 31
10.3	 Tooling for automation.. 31

11	 Architecture of PaaS systems...32
11.1	 General... 32
11.2	 Characteristics of PaaS systems... 33
11.3	 Architecture of components running under PaaS system...35

12	 Data storage as a service..36
12.1	 General... 36
12.2	 Common features of DSaaS.. 37
12.3	 Capabilities type of DSaaS... 40
12.4	 Significant additional capabilities of DSaaS... 40

13	 Networking in cloud computing...41
13.1	 Key aspects of networking.. 41
13.2	 Cloud access networking.. 41
13.3	 Intra-cloud networking... 42
13.4	 Virtual private networks (VPNs) and cloud computing..43

14	 Cloud computing scalability...44
14.1	 Scalability approaches.. 44
14.2	 Parallel instances and load balancing... 45
14.3	 Elasticity and automation.. 46
14.4	 Database scaling.. 46

15	 Security and the cloud common technologies...47
15.1	 General... 47
15.2	 Firewalls... 47
15.3	 Endpoint protection... 47
15.4	 Identity and access management.. 47
15.5	 Data encryption.. 48
15.6	 Key management... 48

Annex A (informative) VM Images and disk images...49
Bibliography..50

iv� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 23
16

7:2
02

0

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

﻿

ISO/IEC TS 23167:2020(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that
are members of ISO or IEC participate in the development of International Standards through
technical committees established by the respective organization to deal with particular fields of
technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other
international organizations, governmental and non-governmental, in liaison with ISO and IEC, also
take part in the work.

The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for
the different types of document should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www​.iso​.org/​directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject
of patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent
rights. Details of any patent rights identified during the development of the document will be in the
Introduction and/or on the ISO list of patent declarations received (see www​.iso​.org/​patents) or the IEC
list of patent declarations received (see http://​patents​.iec​.ch).

Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and
expressions related to conformity assessment, as well as information about ISO's adherence to the
World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see www​.iso​.org/​
iso/​foreword​.html.

This document was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology,
Subcommittee SC 38, Cloud Computing and Distributed Platforms.

Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www​.iso​.org/​members​.html.

﻿

© ISO/IEC 2020 – All rights reserved� v

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 23
16

7:2
02

0

https://www.iso.org/directives-and-policies.html
https://www.iso.org/iso-standards-and-patents.html
http://patents.iec.ch/
https://www.iso.org/foreword-supplementary-information.html
https://www.iso.org/foreword-supplementary-information.html
https://www.iso.org/members.html
https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

﻿

ISO/IEC TS 23167:2020(E)

Introduction

Cloud computing is described at a high, conceptual level in the two foundational standards
ISO/IEC 17788 [1] and ISO/IEC 17789 [2].

However, as the use of cloud computing has grown, a set of commonly used technologies has grown to
support, simplify and extend the use of cloud computing alongside sets of commonly used techniques
which enable the effective exploitation of the capabilities of cloud services. Many of these common
technologies and techniques are aimed at developers and operations staff, increasingly linked together
in a unified approach called DevOps (see 10.2). The aim is to speed and simplify the creation and
operation of solutions based on the use of cloud services.

This document aims to describe the common technologies and techniques which relate to cloud
computing, to describe how they relate to each other and to describe how they are used by some of the
roles associated with cloud computing.

This document (a Technical Specification) addresses areas that are still developing in the industry,
where it is believed that there will be a future, but not immediate, need for one or more International
Standards.

This document will be of primary interest to service developers in Cloud Service Providers and to
standards developers working with ISO and other organizations.

﻿

vi� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 23
16

7:2
02

0

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

﻿

Information technology — Cloud computing — Common
technologies and techniques

1	 Scope

This document provides a description of a set of common technologies and techniques used in
conjunction with cloud computing. These include:

—	 virtual machines (VMs) and hypervisors;

—	 containers and container management systems (CMSs);

—	 serverless computing;

—	 microservices architecture;

—	 automation;

—	 platform as a service systems and architecture;

—	 storage services;

—	 security, scalability and networking as applied to the above cloud computing technologies.

2	 Normative references

The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.

ISO/IEC 22123-1:—1), Information technology — Cloud computing — Part 1:Terminology

3	 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO/IEC 22123-1 and the
following apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

—	 ISO Online browsing platform: available at http://​www​.iso​.org/​obp

—	 IEC Electropedia: available at http://​www​.electropedia​.org/​

3.1
guest operating system
guest OS
operating system that runs within a virtual machine

[SOURCE: ISO/IEC 21878:2018, 3.2]

1)	 To be published.

TECHNICAL SPECIFICATION� ISO/IEC TS 23167:2020(E)

© ISO/IEC 2020 – All rights reserved� 1

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 23
16

7:2
02

0

http://www.iso.org/obp
http://www.electropedia.org/
https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

﻿

ISO/IEC TS 23167:2020(E)

3.2
host operating system
host OS
operating system onto which virtualization software is installed

Note 1 to entry: "virtualization software" can include both hypervisor and virtual machines as well as container
daemon (3.4) and containers.

3.3
serverless computing
cloud service category in which the cloud service customer can use different cloud capabilities types
without the cloud service customer having to provision, deploy and manage either hardware or
software resources, other than providing cloud service customer application code or providing cloud
service customer data

Note 1 to entry: Serverless computing provides automatic scaling with dynamic elastic allocation of resources by the
cloud service provider, automatic distribution across multiple locations, and automatic maintenance and backup.

Note 2 to entry: Serverless computing functionality is triggered by one or more cloud service customer defined
events and can execute for a limited time period as required to deal with each event.

Note 3 to entry: Serverless computing functionality can be invoked by direct invocation from web and mobile
applications.

3.4
container daemon
software service that executes on a host operating system (3.2) and is responsible for creating, starting
and stopping containers on that system

3.5
container management system
CMS
software that provides for management and orchestration of container instances

Note 1 to entry: Capabilities include initial creation and placement, scheduling, monitoring, scaling, update and
the parallel deployment of capabilities such as load balancers, firewalls, virtual networks and logging.

3.6
cloud native application
application that is explicitly designed to run within and to take advantage of the capabilities and
environment of cloud services

3.7
functional decomposition
type of modular decomposition in which a system is broken down into components that correspond to
system functions and subfunctions

EXAMPLE	 Hierarchical decomposition, stepwise refinement.

[SOURCE: ISO/IEC/IEEE 24765:2017, 3.1695]

3.8
continuous deployment
software engineering approach in which teams produce software in short cycles such that the software
can be released to production at any time and where deployment to production is itself automated

3.9
continuous delivery
continuous deployment (3.8) where the deployment stage is initiated manually

﻿

2� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 23
16

7:2
02

0

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

﻿

ISO/IEC TS 23167:2020(E)

3.10
DevOps
methodology which combines together software development and IT operations in order to shorten the
development and operations lifecycle

3.11
DevSecOps
DevOps (3.10) extended to include security capabilities as an essential and integral part of the
development and operations processes

3.12
orchestration
type of composition where one particular element is used by the composition to oversee and direct the
other elements

Note 1 to entry: The element that directs an orchestration is not part of the orchestration (composition
instance) itself.

Note 2 to entry: See ISO/IEC 18384-3:2016, 8.3.

[SOURCE: ISO/IEC 18384-1:2016, 2.16]

3.13
virtual machine image
VM image
information and executable code necessary to run a virtual machine

3.14
virtual machine metadata
VM metadata
information about the configuration and startup of a virtual machine

3.15
microservice
independently deployable artefact providing a service implementing a specific functional part of an
application

3.16
microservices architecture
design approach that divides an application into a set of microservices (3.15)

3.17
functions as a service
function as a service
FaaS
cloud service category in which the capability provided to the cloud service customer is the execution
of cloud service customer application code, in the form of one or more functions that are each triggered
by a cloud service customer specified event

3.18
serverless database
cloud service category in which the capability provided to the cloud service customer is a fully cloud
service provider managed database made available via an application programming interface

﻿

© ISO/IEC 2020 – All rights reserved� 3

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 23
16

7:2
02

0

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

﻿

ISO/IEC TS 23167:2020(E)

3.19
firewall
type of security barrier placed between network environments — consisting of a dedicated device
or a composite of several components and techniques — through which all traffic from one network
environment traverses to another, and vice versa, and only authorized traffic, as defined by the local
security policy, is allowed to pass

[SOURCE: ISO/IEC 27033-1:2015, 3.12]

3.20
container registry
component that provides the capability to store and to access container images

3.21
resource affinity
placement of two or more resources close to each other

Note 1 to entry: Closeness relates to factors such as speed of access or high bandwidth of access between the
resources.

4	 Symbols and abbreviated terms

API Application programming interface

CMS Container management system

CSC Cloud service customer

CSP Cloud service provider

DNS Domain name service

GUI Graphical user interface

HTTP Hypertext transfer protocol

IaaS Infrastructure as a service

IP Internet protocol

MAC Media access control

OCI Open containers initiative

OS Operating system

OVF Open virtualization format

PaaS Platform as a service

SaaS Software as a service

VPN Virtual private network

5	 Overview of common technologies and techniques used in cloud computing

5.1	 General

This document provides a description of a set of common technologies and techniques used in
conjunction with cloud computing.

﻿

4� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 23
16

7:2
02

0

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

﻿

ISO/IEC TS 23167:2020(E)

A common technology is one that is used to implement one or more of the functional components of
cloud computing described in ISO/IEC 17789:2014,9.2[2] cloud computing reference architecture. The
common technologies often form part of a cloud service or are employed by the cloud service customer
(CSC) when using a cloud service.

A common technique is a methodology or an approach to performing some of the activities associated
with cloud computing, as described in ISO/IEC 17789:2014,10.2.2[2]. It is typical of the common
techniques to either reduce the effort needed to make use of cloud services or to enable full use of the
capabilities provided by cloud services.

Many of the common technologies and techniques are used in conjunction when developing and
operating cloud native applications.

The various common technologies and techniques are described in detail in the following clauses.

In what follows, text that is extracted from other standards are indicated by placing the extracted text
in quotes, using italic text, and providing the exact reference at the end of the extracted text.

5.2	 Technologies

5.2.1	 General

The common technologies principally relate to virtualization and the control and management of
virtualized resources in the development and operation of cloud native applications. A cloud native
application is an application that is explicitly designed to run within and to take advantage of the
capabilities and environment of cloud services. These technologies address the three primary hardware
resources identified in ISO/IEC 17789:2014,9.2.4.2[2] of processing, storage and networking but also
address the platform capabilities type of cloud service. These technologies include:

—	 Virtualized processing is addressed by virtual machines (see Clause 6), by containers (see Clause 7),
by serverless computing (see Clause 8).

—	 Virtualized storage is addressed by means of a variety of Data Storage as a Service (see Clause 12).

—	 Virtualized networking is one of the primary groups of technologies for the provision and use of
networking capabilities in relation to cloud services (see Clause 13).

—	 The Platform as a Service category of cloud services are designed to enable more rapid development,
testing and production of cloud native applications (see Clause 11).

Security and scalability technologies apply generally across all types of cloud services, although
the explicit use of the technologies by the CSC is more common for some types of cloud service (see
Clause 14 and Clause 15).

5.2.2	 Infrastructure capabilities type of cloud services

Technologies commonly used with infrastructure capabilities type of cloud services include:

—	 virtual machines;

—	 containers;

—	 virtualized storage;

—	 virtualized networking;

—	 security.

﻿

© ISO/IEC 2020 – All rights reserved� 5

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 23
16

7:2
02

0

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

﻿

ISO/IEC TS 23167:2020(E)

5.2.3	 Platform capabilities cloud services

Technologies commonly used with platform capabilities type of cloud services include:

—	 containers;

—	 serverless computing;

—	 PaaS cloud services;

—	 virtualized storage;

—	 virtualized networking;

—	 security.

5.2.4	 Application capabilities type cloud services

Technologies commonly used with application capabilities type of cloud services include:

—	 virtualized storage;

—	 virtualized networking;

—	 security.

5.3	 Techniques

The common techniques typically apply to all cloud service categories, although some techniques are
more useful with some categories of cloud service than others.

Orchestration and management of virtualized resources is achieved with tooling, including CMSs (see
Clause 10 and 7.4).

Techniques commonly used with cloud computing include:

—	 Automation of various kinds, applied throughout the DevOps processes (see Clause 10).

—	 Scalability approaches such as parallel instances (see Clause 14).

—	 Microservices design approach to applications and systems (see Clause 9).

—	 Firewalls, encryption, and Identity and Access Management (IAM) techniques for security and
protection of privacy (see Clause 15).

6	 Virtual machines and hypervisors

6.1	 General

Virtual machines and hypervisors are technologies that provide virtualized processing (also known
as virtualized compute) for cloud services. These technologies primarily relate to cloud services of
infrastructure capabilities type and IaaS as described in ISO/IEC 17788 and ISO/IEC 17789.

