TECHNICAL ISO/IECTS
SPECIFICATION 23167

First edition
2020-02

Information technology — Cloud
computing — Common-technologies
and techniques

Reference number
ISO/IEC TS 23167:2020(E)

© ISO/IEC 2020

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

ISO/IEC TS 23167:2020(E)

/'\ COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2020

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting
on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address

below or [SO’s member body in the country of the requester.

ISO copyright office

CP 401 ¢ Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Fax: +41 22 749 09 47
Email: copyright@iso.org
Website: www.iso.org

Published in Switzerland

ii

© ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

ISO/IEC TS 23167:2020(E)

Contents Page
FOT@WOToocccc e85 55858555555855 8 5555 \%
I OUQUICION.......coc st vi
1 S0P ... 1
2 NOTINATIVE FEEETEIICESooooiooeee sttt 1
3 TFermsanddefinitions—————7070mm0m0m0mmmm_y 1
E Symbols and abbreviated terms
5 Overview of common technologies and techniques used in cloud computing ...Lz....}........ 4
5.1 LT3 0 1=) - SRS S SRS
5.2 Technologies
5.2.1 General
5.2.2 Infrastructure capabilities type of cloud services...........e. S0 fon 5
5.2.3 Platform capabilities cloud services..........c.ccccru
5.2.4 Application capabilities type cloud services.
5.3 TECRNIQUES...ooccc s
b Virtual machines and hypervisors
6.1 LT3 0 T=) - OO OO
6.2 Virtual machines and system virtualization
6.3 HYPEIrviSOIS. ...t
6.3.1 General .. e
6.3.2 Type l hypervisors.... ...
6.3.3 Type Il hypervisors...........pm ..
6.4 Security of VMS and Ny PerviSOrs. ol ittt
6.5 VM images, metadata and fOrMAatS. ...
7 Containers and container management systems (CMSs)
7.1 (OT1 1<) - | O o SO
7.2 Containers and operating system virtualization ..
7.2.1 DescriptionQf’containers...............
7.2.2 Containefdaemon ...
7.2.3 Container resources, isolation and control...
7.3 Container images and filesystem layering ...
7.3.1 IMage purpose and CONTEINT. ...
7.3.2 (Filesystem layering ...
7.3.3-- Container image repositories and registries.
7.4 Céntainer management systems (CMSs)........
A1 General ..
7.4.2 Common CMS capabilities ...
B SEYVErless COMPUTITIZ ...
8.1 GBIMETAL ...
8.2 FUNCHIONS @S @ SEIVICEoooiiieeiie et
82— Overview
8.2.2
8.2.3
8.2.4 FaaS relationship to microservices and containers
8.3 SETVEITIESS AAtADASES ...t
9 MiCIOSETrVICES ATCHITECTUTEcccoooe e 22
9.1 LT3 1<) - S 22
9.2 Advantages and challenges of MiCTOSEIVICES ... 23
9.3 Specification of microservices
9.4 Multi-layered architecture.......
9.5 SETVICE TMIESI .ot
9.6 CITCUIE DI@AKET ...t

© ISO/IEC 2020 - All rights reserved iii

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

ISO/IEC TS 23167:2020(E)

9.7 API gateway

10 AUBOIMMATTON ...t
10200 Y V=)= O OSSO
10.2 Automation of the development lifecycle ..
10.3 TOONNG fOI AUEOIMATION ..ooooeeeeeeeeeie s
11 Architecture of PaaS systems
11.1 General....is
11.2 Characteristics of PaaS systems
[T.3~ Architecture ol components running under Paas system
12 Pata SEOTAZE @S @ SEIVICE ...t (T
12.1 General...e e
12.2 Common features of DSaaS
12.3 Capabilities type of DSaaS......ccocs
12.4 Significant additional capabilities of DSaaS
13 Networking in cloud COMPUEING ... g e
13.1 Key aspects 0f NEEWOTKINEG ... oot
13.2 Cloud acCeSS NETWOTKING. ..o A e
13.3 Intra-cloud NetWOTrKING ...y
13.4 Virtual private networks (VPNs) and cloud computing
14 Cloud computing SCAlaADIIIEY ... 5 B 44
14.1 Scalability aPPrOAChEs. ... s 44
14.2 Parallel instances and load balanCing ...y Sl 45
14.3 Elasticity and automation
14.4 Database SCAIINE ... SO e
15 Security and the cloud common technologies
15.1 GeNeral..eeeeeeee g e
15.2 Firewalls ...
15.3 Endpoint protection
15.4 Identity and access MaNAZEIMIETIELL. ... 47
15.5 Data @NCTYPTION oot Moo 48
5.6 KEY MNAMAZEINEIIE ..ooo e S 48
Annex A (informative) VM Images and diSK iMaZes ... 49
BIDLIOGIAPIY ...) e 50
iv © ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

ISO/IEC TS 23167:2020(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that
are members of ISO or IEC participate in the development of International Standards through

technical committees established by the respective organization to deal with particular f

ields of

technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other
international organizations, governmental and non-governmental, in liaison with ISO and IEC, also

1 b 41 1
dRT pdl't HT tHT WUIL'K.

The procedures used to develop this document and those intended for its further maintena

pditorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the

Fights. Details of any patent rights identified during the development of.the document will b
ntroduction and/or on the ISO list of patent declarations received (seewWww.iso.org/patents) or
ist of patent declarations received (see http://patents.iec.ch).

ronstitute an endorsement.

For an explanation of the voluntary nature of standdpds, the meaning of ISO specific ter

so/foreword.html.

Subcommittee SC 38, Cloud Computing and \Distributed Platforms.

Any feedback or questions on this document should be directed to the user’s national standards
romplete listing of these bodies can(be found at www.iso.org/members.html.

nce are

Hescribed in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for
the different types of document should be noted. This document was drafted in accordance with the

subject

pf patent rights. ISO and IEC shall not be held responsible for identifying any or all such| patent

b in the
the IEC

Any trade name used in this document is information given for*the convenience of users and does not

ms and

pxpressions related to conformity assessment, as well as information about ISO's adherencg to the
World Trade Organization (WTO) principles in the Teéchnical Barriers to Trade (TBT) see www.iso.org/

This document was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology,

body. A

© ISO/IEC 2020 - All rights reserved

https://www.iso.org/directives-and-policies.html
https://www.iso.org/iso-standards-and-patents.html
http://patents.iec.ch/
https://www.iso.org/foreword-supplementary-information.html
https://www.iso.org/foreword-supplementary-information.html
https://www.iso.org/members.html
https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

ISO/IEC TS 23167:2020(E)

Introduction

Cloud computing is described at a high, conceptual level in the two foundational standards
ISO/IEC 17788 [1l and ISO/IEC 17789 [2l.

However, as the use of cloud computing has grown, a set of commonly used technologies has grown to
support, simplify and extend the use of cloud computing alongside sets of commonly used techniques
which enable the effectlve exp101tat10n of the capabllltles of cloud serv1ces Many of these common
technologies a 3 . 3 2

in a unified approach called DeVOps (see 10. 2) The aim is to speed and 51mp11fy the creatlon and
operatipn of solutions based on the use of cloud services.

This dgcument aims to describe the common technologies and techniques which relate” to cloud
computling, to describe how they relate to each other and to describe how they are used by'some of thg
roles agsociated with cloud computing.

This dqcument (a Technical Specification) addresses areas that are still developing-in the industry
where 1t is believed that there will be a future, but not immediate, need for one(or more Internationa
Standards.

This dgcument will be of primary interest to service developers in Clalicd-Service Providers and tq
standafds developers working with ISO and other organizations.

vi © ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

TECHNICAL SPECIFICATION ISO/IECTS 23167:2020(E)

Information technology — Cloud computing — Common

technologies and techniques

1 Scope

This document provides a description of a set of common technologies and techniques)i
Conjunction with cloud computing. These include:

— virtual machines (VMs) and hypervisors;

— containers and container management systems (CMSs);
— serverless computing;

— microservices architecture;

— automation;

— platform as a service systems and architecture;

— storage services;

— security, scalability and networking as applied to the above cloud computing technologies.

2 Normative references

Che following documents are referred to:it’the text in such a way that some or all of their
ronstitutes requirements of this document. For dated references, only the edition cited appl
indated references, the latest edition,ofthe referenced document (including any amendments)

SO/IEC 22123-1:—1Y), Informatian teéchnology — Cloud computing — Part 1:Terminology

3 Terms and definifions

For the purposes of this document, the terms and definitions given in ISO/IEC 22123-1 3
following apply.

SO and IEC maintain terminological databases for use in standardization at the following addr¢

— ISO Online browsing platform: available at http://www.iso.org/obp

— JEGElectropedia: available at http://www.electropedia.org/

ised in

content
ies. For
ipplies.

nd the

Sses:

B.1

guest operating system
guest OS
operating system that runs within a virtual machine

[SOURCE: ISO/IEC 21878:2018, 3.2]

1) To be published.

© ISO/IEC 2020 - All rights reserved

http://www.iso.org/obp
http://www.electropedia.org/
https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

ISO/IEC TS 23167:2020(E)

3.2

host operating system
host 0OS
operating system onto which virtualization software is installed

Note 1 to entry: "virtualization software" can include both hypervisor and virtual machines as well as container

daemon

3.3
server

(3.4) and containers.

ess computing

cloud s
withou
softwa
service

Note 1t
cloud se

Note 2 1
events 3

Note 3 1
applicat]

3.4

contaiper daemon

softwa
and sto|

3.5

container management system

CMS
softwa

Note 1t
the pard

3.6

cloud 1
applica
envirot|

3.7

functig
type of]
system

EXAMP

ervice category in which the cloud service customer can use different cloud capabilities types
[the cloud service customer having to provision, deploy and manage either hardwarelorx
e resources, other than providing cloud service customer application code or providing €loud
customer data

entry: Serverless computing provides automatic scaling with dynamic elastic allocation ofresources by the
I'vice provider, automatic distribution across multiple locations, and automatic maintenance€ and backup.

o entry: Serverless computing functionality is triggered by one or more cloud seryice customer defined
nd can execute for a limited time period as required to deal with each event.

o entry: Serverless computing functionality can be invoked by direct invacation from web and mobile
ions.

‘e service that executes on a host operating system (3.2) and is responsible for creating, starting
pping containers on that system

"e that provides for management and orchestration of container instances

o entry: Capabilities include initial creation and placement, scheduling, monitoring, scaling, update and
llel deployment of capabilities such as\tead balancers, firewalls, virtual networks and logging.

ative application
fion that is explicitly designed to run within and to take advantage of the capabilities and
ment of cloud services

nal decomposition
modular de€omposition in which a system is broken down into components that correspond tq
functions-and subfunctions

LE Hierarchical decomposition, stepwise refinement.

[SOUR(C

E<1SO/IEC/IEEE 24765:2017, 3.1695]

3.8

continuous deployment
software engineering approach in which teams produce software in short cycles such that the software
can be released to production at any time and where deployment to production is itself automated

3.9

continuous delivery
continuous deployment (3.8) where the deployment stage is initiated manually

© ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

ISO/IEC TS 23167:2020(E)

3.10

DevOps

methodology which combines together software development and IT operations in order to shorten the
development and operations lifecycle

3.11

DevSecOps

DevOps (3.10) extended to include security capabilities as an essential and integral part of the
development and operations processes

3.12

prchestration
Lype of composition where one particular element is used by the composition to oversee and direct the
bther elements

Note 1 to entry: The element that directs an orchestration is not part of the orchestration (composition
nstance) itself.

Note 2 to entry: See ISO/IEC 18384-3:2016, 8.3.
[SOURCE: ISO/IEC 18384-1:2016, 2.16]

3.13

virtual machine image

VM image

nformation and executable code necessary to run a virtualmachine

3.14

virtual machine metadata

VM metadata

nformation about the configuration and startup of a virtual machine

3.15

microservice
ndependently deployable artefact providing a service implementing a specific functional part of an
hpplication

B.16
microservices architectune
Hesign approach that divides an application into a set of microservices (3.15)

B3.17

functions as a sepvice
function as a,service
FaaS

Cloud service category in which the capability provided to the cloud service customer is the execution
bf cloud.Service customer application code, in the form of one or more functions that are each trjggered
by d.cloud service customer specified event

3.10

serverless database

cloud service category in which the capability provided to the cloud service customer is a fully cloud
service provider managed database made available via an application programming interface

© ISO/IEC 2020 - All rights reserved 3

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

ISO/IEC TS 23167:2020(E)

3.19

firewall

type of security barrier placed between network environments — consisting of a dedicated device
or a composite of several components and techniques — through which all traffic from one network
environment traverses to another, and vice versa, and only authorized traffic, as defined by the local
security policy, is allowed to pass

[SOURCE: ISO/IEC 27033-1:2015, 3.12]

3.20

contaiier registry . - . .
component that provides the capability to store and to access container images
3.21

resourpe affinity

placemgnt of two or more resources close to each other

Note 1 o entry: Closeness relates to factors such as speed of access or high bandwidth ef.access between the
resources.

4 Symbols and abbreviated terms

API Application programming interface

CMS Container management system

CSC Cloud service customer

CSP Cloud service provider

DNS Domain name service

GUI Graphical user interface

HTTP Hypertext transfer protocel

[aaS Infrastructure as a service

P Internet protocol

MAC Media accessfeontrol

0cClI Open containers initiative

0S Operating system

OVF Open virtualization format

PaaS Platform-as-a-service

Saa$S Software as a service

VPN Virtual private network

5 Overview of common technologies and techniques used in cloud computing

5.1 General

This document provides a description of a set of common technologies and techniques used in
conjunction with cloud computing.

4 © ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

ISO/IEC TS 23167:2020(E)

A common technology is one that is used to implement one or more of the functional components of
cloud computing described in ISO/IEC 17789:2014,9.2[2] cloud computing reference architecture. The
common technologies often form part of a cloud service or are employed by the cloud service customer

(CSC) when using a cloud service.

