
 

 

ISO/IEC 29341-15-10 
Edition 1.0 2011-09 

INTERNATIONAL 
STANDARD 
 

Information technology – UPnP device architecture – 
Part 15-10: Content Synchronization Device Control Protocol – Synchronization 
Service  
  
 
 

IS
O

/IE
C

 2
93

41
-1

5-
10

:2
01

1(
E

) 

 

 

colour
inside

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
5-1

0:2
01

1

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f


 

  

 THIS PUBLICATION IS COPYRIGHT PROTECTED 
 Copyright © 2011 ISO/IEC, Geneva, Switzerland  
 
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form 
or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from 
either IEC or IEC's member National Committee in the country of the requester. 
If you have any questions about ISO/IEC copyright or have an enquiry about obtaining additional rights to this 
publication, please contact the address below or your local IEC member National Committee for further information. 
 
IEC Central Office 
3, rue de Varembé 
CH-1211 Geneva 20 
Switzerland 
Email: inmail@iec.ch 
Web: www.iec.ch 

 
About the IEC  
The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes 
International Standards for all electrical, electronic and related technologies.  
 
About IEC publications 
The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the 
latest edition, a corrigenda or an amendment might have been published. 
 Catalogue of IEC publications: www.iec.ch/searchpub 
The IEC on-line Catalogue enables you to search by a variety of criteria (reference number, text, technical committee,…). 
It also gives information on projects, withdrawn and replaced publications.  
 IEC Just Published: www.iec.ch/online_news/justpub 
Stay up to date on all new IEC publications. Just Published details twice a month all new publications released. Available 
on-line and also by email. 
 Electropedia: www.electropedia.org 
The world's leading online dictionary of electronic and electrical terms containing more than 20 000 terms and definitions 
in English and French, with equivalent terms in additional languages. Also known as the International Electrotechnical 
Vocabulary online.  
 Customer Service Centre: www.iec.ch/webstore/custserv 
If you wish to give us your feedback on this publication or need further assistance, please visit the Customer Service 
Centre FAQ or contact us: 
Email: csc@iec.ch 
Tel.: +41 22 919 02 11 
Fax: +41 22 919 03 00 
 

 

 

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
5-1

0:2
01

1

mailto:inmail@iec.ch
http://www.iec.ch/
http://www.iec.ch/searchpub
http://www.iec.ch/online_news/justpub
http://www.electropedia.org/
http://www.iec.ch/webstore/custserv
mailto:csc@iec.ch
https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f


 

 
 
 

ISO/IEC 29341-15-10 
Edition 1.0 2011-09 

INTERNATIONAL 
STANDARD 
 

Information technology – UPnP device architecture – 
Part 15-10: Content Synchronization Device Control Protocol – Synchronization 
Service  
 
 

INTERNATIONAL 
ELECTROTECHNICAL 
COMMISSION X 
ICS 35.200 

PRICE CODE 

ISBN 978-2-88912-655-2 
 

 

 

colour
inside

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
5-1

0:2
01

1

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f


CONTENTS 

 

1  Overview and Scope ....................................................................................................... 4 
1.1  Introduction ........................................................................................................... 4 

1.1.1  ContentSync Function ................................................................................ 6 
1.1.2  Media Server Device and ContentDirectory Service .................................... 6 

1.2  Notation ................................................................................................................ 7 
1.2.1  Data Types ................................................................................................ 8 

1.3  Vendor-defined Extensions .................................................................................... 8 
1.4  Namespace for ContentSync Service ..................................................................... 8 
1.5  References ............................................................................................................ 8 

2  Service Modeling Definitions ......................................................................................... 10 
2.1  ServiceType ........................................................................................................ 10 
2.2  Terms ................................................................................................................. 10 

2.2.1  Synchronization Object and Pair .............................................................. 10 
2.2.2  Synchronization Data Structure ................................................................ 11 
2.2.3  Synchronization Policy and Behavior ........................................................ 12 
2.2.4  Minimally Complete Synchronization Relationship Data Structure ............. 15 

2.3  Synchronization Data Structure Management ....................................................... 16 
2.3.1  Synchronization Data Structure Addition .................................................. 16 
2.3.2  Synchronization Data Structure Modification ............................................ 16 
2.3.3  Synchronization Data Structure Deletion .................................................. 17 