One of the key characteristics of cloud computing is its ability to share resources. This is fundamental
to its economics, but it is also important to characteristics such as scalability and resilience. Sharing of
processing resources requires some level of virtualization. Virtualization in general means that some
resource is made available for use in a form that does not physically exist as such but which is made to
appear to do so by software. In other words, virtualization provides an abstraction of the underlying
resource, being converted into a software defined form for use by other software entities. The software
performing the virtualization enables multiple users to simultaneously share the use of a single physical

﻿

6� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 23
16

7:2
02

0

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

﻿

ISO/IEC TS 23167:2020(E)

resource without interfering with each other and usually without them being aware of each other. (See
ISO/IEC 22123-1:—, 5.5).

One approach to the virtualization of processing resources is the use of virtual machines, which
involves a hypervisor providing an abstraction of the system hardware and permitting multiple virtual
machines to run on a given physical system, with each VM containing its own guest operating system
(guest OS), as shown in Figure 1. This permits the system to be shared by the applications running in
each VM.

The hypervisor is typically software that is installed and operated by the CSP. The cloud service that
runs the VM offers the capability for the CSU to load software from a VM image and run the software
within a VM on the CSP system. The VM is managed by the hypervisor, but this is not seen directly by
the CSU.

6.2	 Virtual machines and system virtualization

A virtual machine (VM) is an isolated execution environment for running software that uses virtualized
physical resources. In other words, this involves the virtualization of the system – and the software within
each VM is given carefully controlled access to the physical resources to enable sharing of those resources
without interference. Sometimes termed system virtual machines, VMs provide the functionality needed to
execute complete software stacks including entire operating systems and the application code that uses the
operating system (ISO/IEC 22123-1:—, 5.5.1). This is as depicted by the "guest OS" and "App x" within
each VM shown in Figure 1.

The purpose of VMs is to enable multiple applications to run at the same time on one hardware system,
while those applications remain isolated from each other. The software running within each VM
appears to have its own system hardware, such as processor, runtime memory, storage device(s) and
networking hardware. Isolated means that the software running within one VM is separated from and
unaware of software running within other VMs on the same system and is also separated from the
host OS. Virtualization commonly means that a subset of the available physical resources can be made
available to each VM, such as limited numbers of processors, limited RAM, limited storage space and
controlled access to networking capabilities.

Each VM contains a complete stack of software, starting with the operating system and continuing with
whatever other software is required to run the application(s) that are executed within the VM. The
software stack could be very simple (e.g. a native application written in a language like C, using only
functions supplied by the operating system itself) or complex (e.g. an application written in a language
such as JavaTM which requires a runtime and which makes extensive use of libraries and/or services
which are not present in the operating system and which have to be supplied separately).

Each VM can in principle contain any operating system. Different VMs on a single hardware system can
run completely different operating systems such as Linux® and Windows®. The only requirement is
that all the software running within the VM is designed for the hardware architecture of the underlying
system – the hardware is virtualized, but not emulated. So, for example, code built for an ARM processor
will not run in a VM running on an Intel x86 system.

6.3	 Hypervisors

6.3.1	 General

The hypervisor, sometimes termed a virtual machine monitor, is software that virtualizes physical resources
and allows for running virtual machines. Virtualization means control of the abstraction of the underlying
physical resources of the system. The hypervisor also manages the operation of the VMs. The hypervisor
allocates resources to each running VM including processor (CPU), memory, disk storage and networking
capabilities and bandwidth (ISO/IEC 22123-1).

Hypervisors exist as one of two types:

—	 "Bare metal", "native" or "type I";

﻿

© ISO/IEC 2020 – All rights reserved� 7

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 23
16

7:2
02

0

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

﻿

ISO/IEC TS 23167:2020(E)

—	 "Embedded", "hosted" or "type II".

Type I hypervisors can be faster and more efficient, since they do not need to work via a host operating
system. Type II hypervisors may be slower, but have the advantage of being typically easier to set up and
are compatible with a broader range of hardware than type I hypervisors, since hardware variations
have to be dealt with in the type I hypervisor code, whereas the type II hypervisors take advantage of
the hardware support built in to the host operating system.

6.3.2	 Type I hypervisors

Type I hypervisors run directly on the underlying system hardware and control that hardware directly
as well as managing the VMs. The organization of a system using a Type I hypervisor is shown in
Figure 1.

Figure 1 — Type I hypervisor virtualization of system hardware

6.3.3	 Type II hypervisors

Type II hypervisors run on top of a host operating system, more specifically the host OS kernel. It is
the host operating system that controls the system hardware, while the hypervisor makes use of its
capabilities to run and manage the VMs. The organization of a system with a Type II hypervisor is
shown in Figure 2.

﻿

8� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 23
16

7:2
02

0

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

﻿

ISO/IEC TS 23167:2020(E)

Figure 2 — Type II hypervisor virtualization of system hardware

6.4	 Security of VMs and hypervisors

For hardware systems, the operating system runs at the highest privilege level since it must control
access to all hardware resources. However, in a hypervisor host, since the hypervisor must control all
access to CPU and memory by guest VMs (providing processor and memory virtualization), it should
run at a privilege level higher than all VMs. To facilitate this, hypervisors are installed on hardware
systems that provide assistance for virtualization. Specifically, the hardware system provides two
processor states: root (hypervisor) mode and non-root (guest) mode. All guest OSs run in non-root
mode while the hypervisor alone runs in root mode.

Despite the hardware support for virtualization, the runtime process isolation for VMs provided by
the hypervisor could be subverted by rogue or compromised VMs which have gained access to areas
of memory belonging to the hypervisor or other VMs. Rogue or compromised VMs exploit certain
hypervisor design vulnerabilities with respect to certain software structures such as virtual machine
control block (VMCB) and memory page tables which are used by the hypervisor to keep track of
the execution state of VMs and memory mapping from VM addresses to host memory addresses
respectively. These vulnerabilities of hypervisors have been known for some time and as a result, many
of the vulnerabilities have been addressed or are being addressed. More recent hypervisor versions
have been updated and hardened. The CSC and CSP should check that any hypervisors in use are up-to-
date and hardened against known security vulnerabilities.

Another security implication in a hypervisor host platform stems from software used for providing
device virtualization. Unlike instruction set and memory virtualization, device virtualization is not
directly handled by the hypervisor but by using supporting software modules. Primary sources of
vulnerabilities include: (a) code emulating physical hardware devices running in the hypervisor as a
loadable kernel module and (b) device drivers for direct memory access (DMA) capable devices which
can access memory regions belonging to other VMs or even the hypervisor.

﻿

© ISO/IEC 2020 – All rights reserved� 9

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 23
16

7:2
02

0

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

﻿

ISO/IEC TS 23167:2020(E)

Potential downstream impacts of a rogue VM taking control of the hypervisor include the installation of
rootkits or attacks on other VMs on the same hypervisor host. All device virtualization software should
be verified against security flaws before installation and use on a system using a hypervisor and VMs.

6.5	 VM images, metadata and formats

A virtual machine image (VM image) is a package of data that contains the information and executable
code necessary to run an instance of a VM. The VM image is used to instantiate a new instance of a VM,
as required. The VM image can include the complete software stack required to run an application,
starting with the operating system, libraries, runtimes, the application code itself, configuration files
and other metadata used by the application. The VM image can also include metadata associated with
the instantiation of the VM itself.

The VM metadata contains information about the configuration and startup of the VM. This might
include properties of the VM such as RAM size, CPU requirements and so on. The VM metadata also
typically references the disk images contained in the VM image, in particular indicating how they are
deployed into a VM instance.

The concept of the VM image is that it should contain all the entities required to run an instance of a
VM, where the VM image is used as input data to a hypervisor to enable it to create and start the VM.
Broadly, the VM image consists of two sets of data – firstly, VM metadata and secondly disk images. It is
important to understand that there are in existence many different formats of both VM metadata and
disk images. A particular hypervisor used to instantiate a VM might only understand specific formats
for the VM metadata and disk images. Some of the formats are proprietary, while others are open or
standardised. See Annex A for information about VM image formats.

VM images are based on data held in files – files on filesystems, which are held in the VM image as one
or more disk images. These files can be those of the operating system, the application and any other
part of the software stack that is required. There is at least one disk image, but there can be multiple
disk images if this is the organization of files that is used by the application and its software stack. It is
often the case that the volume of data held in the disk images is very large and as a result, the formats
used to store the data involve the use of compression in one form or another.

There are many VM image and disk image formats in use, a substantial proportion of which are
proprietary or which are open source. Examples of standardised VM image and disk image formats
include:

—	 OVF ("Open Virtualization Format") (see ISO/IEC 17203:2017[18])

The OVF package has a number of files placed in a single directory. There is an OVF descriptor
file (with extension .ovf) which has XML format contents describing the packaged virtual machine
including the metadata such as the name, hardware requirements and references to the other
files in the package. The OVF package also contains one or more disk images, plus some optional
files such as certificate files. The OVF image format has a relatively wide range of support, either
directly or via import/export tools.

—	 ISO disk format – the archive format used for optical disc contents (see ISO 9660[72] and
ISO/IEC 13346[73])

ISO 9660 is a file system for optical disk media, principally CD-ROMs.

ISO/IEC 13346 (also known as Universal Disk Format or UDF) is often used on DVDs and Blu-ray
disk (BD) formats and is particularly suited to recordable and (re)writable optical media.

Disk images are commonly compressed due to their large size, although there are cases where raw
uncompressed disk images are used to obtain better VM start up performance at the cost of consuming
more space.

Which VM image and disk image formats are accepted by a particular hypervisor are stated in the
documentation for the hypervisor.

﻿

10� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 23
16

7:2
02

0

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

﻿

ISO/IEC TS 23167:2020(E)

7	 Containers and container management systems (CMSs)

7.1	 General

Containers are a technology that can provide virtualized processing for cloud services. The technology
relates both to infrastructure capabilities type and to platform capabilities type of cloud services as
described in ISO/IEC 17788 and ISO/IEC 17789.

Containers provide a software execution environment through virtualization of the operating system
kernel running on a system. Containers represent another approach to the provision of a software
execution environment using the virtualization of compute resources. Containers involve the
virtualization of the OS kernel, as compared with the virtualization of the system hardware involved
with VMs. The goal of containers is to permit multiple different sets of software to run on a single system
at the same time without interfering with each other, i.e. they permit secure sharing of the system.

A cloud service supporting containers offers the capability for the CSU to load software from a container
image and run that software within a container on the CSP system. The container is managed either by
the CSP or by CSU, depending on the capabilities type of the cloud service. In either case, it is typical
that management is performed by means of a CMS (see 7.4).

7.2	 Containers and operating system virtualization

7.2.1	 Description of containers

A container is an isolated execution environment for running software that uses a virtualized operating
system kernel. Containers run within an operating system which is termed the host operating system
(host OS).

As described in 6.2 a VM presents a virtualized version of the system hardware to the software within
the VM. Access to the virtualized hardware resources is mediated and the software within the VM only
gets to see and use a carefully controlled and limited version of those resources (e.g. limited number of
CPUs, limited number of threads, limited RAM).

In the same way, a container presents a virtualized version of the host OS kernel. Access to the
virtualized resources of the OS kernel is mediated and the software within the container gets to see
and use a carefully controlled and limited version of the OS resources.

The isolation of the execution environment means that the software running within one container
is separated from and unaware of software running in other containers, and is also separated from
the host OS. The only software running outside a container that can access or affect software running
inside a container is the container daemon.

Figure 3 shows three containers running on the system hardware. The physical system has its own
host OS. Each container contains its own application software (App x), and runs that software in one
or more OS processes using resources such as memory, CPU, storage and networking, isolated from the
other containers running on the same system, but all sharing the kernel of the host OS.

The kernel of the host OS is being shared by all the containers, which essentially means that the OS used
by the software in the containers must be compatible with the host OS kernel. This can allow for the
different containers to potentially use different variants of the Linux OS where the host OS is a Linux
variant, for example, but it does not allow for the Windows OS to be used within a container if the host
OS is a Linux variant (and vice-versa).

The containers are created and managed by a container daemon, which runs as a separate process in
the host OS.

﻿

© ISO/IEC 2020 – All rights reserved� 11

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 23
16

7:2
02

0

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

﻿

ISO/IEC TS 23167:2020(E)

Figure 3 — Container virtualization

The software stack running in each container can vary, but typically it contains the application itself
("App x") and whatever software dependencies that the application has. In principle, the software stack
could be quite "lean", especially where the application code depends only on functions supplied by the
host OS kernel. However, it is the case that the container code can include elements of the OS outside the
kernel, such as libraries and utilities, particularly if the application code depends on specific versions of
these libraries and utilities.

Note that the host operating system used by containers could itself be running inside a virtual machine,
rather than directly on the physical hardware. Software running in the containers is unaware of
whether the host operating system is running in a virtual machine or not.

7.2.2	 Container daemon

The container daemon is a software service that executes on the host operating system and which is
responsible for creating and managing containers on that system. A particular container is an executable
instance of a software stack that is held within a container image (see 7.3 for a description of container
images). The container image includes metadata and parameters used by the container daemon. The
container daemon uses the container metadata to specify certain capabilities of the container and it
uses the container service parameters to affect how a container is instantiated and run.

The container daemon offers a service interface through which its capabilities can be invoked by client
applications. Client applications can run on the same system as the container daemon or can run on
remote systems and invoke the capabilities of the container daemon over the network.