A common technique is a methodology or an approach to performing some of the activities associated

with cloud computing, as described in ISO/IEC 17789:2014,10.2.2[2]. 1t is typical of the c
techniques to either reduce the effort needed to make use of cloud services or to enable full us
capabilities provided by cloud services.

ommon
e of the

pperating cloud native applications.

n what follows, text that is extracted from other standards are indicated by plaeing the extrac
n quotes, using italic text, and providing the exact reference at the end of the gxtracted text.
5.2 Technologies

5.2.1 General

Capabilities and environment of cloud services. These téchnologies address the three primary ha

hddress the platform capabilities type of cloud service. These technologies include:

by serverless computing (see Clause 8);

networking capabilities in relation to cloud services (see Clause 13).

testing and productioiof cloud native applications (see Clause 11).

Security and scalability technologies apply generally across all types of cloud services, a
the explicit use ©f the technologies by the CSC is more common for some types of cloud serv
Clause 14 and Clause 15).

5.2.2 Jnfrastructure capabilities type of cloud services

Technologies commonly used with infrastructure capabilities type of cloud services include:

The various common technologies and techniques are described in detail in the following clausas.

Many of the common technologies and techniques are used in conjunction when developi'ng and

ed text

The common technologies principally relate to virtualizationmyand the control and management of
virtualized resources in the development and operation of<loud native applications. A cloud native
hpplication is an application that is explicitly designed-tfoe/run within and to take advantage of the

[rdware

resources identified in ISO/IEC 17789:2014,9.2.4.2[2Mbf processing, storage and networking hut also

— Virtualized processing is addressed by virtual machines (see Clause 6), by containers (see Clause 7),

— Virtualized storage is addressed byumeans of a variety of Data Storage as a Service (see Clayse 12).

— Virtualized networking is onelof the primary groups of technologies for the provision and use of

— The Platform as a Seryice category of cloud services are designed to enable more rapid develgpment,

though
ce (see

——viTtual macines;

— containers;

— virtualized storage;

— virtualized networking;

— security.

© ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

ISO/IEC TS 23167:2020(E)

5.2.3 Platform capabilities cloud services

Technologies commonly used with platform capabilities type of cloud services include:
— containers;

— serverless computing;

— PaaS cloud services;

— virfuatized storage;
— virfualized networking;

— sedurity.

5.2.4 |Application capabilities type cloud services

Technologies commonly used with application capabilities type of cloud services include:
— virfualized storage;

— virfualized networking;

— sedurity.

5.3 Techniques

The cofnmon techniques typically apply to all cloud service.categories, although some techniques are
more upeful with some categories of cloud service than-ethers.

Orchestration and management of virtualized resources is achieved with tooling, including CMSs (se€
Clause [0 and 7.4).

Techniques commonly used with cloud computing include:

— Automation of various kinds, applied throughout the DevOps processes (see Clause 10).
— Sc4lability approaches such as:parallel instances (see Clause 14).

— Migroservices design approach to applications and systems (see Clause 9).

— Firpwalls, encryptionj-and Identity and Access Management (IAM) techniques for security and
prqtection of privacyy(see Clause 15).

6 Virtual machines and hypervisors

6.1 (eneral

Virtual machines and hypervisors are technologies that provide virtualized processing (also known
as virtualized compute) for cloud services. These technologies primarily relate to cloud services of
infrastructure capabilities type and IaaS as described in ISO/IEC 17788 and ISO/IEC 17789.

One of the key characteristics of cloud computing is its ability to share resources. This is fundamental
to its economics, but it is also important to characteristics such as scalability and resilience. Sharing of
processing resources requires some level of virtualization. Virtualization in general means that some
resource is made available for use in a form that does not physically exist as such but which is made to
appear to do so by software. In other words, virtualization provides an abstraction of the underlying
resource, being converted into a software defined form for use by other software entities. The software
performing the virtualization enables multiple users to simultaneously share the use of a single physical

6 © ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

ISO/IEC TS 23167:2020(E)

resource without interfering with each other and usually without them being aware of each other. (See
ISO/IEC 22123-1:—, 5.5).

One approach to the virtualization of processing resources is the use of virtual machines, which
involves a hypervisor providing an abstraction of the system hardware and permitting multiple virtual
machines to run on a given physical system, with each VM containing its own guest operating system
(guest 0S), as shown in Figure 1. This permits the system to be shared by the applications running in
each VM.

Funs the VM offers the capability for the CSU to load software from a VM image and run thé software
vithin a VM on the CSP system. The VM is managed by the hypervisor, but this is not seendirgctly by
the CSU.

6.2 Virtual machines and system virtualization

A virtual machine (VM) is an isolated execution environment for running software that uses virtualized
bhysical resources. In other words, this involves the virtualization of the system - and the softwar¢ within
pach VM is given carefully controlled access to the physical resources to enable sharing of those rdsources
ithout interference. Sometimes termed system virtual machines, VMs,provide the functionality ndeded to
pxecute complete software stacks including entire operating systemsand the application code that yses the
pperating system (ISO/IEC 22123-1:—, 5.5.1). This is as depicted by the "guest 0S" and "App x'| within
pach VM shown in Figure 1.

The purpose of VMs is to enable multiple applications toryw/at the same time on one hardware fystem,
while those applications remain isolated from each.other. The software running within each VM
hppears to have its own system hardware, such as processor, runtime memory, storage device(s) and
hetworking hardware. Isolated means that the soffware running within one VM is separated friom and
hnaware of software running within other VMs»on the same system and is also separated fijom the
host OS. Virtualization commonly means that®@ subset of the available physical resources can He made
hvailable to each VM, such as limited numbers of processors, limited RAM, limited storage space and
rontrolled access to networking capabilities.

F.ach VM contains a complete stack ofjsoftware, starting with the operating system and continuipg with
iwhatever other software is required to run the application(s) that are executed within the M. The
software stack could be very simple (e.g. a native application written in a language like C, usipng only
functions supplied by the operating system itself) or complex (e.g. an application written in a language
such as Java™ which requitres a runtime and which makes extensive use of libraries and/or dervices
which are not present-in'the operating system and which have to be supplied separately).

Fach VM can in prineiple contain any operating system. Different VMs on a single hardware system can
run completely-different operating systems such as Linux® and Windows®. The only requirement is
fhat all the softWware running within the VM is designed for the hardware architecture of the underlying
system —the hardware is virtualized, but not emulated. So, for example, code built for an ARM prpcessor
will not’xun in a VM running on an Intel x86 system.

b(3) Hypervisors

6.3.1 General

The hypervisor, sometimes termed a virtual machine monitor, is software that virtualizes physical resources
and allows for running virtual machines. Virtualization means control of the abstraction of the underlying
physical resources of the system. The hypervisor also manages the operation of the VMs. The hypervisor
allocates resources to each running VM including processor (CPU), memory, disk storage and networking
capabilities and bandwidth (ISO/IEC 22123-1).

Hypervisors exist as one of two types:

— "Bare metal", "native" or "type I";

© ISO/IEC 2020 - All rights reserved 7

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

ISO/IEC TS 23167:2020(E)

"Embedded", "hosted" or "type II".

Type | hypervisors can be faster and more efficient, since they do not need to work via a host operating
system. Type Il hypervisors may be slower, but have the advantage of being typically easier to set up and
are compatible with a broader range of hardware than type I hypervisors, since hardware variations
have to be dealt with in the type [hypervisor code, whereas the type Il hypervisors take advantage of
the hardware support built in to the host operating system.

6.3.2 Typelhypervisors

Type | }lypervisors run directly on the underlying system hardware and control that hardware di@%
as welllas managing the VMs. The organization of a system using a Type [hypervisor is Shﬁ/ in

Figure [l /\ A

Type Hypervisor

Hardware

Figur c‘) e | hypervisor virtualization of system hardware
g p yp y

S

6.3.3 [Typell ervisors

Type I1|h ']% sors run on top of a host operating system, more specifically the host OS kernel. It is
the host ratlng system that controls the system hardware, while the hyperv1sor makes use of itg

b l £l AWAV Tl £ +L 1L
Capa 1 LIUD LU IuIlr auu ulauasc LIIC VIVIS. 11IC Ul SalllLaLlUll Ul da DyDLClll VVlLll d ly PC 1T lly lJCl VlDUl l..

shown in Figure 2.

8 © ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

ISO/IEC TS 23167:2020(E)

Host OS

App 1 App 2 App 3

Guest OS Guest OS Guest OS

VM 1 VM 2 VM 3

Type |l Hypervisor

Host OS Kernel

&
Hardwa;&Q

S
N\
Figure 2 — Type Il hypervisor vilsﬁ}alization of system hardware

\‘QQ)

N

.4 Security of VMs and hypervisori\@

For hardware systems, the operating@tem runs at the highest privilege level since it must|control
hecess to all hardware resources. Hoiwever, in a hypervisor host, since the hypervisor must control all
hccess to CPU and memory by guest' VMs (providing processor and memory virtualization), iff should
Fun at a privilege level higher than all VMs. To facilitate this, hypervisors are installed on hajrdware
kystems that provide assistance for virtualization. Specifically, the hardware system provides two
processor states: root %1’@ rvisor) mode and non-root (guest) mode. All guest OSs run in njpn-root
mode while the hypervisor alone runs in root mode.

Pespite the hard‘@e support for virtualization, the runtime process isolation for VMs provjded by
the hypervisor ¢euld be subverted by rogue or compromised VMs which have gained access to areas
bf memory ging to the hypervisor or other VMs. Rogue or compromised VMs exploit [certain
hypervisordesign vulnerabilities with respect to certain software structures such as virtual machine
control @ k (VMCB) and memory page tables which are used by the hypervisor to keep frack of
the e%\ tion state of VMs and memory mapping from VM addresses to host memory adfresses
e tively. These vulnerabilities of hypervisors have been known for some time and as a result, many
pfthe vulnerabilities have been addressed or are being addressed. More recent hypervisor versions
have been updated and hardened. The CSC and CSP should check that any hypervisors in use are up-to-
date and hardened against known security vulnerabilities.

Another security implication in a hypervisor host platform stems from software used for providing
device virtualization. Unlike instruction set and memory virtualization, device virtualization is not
directly handled by the hypervisor but by using supporting software modules. Primary sources of
vulnerabilities include: (a) code emulating physical hardware devices running in the hypervisor as a
loadable kernel module and (b) device drivers for direct memory access (DMA) capable devices which
can access memory regions belonging to other VMs or even the hypervisor.

© ISO/IEC 2020 - All rights reserved 9

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

ISO/IEC TS 23167:2020(E)

Potential downstream impacts of a rogue VM taking control of the hypervisor include the installation of
rootkits or attacks on other VMs on the same hypervisor host. All device virtualization software should
be verified against security flaws before installation and use on a system using a hypervisor and VMs.

6.5 VM images, metadata and formats

A virtual machine image (VM image) is a package of data that contains the information and executable
code necessary to run an instance of a VM. The VM image is used to instantiate a new instance of a VM,
as required. The VM image can include the complete software stack required to run an application,
starting with the operating system, libraries, runtimes, the application code itself, configuration files
and other metadata used by the application. The VM image can also include metadata associated.with
the insfantiation of the VM itself.

The VM metadata contains information about the configuration and startup of the VM; This might
include| properties of the VM such as RAM size, CPU requirements and so on. The VM. metadata alsq
typically references the disk images contained in the VM image, in particular indicating‘how they areg
deploy¢d into a VM instance.

The comcept of the VM image is that it should contain all the entities required to-Tun an instance of g
VM, where the VM image is used as input data to a hypervisor to enable it to\create and start the VM
Broadly, the VM image consists of two sets of data - firstly, VM metadata and-secondly disk images. It is
important to understand that there are in existence many different formats of both VM metadata and
disk imjages. A particular hypervisor used to instantiate a VM might énly understand specific formatg
for the|VM metadata and disk images. Some of the formats are proprietary, while others are open o
standafdised. See Annex A for information about VM image formats.

VM imdges are based on data held in files - files on filesystems, which are held in the VM image as ong
or mor¢ disk images. These files can be those of the opefating system, the application and any other
part of[the software stack that is required. There is atleast one disk image, but there can be multiplg
ges if this is the organization of files that is uised by the application and its software stack. It is
often the case that the volume of data held in the disk images is very large and as a result, the formatg
used to|store the data involve the use of compression in one form or another.

There are many VM image and disk image formats in use, a substantial proportion of which are
proprigtary or which are open source(Examples of standardised VM image and disk image formatg
include

— OVF ("Open Virtualization Férimat") (see ISO/IEC 17203:2017[18])

The OVF package has_d number of files placed in a single directory. There is an OVF descriptor
filg (with extension .evf) which has XML format contents describing the packaged virtual maching
including the metadata such as the name, hardware requirements and references to the othej
filgs in the package. The OVF package also contains one or more disk images, plus some optiona
filgs such as certificate files. The OVF image format has a relatively wide range of support, eithey
dirpctly orwia import/export tools.

— 1SQ disk’ format - the archive format used for optical disc contents (see ISO 9660[72] and
ISQ/¥EC 13346[731)

ISO 9660 is a file system for optical disk media, principally CD-ROMs.

ISO/IEC 13346 (also known as Universal Disk Format or UDF) is often used on DVDs and Blu-ray
disk (BD) formats and is particularly suited to recordable and (re)writable optical media.

Disk images are commonly compressed due to their large size, although there are cases where raw
uncompressed disk images are used to obtain better VM start up performance at the cost of consuming
more space.

Which VM image and disk image formats are accepted by a particular hypervisor are stated in the
documentation for the hypervisor.

10 © ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

ISO/IEC TS 23167:2020(E)

7 Containers and container management systems (CMSs)

7.1 General

Containers are a technology that can provide virtualized processing for cloud services. The technology
relates both to infrastructure capabilities type and to platform capabilities type of cloud services as
described in ISO/IEC 17788 and ISO/IEC 17789.

Containers provide a software execution environment through virtualization of the operating system

ernel running on a system. Containers represent another approach to the provision of a-s¢ftware
bxecution environment using the virtualization of compute resources. Containers .jnivolve the
virtualization of the OS kernel, as compared with the virtualization of the system hardwate involved
with VMs. The goal of containers is to permit multiple different sets of software to run ofi a-single[system
ht the same time without interfering with each other, i.e. they permit secure sharingofthe system.

A cloud service supporting containers offers the capability for the CSU to load seftware from a container
mage and run that software within a container on the CSP system. The container is managed elther by
the CSP or by CSU, depending on the capabilities type of the cloud servige, In either case, it is|typical
Fhat management is performed by means of a CMS (see 7.4).