2.4  Synchronization Operation (CDS to CDS) ............................................................ 17 
2.5  Synchronization Operation (CDS to non CDS) ...................................................... 19 
2.6  Garbage Collection .............................................................................................. 20 
2.7  State Variables .................................................................................................... 20 

2.7.1  SyncChange ............................................................................................ 21 
2.7.2  SyncStatusUpdate ................................................................................... 22 
2.7.3  A_ARG_TYPE_ActionCaller ..................................................................... 28 
2.7.4  A_ARG_TYPE_SyncData ......................................................................... 28 
2.7.5  A_ARG_TYPE_SyncPair .......................................................................... 33 
2.7.6  A_ARG_TYPE_SyncID ............................................................................. 33 
2.7.7  A_ARG_TYPE_ObjectID .......................................................................... 33 
2.7.8  A_ARG_TYPE_SyncStatus ...................................................................... 33 
2.7.9  A_ARG_TYPE_ChangeLog ...................................................................... 34 
2.7.10  A_ARG_TYPE_Index ............................................................................... 35 
2.7.11  A_ARG_TYPE_Count ............................................................................... 35 
2.7.12  A_ARG_TYPE_ResetObjectList ............................................................... 35 

2.8  Eventing and Moderation ..................................................................................... 36 
2.9  Actions ................................................................................................................ 36 

2.9.1  AddSyncData() ........................................................................................ 37 
2.9.2  ModifySyncData() .................................................................................... 38 
2.9.3  DeleteSyncData() .................................................................................... 40 
2.9.4  GetSyncData() ......................................................................................... 41 
2.9.5  ExchangeSyncData() ............................................................................... 42 
2.9.6  AddSyncPair() ......................................................................................... 43 
2.9.7  ModifySyncPair() ..................................................................................... 44 

29341-15-10 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
5-1

0:2
01

1

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f


XXXX: © IEC:2010 — 2 — 

2.9.8  DeleteSyncPair() ..................................................................................... 45 
2.9.9  StartSync() .............................................................................................. 47 
2.9.10  AbortSync() ............................................................................................. 48 
2.9.11  GetChangeLog() ...................................................................................... 49 
2.9.12 49 
2.9.13  ResetChangeLog() ................................................................................... 50 
2.9.14  ResetStatus() .......................................................................................... 51 
2.9.15 51 
2.9.16  GetSyncStatus() ...................................................................................... 52 
2.9.17  Non-Standard Actions Implemented by a UPnP Vendor ............................ 53 
2.9.18  Common Error Codes .............................................................................. 53 

2.10  Theory of Operation ............................................................................................. 54 
2.10.1  Introduction ............................................................................................. 54 
2.10.2  CDS Synchronization ............................................................................... 54 
2.10.3  Synchronization of a Reference Object ..................................................... 72 

3  XML Service Description .............................................................................................. 77 
4  Test ............................................................................................................................. 82 
Annex A (normative) AV Working Committee Properties ...................................................... 83 

A.1  Base Properties Overview ................................................................................... 83 
A.1.1  @id ......................................................................................................... 83 

A.2  Resource Encoding Characteristics Properties ..................................................... 83 
A.2.1  res@avcs:syncAllowed ............................................................................ 83 
A.2.2  res@avcs:resModified .............................................................................. 83 

A.3  Content Synchronization-related Properties ......................................................... 84 
A.3.1  avcs:syncable .......................................................................................... 84 
A.3.2  avcs:syncInfo ........................................................................................... 84 
A.3.3  avcs:syncInfo@updateID ......................................................................... 85 
A.3.4  avcs:syncInfo::pair ................................................................................... 85 
A.3.5  avcs:syncInfo::pair@syncRelationshipID .................................................. 85 
A.3.6  avcs:syncInfo::pair@partnershipID ........................................................... 85 
A.3.7  avcs:syncInfo::pair@pairGroupID ............................................................. 86 
A.3.8  avcs:syncInfo::pair::remoteObjID.............................................................. 86 
A.3.9  avcs:syncInfo::pair::remoteParentObjID ................................................... 86 
A.3.10  avcs:syncInfo::pair::virtualRemoteParentObjID ......................................... 86 
A.3.11  avcs:syncInfo::pair::policy ........................................................................ 86 
A.3.12  avcs:syncInfo::pair::status ........................................................................ 87 