The container daemon offers a set of container operations:

—	 Create: this operation creates a new container. The operation references the container image to use,
instantiated in a filesystem directory (termed a "bundle") accessible by the host operating system.
Creating the container allocates a set of resources to the container and configures the container as
described in the container metadata held in the bundle. The container is given a unique ID, by which
it is later referenced.

﻿

12� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 23
16

7:2
02

0

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

﻿

ISO/IEC TS 23167:2020(E)

—	 Start: this operation starts the container by running the application program specified for the
container, with whatever parameters are supplied by the metadata relating to the container.

—	 Kill: this operation stops the program(s) running in the container. This is typically done by sending
a specific signal to the process running in the container.

—	 Delete: this operation deletes the resources allocated to the container and destroys the container.
The unique ID no longer identifies a container, although the same ID might be used later to create a
new container.

The container daemon typically also offers an event interface, which enable the container daemon to
report on significant events relating to the containers which it manages. The event interface allows one
or more client software components to listen for particular events and react to them.

7.2.3	 Container resources, isolation and control

A container provides a software execution environment, which is isolated and resource controlled.

Isolation means that the software running inside the container is given the illusion that it has the
system all to itself – that the only process(es) that exist are the ones started within the container. In
reality, there may be many other processes running on the same system, but the software within the
container is not aware of them and cannot see them or interact with them.

Resource controlled means that the set of resources available to the software in the container are
allocated to the container (by the container daemon) when the container is created and these resources
are monitored and limited. These resources include CPU allocation, runtime memory, networking,
filesystem(s). It appears to the software in the container that only these resources exist. The resources
are allocated in such a way that the resources allocated to one container cannot interfere with resources
allocated to other containers running on the same system.

The isolation and control of resources are handled through capabilities of the host operating system,
exploited and managed by the container daemon. The detailed capabilities available and used for
containers vary from operating system to operating system. The capabilities used on the Linux
operating system are described in this document for illustration. Consult the documentation relating to
other operating systems to understand the equivalent capabilities.

For access to block I/O, the container by default has access to a filesystem consisting of the container
image used to create the container in read-only mode, plus the addition of a read/write container layer.
The default filesystem is transient and the container layer is deleted when the container is deleted.
Additional, usually permanent, storage facilities can be made available to the software within the
container through the configuration of the container by the container daemon, either as mounts to the
filesystem within the container from some location outside the container, or via the provision of one
or more specific storage services (which are typically cloud storage services). If there is a need for the
software in the container to access storage objects that have a long lifetime, such additional storage
facilities are necessary. In all cases, the apparent location of the files and storage objects within the
container are mapped to actual locations outside the container.

Similarly, for access to networking capabilities, the resources available to the code running in the
container are controlled by the container daemon and the configuration applied to the container, i.e. the
networking capabilities are pluggable and configurable. It is possible to make no network capabilities
available to the container (i.e. no exposed ports, no network devices available, so no routes to any target
network endpoints). It is also possible to control access to the container and access from the container
in detail.

Ports exposed by the container can be controlled and can be mapped between the network addresses
and ports exposed by the container and those visible externally. For example, the container can expose
port 80 for HTTP traffic, but this can be mapped to port 8080 for external (e.g. internet) access. In
general, IP addresses, ports, hostnames, MAC addresses, routing services and DNS services can be
controlled and mapped.

﻿

© ISO/IEC 2020 – All rights reserved� 13

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 23
16

7:2
02

0

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

﻿

ISO/IEC TS 23167:2020(E)

One significant form of networking that is used with containers is where the network exclusively
connects a set of related containers, e.g. containers which represent a single application implemented
using microservices architecture with different components of the application running in different
containers. This is a form of virtual networking, where only designated containers can talk to each other
(other than any specific externally exposed endpoints) as if they were the only entities on the network.
The network is able to span across different systems and also across different underlying networks,
permitting great flexibility in the location of each container, i.e. container location transparency is
provided while still having the ability to control and limit communications for security purposes.

On Linux, control over resources is handled through a capability called control groups or cgroups.
cgroups provides control over resources available to sets of processes, including CPU, memory, I/O to
block devices (i.e. filesystems), access to devices, networking.

On Linux, isolation is implemented through namespaces. Effectively, any resources accessed by
one container are part of one namespace, while the resources accessed by other containers are each
allocated to other namespaces. The namespaces operate in such a way that software running in a
process which is started under one namespace can only see resources within that namespace.

The following kinds of namespace exist in Linux (as from Linux kernel 4.10):

—	 Interprocess Communication (ipc): relates to interprocess communication. Only processes within
the same namespace can establish communication (e.g. allocate shared memory).

—	 Mount (mnt): relates to mount points, i.e. places where (additional) filesystems are mounted. An
initial set of mounts is available when the container is created by the container daemon, but after
that, any new mounts are only visible within the container.

—	 Network (net): contains network related resources such as interfaces, IP addresses, routing table,
socket listing, connection tracking table, etc.

—	 Process ID (pid): contains a set of process IDs – the first process in the namespace has id
number 1 – and this process has special treatment equivalent to the init process on the underlying
operating system.

—	 User ID (user): provides user IDs enabling both user identification and also privilege control – the
user namespace maps user IDs within the namespace to user IDs in the underlying system – this
allows close control of privileges and can provide for higher privileges within the namespace which
are not provided for any resources outside that namespace.

—	 UTS: enables different processes to appear to have different host and domain names.

The combination of cgroups and namespaces together provides the resource control and isolation
required for containers.

7.3	 Container images and filesystem layering

7.3.1	 Image purpose and content

A container image is an executable package that contains everything that is necessary to run software
such as an application or a microservice. This can include the code of the application itself, a runtime,
libraries, environment variables, configuration files and other metadata used by the application. The
aim is that the container image is self-describing and encapsulated so that a container daemon can take
the container image and create a container from it, without extra dependencies and regardless of the
underlying system ("infrastructure-agnostic") and regardless of the contents of the container image
("content agnostic").

The container image contains sets of files which represent the code of the application, its dependencies
and other files and metadata used by the application. The container image also contains structured
metadata about the container image contents themselves and how to convert those contents into

﻿

14� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 23
16

7:2
02

0

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

﻿

ISO/IEC TS 23167:2020(E)

a container. The container metadata can vary depending on the particular container image format
concerned. The container metadata described in the OCI Image Format Specification[9] includes:

—	 Image index. "Top level" metadata which has the purpose of supporting container images which
support multiple different platforms (this is sometimes called a fat manifest). Where multiple
platforms are supported, each platform has its own specific image that contains the artefacts to
use when running a container on that platform. Effectively, the image index references one or more
image manifests.

—	 Image manifest. Contains information for a single container image for a specific CPU architecture
and operating system, consisting of a configuration and a set of layers.

—	 Image layout. Specific layout of directories and files within the image with metadata about the
filesystem layers.

—	 Filesystem layers. One or more serialized filesystems (i.e. structure of directories and files) and
filesystem changes (removed or updated files). The layers are applied on top of each other to create
a complete filesystem in the running container. (See 7.3.2 for a description of filesystem layering).

The functionality behind the image index or fat manifests allows for a single container image to provide
support for platform specific images. The platform can include CPU type (machine architecture),
operating system type and potentially operating system level. Thus, a single container image can be
structured to enable the delivery and deployment of the same application to a number of different
target systems.

One of the typical characteristics of the container metadata contained in container images is that it
provides extensive security features aimed at ensuring that the content of the container image has
not been tampered with since its creation. Data lengths are recorded, along with digests of the data
(essentially a collision-resistant cryptographic hash of the bytes of the data). The data concerned can be
the content of the filesystem layers, or elements of the metadata. The digest can also serve as a unique
identifier for the content, which can also be used to support content-addressable access to the data.
Separate secure communication of the digest to the user of the container image permits verification of
the content of the container image even if it is retrieved from an untrusted source.

7.3.2	 Filesystem layering

Container images, and the containers generated from them, make use of the technology of filesystem
layering when dealing with the files they contain.

Filesystem layering is an approach to creating the content of the filesystem used by the container.
The principle is that the filesystem content is built up as a stack of layers, each containing some set of
directories and files, all having a common root directory. Directories and files are contributed from
each layer in turn, starting with the base layer and proceeding upwards through the stack of layers.
Each succeeding layer can contribute new files, but can also replace a file in a lower layer with a different
version, or it can remove ("obliterate") a file present in a lower layer.

Filesystem layering allows for efficient handling of files in container images. Filesystem layering is also
a practical approach to the creation of container images, given that typical applications have software
stacks as dependencies which enable them to run.

Consider the example of a node.js application. The code of the node.js application might be contained in
an app.js script file, plus other script files, data files and configuration files. The node.js application has
a dependency on a node.js runtime plus some series of (external) packages. In turn, the node.js runtime
depends on various operating system libraries.

In a container image for the node.js application, this could be rendered using 3 layers (starting with the
topmost):

—	 the app.js script and associated artefacts constitute the topmost layer;

—	 the node.js runtime and associated packages form the next layer;

﻿

© ISO/IEC 2020 – All rights reserved� 15

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 23
16

7:2
02

0

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

﻿

ISO/IEC TS 23167:2020(E)

—	 the operating system libraries form the bottom layer.

Note that the operating system kernel does not need to be present in the container image. The operating
system kernel is provided by the host operating system on which the containers run.

Layering reflects an efficient process for building (creating) container images. While it is possible to
create a container image with a single layer containing all the necessary files, it can be much more
efficient to separate the software stack used by an application into separate layers, since the application
and each of its dependencies are typically separate independent sets of files, as described for the node.
js application example.

One container image can be built using as the base (or "parent") another container image. Therefore,
using the node.js application example again, the first container image built can be one for the operating
system. Then a second container image can be built for the node.js runtime and its associated packages,
using the operating system image as its parent. Finally, a third container image can be built for the app.
js application using the node.js runtime as its parent. Each parent image provides the lower layers for
the new image built on top. Therefore, in the example, the operating system libraries become the lowest
layer, the node.js runtime the middle layer and the app.js application the topmost layer.

This enables each image to concern itself only with its own needs. For example, if the node.js runtime
does not need all of the files from the operating system libraries, it can delete unneeded files. The main
concern when building a container image thus becomes the question of which base image(s) to use.

Filesystem layering applies to containers as well, with a twist. When the container is instantiated
from a container image, the same filesystem layers are built up as in the container image, but they are
treated as read-only. These layers are called the image layers. The application running in the container
cannot modify the files in the image layers. However, an additional writable layer is added on top of the
layers present in the container image – this is called the container layer (called the sandbox layer in
some container environments). All changes to files made by the application running in the container are
written to the container layer, whether creating new files, modifying existing files or deleting files. This
implies a copy-on-write strategy for files in the container.

A consequence of read-only image layers and the copy-on-write strategy is that the image layers can be
shared between different containers, saving on storage and runtime memory and reducing the start-up
time for containers.

7.3.3	 Container image repositories and registries

The capability to store and to access container images is a key aspect of the container ecosystem.
Individual container images are typically used in multiple different systems, for example to support
scalability and to enable redundancy for improving availability. The recommended process for building
images also places an emphasis on accessing existing images which form the parent image for the one
being built.

Re-use is encouraged in the container ecosystem. The container images for common elements of the
software stack(s) used by applications are used as the parent images for many applications. Typical
examples are those for operating system libraries and those for middleware and runtimes. It is highly
likely that the container images for these software packages will be (re)used over and over again in the
container images for applications that use those software packages in their software stacks.

It is typically better and less work to reuse a container image created by someone with expertise in the
software package concerned than to create a new image for that software package. In addition, such
images are typically kept up to date with revisions to the underlying software.

Providing a capability to store and to access container images is the responsibility of a container
registry. Container registries can be provided as public cloud services or can be provided as a private
cloud service. An example of a public container registry service is Docker Hub[80]. Container registries
have service interfaces which at least provide for push and pull operations. The push operation uploads
one or more images to the registry while the pull operation downloads one or more images from the
registry.

﻿

16� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 23
16

7:2
02

0

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

﻿

ISO/IEC TS 23167:2020(E)

A repository is a collection of related container images. An example of a collection of related container
images is a set of container images for operating system libraries for a specific operating system, where
each image is for a specific version of that operating system.

For example, a container repository could contain a set of four container images with names some​_os​
_libs:​16​.01, some​_os​_libs:​16​.02, some​_os​_libs:​16​.03, some​_os​_libs:​latest. In this (simple) case, the repository
has four entries for different versions of the operating system, each with a tag indicating the version
number. The version tagged "latest" actually points to the same container image as the one tagged
"16.03".

The reason for this arrangement is that when other container images want to always use the latest
version of the operating system container image as a parent, they can use the "latest" tag when
retrieving the image and this is automatically updated when new container images of later versions of
the operating system are uploaded to the container registry. Other uses for the tags applied to image
repositories are to make images designed for specific target environments, although fat manifest
images are an alternative approach to achieve this capability.