7.2 Containers and operating system virtualization

7.2.1 Description of containers

A container is an isolated execution environment for running software that uses a virtualized operating
cystem kernel. Containers run within an operating system which is termed the host operating|system
[host OS).

As described in 6.2 a VM presents a virtualized version of the system hardware to the softwarg within
the VM. Access to the virtualized hardware gésources is mediated and the software within the ¥M only
bets to see and use a carefully controlled and limited version of those resources (e.g. limited number of
CPUs, limited number of threads, limitéd"-RAM).

n the same way, a container piésents a virtualized version of the host OS kernel. Access to the
virtualized resources of the OS kernel is mediated and the software within the container get$ to see
hnd use a carefully controlledand limited version of the OS resources.

The isolation of the exécuition environment means that the software running within one container
s separated from amdyunaware of software running in other containers, and is also separatgd from
Lhe host OS. The oy software running outside a container that can access or affect software funning
nside a containéris the container daemon.

Figure 3 shows three containers running on the system hardware. The physical system has |ts own
host 0S.<Each container contains its own application software (App x), and runs that softwareg in one
pr more-0S processes using resources such as memory, CPU, storage and networking, isolated from the
bthér'containers running on the same system, but all sharing the kernel of the host OS.

TIIC kCl 1161 Uf L}l€ hUbL GS ib 1L)Cillg bildl Cd by dH LllC LUIlLdillUl S, WhiLh beCllLidny HHICdILS Llldl, Llltf S used
by the software in the containers must be compatible with the host OS kernel. This can allow for the
different containers to potentially use different variants of the Linux OS where the host OS is a Linux
variant, for example, but it does not allow for the Windows OS to be used within a container if the host
OS is a Linux variant (and vice-versa).

The containers are created and managed by a container daemon, which runs as a separate process in
the host OS.

© ISO/IEC 2020 - All rights reserved 11

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

ISO/IEC TS 23167:2020(E)

Host OS

Container
daemon

App 1 App 2 App 3

Container 1 Container 2 Container 3

Host OS Kernel

Hardware <& o

Figure 3 — Container virg&ﬁ«ization

The software stack running in each container can Vav®ut typically it contains the application itsel
("App x[') and whatever software dependencies that t@e application has. In principle, the software stack
could b quite "lean", especially where the applicatiéon code depends only on functions supplied by thg
host O kernel. However, it is the case that the tainer code can include elements of the OS outside thd
kernel, such as libraries and utilities, particQg y if the application code depends on specific versions of
these lipraries and utilities. \\Q

Note thiat the host operating system used by containers could itself be running inside a virtual machine
rather than directly on the physical hardware. Software running in the containers is unaware of
whethgr the host operating sys@is running in a virtual machine or not.

7.2.2 |Container daem O
N

The coptainer daemofi'is’a software service that executes on the host operating system and which is
responsible for cr and managing containers on that system. A particular container is an executable
instande of a so re stack that is held within a container image (see 7.3 for a description of container
images). The ainer image includes metadata and parameters used by the container daemon. The
contai er,di?mon uses the container metadata to specify certain capabilities of the container and if
uses th €9n ainer service parameters to affect how a container is instantiated and run.

The container daemon offers a service interface through which its capabilities can be invoked by client
applications. Client applications can run on the same system as the container daemon or can run on
remote systems and invoke the capabilities of the container daemon over the network.

The container daemon offers a set of container operations:

— Create: this operation creates a new container. The operation references the container image to use,
instantiated in a filesystem directory (termed a "bundle") accessible by the host operating system.
Creating the container allocates a set of resources to the container and configures the container as
described in the container metadata held in the bundle. The container is given a unique ID, by which
it is later referenced.

12 © ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

ISO/IEC TS 23167:2020(E)

— Start: this operation starts the container by running the application program specified for the
container, with whatever parameters are supplied by the metadata relating to the container.

— Kill: this operation stops the program(s) running in the container. This is typically done by sending
a specific signal to the process running in the container.

— Delete: this operation deletes the resources allocated to the container and destroys the container.
The unique ID no longer identifies a container, although the same ID might be used later to create a
new container.

Che container daemon typically also offers an event interface, which enable the container dagmon to
Feport on significant events relating to the containers which it manages. The event interface allgws one
br more client software components to listen for particular events and react to them.

7.2.3 Container resources, isolation and control
A container provides a software execution environment, which is isolated and@esource controlled.

solation means that the software running inside the container is given the illusion that it has the
cystem all to itself - that the only process(es) that exist are the ones started within the contginer. In
Feality, there may be many other processes running on the same system, but the software within the
container is not aware of them and cannot see them or interact witlithem.

Resource controlled means that the set of resources available’ to the software in the contaiper are
hllocated to the container (by the container daemon) whenthe container is created and these refources
hre monitored and limited. These resources include GPU”allocation, runtime memory, networking,
filesystem(s). It appears to the software in the container that only these resources exist. The refources
hre allocated in such a way that the resources allocatedto one container cannot interfere with resources
hllocated to other containers running on the same $ystem.

The isolation and control of resources are handled through capabilities of the host operating fystem,
exploited and managed by the container\daemon. The detailed capabilities available and used for
rontainers vary from operating systef to operating system. The capabilities used on th¢ Linux
pperating system are described in this.document for illustration. Consult the documentation relating to
pbther operating systems to understand the equivalent capabilities.

mage used to create the centainer in read-only mode, plus the addition of a read/write containgr layer.
Che default filesystem {5 transient and the container layer is deleted when the container is gleleted.
Additional, usually permanent, storage facilities can be made available to the software within the
rontainer through €he“configuration of the container by the container daemon, either as mountg to the
filesystem within-the container from some location outside the container, or via the provision of one
br more specific)storage services (which are typically cloud storage services). If there is a need| for the
coftware in.the container to access storage objects that have a long lifetime, such additional storage
Facilities(are necessary. In all cases, the apparent location of the files and storage objects within the
Contaifier are mapped to actual locations outside the container.

For access to block I/0, the gontainer by default has access to a filesystem consisting of the Cj{tainer

Sitnilarly, for access to networking capabilities, the resources available to the code running in the
COTTtAITET are COMtrotted by the contaimer daemnol ard tie configuratiom appiied to the comtainer, i.e. the
networking capabilities are pluggable and configurable. It is possible to make no network capabilities
available to the container (i.e. no exposed ports, no network devices available, so no routes to any target
network endpoints). It is also possible to control access to the container and access from the container
in detail.

Ports exposed by the container can be controlled and can be mapped between the network addresses
and ports exposed by the container and those visible externally. For example, the container can expose
port 80 for HTTP traffic, but this can be mapped to port 8080 for external (e.g. internet) access. In
general, IP addresses, ports, hostnames, MAC addresses, routing services and DNS services can be
controlled and mapped.

© ISO/IEC 2020 - All rights reserved 13

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

ISO/IEC TS 23167:2020(E)

One significant form of networking that is used with containers is where the network exclusively
connects a set of related containers, e.g. containers which represent a single application implemented
using microservices architecture with different components of the application running in different
containers. This is a form of virtual networking, where only designated containers can talk to each other
(other than any specific externally exposed endpoints) as if they were the only entities on the network.
The network is able to span across different systems and also across different underlying networks,
permitting great flexibility in the location of each container, i.e. container location transparency is
provided while still having the ability to control and limit communications for security purposes.

On Linpx;comntrotover resources s hamdted-through—acapabitity catted—controtgroupsorcgroups
cgroup$ provides control over resources available to sets of processes, including CPU, memory, [/0\tg
block dpvices (i.e. filesystems), access to devices, networking.

On Linux, isolation is implemented through namespaces. Effectively, any resources aceessed by
one conjtainer are part of one namespace, while the resources accessed by other containers are each
allocat¢d to other namespaces. The namespaces operate in such a way that software running in 3
procesg which is started under one namespace can only see resources within that nafmespace.

The following kinds of namespace exist in Linux (as from Linux kernel 4.10):

— Intprprocess Communication (ipc): relates to interprocess communicatigh. Only processes within
thg same namespace can establish communication (e.g. allocate sharédmemory).

— Mojunt (mnt): relates to mount points, i.e. places where (additional) filesystems are mounted. An
initial set of mounts is available when the container is created\by the container daemon, but aftey
that, any new mounts are only visible within the container.

— Network (net): contains network related resources su¢has interfaces, IP addresses, routing table
sodket listing, connection tracking table, etc.

— Prqcess ID (pid): contains a set of process IDs - the first process in the namespace has id
number 1 - and this process has special treatment equivalent to the init process on the underlying
op¢rating system.

— Usgr ID (user): provides user IDs enablifig both user identification and also privilege control - the
usgr namespace maps user IDs within' the namespace to user IDs in the underlying system - this
allgws close control of privileges and can provide for higher privileges within the namespace which
arg not provided for any resources outside that namespace.

— UTSP: enables different processes to appear to have different host and domain names.

The combination of cgreips and namespaces together provides the resource control and isolation
requirgd for containers!

7.3 Container iinages and filesystem layering

7.3.1 |Image purpose and content

A COHt illCl iluagc ib dll CACLUtalU}C PGL}\GEC that \,uutaiua CVCl _ytllills t}ldt ib HHELTS5dly tU Uil bUftVle
such as an application or a microservice. This can include the code of the application itself, a runtime,
libraries, environment variables, configuration files and other metadata used by the application. The
aim is that the container image is self-describing and encapsulated so that a container daemon can take
the container image and create a container from it, without extra dependencies and regardless of the
underlying system ("infrastructure-agnostic") and regardless of the contents of the container image
("content agnostic").

The container image contains sets of files which represent the code of the application, its dependencies
and other files and metadata used by the application. The container image also contains structured
metadata about the container image contents themselves and how to convert those contents into

14 © ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

ISO/IEC TS 23167:2020(E)

a container. The container metadata can vary depending on the particular container image format
concerned. The container metadata described in the OCI Image Format Specification[?l includes:

— Image index. "Top level" metadata which has the purpose of supporting container images which
support multiple different platforms (this is sometimes called a fat manifest). Where multiple
platforms are supported, each platform has its own specific image that contains the artefacts to
use when running a container on that platform. Effectively, the image index references one or more
image manifests.

____Image manifest Contains information for a cing]n contalner imagn for a cpnr‘iﬁ'r CPU architecture
(=)

and operating system, consisting of a configuration and a set of layers.

— Image layout. Specific layout of directories and files within the image with metadata abjout the
filesystem layers.

— Filesystem layers. One or more serialized filesystems (i.e. structure of dirgttories and fiIes) and
filesystem changes (removed or updated files). The layers are applied on tep of each other t¢ create
a complete filesystem in the running container. (See 7.3.2 for a descriptionof filesystem layering).

The functionality behind the image index or fat manifests allows for a sifigle container image to provide
support for platform specific images. The platform can include ERU* type (machine architgcture),
pperating system type and potentially operating system level. Thits;"a single container image| can be
structured to enable the delivery and deployment of the same application to a number of different
farget systems.

Dne of the typical characteristics of the container metadata contained in container images ig that it
provides extensive security features aimed at ensuring ‘that the content of the container image has
hot been tampered with since its creation. Data lefigths are recorded, along with digests of the data
[essentially a collision-resistant cryptographic hastiof the bytes of the data). The data concerned can be
the content of the filesystem layers, or elements‘of the metadata. The digest can also serve as ajunique
dentifier for the content, which can also be-tsed to support content-addressable access to the data.
Separate secure communication of the digest to the user of the container image permits verificpation of
the content of the container image evenfjit is retrieved from an untrusted source.

7.3.2 Filesystem layering

Container images, and the containers generated from them, make use of the technology of fildsystem
ayering when dealing withithe files they contain.

Filesystem layering isyan approach to creating the content of the filesystem used by the coptainer.
Che principle is thatthe filesystem content is built up as a stack of layers, each containing some set of
irectories and files, all having a common root directory. Directories and files are contributgd from
pach layer in-fupn, starting with the base layer and proceeding upwards through the stack of layers.
Fach succeeding layer can contribute new files, but can also replace a file in a lower layer with a djfferent
version, Qriit can remove ("obliterate") a file present in a lower layer.

Filesystem layering allows for efficient handling of files in container images. Filesystem layering is also
h (practical approach to the creation of container images, given that typical applications have S(l)ftware
Stacksasdependencies witichrenmabte thenT to TuT-

Consider the example of a node.js application. The code of the node.js application might be contained in
an app.js script file, plus other script files, data files and configuration files. The node.js application has
a dependency on a node.js runtime plus some series of (external) packages. In turn, the node.js runtime
depends on various operating system libraries.

In a container image for the node.js application, this could be rendered using 3 layers (starting with the
topmost):

— the app.js script and associated artefacts constitute the topmost layer;

— the node.js runtime and associated packages form the next layer;

© ISO/IEC 2020 - All rights reserved 15

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

ISO/IEC TS 23167:2020(E)

— the operating system libraries form the bottom layer.

Note that the operating system kernel does not need to be present in the container image. The operating
system kernel is provided by the host operating system on which the containers run.

Layering reflects an efficient process for building (creating) container images. While it is possible to
create a container image with a single layer containing all the necessary files, it can be much more
efficient to separate the software stack used by an application into separate layers, since the application
and each of its dependencies are typically separate independent sets of files, as described for the node.
jS applirafinh nvamp]n

One coptainer image can be built using as the base (or "parent") another container image. Therefore
using the node.js application example again, the first container image built can be one for the operating
system| Then a second container image can be built for the node.js runtime and its associated ‘packages
using the operating system image as its parent. Finally, a third container image can be bujltfor the app
js appliration using the node.js runtime as its parent. Each parent image provides the lower layers for
the new image built on top. Therefore, in the example, the operating system libraries become the lowest
layer, the node.js runtime the middle layer and the app.js application the topmost layer.

This enjables each image to concern itself only with its own needs. For example)/if the node.js runtimg
does ndt need all of the files from the operating system libraries, it can deletéyunneeded files. The main
conceri when building a container image thus becomes the question of which base image(s) to use.

Filesystem layering applies to containers as well, with a twist. When the container is instantiated
from a pontainer image, the same filesystem layers are built up as-in the container image, but they are
treated|as read-only. These layers are called the image layers. The application running in the containej
cannotmodify the files in the image layers. However, an additional writable layer is added on top of thg
layers present in the container image - this is called the container layer (called the sandbox layer in
some cintainer environments). All changes to files madedy’'the application running in the container are
writter] to the container layer, whether creating new files, modifying existing files or deleting files. Thig
implies|a copy-on-write strategy for files in the container.