Annex B (normative) Syncable Objects and Properties ........................................................ 88 
B.1  Deciding Syncability of CDS Object ..................................................................... 88 
B.2  Synchronization of CDS object properties (Informative) ........................................ 89 

 
Figure 1 — Content Synchronization Model ........................................................................... 4 
Figure 2 — High-level Synchronization Flow Diagram............................................................ 5 
Figure 3 — Unidirectional Contents Synchronization ............................................................. 6 
Figure 4 — ContentSync Function ......................................................................................... 6 
Figure 5 — Types of Synchronization Pair ........................................................................... 11 
Figure 6 — Synchronization Data Structure ......................................................................... 12 
Figure 7 — Interaction Diagram (Synchronization Operation) .............................................. 17 

29341-15-10 © ISO/IEC:2011(E)— 2 —

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
5-1

0:2
01

1

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f


XXXX: © IEC:2010 — 3 — 

Figure 8 — Synchronization Relationship between two CDSs .............................................. 55 
Figure 9 — Synchronization Relationship between two CDSs .............................................. 73 
 
Table 1-1 — Namespace Definitions ..................................................................................... 8 
Table 2-1 — State Variables ............................................................................................... 20 
Table 2-2 — Status Codes of Synchronization Operation ..................................................... 27 
Table 2-3 — Event Moderation ............................................................................................ 36 
Table 2-4 — Actions ........................................................................................................... 37 
Table 2-5 — Arguments for AddSyncData() ......................................................................... 38 
Table 2-6 — Error Codes for AddSyncData() ....................................................................... 38 
Table 2-7 — Arguments for ModifySyncData() ..................................................................... 39 
Table 2-8 — Error Codes for ModifySyncData() ................................................................... 40 
Table 2-9 — Arguments for DeleteSyncData() ..................................................................... 41 
Table 2-10 — Error Codes for DeleteSyncData() ................................................................. 41 
Table 2-11 — Arguments for GetSyncData() ....................................................................... 41 
Table 2-12 — Error Codes for GetSyncData() ..................................................................... 42 
Table 2-13 — Arguments for ExchangeSyncData() .............................................................. 42 
Table 2-14 — Error Codes for ExchangeSyncData() ............................................................ 42 
Table 2-15 — Arguments for AddSyncPair() ........................................................................ 44 
Table 2-16 — Error Codes for AddSyncPair() ...................................................................... 44 
Table 2-17 — Arguments for ModifySyncPair() .................................................................... 45 
Table 2-18 — Error Codes for ModifySyncPair() .................................................................. 45 
Table 2-19 — Arguments for DeleteSyncPair() .................................................................... 46 
Table 2-20 — Error Codes for DeleteSyncPair() .................................................................. 46 
Table 2-21 — Arguments for StartSync() ............................................................................. 47 
Table 2-22 — Error Codes for StartSync() ........................................................................... 48 
Table 2-23 — Arguments for AbortSync() ............................................................................ 48 
Table 2-24 — Error Codes for AbortSync() .......................................................................... 49 
Table 2-25 — Arguments for GetChangeLog() ..................................................................... 50 
Table 2-26 — Error Codes for GetChangeLog() ................................................................... 50 
Table 2-27 — Arguments for ResetChangeLog() ................................................................. 51 
Table 2-28 — Error Codes for ResetChangeLog() ............................................................... 51 
Table 2-29 — Arguments for ResetStatus() ......................................................................... 51 
Table 2-30 — Error Codes for ResetStatus() ....................................................................... 52 
Table 2-31 — Arguments for GetSyncStatus() ..................................................................... 52 
Table 2-32 — Error Codes for GetSyncStatus() ................................................................... 53 
Table 2-33 — Common Error Codes ................................................................................... 53 
Table 2-34 — Actions for example sequence ....................................................................... 56 
Table A.1 — Content Synchronization-related Properties Overview ..................................... 84 
Table B.1 — Syncability of CDS object class ....................................................................... 88 
Table B.2 — Syncability of CDS Object property ................................................................. 90 

— 3 —29341-15-10 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
5-1

0:2
01

1

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f


29341-15-10  ISO/IEC:2011(E) – 2 –  

INFORMATION TECHNOLOGY – 
UPNP DEVICE ARCHITECTURE –  

Part 15-10: Content Synchronization Device Control 
Protocol – Synchronization Service 

FOREWORD 

1) ISO (International Organization for Standardization) and IEC (International Electrotechnical Commission) form the 
specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in 
the development of International Standards. Their preparation is entrusted to technical committees; any ISO and 
IEC member body interested in the subject dealt with may participate in this preparatory work. International 
governmental and non-governmental organizations liaising with ISO and IEC also participate in this preparation. 