7.4	 Container management systems (CMSs)

7.4.1	 General

As described in 7.2.2, it is typical of the container daemon and related tools to provide capabilities
to manage the lifecycle of a single container. However, the deployment of typical cloud computing
applications usually involves the deployment and operation of multiple containers often on multiple host
systems. An application can involve multiple instances of a particular container running in parallel, both
to provide redundancy against the failure of a single instance and also to provide scalability to handle
the workload of incoming requests. An application can also involve multiple different components, with
each component running in its own container instance(s), through the use of microservices architecture
or the separation of capabilities in multiple tiers such as a web application using a database. A CMS
orchestrates and manages defined sets of containers.

The CMS can abstract the underlying infrastructure, treating the set of containers as a single
deployment target, while at the same time enforcing policies for deployment such as the separation of
parallel container instances for redundancy and failover purposes.

Various CMSs are available and in common use, including Docker Swarm[79], Kubernetes[17], Apache
Mesos[57], HashiCorp Nomad[58], and CloudFoundry (a PaaS system)[59].

7.4.2	 Common CMS capabilities

The common capabilities of a CMS include:

a)	 Orchestration

CMSs provide for orchestration of container instances, including initial creation and placement,
scheduling, monitoring, scaling, updating, and the parallel deployment of capabilities such as load
balancers, firewalls, virtual networks and logging capabilities.

In essence, the CMS orchestration tools can abstract the underlying infrastructure, treating the set
of containers as a single deployment target, while at the same time enforcing policies for deployment
such as the separation of parallel container instances for redundancy and failover purposes.

Orchestration is the key component a CMS requires to support scale, since scale requires efficient
automation.

b)	 Scheduling

The scheduler ensures that demands for resources placed upon the infrastructure can be met at
all times. The scheduler selects the node based on its assessment of resource availability, and then
tracks resource utilization to ensure the component does not exceed its allocation. It maintains

﻿

© ISO/IEC 2020 – All rights reserved� 17

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 23
16

7:2
02

0

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

﻿

ISO/IEC TS 23167:2020(E)

and tracks resource requirements, resource availability, and a variety of other user provided
constraints and policy directives.

c)	 Monitoring and health checks

Automation is the essence of cloud computing systems, especially where fault-tolerance and rapid
scalability are concerned. Such automation can only be provided for production systems by means
of the CMS continuously monitoring the application's distributed set of containers and evaluating
their health.

This capability enables faults and failures to be detected and actions taken to ensure that the
desired configuration of the application is maintained, as defined in the declarative configuration.
This can involve removing failed instances and starting new instances.

d)	 Autoscaling

Monitoring can support the dynamic scaling of the resources applied to the application to match
the incoming workload, with the aim of keeping the resources deployed to the minimum necessary
to service the load, since cloud computing is often charged on the basis of the resources used.

e)	 Resource management

In a CMS, a resource is a logical construct that the orchestrator can instantiate and manage, such as
a service or an application deployment.

f)	 (Virtual) networking

A typical application consists of multiple separate components which act together to provide the
functionality of the application. The separate components typically need to communicate with
each other via networking, since the components often run in different locations. The CMS is
responsible for setting up the necessary networking to enable the components to communicate.
The networking is often virtual networking, removing the need for the components to understand
the underlying network infrastructure and also improving security by restricting communications
to those components belonging to the application.

g)	 Service discovery

Discovery is a key element associated with container deployments – applications consist of
multiple containers and associated components running across potentially widely distributed
infrastructure. As a result, individual components need to discover the other components which
they depend on.

For example, a load balancer needs to identify all the component instances that it is using to
distribute the incoming requests. It is typical of CMSs to provide capabilities that assist with
discovery.

h)	 Updates and upgrades

CMSs typically manage the process of updates and upgrades to components of the application. Such
changes can be the result of new functionality or fixes for the application code itself, or it may be
the result of updates to the software stack used by the application code, such as runtimes. The
CMS typically manages the upgrade to provide zero downtime, through a phased introduction of
instances using the updated code and removal of instances using the older code.

i)	 Declarative configuration

It is common for CMSs to provide a means for the DevOps team to configure the orchestration for
an application declaratively, using a defined schema written in a language such as YAML[81] and
JSON[82]. Declarative configuration usually also contains essential information about container
repositories, networking configuration, storage facilities and security capabilities that support
the application. The declarative configuration is essential in enabling the CMSs to automate the
process of managing the application and its components. In essence, the declarative configuration

﻿

18� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 23
16

7:2
02

0

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

﻿

ISO/IEC TS 23167:2020(E)

indicates to the CMS the desired configuration and the CMS aims to both create and then maintain
that configuration, deciding on the actions required to achieve this using knowledge of the target
systems and internal deployment strategies.

8	 Serverless computing

8.1	 General

Serverless computing is a cloud service category in which the CSC can use different cloud capabilities
types without the CSC having to provision, deploy and manage either hardware or software resources,
other than providing CSC application code or providing CSC data. Serverless computing provides
automatic scaling with dynamic elastic allocation of resources by the CSP, automatic distribution
across multiple locations, and automatic maintenance and backup. Serverless computing capabilities
are triggered by one or more CSC defined events and execute for a limited time period as required to
deal with each event. Serverless capabilities can be invoked by direct invocation from web and mobile
applications.

The underlying concept behind serverless computing started with functions as a service, where the idea
is for the CSP to allocate appropriate runtime resources required for CSC application code dynamically
on demand, without the CSC needing to preallocate and manage specific machines, VMs or containers
and any associated stack of software. Other kinds of cloud service are also available which follow the
serverless computing model, notably serverless databases.

Another way of describing serverless computing is that it is a form of platform cloud service category (or
PaaS), since only the application code and/or data itself is supplied by the CSC, while all other resources
and capabilities required to run the application are supplied and managed by the CSP.

It is typically the case that cloud services of serverless computing category scale automatically to deal
with incoming requests. Cloud services of serverless computing category often have fault-tolerant
capabilities, such as the ability to place the CSC application code in multiple locations with automatic
fail-over when a fault occurs.

Serverless computing still needs servers in order to run, so in that sense, the name is a misnomer. What
is not required is allocation and management of server resources by the CSC.

Serverless computing often has a charging model that charges for work executed by the cloud service
in a granular fashion, rather than a charge for allocated resources (e.g. a VM or a container). Therefore,
charging can be per API call, or per HTTP request, for example. This can be viewed as a more extreme
form of "pay as you go" charging.

The benefits of serverless computing to the CSC can include:

—	 reduced operational costs, particularly lower costs associated with scaling to meet varying
workload, since charging is directly related to the work executed by the cloud service, rather than
costs being related to allocated resources. Also, required software stacks do not need handling as is
typically the case when using VMs and containers.

—	 reduced development costs and reduced development time, since there is no need for developers to
concern themselves with any aspect of resource management including deployment and scaling, e.g.
application code can simply be uploaded and executed.

—	 lower packaging and deployment complexity. In particular, there is no need to consider anything
except the CSC application code or CSC data. Any related software stacks are supplied by the CSP as
part of the cloud service and are not packaged or deployed by the CSC.

﻿

© ISO/IEC 2020 – All rights reserved� 19

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 23
16

7:2
02

0

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

﻿

ISO/IEC TS 23167:2020(E)

8.2	 Functions as a service

8.2.1	 Overview

A common form of serverless computing is functions as a service (FaaS). FaaS is a form of serverless
computing in which the capability used by the CSC is the execution of CSC application code, in the form
of one or more functions that are each triggered by a CSC specified event. FaaS is also a form of Compute
as a Service (CompaaS) as defined in ISO/IEC 17788.

FaaS can execute customer application code written in one or more programming languages. Each
FaaS cloud service supports applications written in one or more programming languages including,
but not limited to, C#, Go, JavaTM, JavaScript (node.js[78]), PHP, Python, Ruby, Swift. FaaS embodies the
capability of platform as a service in providing the runtime software stack required by the application
code, meaning that the CSC is not required to deploy and maintain the runtime software stack. It is
typically the case that FaaS does not require the CSC application code to be written to use any specific
application framework. In addition, FaaS takes on the responsibility of running the application and the
runtime software stack on demand to service any events that trigger the application.

Effectively, FaaS aims to make infrastructure invisible to the developer of applications and services.
When using FaaS, the underlying servers, virtual machines and/or containers are invisible to the user
of the service. The developer not only does not access them, they cannot access them, since they are
automatically managed by the CSP as part of the cloud service.

A significant aspect of FaaS is that resources are only consumed while a particular function is executing.
It is typical that when an application uses a VM or a container in a compute cloud service, that each VM or
container instance that is running consumes resources continuously, whether it is executing incoming
requests or not. For FaaS, when there are no events being processed, no resources are consumed. As a
result, this can mean less cost to the CSC, especially for less frequently used functions. The FaaS fires
up the necessary resources (such as an underlying container) when an event trigger occurs for a given
function.

The automated management provided by FaaS is key – scalability is automatically provided. If the
rate of events for a given FaaS increases, then the resources allocated to that cloud service increase
automatically to deal with those events, and are deallocated once the rate of events falls.

A number of serverless runtime cloud services are available, including Apache OpenWhisk[6],
AWS Lamba[5], Azure Functions[60], Google App Engine[3], Google Cloud Functions[61], IBM Cloud
Functions[62], Oracle Fn[63].

8.2.2	 Functions within FaaS

Using FaaS means writing one or more functions, where each function is a piece of code dedicated to one
specific task. It is this aspect of programming a serverless runtime that gives rise to the name for these
cloud services: Functions as a service (FaaS). In effect, this is a major change in the way that applications
and services are developed, embodying some of the principles of microservices architecture (see
Clause 9). There are some principles that apply to functions and the way in which they execute.

Functions are stateless, which means that each function does not keep any state between successive
invocations of the function. Effectively this means that functions don't store any data themselves.
If a function needs to store and access data that has a lifetime longer than a single invocation of the
function, then the function integrates with one or more cloud storage services (see Clause 12).

Each function is executed when triggered by some event, where an event notification results from some
change of state, i.e. FaaS have an associated event-driven architecture and this involves asynchronous
behaviour relating to the sending and receiving of events. This approach can enable much greater
scalability and resilience for applications, especially when the applications are implemented on
distributed systems.

﻿

20� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 23
16

7:2
02

0

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

﻿

ISO/IEC TS 23167:2020(E)

Functions are time bounded in that they cannot execute for more than some specified time, as
determined by the CSP. The time limit varies from one FaaS offering to another but it is often a small
number of minutes. Thus, any long-lived tasks are not suitable for implementation as a function.

Related to the time bounding of functions is the question of function startup latency, i.e. the amount of
time it takes for the FaaS to make available a running instance of a function when an event occurs. This
can either involve a cold start, where a new instance has to be started from scratch, or a warm start
where the FaaS is able to reuse an instance used to handle a previous event. A cold start involves much
greater latency than a warm start. Cold starts are much more likely to occur for functions that are used
infrequently since the FaaS typically deallocates an instance that has not been used for more than a
given (usually short) amount of time.

Each function is made available via an API and can be called either by a client entirely outside the cloud
system (e.g. an end-user application running on a client device) or by a client that is another part of the
overall application. Each function can be considered as a microservice and in turn each function can
depend on using other microservices to achieve its capabilities.

How events are described in data structures becomes a significant concern for functions within
serverless runtimes. As a result, specifications have emerged to help describe events in a clear and
consistent way, such as the CloudEvents specification of the Cloud Native Computing Foundation[49].

Since it is possible to deploy a single function at a time, there is considerable flexibility in the serverless
approach. Applications can be built one function at a time, each deployed and scaled independently.
This also implies an increase in the speed of development and deployment (there is no need to wait
for the build of an application or of a service that contains multiple capabilities) each capability can be
created, tested and deployed on its own.

8.2.3	 Serverless frameworks

A serverless framework is a tool to assist in the creation and deployment of functions for FaaS cloud
services, in particular supporting deployment of functions to different FaaS offerings of different CSPs.

It is commonly the case that FaaS services are proprietary to a CSP, although there are some open
source FaaS implementations.

To deal with the problem of developing functions for deployment on any one of a variety of CSP FaaS
offerings, serverless frameworks have been developed which enable the development of functions
that can be targeted to different FaaS offerings on demand, taking care of the differences between the
offerings, particularly in respect of upload and deployment processes.

Examples of open source serverless runtimes are Apache OpenWhisk[6] and Oracle Fn[63]. An example
of a serverless framework is the open source Serverless Framework[50].

8.2.4	 FaaS relationship to microservices and containers

Using FaaS essentially involves utilising a cloud microservices architecture for applications. FaaS implies
using a "cloud first" approach to applications, very different in style from "monolithic" applications
which embody all functions in a single package.

Thus, using FaaS and functions is one way to implement a microservices-based application architecture,
but one that does not require the use of containers and the associated CMSs like Kubernetes.

However, it is possible to mix the use of FaaS with microservices implemented using containers (or
using VMs), with functions invoking container-based microservices and container-based microservices
invoking FaaS functions as desired.

﻿

© ISO/IEC 2020 – All rights reserved� 21

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 23
16

7:2
02

0

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

﻿

ISO/IEC TS 23167:2020(E)

8.3	 Serverless databases

Serverless database is a form of serverless computing in which the capability used by the CSC is a
database, where the database is provisioned, managed and operated by the CSP and its functions are
made available via an API.