A consgquence of read-only image layers and thie copy-on-write strategy is that the image layers can bd
shared petween different containers, savingjon'storage and runtime memory and reducing the start-up
time for containers.

7.3.3 [Container image repositories and registries

The capability to store and td_access container images is a key aspect of the container ecosystem
Individpal container images are typically used in multiple different systems, for example to support
scalability and to enable redundancy for improving availability. The recommended process for building
images|also places an eniphasis on accessing existing images which form the parent image for the one
being bpilt.

Re-use|is encoutaged in the container ecosystem. The container images for common elements of thg
softwafe stack(s) used by applications are used as the parent images for many applications. Typica
examples are those for operating system libraries and those for middleware and runtimes. It is highlyj
likely thatthe container images for these software packages will be (re)used over and over again in the
container images for applications that use those software packages in their software stacks.

It is typically better and less work to reuse a container image created by someone with expertise in the
software package concerned than to create a new image for that software package. In addition, such
images are typically kept up to date with revisions to the underlying software.

Providing a capability to store and to access container images is the responsibility of a container
registry. Container registries can be provided as public cloud services or can be provided as a private
cloud service. An example of a public container registry service is Docker Hub[8%l. Container registries
have service interfaces which at least provide for push and pull operations. The push operation uploads
one or more images to the registry while the pull operation downloads one or more images from the
registry.

16 © ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

ISO/IEC TS 23167:2020(E)

A repository is a collection of related container images. An example of a collection of related container
images is a set of container images for operating system libraries for a specific operating system, where
each image is for a specific version of that operating system.

For example, a container repository could contain a set of four container images with names some_os
_libs:16.01, some_os_libs:16.02, some_os_libs:16.03, some_os_libs:latest. In this (simple) case, the repository
has four entries for different versions of the operating system, each with a tag indicating the version

number. The version tagged "latest" actually points to the same container image as the one tagged
"16.03".

Che reason for this arrangement is that when other container images want to always use(the latest
version of the operating system container image as a parent, they can use the "latest!tag when
retrieving the image and this is automatically updated when new container images of later versions of
the operating system are uploaded to the container registry. Other uses for the tags-applied t¢ image
Fepositories are to make images designed for specific target environments, altheugh fat njanifest
mages are an alternative approach to achieve this capability.

7.4 Container management systems (CMSs)

7.4.1 General

As described in 7.2.2, it is typical of the container daemon ard related tools to provide capgbilities
fo manage the lifecycle of a single container. However, the, deployment of typical cloud computing
hpplications usually involves the deployment and operation of multiple containers often on multiple host
cystems. An application can involve multiple instances of'a particular container running in parallel, both
Lo provide redundancy against the failure of a single instance and also to provide scalability tolhandle
the workload of incoming requests. An application can-also involve multiple different componengs, with
pach component running in its own container instance(s), through the use of microservices architecture
pr the separation of capabilities in multiple tiers such as a web application using a database] A CMS
prchestrates and manages defined sets of containers.

The CMS can abstract the underlying)infrastructure, treating the set of containers as d single
Heployment target, while at the same-time enforcing policies for deployment such as the separption of
parallel container instances for redundancy and failover purposes.

Various CMSs are available and in common use, including Docker SwarmlZ2], Kubernetes1Zl, |Apache
Mesosl2Z], HashiCorp Nomadf®8l, and CloudFoundry (a Paa$S system)[22],

7.4.2 Common CMS)capabilities
The common capabilities of a CMS include:
h) Orchestration

CMSs“provide for orchestration of container instances, including initial creation and plagement,
scheduling, monitoring, scaling, updating, and the parallel deployment of capabilities such|as load
balancers, firewalls, virtual networks and logging capabilities.

In essence, the CMS orchestration tools can abstract the underlying infrastructure, treating the set
of containers as a single deployment target, while at the same time enforcing policies for deployment
such as the separation of parallel container instances for redundancy and failover purposes.

Orchestration is the key component a CMS requires to support scale, since scale requires efficient
automation.

b) Scheduling

The scheduler ensures that demands for resources placed upon the infrastructure can be met at
all times. The scheduler selects the node based on its assessment of resource availability, and then
tracks resource utilization to ensure the component does not exceed its allocation. It maintains

© ISO/IEC 2020 - All rights reserved 17

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

ISO/IEC TS 23167:2020(E)

d)

f)

g)

h)

18

and tracks resource requirements, resource availability, and a variety of other user provided
constraints and policy directives.

Monitoring and health checks

Automation is the essence of cloud computing systems, especially where fault-tolerance and rapid
scalability are concerned. Such automation can only be provided for production systems by means
of the CMS continuously monitoring the application's distributed set of containers and evaluating
their health.

This capability enables faults and failures to be detected and actions taken to ensure that thg
dedired configuration of the application is maintained, as defined in the declarative configuration
This can involve removing failed instances and starting new instances.

Aufoscaling

Mopitoring can support the dynamic scaling of the resources applied to the application to match
thg incoming workload, with the aim of keeping the resources deployed to the miihimum necessary
to gervice the load, since cloud computing is often charged on the basis of theTesources used.

Regource management

In 4 CMS, aresource is a logical construct that the orchestrator can jinstantiate and manage, such asg
a service or an application deployment.

(Virtual) networking

A typical application consists of multiple separate compohents which act together to provide the
furlctionality of the application. The separate components typically need to communicate with
eadh other via networking, since the componentscoften run in different locations. The CMS ig
responsible for setting up the necessary networking to enable the components to communicate
The networking is often virtual networking, removing the need for the components to understand

the result of updates to the software stack used by the appllcatlon code, such as runtimes. The
CMS typically manages the upgrade to provide zero downtime, through a phased introduction of
instances using the updated code and removal of instances using the older code.

Declarative configuration

[t is common for CMSs to provide a means for the DevOps team to configure the orchestration for
an application declaratively, using a defined schema written in a language such as YAMLI81l and
JSONI82], Declarative configuration usually also contains essential information about container
repositories, networking configuration, storage facilities and security capabilities that support
the application. The declarative configuration is essential in enabling the CMSs to automate the
process of managing the application and its components. In essence, the declarative configuration

© ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

ISO/IEC TS 23167:2020(E)

indicates to the CMS the desired configuration and the CMS aims to both create and then maintain
that configuration, deciding on the actions required to achieve this using knowledge of the target

systems and internal deployment strategies.

8 Serverless computing

8.1 General

pther than providing CSC application code or providing CSC data. Serverless computing p

hpplications.

The underlying concept behind serverless computing started with functionsas a service, where

bn demand, without the CSC needing to preallocate and manage speecific machines, VMs or con
hnd any associated stack of software. Other kinds of cloud service are also available which fol
serverless computing model, notably serverless databases.

Another way of describing serverless computing is that itis'aform of platform cloud service cate
PaaS), since only the application code and/or data itselfis'supplied by the CSC, while all other re
hnd capabilities required to run the application are supplied and managed by the CSP.

t is typically the case that cloud services of serverless computing category scale automatically|
with incoming requests. Cloud services of serverless computing category often have fault-{
capabilities, such as the ability to place the‘€SC application code in multiple locations with au
fail-over when a fault occurs.

Serverless computing still needs sepvers in order to run, so in that sense, the name is a misnoms
s not required is allocation and inahagement of server resources by the CSC.

Serverless computing often has'a charging model that charges for work executed by the cloud
n a granular fashion, ratliey than a charge for allocated resources (e.g. a VM or a container). Th
rharging can be per APl call, or per HTTP request, for example. This can be viewed as a more ¢
Form of "pay as you go")charging.

Che benefits of serverless computing to the CSC can include:

— reducedoperational costs, particularly lower costs associated with scaling to meet)

costsbeing related to allocated resources. Also, required software stacks do not need handlj
tyipically the case when using VMs and containers.

Serverless computing is a cloud Service category in which the CSC can use different cloud cap{bilities

Lypes without the CSC having to provision, deploy and manage either hardware or softwarereqources,

ovides

hutomatic scaling with dynamic elastic allocation of resources by the CSP, automadtic” distijibution
hcross multiple locations, and automatic maintenance and backup. Serverless computing capgbilities
hre triggered by one or more CSC defined events and execute for a limited time-period as reqyired to
deal with each event. Serverless capabilities can be invoked by direct invocation from web and mobile

he idea

s for the CSP to allocate appropriate runtime resources required for-CSC application code dynamically

tainers
low the

rory (or
bources

to deal
olerant
fomatic

r. What

service
brefore,
xtreme

yarying

workload, since charging is directly related to the work executed by the cloud service, rathler than

ngasis

concern themselves with any aspect of resource management including deployment and scal
application code can simply be uploaded and executed.

| P - | 1 b b= o | | . | 1 dndns - el - o | 1
— ITUULTU UCVCIUPIIITIHIL LUSLS AU TTUULTU UTVEIUPIHITIIULIITIC, SIIILT LTI T 15 TTU TITCU 1TUT UTVTIU perS tO

ing, e.g.

— lower packaging and deployment complexity. In particular, there is no need to consider anything
except the CSC application code or CSC data. Any related software stacks are supplied by the CSP as

part of the cloud service and are not packaged or deployed by the CSC.

© ISO/IEC 2020 - All rights reserved

19

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

ISO/IEC TS 23167:2020(E)

8.2 Functions as a service

8.2.1 Overview

A common form of serverless computing is functions as a service (FaaS). FaaS is a form of serverless
computing in which the capability used by the CSC is the execution of CSC application code, in the form
of one or more functions that are each triggered by a CSC specified event. FaaS is also a form of Compute
as a Service (CompaaS) as defined in ISO/IEC 17788.

FaaS cdn execute customer application code wrItten In one or more programming languages. Each
FaaS clpud service supports applications written in one or more programming languages including
but not|limited to, C#, Go, Java™, JavaScript (node.js[Z8]), PHP, Python, Ruby, Swift. FaaS embodies the
capabiljty of platform as a service in providing the runtime software stack required by the application
code, meaning that the CSC is not required to deploy and maintain the runtime software'Stack. It i
typically the case that FaaS does not require the CSC application code to be written to uséyany specifig
application framework. In addition, FaaS takes on the responsibility of running the appli€ation and the
runtimg software stack on demand to service any events that trigger the application,

Effectiyely, FaaS aims to make infrastructure invisible to the developer of applications and services
When ysing FaaS$, the underlying servers, virtual machines and/or containgrs are invisible to the usej
of the dervice. The developer not only does not access them, they cannotaecess them, since they arg
automdtically managed by the CSP as part of the cloud service.

A signiflicant aspect of FaaS is that resources are only consumed whilé a particular function is executing
[tis typical that when an application uses a VM or a container in agompute cloud service, that each VM of
container instance that is running consumes resources continuously, whether it is executing incoming
reques{s or not. For FaaS, when there are no events being processed, no resources are consumed. As 3
result, this can mean less cost to the CSC, especially for léss frequently used functions. The FaaS$ fireg
up the hecessary resources (such as an underlying container) when an event trigger occurs for a given
functioh.

The aufomated management provided by FaaS is key - scalability is automatically provided. If thg
rate of |events for a given FaaS increases, thenthe resources allocated to that cloud service increase
automnlcyically to deal with those events, and,are deallocated once the rate of events falls.

A numper of serverless runtime cloud services are available, including Apache OpenWhisklel
AWS Lphmbal2], Azure Functionsl@ls Google App Enginel3], Google Cloud Functionsl®ll, IBM Cloud
Functidns(62], Oracle Fnl63].

8.2.2 |Functions within/FaaS

Using FpaS means writing one or more functions, where each function is a piece of code dedicated to ong
specifig task. It is tHis-dspect of programming a serverless runtime that gives rise to the name for thesq
cloud s¢rvices: Functions as a service (FaaS). In effect, this is a major change in the way that applications
and sefvices are’developed, embodying some of the principles of microservices architecture (see
Clause P). There are some principles that apply to functions and the way in which they execute.

Functidns=are stateless _which means that each function does not l(m:p any state between successivd
invocations of the function. Effectively this means that functions don't store any data themselves.
If a function needs to store and access data that has a lifetime longer than a single invocation of the
function, then the function integrates with one or more cloud storage services (see Clause 12).

Each function is executed when triggered by some event, where an event notification results from some
change of state, i.e. FaaS have an associated event-driven architecture and this involves asynchronous
behaviour relating to the sending and receiving of events. This approach can enable much greater
scalability and resilience for applications, especially when the applications are implemented on
distributed systems.

20 © ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

ISO/IEC TS 23167:2020(E)

Functions are time bounded in that they cannot execute for more than some specified time, as
determined by the CSP. The time limit varies from one FaaS offering to another but it is often a small
number of minutes. Thus, any long-lived tasks are not suitable for implementation as a function.

Related to the time bounding of functions is the question of function startup latency, i.e. the amount of
time it takes for the FaaS to make available a running instance of a function when an event occurs. This
can either involve a cold start, where a new instance has to be started from scratch, or a warm start
where the FaaS is able to reuse an instance used to handle a previous event. A cold start involves much
greater latency than a warm start. Cold starts are much more likely to occur for functions that are used
nfrequently sincethe FaaS—typicatty deattocates amrinstance that tras ot beemrusedfor moryg than a
biven (usually short) amount of time.

Fach function is made available via an APl and can be called either by a client entirely gutside tHe cloud
Eystem (e.g. an end-user application running on a client device) or by a client that is another pait of the
bverall application. Each function can be considered as a microservice and in tugn“each function can
Hepend on using other microservices to achieve its capabilities.

How events are described in data structures becomes a significant concern for functions|within
serverless runtimes. As a result, specifications have emerged to help destribe events in a clgar and
consistent way, such as the CloudEvents specification of the Cloud Natiyé.Computing Foundation[49].

Since it is possible to deploy a single function at a time, there is cottsiderable flexibility in the serverless
hpproach. Applications can be built one function at a time, each deployed and scaled independently.
This also implies an increase in the speed of development.@and deployment (there is no need [to wait
for the build of an application or of a service that containsimultiple capabilities) each capability can be
created, tested and deployed on its own.