2) In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1. 
Draft International Standards adopted by the joint technical committee are circulated to national bodies for voting. 
Publication as an International Standard requires approval by at least 75 % of the national bodies casting a vote. 

3) The formal decisions or agreements of IEC and ISO on technical matters express, as nearly as possible, an 
international consensus of opinion on the relevant subjects since each technical committee has representation 
from all interested IEC and ISO member bodies. 

4) IEC, ISO and ISO/IEC publications have the form of recommendations for international use and are accepted 
by IEC and ISO member bodies in that sense. While all reasonable efforts are made to ensure that the 
technical content of IEC, ISO and ISO/IEC publications is accurate, IEC or ISO cannot be held responsible for 
the way in which they are used or for any misinterpretation by any end user. 

5) In order to promote international uniformity, IEC and ISO member bodies undertake to apply IEC, ISO and 
ISO/IEC publications transparently to the maximum extent possible in their national and regional publications. 
Any divergence between any ISO/IEC publication and the corresponding national or regional publication 
should be clearly indicated in the latter. 

6) ISO and IEC provide no marking procedure to indicate their approval and cannot be rendered responsible for 
any equipment declared to be in conformity with an ISO/IEC publication. 

7) All users should ensure that they have the latest edition of this publication. 

8) No liability shall attach to IEC or ISO or its directors, employees, servants or agents including individual experts 
and members of their technical committees and IEC or ISO member bodies for any personal injury, property 
damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) 
and expenses arising out of the publication of, use of, or reliance upon, this ISO/IEC publication or any other IEC, 
ISO or ISO/IEC publications. 

9) Attention is drawn to the normative references cited in this publication. Use of the referenced publications is 
indispensable for the correct application of this publication. 

10) Attention is drawn to the possibility that some of the elements of this International Standard may be the subject of 
patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights. 

International Standard ISO/IEC 29341-15-10 was prepared by UPnP Forum Steering 
committee1, was adopted, under the fast track procedure, by subcommittee 25: 
Interconnection of information technology equipment, of ISO/IEC joint technical committee 1: 
Information technology. 

The list of all currently available parts of the ISO/IEC 29341 series, under the general title 
Information technology – UPnP device architecture, can be found on the IEC web site. 

This International Standard has been approved by vote of the member bodies, and the voting 
results may be obtained from the address given on the second title page. 

 

————————— 
1  UPnP Forum Steering committee, UPnP Forum, 3855 SW 153rd Drive, Beaverton, Oregon 97006 USA. See also 

“Introduction”. 

29341-15-10 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
5-1

0:2
01

1

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f


 – 3 – 29341-15-10  ISO/IEC:2011(E) 

 

IMPORTANT – The “colour inside” logo on the cover page of this publication indicates 
that it contains colours which are considered to be useful for the correct understanding 
of its contents. Users should therefore print this publication using a colour printer. 

 

 

 

29341-15-10 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
5-1

0:2
01

1

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f


XXXX: © IEC:2010 — 4 — 

1 Overview and Scope 

This service definition is compliant with the UPnP Device Architecture version 1.0. 

1.1 Introduction 

Content Synchronization service enables two or more ContentDirectory services [CDS] to 
synchronize content with each other. This service also enables a UPnP control point to 
synchronize content with a ContentDirectory service. We refer this service as “CSS” or 
“ContentSync service” from hereon. If a CDS wants to support synchronization of objects and 
its resources with other CDSs, the implementation MUST enable this ContentSync service 
(CSS). CSS keeps change log as part of CDS object property that describe which CDS 
objects are added or modified or deleted since it has synchronized last. Since 
synchronization enables interaction between ContentSync services, each service has a 
Control Point (CP) functionality that invokes actions to other ContentSync service to achieve 
synchronization of contents with each other. 