With respect to serverless computing, the allocation of storage resources is managed by the CSP. The
amount of storage is automatically and dynamically scaled to match the amount of CSC data that is
placed into the database. Replication and backup is managed by the CSP, and this includes placing the
data in locations suitable for the use that is being made of the data and also keeping the multiple replicas
in step with each other. Equally, the processing resources needed to service queries and updates to the
database are also managed and scaled by the CSP.

Examples of serverless databases include Amazon Aurora Serverless[64], FaunaDB[65], Google Cloud
Firestore[66], IBM Cloudant[67], Microsoft Azure Data Lake[68], Oracle Autonomous Database[83], Oracle
NoSQL Database[84].

9	 Microservices architecture

9.1	 General

Microservices architecture is a design approach for building a cloud native application. A cloud native
application is an application which is explicitly designed to run within and to take advantage of the
capabilities and environment of cloud services. Microservices architecture is an architectural style that
involves breaking up an application into independently deployable microservices that can be rapidly
deployed to any infrastructure resource as required[10][11]. In the microservices architecture, the
application is divided into a series of separate processes called microservices, deployed independently
and connected to each other via service interfaces. The concept is that the microservices within the
application are designed to implement some specific area of function, perhaps a particular business
process or a specific technical capability. The architecture makes it possible to operate and to update
each microservice independently. Microservices architecture is thus the umbrella technique in which
microservices are the major components.

NOTE	 The terms service and service interface are used here with the definitions given by ISO/IEC 18384-1
[69], which also provides a good explanation of service-oriented architecture of which microservices architecture
is a particular example. A service or a microservice should be distinguished from a cloud service. It can be the
case that a microservice is implemented as a cloud service, but this is at the choice of the application developer
and there is no requirement to do so.

A simple example of a microservices-based application is given in Figure 4. In this example, the
application has a core plus two microservices, one handling the business capability of handling user
accounts with the second handling displaying and controlling video sequences. The example goes
further and shows that microservices applications can also make use of other services, typically cloud
services providing capabilities needed by the application. Therefore, in this example, the user account
microservice uses a database service to store and retrieve account information; the video display
microservice uses a video storage service which stores the video sequences; the core application uses
an email service, a twitter feed service and an analytics service.

﻿

22� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 23
16

7:2
02

0

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

﻿

ISO/IEC TS 23167:2020(E)

Figure 4 — Example of application structured using microservices architecture

It is important to understand that microservices architecture is a technique and that microservices
are the primary part of microservices architecture. This is separate from the technologies that might
be used to implement microservices. Microservices might be implemented using containers, or VMs,
or using serverless computing and connected using some virtualised networking, but this is separate
from the technique used to build the applications.

Functional decomposition often in a domain-driven design context is the key to building a successful
microservice architecture. One viewpoint regarding this architecture is that it is a refinement and
simplification of service-oriented architecture (SOA). Some of the characteristics of microservices
architecture are as follows[12]:

—	 Each architectural component called a “service” has a well-defined and explicitly published interface.

—	 Each service is fully autonomous.

—	 Changing a service implementation has no impact on other services as communication between
services takes place using interfaces only (usually a REST interface).

—	 The loose coupling and high cohesion between services enables composing multiple services to
define higher level services or applications.

Microservices based applications are contrasted with "monolithic applications", where all the
components of the application are built and bundled together in a single process, which is more typical
of older, non-cloud, enterprise applications.

9.2	 Advantages and challenges of microservices

The benefits[13][14] of a microservice architecture are:

—	 Simpler codebases for individual services.

—	 Ability to update and scale each service in isolation.

﻿

© ISO/IEC 2020 – All rights reserved� 23

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 23
16

7:2
02

0

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

﻿

ISO/IEC TS 23167:2020(E)

—	 Enable services to be written in different languages to meet the performance needs and ease of
development. This is termed "polyglot programming".

—	 Use of varied middleware stacks and even varied data tiers for different services (flexibility).

One of the advantages of using a microservices architecture is that each component of the application
built as a microservice can be scaled separately to match the load on that component alone. This differs
from a monolithic application approach. In a monolithic application architecture, all components are
deployed and operated as a single entity, with scaling only possible by scaling up/down the whole
application. This can lead to resource inefficiency for those components of the application that are not
under heavy load.

PaaS systems make it straightforward to deploy each microservice independently and link them
together to create the full application. Each microservice can be managed independently: scaled,
distributed, updated.

Another advantage of using a microservices architecture is that each component of the application
built as a microservice can have a separate development lifecycle. This allows for smaller application
components that can be modified, extended, tested and deployed more rapidly.

The increased benefits come with challenges that need to be addressed[15] to realize those benefits. A
brief discussion of these challenges is given below:

—	 Communication optimization: Running an application in different processes results in increased
communication overhead due to API calls between services as compared to function calls within a
process. The overall strategy involves identifying the right protocol, response time expectations,
timeouts and API design, with artifacts such as API Gateway (9.7), Circuit Breakers (9.6), Load
balancers (14.2) and Proxies (14.2).

—	 Service discovery: This refers to the capability for services to discover each other in a consistent
manner. It is necessary to have a standard and consistent process for services to register and
announce themselves. The consuming services should be able to discover the end points and
locations of other services. A specification of how API gateways are configured to report service
availability and enable discovery is necessary.

—	 Performance: Trying to fulfil one single business functional requirement can result in orchestrating
multiple service calls together. This can introduce additional lag in response time. Further, data that
is frequently used by a single microservice can be owned by another microservice. This requires
data sharing and synchronization capabilities to avoid communications overhead caused by data
copying during service invocations.

—	 Fault tolerance: This is the ability of the system to recover from a partial failure. Microservice
developers need to provide mechanisms to gracefully recover or stop any failure from propagating
to other parts of the system. Further, some services are run in multiple copies for scalability and
availability reasons. The number of copies, the version consistency among the copies, load balancing
mechanism and the network locations are key decision factors for ensuring fault tolerance.

—	 Security: A critical decision is deciding on the trust relationship between the microservices based
on the various ways services communicate with each other. When invoking another service, a
service can use either a synchronous or asynchronous protocol. All these factors are to be taken into
consideration when assigning chains of authorization within access tokens. The communication
patterns among services should have specific and efficient authentication and authorization
mechanisms based on risk-based security policies. Increased communication between components
(as described under Communication Optimization above) calls for secure communication protocols
that meet the requirements for the application.

—	 Tracing and logging: The process of decomposing monolithic applications into various microservices
creates a need for additional techniques and solutions in relation to debugging and profiling systems.
One feature that is needed is called distributed tracing which calls for the capability to track a chain
of service calls to identify a single business transaction or a single user request. A central logging

﻿

24� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 23
16

7:2
02

0

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

﻿

ISO/IEC TS 23167:2020(E)

system is typically required to obtain a wholistic view of system behaviour and this calls for an
aggregation capability to integrate log information from individual microservices.

—	 Deployment: The proliferation of service processes requires automated mechanisms for deployment.
Scalability and system integrity are primary concerns in the deployment of microservices.
Containers are the predominant mechanism used for deploying microservices and the use of CMSs
(see 7.4) (which assign resources and implement the connection topology) addresses deployment
concerns. However, some of the assumptions and requirements in deployment models may not fit
well with the functional requirements of certain microservices based applications. An example is
the assumption of statelessness of a container hosting a microservice, where the overall system/
application requirement calls for a stateful microservice.

—	 Functional decomposition: While decomposing a monolithic application, there are issues to decide
such as:

a)	 the proper boundaries of different services, and

b)	 when a service is too big and hence needs to be broken up.

9.3	 Specification of microservices

The design of a microservices architecture calls for use of description diagrams and platform-neutral
description languages because of the heterogeneity involved in design of the component microservices.
While UML is predominantly used for description diagrams, the following languages are generally used:

—	 Standard Modeling Languages, such as RAML and YAML.

—	 Standard Specification Languages, such as Javascript (Node.js), JSON and Ruby.

—	 Pseudocode for algorithms.

—	 Implementation-neutral interface specification language, such as the Open API specification[70].

9.4	 Multi-layered architecture

Domain driven design[54] and an associated multi-layered architecture[52] is a common pattern used
in software engineering. By dividing applications functionally into distinct layers, multi-layered
architecture provides the following advantages:

—	 Efficient collaboration

Each layer is developed by each layer's specialist: Web browser-based GUI is developed by Web
designers and domain logic by JavaTM programmers, for example. Specialists can concentrate on
their own concerns with little interference.

—	 Easy maintenance

Each layer's program code is logically independent of other layers' program code. As long as
programmers don't break interfaces to other layers, it is flexible to change program code.

—	 Reusability

One application is divided into smaller components in multi-layered architecture. Fine-grained
software components can be reused more easily than coarse-grained ones.

The use of multi-layered architecture is effective in microservices based applications. It has been
applied to applications developed using microservices and some practices relating to the use of multi-
layered architecture are available in the published literature (e.g. See Toby Clemson[27]). Although there
is no multi-layered architecture standardised for microservices, the layered architecture proposed in

﻿

© ISO/IEC 2020 – All rights reserved� 25

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 23
16

7:2
02

0

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

﻿

ISO/IEC TS 23167:2020(E)

Domain-Driven Design[52] has been referenced and the essence can be provided by means of four layers
of components as shown in Figure 5:

—	 User interface

The software component defines accepts requests from users and provides responses.

—	 Application

The software component defines an application's boundary. It is the endpoint for interaction with
clients and responsible for mediating requests and responses, invoking domain logic, and managing
transaction contexts.

—	 Domain

The software component implements business logic.

—	 Infrastructure

The software component encapsulates physical resources including data and provides the domain
layer with an abstract interface for data access.

﻿

26� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 23
16

7:2
02

0

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

﻿

ISO/IEC TS 23167:2020(E)

Figure 5 — Multi-layer architecture used with microservices

Each component shown in Figure 5 is a separate microservice, running in its own process and invoking
other microservices as necessary.

Monolithic web applications have previously been developed based on a multi-layered architecture
known as the model-view-controller pattern as shown in Figure 6. However, there are some differences
in the implementation of the multi-layered architecture between an application designed using
microservices and an application with a monolithic design, associated with software component
packaging and application runtimes.

﻿

© ISO/IEC 2020 – All rights reserved� 27

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 23
16

7:2
02

0

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

﻿

ISO/IEC TS 23167:2020(E)

Figure 6 — Monolithic web application pattern

In monolithic application design, although an application is designed and implemented based on a multi-
layered architecture, all software components are assembled in one software package and deployed in
one application runtime. Even if a web designer adds a trivial update to the GUI, the whole software
package has to be built, tested and the server runtime has to be stopped to deploy the new software
package. This can be a lengthy process, even for a small change to the application.

On the other hand, in a microservices application design, each software component in each layer is
packaged as a distinct microservice and independently deployed to a distinct process. Each process can
be implemented using a virtual machine or using a container or as serverless functions, each of which
can be started and stopped separately. If each microservice is designed well in a loosely-coupled fashion,
a developer can update one component without having to build, test or redeploy other microservices.
Microservices architecture enables easy and flexible change of the application.

9.5	 Service mesh

In microservices architecture, the number of microservices associated with an application can
become large. It is common in this case for each service to run with multiple instances with a cluster
configuration, each instance with a distinct process implemented as a virtual machine or a container.
The number of processes could become many times the number of services. This makes the overall
topology a complex network called a service mesh as shown in Figure 7.

﻿

28� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 23
16

7:2
02

0

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

﻿

ISO/IEC TS 23167:2020(E)

Figure 7 — Service mesh for a microservices based application

In order to run a microservices-based application and reap its benefits, it is necessary to deal with the
challenges presented by the service mesh:

a)	 Traffic management

—	 Fine-grained load balancing for a specific version of microservice.

—	 Blue/Green deployment, in order to update a microservice without stopping the application.

—	 Canary release.

—	 Circuit breaker. (See 9.7)

b)	 Service discovery

—	 Service registration.

—	 Service lookup.

c)	 Test

—	 Fault injection.

d)	 Security

—	 Authentication.

—	 Authorization.

—	 Encryption.

e)	 Telemetry

—	 Log and Trace integration.

—	 Metrics integration.

—	 Dashboard.

﻿

© ISO/IEC 2020 – All rights reserved� 29

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 23
16

7:2
02

0

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

﻿

ISO/IEC TS 23167:2020(E)

There are alternative approaches to manage the service mesh: a) API and b) service mesh fabric. For the
API approach, application developers make use of a specific API in their programs in order to manage
the service mesh. However, to do this developers have to take the effort to implement non-functional
requirements as well as functional requirements and as a result, the application code involves non-
functional implementation details, which is against the "separation of concerns" principle of software
engineering and makes the code more complex and harder to modify. MicroProfile is an example of a
service mesh API[28].

Service mesh fabric is an application infrastructure solution, located under the application layer and
over the orchestration layer, and mediates all traffic between microservices. It manages the service
mesh by manipulating traffic coming and going through itself. Then, the application program is freed
from the implementation of capabilities required to manage the service mesh. Istio[29] and Linkerd[30]
are examples of service mesh fabric implementations.

9.6	 Circuit breaker

The circuit breaker is a design pattern, and also a software component based on that pattern[55].