B.2.3 Serverless frameworks

A serverless framework is a tool to assist in_the creation and deployment of functions for FagS cloud
services, in particular supporting deploymeft of functions to different FaaS offerings of different CSPs.

t is commonly the case that FaaS services are proprietary to a CSP, although there are sonje open
source FaaS implementations.

o deal with the problem of developing functions for deployment on any one of a variety of C§P FaaS
pfferings, serverless frameworks have been developed which enable the development of fulnctions
fhat can be targeted to different FaaS offerings on demand, taking care of the differences betwjeen the
bfferings, particularly ifi pespect of upload and deployment processes.

Examples of open_souirce serverless runtimes are Apache OpenWhisk[®l and Oracle Fnlé3]. An gxample
bf a serverless frantework is the open source Serverless Framework[39],

B.2.4 FaaS-relationship to microservices and containers

[Using Faa$ essentially involves utilising a cloud microservices architecture for applications. FaaS[implies
ising‘a "cloud first" approach to applications, very different in style from "monolithic” applications
which embody all functions in a single package.

Thus, using FaaS and functions is one way to implement a microservices-based application architecture,
but one that does not require the use of containers and the associated CMSs like Kubernetes.

However, it is possible to mix the use of FaaS with microservices implemented using containers (or
using VMs), with functions invoking container-based microservices and container-based microservices
invoking Faa$ functions as desired.

© ISO/IEC 2020 - All rights reserved 21

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

ISO/IEC TS 23167:2020(E)

83 S

erverless databases

Serverless database is a form of serverless computing in which the capability used by the CSC is a
database, where the database is provisioned, managed and operated by the CSP and its functions are
made available via an APIL.

With respect to serverless computing, the allocation of storage resources is managed by the CSP. The
amount of storage is automatically and dynamically scaled to match the amount of CSC data that is
placed into the database. Replication and backup is managed by the CSP, and this includes placing the

meathatic bt g Ao el o doro S d Sl loannin o

datain
in step
databa

Examples of serverless databases include Amazon Aurora Serverlessl®4], FaunaDBI¢2], Goegle Cloud

Firesto
NoSQL

9 Mikcroservices architecture

91 G

Microsg
applica
capabil
involve
deploye
applica

and compnected to each other via service interfaces. The concept is that the microservices within the

applica
procesg
each m
micros

NOTE

[69] whi
is a par
case thg
and thel

A simplle example of a microservices-based application is given in Figure 4. In this example, thd

applica
accoun
furthen
service
micros
micros
an ema

acationc ot lla £oom 1 o iehainmagaaada el a doro Snd o1 I3 PNEZCERE P24 PNEZPETY EPSPes
ULlALIVUITIO OUIlAauUICT 1IUIL UIIU UoL LIiI1Idli1o U\-llls IIIAdautcT Ul LIIC Uditd dIiIlu di1oJU I\L\—lJllls LIIC 111u1_11.u\. I \,l.lll\.(];_
with each other. Equally, the processing resources needed to service queries and updates to-the
e are also managed and scaled by the CSP.

el66] IBM Cloudantl€Z], Microsoft Azure Data Lakel68], Oracle Autonomous Databagel83], Oracle
Databasel84],

eneral

brvices architecture is a design approach for building a cloud native application. A cloud native
Lion is an application which is explicitly designed to run within and to take advantage of the
ties and environment of cloud services. Microservices arehitecture is an architectural style that
5 breaking up an application into independently deployable microservices that can be rapidly
d to any infrastructure resource as required01)[n the microservices architecture, the
Lion is divided into a series of separate processesealled microservices, deployed independently

Lion are designed to implement some specifictarea of function, perhaps a particular business
or a specific technical capability. The architecture makes it possible to operate and to updatg
croservice independently. Microservices, architecture is thus the umbrella technique in which
brvices are the major components.

The terms service and service interface are used here with the definitions given by ISO/IEC 18384-1
Ch also provides a good explanation of service-oriented architecture of which microservices architecture
icular example. A service or a.microservice should be distinguished from a cloud service. It can be thg
t a microservice is impleménted as a cloud service, but this is at the choice of the application develope
e is no requirement to do'so.

Fion has a core_plus two microservices, one handling the business capability of handling user
s with the second handling displaying and controlling video sequences. The example goes
and showsthat microservices applications can also make use of other services, typically cloud
5 providing capabilities needed by the application. Therefore, in this example, the user account
brvice_uSes a database service to store and retrieve account information; the video display
erviceiuses a video storage service which stores the video sequences; the core application uses
I'service, a twitter feed service and an analytics service.

22

© ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

ISO/IEC TS 23167:2020(E)

Core Application

User account Video display
Microservice Microservice

Database

storage
service

service

Twitter
Feed
service

Email
service

Backing Services 6\
<&

Figure 4 — Example of application structuted using microservices architecture

t is important to understand that microservices architecture is a technique and that microgervices
hre the primary part of microservices architegture. This is separate from the technologies that might
be used to implement microservices. Micrdservices might be implemented using containers, ¢r VMs,
pbr using serverless computing and connected using some virtualised networking, but this is separate
from the technique used to build the applications.

Functional decomposition ofteniha domain-driven design context is the key to building a su¢cessful
microservice architecture. One ‘viewpoint regarding this architecture is that it is a refinemg¢nt and
cimplification of service-oriented architecture (SOA). Some of the characteristics of microgervices
hrchitecture are as followsH2l:

— Eacharchitectural'component called a “service” has a well-defined and explicitly published inferface.
— Each servicelisfully autonomous.

— Changirga service implementation has no impact on other services as communication between
services takes place using interfaces only (usually a REST interface).

— _The loose coupling and high cohesion between services enables composing multiple seryices to
define higher level services or applications.

Microservices based applications are contrasted with "monolithic applications”, where all the
components of the application are built and bundled together in a single process, which is more typical
of older, non-cloud, enterprise applications.

9.2 Advantages and challenges of microservices
The benefits[13114] of a microservice architecture are:
— Simpler codebases for individual services.

— Ability to update and scale each service in isolation.

© ISO/IEC 2020 - All rights reserved 23

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

ISO/IEC TS 23167:2020(E)

— Enable services to be written in different languages to meet the performance needs and ease of
development. This is termed "polyglot programming".

— Use of varied middleware stacks and even varied data tiers for different services (flexibility).

One of the advantages of using a microservices architecture is that each component of the application
built as a microservice can be scaled separately to match the load on that component alone. This differs
from a monolithic application approach. In a monolithic application architecture, all components are
deployed and operated as a single entity, with scaling only possible by scaling up/down the whole

applica ion. This can lead to resource innFFiPinhPy forthose rnmpnnnhfc of the app]irafinn that are no

under Heavy load.

PaaS systems make it straightforward to deploy each microservice independently and link) them
togethdr to create the full application. Each microservice can be managed independently: scaled
distribyited, updated.

Anothep advantage of using a microservices architecture is that each component pf the application
built ag a microservice can have a separate development lifecycle. This allows for“smaller application
components that can be modified, extended, tested and deployed more rapidly.

The indreased benefits come with challenges that need to be addressed12]tg\realize those benefits. A
brief discussion of these challenges is given below:

— Coinmunication optimization: Running an application in differen®)processes results in increased
cornmunication overhead due to API calls between services as.-compared to function calls within 3
prdcess. The overall strategy involves identifying the right protocol, response time expectations
timleouts and API design, with artifacts such as API Gateway (9.7), Circuit Breakers (9.6), Load
balancers (14.2) and Proxies (14.2).

— Seijvice discovery: This refers to the capability forservices to discover each other in a consistent
mapnner. It is necessary to have a standard and-consistent process for services to register and
anTounce themselves. The consuming servicés should be able to discover the end points and
locptions of other services. A specification-of how API gateways are configured to report servics
avdilability and enable discovery is necessary.

— Perfformance: Trying to fulfil one sirigle business functional requirement can result in orchestrating
mufltiple service calls together. This can introduce additional lag in response time. Further, data that
is firequently used by a single microservice can be owned by another microservice. This requires
datla sharing and synchronization capabilities to avoid communications overhead caused by datg
copying during service invoeations.

— Fault tolerance: This\is’the ability of the system to recover from a partial failure. Microservice
developers need to\provide mechanisms to gracefully recover or stop any failure from propagating
to pther parts ¢fithe system. Further, some services are run in multiple copies for scalability and
avdilability reasons. The number of copies, the version consistency among the copies, load balancing
mechanism.and the network locations are key decision factors for ensuring fault tolerance.

— Sedurity: A critical decision is deciding on the trust relationship between the microservices based
on |the various ways services communicate with each other. When invoking another service, g
service can use either a synchronous or asynchronous protocol. All these factors are to be taken into
consideration when assigning chains of authorization within access tokens. The communication
patterns among services should have specific and efficient authentication and authorization
mechanisms based on risk-based security policies. Increased communication between components
(as described under Communication Optimization above) calls for secure communication protocols
that meet the requirements for the application.

— Tracingandlogging: The process of decomposing monolithicapplications into various microservices
creates aneed for additional techniques and solutions in relation to debugging and profiling systems.
One feature that is needed is called distributed tracing which calls for the capability to track a chain
of service calls to identify a single business transaction or a single user request. A central logging

24 © ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

ISO/IEC TS 23167:2020(E)

system is typically required to obtain a wholistic view of system behaviour and this calls for an
aggregation capability to integrate log information from individual microservices.

Deployment: The proliferation of service processes requires automated mechanisms for deployment.
Scalability and system integrity are primary concerns in the deployment of microservices.
Containers are the predominant mechanism used for deploying microservices and the use of CMSs
(see 7.4) (which assign resources and implement the connection topology) addresses deployment
concerns. However, some of the assumptions and requirements in deployment models may not fit
well with the functional requirements of certain microservices based applications. An example is

0.3 Specification of microservices

0.4 Multi-layered architecture

41 dr £ PR | £ . - 1 o - -] 41 11
LIIC dS5SUIIIPLIOIT O SUALCIESSIICSS U d COLILAITICT TIOSUITE d HITICTOSCT VILE, WIICTC LIIC OVl dll Dystem/
application requirement calls for a stateful microservice.

Functional decomposition: While decomposing a monolithic application, there are,issues tq decide
such as:

a) the proper boundaries of different services, and

b) when a service is too big and hence needs to be broken up.

[he design of a microservices architecture calls for use of description diagrams and platform-neutral
description languages because of the heterogeneity involved in,design of the component microservices.
While UML is predominantly used for description diagrams, the following languages are generally used:

Standard Modeling Languages, such as RAML and YAML.
Standard Specification Languages, such as Javas¢ript (Node.js), JSON and Ruby.

Pseudocode for algorithms.

—

70]

Implementation-neutral interface specifi¢ation language, such as the Open API specification

Domain driven design[>4] and at_associated multi-layered architecturel®2] is a common pattefn used
n software engineering. By ‘dividing applications functionally into distinct layers, multi-layered
hrchitecture provides the following advantages:

Efficient collaboration

Each layer is.'developed by each layer's specialist: Web browser-based GUI is developed py Web
designers.and domain logic by Java™ programmers, for example. Specialists can concentfrate on
their owniconcerns with little interference.

Easypiaintenance

Each layer's program code is logically independent of other layers' program code. As Jong as
programmers don't break interfaces to other layers, it is flexible to change program code.

Reusability

One application is divided into smaller components in multi-layered architecture. Fine-grained
software components can be reused more easily than coarse-grained ones.

The use of multi-layered architecture is effective in microservices based applications. It has been
applied to applications developed using microservices and some practices relating to the use of multi-
layered architecture are available in the published literature (e.g. See Toby Clemsonl[27]). Although there
is no multi-layered architecture standardised for microservices, the layered architecture proposed in

© ISO/IEC 2020 - All rights reserved 25

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

ISO/IEC TS 23167:2020(E)

Domain-Driven Design[>2] has been referenced and the essence can be provided by means of four layers
of components as shown in Figure 5:

— User interface
The software component defines accepts requests from users and provides responses.
— Application

The software component defines an application's boundary. It is the endpoint for interaction with
clietlts and responsible for mediating requests and responses, invoking domain logic, and managing
trapsaction contexts.

— Domain
The software component implements business logic.
— Inffastructure

The software component encapsulates physical resources including data and provides the domain
laypr with an abstract interface for data access.

26 © ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

ISO/IEC TS 23167:2020(E)

nnnife—
Client M — =
(—
? 5 —
FTOUESS FITOCESS FTOCEeSS
V! M -
CService) [CService D) [CServige
Process Process Process

RpliEer @ Servigé Service

N\

D _ l Process l‘[
omain %

C)\\V

Infrastruct @ Process Process
Nnrrastructiure
O CService] |CService >
O
e el

Fignrp 85— Mnlfi-laypr architecture nused with microservices

N

Process

Process

Service Service

Each component shown in Figure 5 is a separate microservice, running in its own process and invoking
other microservices as necessary.

Monolithic web applications have previously been developed based on a multi-layered architecture
known as the model-view-controller pattern as shown in Figure 6. However, there are some differences
in the implementation of the multi-layered architecture between an application designed using
microservices and an application with a monolithic design, associated with software component
packaging and application runtimes.

© ISO/IEC 2020 - All rights reserved 27

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

ISO/IEC TS 23167:2020(E)

cl M=z
ient -—
_—
(=222 5 —
Yiew B —] Program |je——o
o)) =
S o
X -
) Q
& N
Controller c —| Program S
(o) —
= 5
8 lg
5 s
Model \\2_ Program Program </

Resource

Figure 6 — Monolithic'web application pattern

In monglithic application design, although:an application is designed and implemented based on a multi-
layered architecture, all software compenents are assembled in one software package and deployed in
one application runtime. Even if a_Web designer adds a trivial update to the GUI, the whole softwarg
packagg has to be built, tested ahid‘the server runtime has to be stopped to deploy the new software
package. This can be a lengthy process, even for a small change to the application.

On the|other hand, in a migroservices application design, each software component in each layer is
packaggd as a distinct migroservice and independently deployed to a distinct process. Each process can
be implemented using.a virtual machine or using a container or as serverless functions, each of which
can be §tarted andstopped separately. If each microservice is designed well in a loosely-coupled fashion
a develpper canupdate one component without having to build, test or redeploy other microservices
Micros¢rvicestarchitecture enables easy and flexible change of the application.

9.5 Skervice mesh

In microservices architecture, the number of microservices associated with an application can
become large. It is common in this case for each service to run with multiple instances with a cluster
configuration, each instance with a distinct process implemented as a virtual machine or a container.
The number of processes could become many times the number of services. This makes the overall
topology a complex network called a service mesh as shown in Figure 7.

28 © ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

Vv

A2

ISO/IEC TS 23167:2020(E)

l Process l l Process ll Process l

D s LT SO

PRI

h) Traffic management

— Canary release.

b) Service discovery .

— Service registr%}@.

— Service loc@.‘
£) Test Q)\

— Fa@?jection.
) Se@y

’&Y Authentication.

O

— Circuit breaker. (See ﬂ&)\\c\)jr

Figure 7 — Service mesh for a microservices\@sed application

[n order to run a microservices-based application and re
rhallenges presented by the service mesh:

N

— Fine-grained load balancing for a speci@ersion of microservice.

— Blue/Green deployment, in order $ date a microservice without stopping the applica

O

benefits, it is necessary to deal v

vith the

tion.

— Authorization.
— Encryption.

e) Telemetry

— Logand Trace integration.

— Metrics integration.

— Dashboard.

© ISO/IEC 2020 - All rights reserved

29

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

ISO/IEC TS 23167:2020(E)

There are alternative approaches to manage the service mesh: a) API and b) service mesh fabric. For the
API approach, application developers make use of a specific API in their programs in order to manage
the service mesh. However, to do this developers have to take the effort to implement non-functional
requirements as well as functional requirements and as a result, the application code involves non-
functional implementation details, which is against the "separation of concerns” principle of software
engineering and makes the code more complex and harder to modify. MicroProfile is an example of a
service mesh API[28],

Service mesh fabric is an application 1nfrastructure solution, located under the application layer and

mesh by manipulating traffic coming and going through itself. Then, the application program is freed
from tHe implementation of capabilities required to manage the service mesh. Istiol22] and Linkérdt32
are exajmples of service mesh fabric implementations.

9.6 (ircuit breaker
The cirfuit breaker is a design pattern, and also a software component based on that pattern[3l,

Circuit [breaker applies where one software component invokes another software component (such
as a mjcroservice) through an API call. The software components involved\are running in different
procesges and the API call typically takes place over the network. Such remate API calls can fail or hang
without a response. Where the target component is a commonly used service, this can lead to a cascadd
of failufes across the application or system.

The id¢a of the circuit breaker is that any such remote APL-¢all is wrapped by a circuit breaker
component which is effectively a part of the client software.component. When the client invokes thg
API cal], it is handled by the circuit breaker component which monitors for failures. When a failurg
state is|recognised, calls made to the API are given a rapid error response by the circuit breaker. The
circuit |breaker can also generate alerts for monitoring purposes under these circumstances. Thg
circuit preaker can continue to monitor the API and‘the target component for availability and resef
itself aytomatically once the problem clears.

The reqognition of the failure state can vary from one circuit breaker to another, and the circuit breaker
can haye settable parameters to control itschehaviour (e.g. an error threshold, a timeout threshold).

The cirfuit breaker does not remove the need for the client component to deal with the failure of the
API call, but it does make it easier to\develop appropriate handling mechanisms.

9.7 API gateway

An APl|gateway is a software component that can be used to provide a single integrated API to a set of
micros¢rvices that aré being used together by a particular client component. (See Microsoft, 2019[5¢l)

Each mficroservice/presents its own API, based on its capabilities. A particular client can be using 3
whole geries of\microservices to achieve its goals. It can get complex for the client software to dea
with al| the different API calls which need to be made to the different microservices involved. An AP]
gateway can present a simpler coherent API to the client software and 1nvoke the microservice APIs as

multiple d1fferent API gateways can be requ1red to satlsfy the requirements of different clients

10 Automation

10.1 General

Automation is a key feature of both the provision and the use of cloud services. Automation is
applied to the complete lifecycle, through design, development, test, deployment, production and
decommissioning. Automation is essential to achieve productivity and also to reduce the skills and
effort required to provide and use cloud services.

30 © ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

ISO/IEC TS 23167:2020(E)

One of the goals of automation is to reduce the effort and the burden to deploy applications and data
into cloud services, recognising that this is done on a relatively frequent basis, either to fix problems
or to provide enhancements to functionality. Automation is necessarily connected to the adoption of
a series of software engineering techniques, which while not specific to cloud computing have become
vital elements in the successful adoption of cloud computing.

10.2 Automation of the development lifecycle

One of the significant elements of automation is the adoption of either continuous deployment or
continuous delivery. Continuous deployment is a software engineering approach in which teams produce
coftware in short cycles such that the software can be released to production at any time’ and where
deployment to production is itself automated. Continuous delivery is similar to continuous 'depl¢yment,
bxcept that the deployment stage is initiated manually (i.e. the decision to deploy is made by alhuman
rather than some automated system - the deployment process itself is usually autemated). Generally,
Lhe use of continuous deployment or continuous delivery is also associated with theZadoption of DevOps
by the organization. DevOps involves a methodology which combines together s6ftware develppment
hnd [T operations in order to shorten the development lifecycle, enabling fréqueént delivery of fikes and
enhanced functionality closely aligned with business objectives.

Continuous deployment and continuous delivery place an emphasis~on developing software ip small
ncrements, with a strong emphasis on automated testing durifig and after build and deplpyment
cteps. Small increments are closely allied to the development of‘applications using microservicgs (each
microservice providing some part of the overall functionality) ‘and the use of separate (cloud) dervices
for more common functionality (e.g. database capability, méssaging capability).

Continuous integration is an inherent part of continugus deployment and continuous delivery] where
Heveloper updates to the codebase are made frequently and the codebase is built and tested rggularly
[often many times a day). Continuous integrationis’built on a base of test-driven development, with the
him of automatically running unit tests and integration tests to check that updates to the codebalse have
hot broken the code in any way and to give£apid feedback to the developers in the cases wheie there
hre problems.

Automated management is a key elenmient of operations for cloud services. Tasks such as r¢covery
pf failed software instances, scalihg up and down of resources, especially of parallel instances of
hpplication components, data replication and data back-up. All of these need to be automatefd when
ising cloud services or else it.is possible for these tasks to overwhelm operations staff.

An important extension‘of the DevOps approach is termed DevSecOps. For DevSecOps, gecurity
rapabilities are congsidered as an essential and integral part of the development and opdrations
processes. The ideais-to automate security tasks in parallel with the automation of developmpnt and
pperations tasks:that is central to DevOps. The increase in the pace of development and opdrations
fasks broughtd@bout by DevOps methodology is matched in DevSecOps by an increase in the |pace of
cecurity related tasks, throughout the lifecycle of an application.

10.3.Tooling for automation

[ools are an essential part of all stages of the development process.

Typically, tooling starts with a source control management (SCM) system, which holds the source
code and provides for controlled processes for performing updates on the code, including tracking all
changes. The SCM system forms the base on which the tools for build, test, delivery and deployment
operate. There are various SCM systems in use, however, the open source Git SCMI[32] is very widely
used, with a lot of associated tools, including host server capabilities.

An automation server is a tool used to automate the steps of continuous integration, continuous delivery
and continuous deployment. It is particularly useful for performing builds of the code from the SCM and
performing testing (unit tests, integration tests) on the built code. There are a number of automation
server tools available and in use, although the open source Jenkins tool[32] is commonly used.

© ISO/IEC 2020 - All rights reserved 31

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

ISO/IEC TS 23167:2020(E)

Security automation in support of DevSecOps can include tools that check code for vulnerabilities at
the point where the code is checked in to the SCM, and check for vulnerabilities via testing during the
build and during the continuous integration phase. This should also tie to the secure use of codebases
which satisfy dependencies of the application, e.g. middleware libraries, container images and backing
services. Such dependencies should be tied to security policies that determine which dependencies are
suitable for use, backed by appropriate testing and a management system that responds to notification
of vulnerabilities and the need to change to a later fixed version.

Conflguratlon management software is used to automate software prov1510n1ng, conflguratlon

The configuration management software tools vary in their architecture. Ansible uses an agentlesg
architefture, whereas the other tools are agent based (i.e. they require a software daemon installed on
the target nodes or on an associated server).

A key ¢lement of the deployment of applications in a cloud environment (is)orchestration, since it is
commopn for applications to consist of a significant number of separate’/components that must be
deploydd, configured and operated together. Automation of orchestration is the province of tools, such
as the (MSs as described in 7.4.

A key element supporting automation is the provision of the capabilities of cloud services through API{
(applicgtion programming interfaces). APIs enable the various tools to configure, deploy, control and
monitof each cloud service. This extends to the use of other tools via APIs, which includes tools such ag
Kubernfetes for the deployment of containers.

Applications that are deployed and running in prodiiction within cloud services should be monitored
and shquld be managed for performance and availability. Monitoring and management is typically dong
via APIp offered by the CSP. Tools to manage the restart of failed instances, tools to scale up and scalg
down the number of instances of a particulat-software component in response to workload changes al
depend| on such monitoring and manageient capabilities. It is the case that some of these capabilitieq
are thegmselves supplied as cloud serviees ("auto scaling", for example), but in other cases they arg
supplied as separate tools that mustbe'installed and configured.

11 Arghitecture of PaaSsystems

11.1 General

Platforin as a Service (PaaS) is a category of cloud services that involves the provision of platform
capabilfties, which is defined in ISO/IEC 17788 as capabilities in which the cloud service customef
can deploy, manage and run customer-created or customer-acquired applications using one or more
programpming languages and one or more execution environments supported by the cloud service provider

PaaS systems are primarily concerned with developing, deploying and operating customer applications.
Other capabilities are often involved, such as the use of application, processing, storage and network
resources, but they are not the main focus. PaaS systems typically involve diverse application software
infrastructure (middleware) capabilities including application platforms, integration platforms,
business analytics platforms, event-streaming services and mobile back-end services, plus sets of
tooling that support the development process (See Gartner, 2014 and Gartner, 2018). In addition, a PaaS
offering often includes a set of operational capabilities such as monitoring, management, deployment
and related capabilities.

PaaS systems are targeted at application developers and also at operations staff, also supporting the
combined concept of DevOps.

32 © ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

ISO/IEC TS 23167:2020(E)

One way of describing PaaS systems is that they represent a cloud service rendering of the application
infrastructure offered by entities such as application servers, database management systems,
integration brokers, business process management systems, rules engines and complex event
processing systems. Such application infrastructure assists the application developer in writing
business applications, reducing the amount of code that needs to be written at the same time as
expanding the functional capabilities of the applications. The essence of a PaaS system is that the cloud
service provider takes responsibility for the installation, configuration and operation of the application
execution environment (including any underlying VMs, operating systems, containers, runtimes,
libraries), leaving only the application code itself for the cloud service customers and their developers
fo provide. Thus, the essential ditference between an laad and a PaaS 1s that for laa5, the custoxtler has
Lo construct a VM image or container image to execute their application code, while a Paa$ provides
everything needed to upload and execute application code directly.

PaaS offerings also often expand on the platform capabilities of middleware by offering application
Hevelopers a diverse and growing set of services and APIs that provide specific functionplity in
h managed, continuously available fashion. This approach aims to obscure the fact that there is
middleware present at all, enabling immediate productivity for developers. Séme PaaS systems also
blend in features of laaS and SaaS cloud services, offering some control of-hasic resource allocqtion on
the one hand and providing complete off-the-shelf software capabilitieséonithe other.

n addition, PaaS systems typically provide their capabilities in a'way that enables the applications
Heveloped on them to take advantage of the native characteristics.of cloud services, often without the
hpplication developer having to add special code to the application itself. This provides an approach to
building cloud native applications without requiring specializéd skills.

11.2 Characteristics of PaaS systems
PaaS systems typically express a set of major characteristics:
1. Support for custom applications:

Support for the development, deployment and operation of custom applications. PaaS qystems
typically support cloud native applications that are able to take full advantage of the sgalable,
elastic and distributed capabilities of cloud infrastructure. This is often achieved withput the
application developer writing special code to take advantage of these capabilities.

. Provision of runtime environments:

PaaS systems generally offer runtime environments for applications, where each iruntime
environment supports either one or a small set of programming languages and framewofks, e.g.
Node.js, Ruby~ahd PHP runtimes. A characteristic of many PaaS offerings is support for a rfange of
runtime envitonments. This enables developers to choose the most appropriate technology for the
task in hand, sometimes termed a polyglot environment.

Runtime environments can include the use of containers (see Clause 7) and serverless corhputing
(seeClause 8).

B~ Rapid deployment mechanisms:

Many PaaS offerings provide developers and operators with an automated “push and run”
mechanism for deploying and running applications, providing dynamic allocation of resources when
the application code is passed to the PaaS cloud service via an API. Configuration requirements
are kept to a minimum by default, although there is the capability to control the configuration if
required, e.g. controlling the number of parallel running instances of an application in order to
handle the anticipated workload or to meet resiliency goals.

4. Support for a range of middleware capabilities:

Applications have a variety of requirements and this is reflected in the provision of a broad
range of application infrastructure (“middleware”) that supports a range of capabilities. One

© ISO/IEC 2020 - All rights reserved 33

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

ISO/IEC TS 23167:2020(E)

10.

34

example is database management, with both SQL and NoSQL database technologies provided.
Other capabilities include integration services, business process management, business analytics
services, rules engines, event processing services and mobile back-end services.

Provision of services:

PaaS systems often supply some capabilities as a series of separate services, typically invoked
via an API of some kind. Services are installed and run by the provider of the service, removing
responsibility and effort from the cloud service customer. For example, in the case of a database
Servir‘n, the rncpnncihi]ify for nncnring :nr:n']ahi]ify and rn]iahi]ify, for hnving rnp]irac and h:u‘lznp
of the database data, for securing the data and so on all falls on the service provider. Providey
serjvices are an essential concept in reducing the effort and complexity in building software
sydqtems, rather than having to install and manage some potentially complex set of software, the
capability is obtained off-the-shelf from the provider.

Prdconfigured capabilities:

Malny PaaS systems are characterized by capabilities that are preconfigured by the provider, with
a nmpinimum of configuration available to developers and customer operatidgns staff. This reduces
corpplexity, increases productivity and lowers the potential for unexpected problems, with
capabilities simpler to manage and easier to debug. Some offerings can atitp-tune such configuration
baged on usage patterns and loads; this further reduces the expertisé-and time required to run the
applications in the most efficient manner.