Circuit breaker applies where one software component invokes another software component (such
as a microservice) through an API call. The software components involved are running in different
processes and the API call typically takes place over the network. Such remote API calls can fail or hang
without a response. Where the target component is a commonly used service, this can lead to a cascade
of failures across the application or system.

The idea of the circuit breaker is that any such remote API call is wrapped by a circuit breaker
component which is effectively a part of the client software component. When the client invokes the
API call, it is handled by the circuit breaker component which monitors for failures. When a failure
state is recognised, calls made to the API are given a rapid error response by the circuit breaker. The
circuit breaker can also generate alerts for monitoring purposes under these circumstances. The
circuit breaker can continue to monitor the API and the target component for availability and reset
itself automatically once the problem clears.

The recognition of the failure state can vary from one circuit breaker to another, and the circuit breaker
can have settable parameters to control its behaviour (e.g. an error threshold, a timeout threshold).

The circuit breaker does not remove the need for the client component to deal with the failure of the
API call, but it does make it easier to develop appropriate handling mechanisms.

9.7	 API gateway

An API gateway is a software component that can be used to provide a single integrated API to a set of
microservices that are being used together by a particular client component. (See Microsoft, 2019[56])

Each microservice presents its own API, based on its capabilities. A particular client can be using a
whole series of microservices to achieve its goals. It can get complex for the client software to deal
with all the different API calls which need to be made to the different microservices involved. An API
gateway can present a simpler coherent API to the client software and invoke the microservice APIs as
needed in order to implement the simpler API. The API gateway is thus a client-focussed component and
multiple different API gateways can be required to satisfy the requirements of different clients.

10	 Automation

10.1	 General

Automation is a key feature of both the provision and the use of cloud services. Automation is
applied to the complete lifecycle, through design, development, test, deployment, production and
decommissioning. Automation is essential to achieve productivity and also to reduce the skills and
effort required to provide and use cloud services.

﻿

30� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 23
16

7:2
02

0

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

﻿

ISO/IEC TS 23167:2020(E)

One of the goals of automation is to reduce the effort and the burden to deploy applications and data
into cloud services, recognising that this is done on a relatively frequent basis, either to fix problems
or to provide enhancements to functionality. Automation is necessarily connected to the adoption of
a series of software engineering techniques, which while not specific to cloud computing have become
vital elements in the successful adoption of cloud computing.

10.2	 Automation of the development lifecycle

One of the significant elements of automation is the adoption of either continuous deployment or
continuous delivery. Continuous deployment is a software engineering approach in which teams produce
software in short cycles such that the software can be released to production at any time and where
deployment to production is itself automated. Continuous delivery is similar to continuous deployment,
except that the deployment stage is initiated manually (i.e. the decision to deploy is made by a human
rather than some automated system – the deployment process itself is usually automated). Generally,
the use of continuous deployment or continuous delivery is also associated with the adoption of DevOps
by the organization. DevOps involves a methodology which combines together software development
and IT operations in order to shorten the development lifecycle, enabling frequent delivery of fixes and
enhanced functionality closely aligned with business objectives.

Continuous deployment and continuous delivery place an emphasis on developing software in small
increments, with a strong emphasis on automated testing during and after build and deployment
steps. Small increments are closely allied to the development of applications using microservices (each
microservice providing some part of the overall functionality) and the use of separate (cloud) services
for more common functionality (e.g. database capability, messaging capability).

Continuous integration is an inherent part of continuous deployment and continuous delivery, where
developer updates to the codebase are made frequently and the codebase is built and tested regularly
(often many times a day). Continuous integration is built on a base of test-driven development, with the
aim of automatically running unit tests and integration tests to check that updates to the codebase have
not broken the code in any way and to give rapid feedback to the developers in the cases where there
are problems.

Automated management is a key element of operations for cloud services. Tasks such as recovery
of failed software instances, scaling up and down of resources, especially of parallel instances of
application components, data replication and data back-up. All of these need to be automated when
using cloud services or else it is possible for these tasks to overwhelm operations staff.

An important extension of the DevOps approach is termed DevSecOps. For DevSecOps, security
capabilities are considered as an essential and integral part of the development and operations
processes. The idea is to automate security tasks in parallel with the automation of development and
operations tasks that is central to DevOps. The increase in the pace of development and operations
tasks brought about by DevOps methodology is matched in DevSecOps by an increase in the pace of
security related tasks, throughout the lifecycle of an application.

10.3	 Tooling for automation

Tools are an essential part of all stages of the development process.

Typically, tooling starts with a source control management (SCM) system, which holds the source
code and provides for controlled processes for performing updates on the code, including tracking all
changes. The SCM system forms the base on which the tools for build, test, delivery and deployment
operate. There are various SCM systems in use, however, the open source Git SCM[32] is very widely
used, with a lot of associated tools, including host server capabilities.

An automation server is a tool used to automate the steps of continuous integration, continuous delivery
and continuous deployment. It is particularly useful for performing builds of the code from the SCM and
performing testing (unit tests, integration tests) on the built code. There are a number of automation
server tools available and in use, although the open source Jenkins tool[32] is commonly used.

﻿

© ISO/IEC 2020 – All rights reserved� 31

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 23
16

7:2
02

0

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

﻿

ISO/IEC TS 23167:2020(E)

Security automation in support of DevSecOps can include tools that check code for vulnerabilities at
the point where the code is checked in to the SCM, and check for vulnerabilities via testing during the
build and during the continuous integration phase. This should also tie to the secure use of codebases
which satisfy dependencies of the application, e.g. middleware libraries, container images and backing
services. Such dependencies should be tied to security policies that determine which dependencies are
suitable for use, backed by appropriate testing and a management system that responds to notification
of vulnerabilities and the need to change to a later fixed version.

Configuration management software is used to automate software provisioning, configuration
management and application deployment. The architecture used for cloud native applications increases
the need for configuration management software, since there are typically multiple components
installed in a variety of cloud services and associated locations, all of which have to be orchestrated to
enable the correct operation of the application. A range of configuration management software tools
are in use. Some of the commonly used open source tools include Ansible[34], CFEngine[35], Chef[36] and
Puppet[37].

The configuration management software tools vary in their architecture. Ansible uses an agentless
architecture, whereas the other tools are agent based (i.e. they require a software daemon installed on
the target nodes or on an associated server).

A key element of the deployment of applications in a cloud environment is orchestration, since it is
common for applications to consist of a significant number of separate components that must be
deployed, configured and operated together. Automation of orchestration is the province of tools, such
as the CMSs as described in 7.4.

A key element supporting automation is the provision of the capabilities of cloud services through APIs
(application programming interfaces). APIs enable the various tools to configure, deploy, control and
monitor each cloud service. This extends to the use of other tools via APIs, which includes tools such as
Kubernetes for the deployment of containers.

Applications that are deployed and running in production within cloud services should be monitored
and should be managed for performance and availability. Monitoring and management is typically done
via APIs offered by the CSP. Tools to manage the restart of failed instances, tools to scale up and scale
down the number of instances of a particular software component in response to workload changes all
depend on such monitoring and management capabilities. It is the case that some of these capabilities
are themselves supplied as cloud services ("auto scaling", for example), but in other cases they are
supplied as separate tools that must be installed and configured.

11	 Architecture of PaaS systems

11.1	 General

Platform as a Service (PaaS) is a category of cloud services that involves the provision of platform
capabilities, which is defined in ISO/IEC 17788 as capabilities in which the cloud service customer
can deploy, manage and run customer-created or customer-acquired applications using one or more
programming languages and one or more execution environments supported by the cloud service provider.
A PaaS system generally involves a coherent set of PaaS cloud services intended to work together.

PaaS systems are primarily concerned with developing, deploying and operating customer applications.
Other capabilities are often involved, such as the use of application, processing, storage and network
resources, but they are not the main focus. PaaS systems typically involve diverse application software
infrastructure (middleware) capabilities including application platforms, integration platforms,
business analytics platforms, event-streaming services and mobile back-end services, plus sets of
tooling that support the development process (See Gartner, 2014 and Gartner, 2018). In addition, a PaaS
offering often includes a set of operational capabilities such as monitoring, management, deployment
and related capabilities.

PaaS systems are targeted at application developers and also at operations staff, also supporting the
combined concept of DevOps.

﻿

32� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 23
16

7:2
02

0

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

﻿

ISO/IEC TS 23167:2020(E)

One way of describing PaaS systems is that they represent a cloud service rendering of the application
infrastructure offered by entities such as application servers, database management systems,
integration brokers, business process management systems, rules engines and complex event
processing systems. Such application infrastructure assists the application developer in writing
business applications, reducing the amount of code that needs to be written at the same time as
expanding the functional capabilities of the applications. The essence of a PaaS system is that the cloud
service provider takes responsibility for the installation, configuration and operation of the application
execution environment (including any underlying VMs, operating systems, containers, runtimes,
libraries), leaving only the application code itself for the cloud service customers and their developers
to provide. Thus, the essential difference between an IaaS and a PaaS is that for IaaS, the customer has
to construct a VM image or container image to execute their application code, while a PaaS provides
everything needed to upload and execute application code directly.

PaaS offerings also often expand on the platform capabilities of middleware by offering application
developers a diverse and growing set of services and APIs that provide specific functionality in
a managed, continuously available fashion. This approach aims to obscure the fact that there is
middleware present at all, enabling immediate productivity for developers. Some PaaS systems also
blend in features of IaaS and SaaS cloud services, offering some control of basic resource allocation on
the one hand and providing complete off-the-shelf software capabilities on the other.

In addition, PaaS systems typically provide their capabilities in a way that enables the applications
developed on them to take advantage of the native characteristics of cloud services, often without the
application developer having to add special code to the application itself. This provides an approach to
building cloud native applications without requiring specialized skills.

11.2	 Characteristics of PaaS systems

PaaS systems typically express a set of major characteristics:

1.	 Support for custom applications:

Support for the development, deployment and operation of custom applications. PaaS systems
typically support cloud native applications that are able to take full advantage of the scalable,
elastic and distributed capabilities of cloud infrastructure. This is often achieved without the
application developer writing special code to take advantage of these capabilities.

2.	 Provision of runtime environments:

PaaS systems generally offer runtime environments for applications, where each runtime
environment supports either one or a small set of programming languages and frameworks, e.g.
Node.js, Ruby and PHP runtimes. A characteristic of many PaaS offerings is support for a range of
runtime environments. This enables developers to choose the most appropriate technology for the
task in hand, sometimes termed a polyglot environment.

Runtime environments can include the use of containers (see Clause 7) and serverless computing
(see Clause 8).

3.	 Rapid deployment mechanisms:

Many PaaS offerings provide developers and operators with an automated “push and run”
mechanism for deploying and running applications, providing dynamic allocation of resources when
the application code is passed to the PaaS cloud service via an API. Configuration requirements
are kept to a minimum by default, although there is the capability to control the configuration if
required, e.g. controlling the number of parallel running instances of an application in order to
handle the anticipated workload or to meet resiliency goals.

4.	 Support for a range of middleware capabilities:

Applications have a variety of requirements and this is reflected in the provision of a broad
range of application infrastructure (“middleware”) that supports a range of capabilities. One

﻿

© ISO/IEC 2020 – All rights reserved� 33

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 23
16

7:2
02

0

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

﻿

ISO/IEC TS 23167:2020(E)

example is database management, with both SQL and NoSQL database technologies provided.
Other capabilities include integration services, business process management, business analytics
services, rules engines, event processing services and mobile back-end services.

5.	 Provision of services:

PaaS systems often supply some capabilities as a series of separate services, typically invoked
via an API of some kind. Services are installed and run by the provider of the service, removing
responsibility and effort from the cloud service customer. For example, in the case of a database
service, the responsibility for ensuring availability and reliability, for having replicas and backups
of the database data, for securing the data and so on all falls on the service provider. Provider
services are an essential concept in reducing the effort and complexity in building software
systems, rather than having to install and manage some potentially complex set of software, the
capability is obtained off-the-shelf from the provider.

6.	 Preconfigured capabilities:

Many PaaS systems are characterized by capabilities that are preconfigured by the provider, with
a minimum of configuration available to developers and customer operations staff. This reduces
complexity, increases productivity and lowers the potential for unexpected problems, with
capabilities simpler to manage and easier to debug. Some offerings can auto-tune such configuration
based on usage patterns and loads; this further reduces the expertise and time required to run the
applications in the most efficient manner.

7.	 API management capabilities:

Business applications often need to expose some capabilities via APIs. This can be required by
the nature of the user interface to the application. Mobile apps usually need an API so that while
operating independently of the business application, they can access data and transactions when
required. In other cases, part of the enterprise solution is to enable other parties (partners,
customers, suppliers) to integrate their own applications with those of the enterprise. Such
integration is done via an API. Providing an API requires a level of control, so that only authorized
users can access the API and each user can only access those capabilities for which they have
permission. This requires some API management capabilities and API management capabilities are
offered by many PaaS systems.