AP| management capabilities:

Business applications often need to expose some capabilities via APIs. This can be required by
thg nature of the user interface to the application. Mobilé apps usually need an API so that while
opé¢rating independently of the business application,@hey can access data and transactions when
required. In other cases, part of the enterprise “solution is to enable other parties (partners
cuqtomers, suppliers) to integrate their own-applications with those of the enterprise. Such
integration is done via an API. Providing an API'requires a level of control, so that only authorized
usdrs can access the API and each user,can only access those capabilities for which they havs
permission. This requires some API management capabilities and APl management capabilities are
offered by many PaaS systems.

Sequrity capabilities:

Sedurity is one of the most-important aspects of any solution. PaaS systems usually provide built;
in gecurity capabilities, thus reducing the load on developers and operators. Capabilities include
firgwall, endpoint mapagement, secure protocol handling, access and authorization, encryption of
datia in motion and at'rest, integrity checking, plus resilience mechanisms such as redundant copieg
of data and automated backups. PaaS systems can offer these capabilities with minimal or no impact
on |application ‘¢ode, simplifying the developer's tasks. Also, because the underlying execution
environments part of the platform, the CSP assumes responsibility for operating system security
patiches, malware detection and removal, and other essential security maintenance tasks, thus
freping the'customer to focus on avoiding security vulnerabilities introduced in their own code.

De‘;olnpor tools:

Many PaaS$ systems aim to unify and streamline development and operations, i.e. support DevOps
by breaking down the divisions between development and operations. Development tools provided
include code editors, code repositories, build tools, deployment tools, test tools and services
and security tools. It is common to find application monitoring and analytics services, including
capabilities such as logging, log analysis and app usage analytics and dashboards.

Operations capabilities:

PaaS systems assist operators through operations capabilities both for deployed applications
and for the PaaS$ system itself, via dashboards and also via APIs that enable customers to plug in
their own operations toolsets. For example, capabilities to increase or decrease the number of

© ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

11.

ISO/IEC TS 23167:2020(E)

running instances of an application are common (to deal with varying application load), in some
cases handled by automated services that vary the number of instances based on a set of rules

established by the CSC operations staff.

Support for porting existing applications:

Many cloud service customers have existing applications that can be ported to the PaaS environment
with resulting business benefits. Some PaaS systems have application environments that aim to
closely match those available on existing non-cloud middleware stacks and associated tools that

assistwith the pnrfing process

12.

13.

11.3 Architecture of components running undexr-PaaS system

Putting together the several elements of a typical\PaaS system leads to a schematic architectur
components of a typical application created and deployed using a Paa$S system, shown in Figure

Support for applications using microservices architecture:

PaaS systems typically offer a wide range of support for applications built using micros
architecture (see Clause 9). This includes support for the runtimes used fon the micros
themselves, support for the underlying services used by the microservices and support
service mesh that links all the components together.

Networking capabilities:

Since the CSP controls and has full visibility of the network protocol'stacks in use, PaaS systg
be more deeply integrated with the network capabilities of the-host CSP. This makes it re

ervices
ervices
for the

ms can
latively

easy (for both the CSP and CSC developer) to integrate the-PaaS with network virtualization,

network load balancing, failover, network optimisation, caching, message passing and queui
other network related technologies.

o— Reverse proxy

Service mesh
networking

U o— External endpoint
Core Application "

runtime

DevOps
tooling

PaaS AP il

. X Parallel in
Microservice 1 Microservice 2 autoscalin
; runtime

runtime

ng, and

e of the
8.

tances

b
=]

SN

Twitter
Feed
service

Video
storage
service

Database
service

Analytics

) Backin
service

Email
service

Figure 8 — Schematic architecture of components running under Paa$S system

g Services

— External endpoint: provides an externally-available endpoint (e.g. visible across the internet), with

associated endpoint security (e.g. https support, certificate management, DDoS attack hand
and Access management).

© ISO/IEC 2020 - All rights reserved

ling, ID

35

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

ISO/IEC TS 23167:2020(E)

— Reverse proxy: for each component of the application which is scaled through the use of parallel
instances (core application and microservices), there is aneed for areverse proxy and load balancing
function to distribute incoming requests evenly across all the running instances.

— Service mesh: for the internal connections between application components and for connections
with services, capabilities to enable effective and efficient connectivity.

— Autoscaling of parallel instances: the typical approach to the scaling of application components is

Pa3aS system monitors the instances to determine how busy they are. This capability can sometimes
be |inked with Paa$ automatic network loading balancing, so that traffic levels to specific instances
car} be dynamically matched to their current capacity and availability.

— Bagking services: it is commonly the case that many capabilities required by the’ application
corpponents are provided by a set of cloud services, to which the componentscare connected as
nedessary. Such services can be highly diverse, but examples include capabilitiésssuch as databases
or pther storage services (see Clause 12).

— PagdS API: the capabilities of the PaaS system and the individual cloud sgrvices that make up the
syqtem are made available for various DevOps tools to use by means ‘efijone or more PaaS APIs. For
exgmple, such an API can enable the code of an application compgohent to be pushed to a runtimg
serjvice for execution.

— DeyOps tooling: developers and operations staff, ideally united into a seamless DevOps team, usqg
a vpriety of DevOps tools to perform their work. Development and test tools are used during the
crefation and testing of an application and its microservices, while monitoring and management
todls are used to observe and control the applicationn¢émponents in production.

12 Data storage as a service

12.1 General

Cloud cpmputing is based on the provisien of cloud services, which are all ultimately based on the threq
infrastfucture resource types of comptite, storage and networking. This clause considers cloud serviceg
which qffer storage resources.

The te¢hnologies of virtual™machines and of containers described in Clause 6 and Clause 7 are
fundamjentally offering types of compute resource, i.e. a means of executing software in a virtualized
enviroryment of some type. Some storage capabilities are associated with both virtual machines and
containers. There ayefilesystems associated with them which contain the files representing thg
software and thepdirectly associated configuration and metadata, and these filesystems are alsg
typically required to support the execution of the software.

However, it is necessary to understand that the filesystems associated with both virtual machines and
with cartainers are essentially ephemeral in that they are brought into existence when the virtua
machine or container 1s created and they are discarded when the same virtual machine or container is
stopped and destroyed. This means that such filesystems are not capable of being used for long-term
storage of information. Neither can they be used for information that needs to be accessible by multiple
different virtual machines or containers, since the filesystems within a virtual machine or within a
container are by design isolated.

Long term storage of information is provided by data storage as a service (DSaaS). DSaaS services offer
storage capabilities of various types (the types are described in more detail later in this clause) and
those capabilities can be offered both to CSC systems and also to other cloud services. DSaaS services
are based on the storage resources of the CSP, typically accessed over the network through an API,
although in some cases it may be possible and desirable to co-locate a DSaaS service with a compute
service to remove network latency.

36 © ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

ISO/IEC TS 23167:2020(E)

12.2 Common features of DSaa$S

DSaaS enables users to store and retrieve information anywhere and anytime as long as there is
connectivity to the DSaaS service. DSaaS services support scalability in terms of the volume of
information stored and reliability in terms of access to the information from any type of application
independent of the systems or devices on which those applications run.

Applications and systems use DSaasS to access cloud storage through related protocols. These protocols
can support geographically remote storage resources and support Virtualization of the storage
acationc 1ioa 4 dlhot ol o oniien d adiind oot atad ot ada H PN N PPN DI‘OVide
ULldtllivIllo uoly, DU CIIdU VVIIUIT 1\4\.1\.{11 vy, 1\.uu11ucuu. Ul 1\.1111\.01\.\.\.4 DLUI (16\, ID lllCl\.l\, GVGAICIIJIL LU

Fesilience against point failures.

Storage services have the following common features:

h) Durability: Data are stored in one or more locations, controlled by the CSP. DSaa$ serviced should
provide data storage with no loss caused by natural disasters, human errogx or technical flefects.
This may be achieved through replicas or backups of the data, which can be provided as pait of the
service, or can be implemented by the CSC using the DSaaS service capabilities.

b) Availability: DSaaS services provide storage and retrieval of data.6n,demand to meet the nleeds of
the CSC’s applications and systems.

2
L—

Security: DSaaS services should store information securely. In particular there should be no
unauthorised access to cloud service customer data. It is{desirable to encrypt the informjation if
appropriate, although this capability may be left for the-GSC to implement since it can have dost and
performance implications.

) Bounded costs: With DSaaS, the customer typically pays only for the storage actually used.
For some DSaaS services, information that iscused less frequently can be stored in a lower-cost
capability which might provide slower access'as a means of reducing the cost.

k) Manageability: The DSaaS CSP has storage lifecycle management policies and procesges that
enable users and developers to focus on solving application problems and be free from c¢ncerns
about the management of the inforniation.

PSaa$S can be classified by storage‘type and by service category as described in Table 1 and [Table 2
Fespectively. Each storage service has one or more service interfaces such as block device driyer, file
kystem interface or object storage API, which is used by the client software. These APIs are network
based since it is expected. in most cases that the storage capabilities exist on a system other than the
Kystem running the client'software.

Table 1 — DSaaS according to storage type

Ewes Features

File storage services offer storage using a conventional file system modgl,
with files contained in directories within volumes. Storage is typically ¢ffered
to client software using the NFS protocol (NFS 4.2 - IETF 7862) and relgvant

volume(s) are mounted into the client environment via an NFS client drjver. In

}:\arhr‘n]ar file cfnran’n services can be mountedintovirtualmachines :‘l‘nd lnto

containers to prov1de long-lived storage capabilities for those environments.

File storage services are usually networked based (akin to Network Attached
Storage (NAS) devices) and can be shared by many clients simultaneously.
Since the storage is virtualized by the file storage service, the storage can be
highly scalable and it is often durable, with replicated redundant copies of the
files being maintained, potentially in physically separated locations. Stored
data can also be encrypted. (See Amazon EFS, IBM File Storage).

File storage service

Many applications need access to shared files and a file system. This type of
storage service is primarily supported on Network Attached Storage (NAS).
This type of service is ideal for the use cases such as large-scale content repos-
itories, development environments, media stores, or user home directories.

© ISO/IEC 2020 - All rights reserved 37

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

ISO/IEC TS 23167:2020(E)

Table 1 (continued)

Services Features

Object storage services store the data as data objects in a flat, non-hierarchical
namespace (the storage pool, bucket or container), where each object has a
unique identity or key. Effectively, the object storage service operates on the
basis of a key / value model, with the value as the object. In addition, each data
object can have an arbitrary amount of user-specified metadata associated
with it, potentially far richer than is possible with standard filesystems.

Object

OUDbject Storage Services are nignly scatabie, SINCe they are not tied to Specitic
storage hardware, and can span multiple storage devices. Individual objects
can be very large also. Object storage services can be used by many client
torage service applications simultaneously.

Object storage services are typically offered via a REST API, which.i$haturally
network capable and so accessible from clients remotely. The REST API (e.g.
Amazon S3 API) is not like a conventional file system interface and so client
applications have to be specifically designed and written to dse object storage
services.

Object storage services are particularly useful for unstructured data (e.g.
images) which are updated relatively infrequently(ipdates are done by re-
placing the whole object with a new version). Object storage services are also
usually slower than file storage services.

Block's

Block storage services offer high bandwidth-fow-latency access to storage
devices at the block level. These services,are providing the equivalent of Direct
Attached Storage (DAS) or Storage Atea’Network (SAN) to the client system.
This low-level form of access to storage resources allows the client more con-
trol and potentially higher performiance than other kinds of DSaasS.

Thus, when using a block stefage service, it is as if additional hardware stor-
age devices are being attached to the client system. Block storage services are
typically intended to work within one datacentre, since the latency increases
substantially if the serVvices are accessed over remote networks.

orage service Typically, specialized SAN protocols such as iSCSI (IETF 7143) are used to de-
liver block storage services across the network to clients. The remote storage
devices age presented to the client software as a mounted volume, just as if

it were a disk locally attached to the system on which the client software is
running.

Block storage services can have file systems built over them by the client
seftware, or alternatively, the client software can use the block interface
directly. This latter case can take place where the client software is database
software (e.g. an SQL database), for example, or stream processing software
(e.g. Apache Kafka).

There 4
capabil
offered
of cloud

the stot

re categories-of cloud services that are inherently based on storage capabilities, but where thd
ties offered are more evolved than the simple storage of data and where the service interfaces
to service clients typically reflect specific requirements of the client software. These categories
sefvice, described in Table 2, each use one or more of the storage types described in Table 1, but
age aspect is not the main capability presented to clients.

38

© ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

ISO/IEC TS 23167:2020(E)

Table 2 — Storage services according to service category

Storage services

Features

NoSQL database services offer capabilities to store and retrieve various forms
of unstructured data such as documents, images, movies, and large binary
data. There is a wide variety of underlying technologies in this category,
which can be classified in a variety of ways, such as:

— Key-Value Cache

1z

NoSQL database services

Key-Value-Store

— Key-Value Store (Eventually-Consistent)
— Key-Value Store (Ordered)

— Data-Structures Server

— Tuple Store

— Object Database

— Document Store

— Wide Column Store

— Native Multi-model Database

— Graph Database

SQL database services

SQL (or relational) database services store structured data in a tabularg for-
mat permitting potentially complex queries to be made to extract datafto suit
client requirementsand to perform dynamic updates on the database ¢ontent.

SQL is a standard}interactive programming language designed for quefying,
updating, and managing data and data sets in the database management sys-
tem. SQL is standardised in ISO/IEC 9075-1:2016 [Z1], Modern SQL datiEases

supportthe discovery of columns across a wide range of data set: not only re-
lational-table/views, but also XML, JSON, spatial objects, image-style objects
(Binary Large Objects and Character Large Objects), and semantic objgcts.

Many different underlying SQL database technologies exist and are offe¢red as
cloud services.

Message queue service storage

Message queue capabilities are available as cloud services and are gengrally
associated with a distributed asynchronous form of processing and sy§tem
architecture that is increasingly common.

Many message queue systems have the capability to persist messages in
storage. Messages can be persisted to ensure that they are not lost and|can be
retrieved whenever required, but can also be persisted to assist with sfream
processing that requires the large-scale analysis of many events in order to
extract useful insights. Message persistence can place significant demgnds on
the underlying storage systems due to the high volume and the high rate of
delivery of messages.

Blockchain and Distributed
Ledger Technology services

Distributed tedger techmotogy (DET) Tloud Services, Sucitas Bockematn cloud
services, support the provision and use of distributed ledgers, which are a
form of transaction database.

DLT cloud services typically provide the capabilities of running a DLT node,
including both an instance of the DLT platform software and the provision of
the storage capabilities for a replica of the distributed ledger itself. For more
details see [SO 23257 [26],

Analytic services

Analytic processing capabilities are based on the processing of large quan-
tities of data. Such large volumes and high velocity of data processing need
particular support from the storage services that hold the data. Many CSPs
provide specialised cloud storage services that support analytics.

© ISO/IEC 2020 - All rights reserved

39

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

ISO/IEC TS 23167:2020(E)

Table 2 (continued)

Storage services Features

File management services provide an application capabilities type of cloud
service, typically enabling automatic replication of files between user devices
and cloud storage and offering the capability for multiple users to share and
update files.

File management services

In the case of federated storage services, storage resources can be combined
transparently across a set of different cloud storage locations, including
Federafedstorageservices on=premrises; privatecloudorpubticcloud; wiretheroffertmg fite; btockor
object storage. Note that simple replication or failover capabilities do not typ-
ically imply that a storage service is a federated storage service.

NOTE These storage services can be provided as persistent storage or as in-memory storage.

12.3 Gapabilities type of DSaaS

ISO/IE(17788:2014, 6.4 identifies three distinct capabilities types:
— Inffastructure (as seen in laaS);

— Plafform (as seen in PaaS);

— Application (as seen in SaaS).

DSaasS ¢an offer one or more of these capabilities types as described in Table 3:

Table 3 — Capabilities types'of DSaa$S

Capabilities type D\ Services

A

File storage service

Object storage service
Infrastfucture)
Block storage.service

Federated storage service

Customer-programable data storage, where customer-written code can be
upleaded and used to manipulate the data storage

Andlytic service
Platforin NoSQL database service
SQL database service
Message queue service

Blockchain and DLT service

Human-facing user interface for manipulating storage, such as a web-based
Applicdtion document repository:

File management service

The cloud capabilities types applying to the cloud services covered by Table 1 and Table 2 vary as
shown in Table 3. Most of the cloud services covered by Table 1 are typically provided as infrastructure
capabilities type cloud services. For Table 2, the cloud services are typically of the platform or
application capabilities types, depending on the details of the offering, except in the case of federated
storage services, which are more typically infrastructure capabilities type services.

12.4 Significant additional capabilities of DSaaS

In addition to the expected capability of storing data, many cloud storage services offer significant
additional capabilities that can be important to cloud service customers.

40 © ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

ISO/IEC TS 23167:2020(E)

The first set of capabilities relates to resilience and resistance to point failures in the cloud service
providers' infrastructure. Many cloud storage services store data in multiple redundant replicas, so that
a failure of a single storage device or a failure of access to a single device does not lead to unavailability
of the service or, worse, loss of data. The nature of the replication can vary. In some cases, replicas
are deliberately placed in a physically separate location (e.g. a different data center or a different
availability zone within one data center), with the aim of addressing major failures of a complete data
center. In other cases, particularly a cloud service involved in high performance access, the replicated
locations can be deliberately close to each other. Some cloud storage services provide capabilities for
the cloud service customer to choose the policy relating to the placement of replicas.

The second set of closely related capabilities relate to the creation and storage of backups of ‘:te data.
These backups can either be automated or performed at the request of the cloud service custonper. The
backups may be to a "live" location (i.e. storage that is online and available, but at another location) or
Lo an offline location. The latter case could be used for long-term retention at lower cost.

Another capability offered by some cloud storage services is resource affinity, This relateq to the
relative physical placement of the cloud storage service instances in relatioito other cloud services,
mainly compute service instances such as virtual machines and containers. One of the major reasons
fo place compute service instances close to storage service instances is’performance, both in tprms of
reducing latency to a minimum and also in terms of maximising bandwidth for data flowing between
the compute and storage instances. Some categories of service such'as block storage services ate often
pnly offered in this form. For example, block storage services might'only be offered for use to cpmpute
Kervice instances running on nodes in the same datacentre where there is a high speed link between
Fhe storage node and the compute node such as Ethernet or-Fibre Channel.

13 Networking in cloud computing

13.1 Key aspects of networking

Networking is a key element of cloud compiiting. The very definition of cloud computing is based on its
Capabilities being accessed via networks; paradigm for enabling network access to a scalable and elastic
bool of shareable physical or virtual resources with self-service provisioning and administration on-flemand
[ISO/1EC 17788:2014].

Networks and network-related capabilities are also some of the resources that are often provjided by
means of cloud services.

Thus, there are two broad areas of concern relating to networking in cloud computing. The firgt is the
hetworking by whieh.a given cloud service is accessed and by which any capabilities within tHe cloud
cervice are accessed, such as an application running within a compute service. This is termed "cloud
hccess networking”, or "public cloud access networking" where public cloud services are involved. The
second is the‘networking used to connect cloud service instances to each other. This networking is
pbften by design intended not to be accessed outside of the particular cloud service instances irfjvolved.
This istermed "intra-cloud networking".

13:2 Cloud access networking

Cloud services have externally accessible interfaces that enable use of their capabilities by cloud users
and by systems acting on behalf of cloud users. Some cloud services also have externally accessible
interfaces for CSC capabilities running inside the cloud service: examples include interfaces such as
web interfaces or APIs for CSC applications running within a compute service instance (e.g. withina VM
or within a container) and also interfaces to data storage capabilities of a storage service instance (e.g.
a file store).

It is often the case that the externally accessible interfaces are publicly visible on the internet, at
least for public cloud services. However, the externally accessible interfaces can in some cases be
deliberately hidden from public view on the internet, even where user access takes place over the
internet infrastructure. Private cloud services can be deployed in a way that makes them accessible

© ISO/IEC 2020 - All rights reserved 41

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

ISO/IEC TS 23167:2020(E)

only within the organization's private networks (i.e. such cloud services are not accessible from the
internet), although there can still be a requirement for some externally accessible interfaces to be
available, for example where a web application deployed to a private cloud service needs to present a
publicly available interface accessible by its users.

Applications running in a cloud service can require externally visible interfaces available on a publicly
accessible network address and port number. It is typical for such a publicly accessible interface to be
provided as a "virtual interface” where the external interface is presented on a network address and
port known to the cloud service itself, whlle the code running within the cloud service runs on some

V1rtua1 zation is necessary to permlt the resource sharlng that is fundamental to cloud services
Endpoint virtualization also supports capabilities such as load balancing across multiple instances of
an appllication and security capabilities including firewalls and DDoS attack handling.

Publicly visible interfaces can also require specific configuration. In particular, an organization running
an application on a cloud service could find it highly desirable that the address used for, the interfacg
is one that belongs to the organization and not one that belongs to the CSP. The capability to support
this is generally termed "Bring Your Own IP addresses" (BYOIP) and is a capability where the CSC can
configure the publicly visible interface for an application running in a cloud service with an addresg
belonging to the CSC. This can apply to both public cloud services and private'cloud services.

13.3 Intra-cloud networking

Within|the cloud service environment, it is typical that networking is used to connect together thq
varioug components that make up a system. For compute capabilities type cloud services, for examplg
running software in VMs or containers, there are often multiple instances running that need ta
communicate, either with each other (for example, where<the application is divided into separately
running components, as with a microservices architectu¥e) or with other components of the solution
(for exgmple, with a load balancer where horizontal scaling is used with multiple parallel instances of g
given cpmponent). It is also typical for storage services to be connected to compute instances and thig

is usually done over the network.

There may also be multiple separate layers af intra-cloud networking. The application layer as described
in the fdrevious paragraph and also the mahagement or control layer, used to monitor and control each
of the cloud services. These different layeps are deliberately isolated from each other so that they cannot
interfere with each other.

It is commonly the case that intra-cloud networking is virtualized. The various cloud services do not usg
networking capabilities direetly;, but use virtualized networking capabilities that both permit sharing
of the ynderlying networking resources and also provide isolation between different groups of cloud
service|instances both for'security reasons and also to avoid interference.

The stfucture and<grganization of virtualized networks can also deliberately avoid reflecting thg
organigation of theinderlying physical networks. It is often the case that components of a solution arg
distribfited across multiple availability zones in one data centre, or across multiple data centres. It can
be highlly undesirable for this physical organization to be made visible to the solution components and
so a singleunified virtual network is presented to those components, overlaid on the physical networks

Virtualized compute environments, both VMs and containers, involve tight control and virtualization
of network resources, including both the endpoints exposed by each VM/container and also the target
network endpoints used by the software running within the environments. The capability of running
multiple VMs on one system, or multiple containers on one operating system, clearly requires mapping
of each of the network endpoints exposed by the software to actual endpoints in the containing system,
simply to enable the sharing of the system without resulting in clashes. The deployment of both VMs
and containers requires configuration to deal with these issues.

It is also commonly the case that both VMs and containers are used in distributed environments.
Multiple instances of the same software can run on different systems and those systems can run in
different physical locations. Applications are also commonly divided into multiple independent
components (services, microservices), and these components can each run in separate locations. It is a

42 © ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

ISO/IEC TS 23167:2020(E)

good practice that the actual locations of the components be hidden from the software since application

components need to communicate with each other seamlessly wherever they are running. In a

ddition,

itis best if the application components can only communicate with each other. External communication

should be carefully controlled through specifically designated external endpoints.

It is a best practice in relation to networking for these software architectures that networking is

effectively defined at the application level. This is a virtual network that is used only by the app

lication

components and which transparently spans all the locations in which application components are

running. The implication is that each application has an associated virtual network and that,

as with

romponents and cloud services such as:
— VxLAN: an overlay network technology, specified in IETF RFC 7348[41l;
— KubernetesllZ] networking;

— Container networking systems, such as Calicol43] and Weave Net[44K

13.4 Virtual private networks (VPNs) and cloud computing

Dne technology that can be useful in building solutions using cloud computing are virtual

hetworking infrastructure involves using untrusted environments such as the internet. There
Lypical configurations of VPN as shown in Figure 9, reflecting different usecases:

— Host-to-Gateway

cloud services and applications andther resources running within them.
— Gateway-to-Gateway

This is where secure networkcommunications are supplied between two separate secure ne
The typical usecase is where cloud services in a cloud environment either need to be conng
CSC in-house applications and systems, or need to be connected to other cloud services rur
a different cloud environment.

COPI | - . 1 P b T ST | - 1o 1 1 +1 -
IItudl COIIIpULe CIIvII UHIITICIILS TTRE COIILAIIICT S, €©4LIT VIILUAT TICUWUT K 15 15014LC€U ITT UIIT OLIICT TICL W OI‘kS.

Virtual networks can be built using a variety of techniques and technologies, including/s¢ftware
Hefined networks (SDNs) and network function virtualization (NFV), some built for speeific tiypes of

private

hetworks (VPNs). VPNs offer a secure means of conneCting systems together where part of the

hre two

This is where a stand-alone system, typically a client machine or device, accesses a secured network
remotely. In the case of cloud computing; the typical usecase would be for a client device ta access

rworks.
cted to
ning in

© ISO/IEC 2020 - All rights reserved

43

https://standardsiso.com/api/?name=4f3f22086899e61d7ceed63c3dca322c

	Foreword
	Introduction
	1 Scope
	2 Normative references
	3 Terms and definitions
	4 Symbols and abbreviated terms
	5 Overview of common technologies and techniques used in cloud computing
	5.1 General
	5.2 Technologies
	5.2.1 General
	5.2.2 Infrastructure capabilities type of cloud services
	5.2.3 Platform capabilities cloud services
	5.2.4 Application capabilities type cloud services

	5.3 Techniques

	6 Virtual machines and hypervisors
	6.1 General
	6.2 Virtual machines and system virtualization
	6.3 Hypervisors
	6.3.1 General
	6.3.2 Type I hypervisors
	6.3.3 Type II hypervisors

	6.4 Security of VMs and hypervisors
	6.5 VM images, metadata and formats

	7 Containers and container management systems (CMSs)
	7.1 General
	7.2 Containers and operating system virtualization
	7.2.1 Description of containers
	7.2.2 Container daemon
	7.2.3 Container resources, isolation and control

	7.3 Container images and filesystem layering
	7.3.1 Image purpose and content
	7.3.2 Filesystem layering
	7.3.3 Container image repositories and registries

	7.4 Container management systems (CMSs)
	7.4.1 General
	7.4.2 Common CMS capabilities

	8 Serverless computing
	8.1 General
	8.2 Functions as a service
	8.2.1 Overview
	8.2.2 Functions within FaaS
	8.2.3 Serverless frameworks
	8.2.4 FaaS relationship to microservices and containers

	8.3 Serverless databases

	9 Microservices architecture
	9.1 General
	9.2 Advantages and challenges of microservices
	9.3 Specification of microservices
	9.4 Multi-layered architecture
	9.5 Service mesh
	9.6 Circuit breaker
	9.7 API gateway

	10 Automation
	10.1 General
	10.2 Automation of the development lifecycle
	10.3 Tooling for automation

	11 Architecture of PaaS systems
	11.1 General
	11.2 Characteristics of PaaS systems
	11.3 Architecture of components running under PaaS system

	12 Data storage as a service
	12.1 General
	12.2 Common features of DSaaS
	12.3 Capabilities type of DSaaS
	12.4 Significant additional capabilities of DSaaS

	13 Networking in cloud computing
	13.1 Key aspects of networking
	13.2 Cloud access networking
	13.3 Intra-cloud networking
	13.4 Virtual private networks (VPNs) and cloud computing

	14 Cloud computing scalability
	14.1 Scalability approaches
	14.2 Parallel instances and load balancing
	14.3 Elasticity and automation
	14.4 Database scaling

	15 Security and the cloud common technologies
	15.1 General
	15.2 Firewalls
	15.3 Endpoint protection
	15.4 Identity and access management
	15.5 Data encryption
	15.6 Key management

	Annex A (informative) VM Images and disk images
	Bibliography