8.	 Security capabilities:

Security is one of the most important aspects of any solution. PaaS systems usually provide built-
in security capabilities, thus reducing the load on developers and operators. Capabilities include
firewall, endpoint management, secure protocol handling, access and authorization, encryption of
data in motion and at rest, integrity checking, plus resilience mechanisms such as redundant copies
of data and automated backups. PaaS systems can offer these capabilities with minimal or no impact
on application code, simplifying the developer's tasks. Also, because the underlying execution
environment is part of the platform, the CSP assumes responsibility for operating system security
patches, malware detection and removal, and other essential security maintenance tasks, thus
freeing the customer to focus on avoiding security vulnerabilities introduced in their own code.

9.	 Developer tools:

Many PaaS systems aim to unify and streamline development and operations, i.e. support DevOps
by breaking down the divisions between development and operations. Development tools provided
include code editors, code repositories, build tools, deployment tools, test tools and services
and security tools. It is common to find application monitoring and analytics services, including
capabilities such as logging, log analysis and app usage analytics and dashboards.

10.	 Operations capabilities:

PaaS systems assist operators through operations capabilities both for deployed applications
and for the PaaS system itself, via dashboards and also via APIs that enable customers to plug in
their own operations toolsets. For example, capabilities to increase or decrease the number of

﻿

34� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 23
16

7:2
02

0

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

﻿

ISO/IEC TS 23167:2020(E)

running instances of an application are common (to deal with varying application load), in some
cases handled by automated services that vary the number of instances based on a set of rules
established by the CSC operations staff.

11.	 Support for porting existing applications:

Many cloud service customers have existing applications that can be ported to the PaaS environment
with resulting business benefits. Some PaaS systems have application environments that aim to
closely match those available on existing non-cloud middleware stacks and associated tools that
assist with the porting process.

12.	 Support for applications using microservices architecture:

PaaS systems typically offer a wide range of support for applications built using microservices
architecture (see Clause 9). This includes support for the runtimes used for the microservices
themselves, support for the underlying services used by the microservices and support for the
service mesh that links all the components together.

13.	 Networking capabilities:

Since the CSP controls and has full visibility of the network protocol stacks in use, PaaS systems can
be more deeply integrated with the network capabilities of the host CSP. This makes it relatively
easy (for both the CSP and CSC developer) to integrate the PaaS with network virtualization,
network load balancing, failover, network optimisation, caching, message passing and queuing, and
other network related technologies.

11.3	 Architecture of components running under PaaS system

Putting together the several elements of a typical PaaS system leads to a schematic architecture of the
components of a typical application created and deployed using a PaaS system, shown in Figure 8.

Figure 8 — Schematic architecture of components running under PaaS system

—	 External endpoint: provides an externally-available endpoint (e.g. visible across the internet), with
associated endpoint security (e.g. https support, certificate management, DDoS attack handling, ID
and Access management).

﻿

© ISO/IEC 2020 – All rights reserved� 35

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 23
16

7:2
02

0

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

﻿

ISO/IEC TS 23167:2020(E)

—	 Reverse proxy: for each component of the application which is scaled through the use of parallel
instances (core application and microservices), there is a need for a reverse proxy and load balancing
function to distribute incoming requests evenly across all the running instances.

—	 Service mesh: for the internal connections between application components and for connections
with services, capabilities to enable effective and efficient connectivity.

—	 Autoscaling of parallel instances: the typical approach to the scaling of application components is
to run multiple instances of each component in parallel and to distribute incoming requests over
these instances (see Clause 14). The number of instances running at any one time can be scaled up
and down to match the amount of work demanded by the requests. Typically this requires that the
PaaS system monitors the instances to determine how busy they are. This capability can sometimes
be linked with PaaS automatic network loading balancing, so that traffic levels to specific instances
can be dynamically matched to their current capacity and availability.

—	 Backing services: it is commonly the case that many capabilities required by the application
components are provided by a set of cloud services, to which the components are connected as
necessary. Such services can be highly diverse, but examples include capabilities such as databases
or other storage services (see Clause 12).

—	 PaaS API: the capabilities of the PaaS system and the individual cloud services that make up the
system are made available for various DevOps tools to use by means of one or more PaaS APIs. For
example, such an API can enable the code of an application component to be pushed to a runtime
service for execution.

—	 DevOps tooling: developers and operations staff, ideally united into a seamless DevOps team, use
a variety of DevOps tools to perform their work. Development and test tools are used during the
creation and testing of an application and its microservices, while monitoring and management
tools are used to observe and control the application components in production.

12	 Data storage as a service

12.1	 General

Cloud computing is based on the provision of cloud services, which are all ultimately based on the three
infrastructure resource types of compute, storage and networking. This clause considers cloud services
which offer storage resources.

The technologies of virtual machines and of containers described in Clause 6 and Clause 7 are
fundamentally offering types of compute resource, i.e. a means of executing software in a virtualized
environment of some type. Some storage capabilities are associated with both virtual machines and
containers. There are filesystems associated with them which contain the files representing the
software and the directly associated configuration and metadata, and these filesystems are also
typically required to support the execution of the software.

However, it is necessary to understand that the filesystems associated with both virtual machines and
with containers are essentially ephemeral in that they are brought into existence when the virtual
machine or container is created and they are discarded when the same virtual machine or container is
stopped and destroyed. This means that such filesystems are not capable of being used for long-term
storage of information. Neither can they be used for information that needs to be accessible by multiple
different virtual machines or containers, since the filesystems within a virtual machine or within a
container are by design isolated.

Long term storage of information is provided by data storage as a service (DSaaS). DSaaS services offer
storage capabilities of various types (the types are described in more detail later in this clause) and
those capabilities can be offered both to CSC systems and also to other cloud services. DSaaS services
are based on the storage resources of the CSP, typically accessed over the network through an API,
although in some cases it may be possible and desirable to co-locate a DSaaS service with a compute
service to remove network latency.

﻿

36� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 23
16

7:2
02

0

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

﻿

ISO/IEC TS 23167:2020(E)

12.2	 Common features of DSaaS

DSaaS enables users to store and retrieve information anywhere and anytime as long as there is
connectivity to the DSaaS service. DSaaS services support scalability in terms of the volume of
information stored and reliability in terms of access to the information from any type of application
independent of the systems or devices on which those applications run.

Applications and systems use DSaaS to access cloud storage through related protocols. These protocols
can support geographically remote storage resources and support virtualization of the storage
locations used, so that when required, redundant or replicated storage is made available to provide
resilience against point failures.

Storage services have the following common features:

a)	 Durability: Data are stored in one or more locations, controlled by the CSP. DSaaS services should
provide data storage with no loss caused by natural disasters, human error or technical defects.
This may be achieved through replicas or backups of the data, which can be provided as part of the
service, or can be implemented by the CSC using the DSaaS service capabilities.

b)	 Availability: DSaaS services provide storage and retrieval of data on demand to meet the needs of
the CSC’s applications and systems.

c)	 Security: DSaaS services should store information securely. In particular there should be no
unauthorised access to cloud service customer data. It is desirable to encrypt the information if
appropriate, although this capability may be left for the CSC to implement since it can have cost and
performance implications.

d)	 Bounded costs: With DSaaS, the customer typically pays only for the storage actually used.
For some DSaaS services, information that is used less frequently can be stored in a lower-cost
capability which might provide slower access as a means of reducing the cost.

e)	 Manageability: The DSaaS CSP has storage lifecycle management policies and processes that
enable users and developers to focus on solving application problems and be free from concerns
about the management of the information.

DSaaS can be classified by storage type and by service category as described in Table 1 and Table 2
respectively. Each storage service has one or more service interfaces such as block device driver, file
system interface or object storage API, which is used by the client software. These APIs are network
based since it is expected in most cases that the storage capabilities exist on a system other than the
system running the client software.

Table 1 — DSaaS according to storage type

Services Features

File storage service

File storage services offer storage using a conventional file system model,
with files contained in directories within volumes. Storage is typically offered
to client software using the NFS protocol (NFS 4.2 - IETF 7862) and relevant
volume(s) are mounted into the client environment via an NFS client driver. In
particular, file storage services can be mounted into virtual machines and into
containers to provide long-lived storage capabilities for those environments.
File storage services are usually networked based (akin to Network Attached
Storage (NAS) devices) and can be shared by many clients simultaneously.
Since the storage is virtualized by the file storage service, the storage can be
highly scalable and it is often durable, with replicated redundant copies of the
files being maintained, potentially in physically separated locations. Stored
data can also be encrypted. (See Amazon EFS, IBM File Storage).
Many applications need access to shared files and a file system. This type of
storage service is primarily supported on Network Attached Storage (NAS).
This type of service is ideal for the use cases such as large-scale content repos-
itories, development environments, media stores, or user home directories.

﻿

© ISO/IEC 2020 – All rights reserved� 37

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 23
16

7:2
02

0

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

﻿

ISO/IEC TS 23167:2020(E)

Services Features

Object storage service

Object storage services store the data as data objects in a flat, non-hierarchical
namespace (the storage pool, bucket or container), where each object has a
unique identity or key. Effectively, the object storage service operates on the
basis of a key / value model, with the value as the object. In addition, each data
object can have an arbitrary amount of user-specified metadata associated
with it, potentially far richer than is possible with standard filesystems.
Object storage services are highly scalable, since they are not tied to specific
storage hardware, and can span multiple storage devices. Individual objects
can be very large also. Object storage services can be used by many client
applications simultaneously.
Object storage services are typically offered via a REST API, which is naturally
network capable and so accessible from clients remotely. The REST API (e.g.
Amazon S3 API) is not like a conventional file system interface and so client
applications have to be specifically designed and written to use object storage
services.
Object storage services are particularly useful for unstructured data (e.g.
images) which are updated relatively infrequently (updates are done by re-
placing the whole object with a new version). Object storage services are also
usually slower than file storage services.

Block storage service

Block storage services offer high bandwidth low-latency access to storage
devices at the block level. These services are providing the equivalent of Direct
Attached Storage (DAS) or Storage Area Network (SAN) to the client system.
This low-level form of access to storage resources allows the client more con-
trol and potentially higher performance than other kinds of DSaaS.
Thus, when using a block storage service, it is as if additional hardware stor-
age devices are being attached to the client system. Block storage services are
typically intended to work within one datacentre, since the latency increases
substantially if the services are accessed over remote networks.
Typically, specialized SAN protocols such as iSCSI (IETF 7143) are used to de-
liver block storage services across the network to clients. The remote storage
devices are presented to the client software as a mounted volume, just as if
it were a disk locally attached to the system on which the client software is
running.
Block storage services can have file systems built over them by the client
software, or alternatively, the client software can use the block interface
directly. This latter case can take place where the client software is database
software (e.g. an SQL database), for example, or stream processing software
(e.g. Apache Kafka).

There are categories of cloud services that are inherently based on storage capabilities, but where the
capabilities offered are more evolved than the simple storage of data and where the service interfaces
offered to service clients typically reflect specific requirements of the client software. These categories
of cloud service, described in Table 2, each use one or more of the storage types described in Table 1, but
the storage aspect is not the main capability presented to clients.

﻿

Table 1 (continued)

38� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 23
16

7:2
02

0

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

﻿

ISO/IEC TS 23167:2020(E)

Table 2 — Storage services according to service category

Storage services Features

NoSQL database services

NoSQL database services offer capabilities to store and retrieve various forms
of unstructured data such as documents, images, movies, and large binary
data. There is a wide variety of underlying technologies in this category,
which can be classified in a variety of ways, such as:
—	 Key-Value Cache

—	 Key-Value Store

—	 Key-Value Store (Eventually-Consistent)

—	 Key-Value Store (Ordered)

—	 Data-Structures Server

—	 Tuple Store

—	 Object Database

—	 Document Store

—	 Wide Column Store

—	 Native Multi-model Database

—	 Graph Database

SQL database services

SQL (or relational) database services store structured data in a tabular for-
mat permitting potentially complex queries to be made to extract data to suit
client requirements and to perform dynamic updates on the database content.
SQL is a standard, interactive programming language designed for querying,
updating, and managing data and data sets in the database management sys-
tem. SQL is standardised in ISO/IEC 9075-1:2016 [71]. Modern SQL databases
support the discovery of columns across a wide range of data set: not only re-
lational table/views, but also XML, JSON, spatial objects, image-style objects
(Binary Large Objects and Character Large Objects), and semantic objects.
Many different underlying SQL database technologies exist and are offered as
cloud services.

Message queue service storage

Message queue capabilities are available as cloud services and are generally
associated with a distributed asynchronous form of processing and system
architecture that is increasingly common.
Many message queue systems have the capability to persist messages in
storage. Messages can be persisted to ensure that they are not lost and can be
retrieved whenever required, but can also be persisted to assist with stream
processing that requires the large-scale analysis of many events in order to
extract useful insights. Message persistence can place significant demands on
the underlying storage systems due to the high volume and the high rate of
delivery of messages.

Blockchain and Distributed
Ledger Technology services

Distributed ledger technology (DLT) cloud services, such as Blockchain cloud
services, support the provision and use of distributed ledgers, which are a
form of transaction database.
DLT cloud services typically provide the capabilities of running a DLT node,
including both an instance of the DLT platform software and the provision of
the storage capabilities for a replica of the distributed ledger itself. For more
details see ISO 23257 [26].

Analytic services
Analytic processing capabilities are based on the processing of large quan-
tities of data. Such large volumes and high velocity of data processing need
particular support from the storage services that hold the data. Many CSPs
provide specialised cloud storage services that support analytics.

﻿

© ISO/IEC 2020 – All rights reserved� 39

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 23
16

7:2
02

0

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

﻿

ISO/IEC TS 23167:2020(E)

Storage services Features

File management services
File management services provide an application capabilities type of cloud
service, typically enabling automatic replication of files between user devices
and cloud storage and offering the capability for multiple users to share and
update files.

Federated storage services

In the case of federated storage services, storage resources can be combined
transparently across a set of different cloud storage locations, including
on-premises, private cloud or public cloud, whether offering file, block or
object storage. Note that simple replication or failover capabilities do not typ-
ically imply that a storage service is a federated storage service.

NOTE	 These storage services can be provided as persistent storage or as in-memory storage.

12.3	 Capabilities type of DSaaS

ISO/IEC 17788:2014, 6.4 identifies three distinct capabilities types:

—	 Infrastructure (as seen in IaaS);

—	 Platform (as seen in PaaS);

—	 Application (as seen in SaaS).

DSaaS can offer one or more of these capabilities types as described in Table 3:

Table 3 — Capabilities types of DSaaS

Capabilities type Services

Infrastructure

File storage service
Object storage service
Block storage service
Federated storage service

Platform

Customer-programable data storage, where customer-written code can be
uploaded and used to manipulate the data storage
Analytic service
NoSQL database service
SQL database service
Message queue service
Blockchain and DLT service

Application
Human-facing user interface for manipulating storage, such as a web-based
document repository:
File management service

The cloud capabilities types applying to the cloud services covered by Table 1 and Table 2 vary as
shown in Table 3. Most of the cloud services covered by Table 1 are typically provided as infrastructure
capabilities type cloud services. For Table 2, the cloud services are typically of the platform or
application capabilities types, depending on the details of the offering, except in the case of federated
storage services, which are more typically infrastructure capabilities type services.

12.4	 Significant additional capabilities of DSaaS

In addition to the expected capability of storing data, many cloud storage services offer significant
additional capabilities that can be important to cloud service customers.

﻿

Table 2 (continued)

40� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 23
16

7:2
02

0

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

﻿

ISO/IEC TS 23167:2020(E)

The first set of capabilities relates to resilience and resistance to point failures in the cloud service
providers' infrastructure. Many cloud storage services store data in multiple redundant replicas, so that
a failure of a single storage device or a failure of access to a single device does not lead to unavailability
of the service or, worse, loss of data. The nature of the replication can vary. In some cases, replicas
are deliberately placed in a physically separate location (e.g. a different data center or a different
availability zone within one data center), with the aim of addressing major failures of a complete data
center. In other cases, particularly a cloud service involved in high performance access, the replicated
locations can be deliberately close to each other. Some cloud storage services provide capabilities for
the cloud service customer to choose the policy relating to the placement of replicas.

The second set of closely related capabilities relate to the creation and storage of backups of the data.
These backups can either be automated or performed at the request of the cloud service customer. The
backups may be to a "live" location (i.e. storage that is online and available, but at another location) or
to an offline location. The latter case could be used for long-term retention at lower cost.

Another capability offered by some cloud storage services is resource affinity. This relates to the
relative physical placement of the cloud storage service instances in relation to other cloud services,
mainly compute service instances such as virtual machines and containers. One of the major reasons
to place compute service instances close to storage service instances is performance, both in terms of
reducing latency to a minimum and also in terms of maximising bandwidth for data flowing between
the compute and storage instances. Some categories of service such as block storage services are often
only offered in this form. For example, block storage services might only be offered for use to compute
service instances running on nodes in the same datacentre where there is a high speed link between
the storage node and the compute node such as Ethernet or Fibre Channel.

13	 Networking in cloud computing

13.1	 Key aspects of networking

Networking is a key element of cloud computing. The very definition of cloud computing is based on its
capabilities being accessed via networks: paradigm for enabling network access to a scalable and elastic
pool of shareable physical or virtual resources with self-service provisioning and administration on-demand
[ISO/IEC 17788:2014].

Networks and network-related capabilities are also some of the resources that are often provided by
means of cloud services.

Thus, there are two broad areas of concern relating to networking in cloud computing. The first is the
networking by which a given cloud service is accessed and by which any capabilities within the cloud
service are accessed, such as an application running within a compute service. This is termed "cloud
access networking", or "public cloud access networking" where public cloud services are involved. The
second is the networking used to connect cloud service instances to each other. This networking is
often by design intended not to be accessed outside of the particular cloud service instances involved.
This is termed "intra-cloud networking".

13.2	 Cloud access networking

Cloud services have externally accessible interfaces that enable use of their capabilities by cloud users
and by systems acting on behalf of cloud users. Some cloud services also have externally accessible
interfaces for CSC capabilities running inside the cloud service: examples include interfaces such as
web interfaces or APIs for CSC applications running within a compute service instance (e.g. within a VM
or within a container) and also interfaces to data storage capabilities of a storage service instance (e.g.
a file store).

It is often the case that the externally accessible interfaces are publicly visible on the internet, at
least for public cloud services. However, the externally accessible interfaces can in some cases be
deliberately hidden from public view on the internet, even where user access takes place over the
internet infrastructure. Private cloud services can be deployed in a way that makes them accessible

﻿

© ISO/IEC 2020 – All rights reserved� 41

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 23
16

7:2
02

0

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

﻿

ISO/IEC TS 23167:2020(E)

only within the organization's private networks (i.e. such cloud services are not accessible from the
internet), although there can still be a requirement for some externally accessible interfaces to be
available, for example where a web application deployed to a private cloud service needs to present a
publicly available interface accessible by its users.

Applications running in a cloud service can require externally visible interfaces available on a publicly
accessible network address and port number. It is typical for such a publicly accessible interface to be
provided as a "virtual interface" where the external interface is presented on a network address and
port known to the cloud service itself, while the code running within the cloud service runs on some
internal network address and port, to which the external address and port are mapped. This endpoint
virtualization is necessary to permit the resource sharing that is fundamental to cloud services.
Endpoint virtualization also supports capabilities such as load balancing across multiple instances of
an application and security capabilities including firewalls and DDoS attack handling.

Publicly visible interfaces can also require specific configuration. In particular, an organization running
an application on a cloud service could find it highly desirable that the address used for the interface
is one that belongs to the organization and not one that belongs to the CSP. The capability to support
this is generally termed "Bring Your Own IP addresses" (BYOIP) and is a capability where the CSC can
configure the publicly visible interface for an application running in a cloud service with an address
belonging to the CSC. This can apply to both public cloud services and private cloud services.

13.3	 Intra-cloud networking

Within the cloud service environment, it is typical that networking is used to connect together the
various components that make up a system. For compute capabilities type cloud services, for example
running software in VMs or containers, there are often multiple instances running that need to
communicate, either with each other (for example, where the application is divided into separately
running components, as with a microservices architecture) or with other components of the solution
(for example, with a load balancer where horizontal scaling is used with multiple parallel instances of a
given component). It is also typical for storage services to be connected to compute instances and this
is usually done over the network.

There may also be multiple separate layers of intra-cloud networking. The application layer as described
in the previous paragraph and also the management or control layer, used to monitor and control each
of the cloud services. These different layers are deliberately isolated from each other so that they cannot
interfere with each other.

It is commonly the case that intra-cloud networking is virtualized. The various cloud services do not use
networking capabilities directly, but use virtualized networking capabilities that both permit sharing
of the underlying networking resources and also provide isolation between different groups of cloud
service instances both for security reasons and also to avoid interference.

The structure and organization of virtualized networks can also deliberately avoid reflecting the
organization of the underlying physical networks. It is often the case that components of a solution are
distributed across multiple availability zones in one data centre, or across multiple data centres. It can
be highly undesirable for this physical organization to be made visible to the solution components and
so a single unified virtual network is presented to those components, overlaid on the physical networks.

Virtualized compute environments, both VMs and containers, involve tight control and virtualization
of network resources, including both the endpoints exposed by each VM/container and also the target
network endpoints used by the software running within the environments. The capability of running
multiple VMs on one system, or multiple containers on one operating system, clearly requires mapping
of each of the network endpoints exposed by the software to actual endpoints in the containing system,
simply to enable the sharing of the system without resulting in clashes. The deployment of both VMs
and containers requires configuration to deal with these issues.

It is also commonly the case that both VMs and containers are used in distributed environments.
Multiple instances of the same software can run on different systems and those systems can run in
different physical locations. Applications are also commonly divided into multiple independent
components (services, microservices), and these components can each run in separate locations. It is a

﻿

42� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 23
16

7:2
02

0

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

﻿

ISO/IEC TS 23167:2020(E)

good practice that the actual locations of the components be hidden from the software since application
components need to communicate with each other seamlessly wherever they are running. In addition,
it is best if the application components can only communicate with each other. External communication
should be carefully controlled through specifically designated external endpoints.

It is a best practice in relation to networking for these software architectures that networking is
effectively defined at the application level. This is a virtual network that is used only by the application
components and which transparently spans all the locations in which application components are
running. The implication is that each application has an associated virtual network and that, as with
virtual compute environments like containers, each virtual network is isolated from other networks.

Virtual networks can be built using a variety of techniques and technologies, including software
defined networks (SDNs) and network function virtualization (NFV), some built for specific types of
components and cloud services such as:

—	 VxLAN: an overlay network technology, specified in IETF RFC 7348[41];

—	 Kubernetes[17] networking;

—	 Container networking systems, such as Calico[43] and Weave Net[44].

13.4	 Virtual private networks (VPNs) and cloud computing

One technology that can be useful in building solutions using cloud computing are virtual private
networks (VPNs). VPNs offer a secure means of connecting systems together where part of the
networking infrastructure involves using untrusted environments such as the internet. There are two
typical configurations of VPN as shown in Figure 9, reflecting different usecases:

—	 Host-to-Gateway

This is where a stand-alone system, typically a client machine or device, accesses a secured network
remotely. In the case of cloud computing, the typical usecase would be for a client device to access
cloud services and applications and other resources running within them.

—	 Gateway-to-Gateway

This is where secure network communications are supplied between two separate secure networks.
The typical usecase is where cloud services in a cloud environment either need to be connected to
CSC in-house applications and systems, or need to be connected to other cloud services running in
a different cloud environment.

﻿

© ISO/IEC 2020 – All rights reserved� 43

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 23
16

7:2
02

0

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

	Foreword
	Introduction
	1 Scope
	2 Normative references
	3 Terms and definitions
	4 Symbols and abbreviated terms
	5 Overview of common technologies and techniques used in cloud computing
	5.1 General
	5.2 Technologies
	5.2.1 General
	5.2.2 Infrastructure capabilities type of cloud services
	5.2.3 Platform capabilities cloud services
	5.2.4 Application capabilities type cloud services

	5.3 Techniques

	6 Virtual machines and hypervisors
	6.1 General
	6.2 Virtual machines and system virtualization
	6.3 Hypervisors
	6.3.1 General
	6.3.2 Type I hypervisors
	6.3.3 Type II hypervisors

	6.4 Security of VMs and hypervisors
	6.5 VM images, metadata and formats

	7 Containers and container management systems (CMSs)
	7.1 General
	7.2 Containers and operating system virtualization
	7.2.1 Description of containers
	7.2.2 Container daemon
	7.2.3 Container resources, isolation and control

	7.3 Container images and filesystem layering
	7.3.1 Image purpose and content
	7.3.2 Filesystem layering
	7.3.3 Container image repositories and registries

	7.4 Container management systems (CMSs)
	7.4.1 General
	7.4.2 Common CMS capabilities

	8 Serverless computing
	8.1 General
	8.2 Functions as a service
	8.2.1 Overview
	8.2.2 Functions within FaaS
	8.2.3 Serverless frameworks
	8.2.4 FaaS relationship to microservices and containers

	8.3 Serverless databases

	9 Microservices architecture
	9.1 General
	9.2 Advantages and challenges of microservices
	9.3 Specification of microservices
	9.4 Multi-layered architecture
	9.5 Service mesh
	9.6 Circuit breaker
	9.7 API gateway

	10 Automation
	10.1 General
	10.2 Automation of the development lifecycle
	10.3 Tooling for automation

	11 Architecture of PaaS systems
	11.1 General
	11.2 Characteristics of PaaS systems
	11.3 Architecture of components running under PaaS system

	12 Data storage as a service
	12.1 General
	12.2 Common features of DSaaS
	12.3 Capabilities type of DSaaS
	12.4 Significant additional capabilities of DSaaS

	13 Networking in cloud computing
	13.1 Key aspects of networking
	13.2 Cloud access networking
	13.3 Intra-cloud networking
	13.4 Virtual private networks (VPNs) and cloud computing

	14 Cloud computing scalability
	14.1 Scalability approaches
	14.2 Parallel instances and load balancing
	14.3 Elasticity and automation
	14.4 Database scaling

	15 Security and the cloud common technologies
	15.1 General
	15.2 Firewalls
	15.3 Endpoint protection
	15.4 Identity and access management
	15.5 Data encryption
	15.6 Key management

	Annex A (informative) VM Images and disk images
	Bibliography