 

 

 

Figure 1 — Content Synchronization Model 

Figure 1 shows how synchronization is accomplished between two CSSs. In the figure above, 
a stand alone control point is managing the synchronization between two CSSs. This includes 
management of content synchronization data structure (i.e., creating, browsing and deleting 
of synchronization data structure) and invocation of synchronization operation, etc. An 
embedded control point in the CSS has the role of performing the actual synchronization of 
objects which include retrieving the change log for objects that have changed, monitoring the 
status of the other CSS and updating the synchronization data structure when an object is 
successfully synchronized etc. 

Figure 2 shows a high-level flow diagram of how Content Sync services, ContentDirectory 
services and Control Point interact with each other to achieve content synchronization.. 

Firstly, a stand-alone control point (controlled by a user) creates a synchronization 
relationship that describes which devices to participate in the synchronization, which objects 

29341-15-10 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
5-1

0:2
01

1

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f


XXXX: © IEC:2010 — 5 — 

are to be synchronized, and how to resolve conflicts and so on. When the control point 
creates a synchronization relationship, it MUST be responsible to define valid information for 
the CSS. If the synchronization relationship is successfully created, the CDS implementation 
that supports CSS MUST keep track of change log of the objects that are subject to 
synchronization. When a synchronization relationship is created between two devices, 
identical synchronization data structure information is maintained in both devices. 

Once a synchronization relationship is created, a stand-alone control point can trigger a 
synchronization operation on either of CSSs. If the CSS is ready to synchronize (i.e. 
successfully respond to the trigger from the stand-alone control point), the embedded control 
point in the CSS retrieves change log from the other partner device. 

After obtaining the change log, the CSS parses and interprets the change log. The CSS then 
updates the CDS by retrieving object information from the partner device based on the 
change log and the rule defined in this specification. In this step, the CSS notifies the CSS of 
the partner device whenever an object in the change log is dealt with regardless of success 
or failure. If successful update for an object is notified, the CSS implementation MUST clear 
the change log for that object and the CDS must keep track of new change log since this last 
synchronization. 

 

 

Figure 2 — High-level Synchronization Flow Diagram 

The ContentSync service also provides a functionality by which a control point can only track 
changes of objects that the control point is interested in. This functionality is helpful for 
unidirectional synchronization. Figure 3 shows such a scenario. In this scenario, a control 
point with its own local storage (not compliant to CDS) can synchronize with a CDS by its 
own local policy. In other words, the control point does not follow any policies that are 
defined in this specification. The control point creates synchronization relationship 
information on a CDS with its interest for the CDS to track some objects. The CDS keeps 
change log for the objects the control point is interested.  Therefore, an embedded control 
point in the CSS is disabled for this type of synchronization. Subclause 2.5 explains in details 
how this kind of unidirectional synchronization can be achived.  

 

29341-15-10 © ISO/IEC:2011(E)29341-15-10 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
5-1

0:2
01

1

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f


XXXX: © IEC:2010 — 6 — 

 

Figure 3 — Unidirectional Contents Synchronization 

1.1.1 ContentSync Function 

 

 

Figure 4 — ContentSync Function 

The Content Sync function is an essential part of the Content Synchronization. This function 
is a combination of a ContentSync service and a Content Sync CP in a CSS as shown in 
Figure 4. 

ContentSync Service: 
ContentSync service is responsible for managing synchronization data structure and 
performing synchronization operation with a partner CSS. 

ContentSync CP: 
The ContentSync CP provides Control Point functionality that controls other ContentSync 
service running on the network.  

The interface between the ContentSync CP and the ContentSync service is device-dependent 
and not defined by the UPnP ContentSync Service specifications. 

1.1.2 Media Server Device and ContentDirectory Service 

Since a ContentSync service provides the functionality to synchronize ContentDirectory 
service objects, ContentSync service implementation MUST appear together with 
ContentDirectory service implementation and MUST be also deployed on an UPnP Media 
Server device [MSD] that supports synchronization. Therefore, a Media Server 

29341-15-10 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
5-1

0:2
01

1

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f


XXXX: © IEC:2010 — 7 — 

implementation MUST expose an XML device description document which contains 
description of both ContentSync service and ContentDirectory service when the Media Server 
implementation supports synchronization of CDS objects. 

The following device type identifies a Media Server device that is compliant with this 
specification: 

urn:schemas-upnp-org:device:MediaServer:2 

The following service type identifies a ContentDirectory service that is compliant with this 
specification: 

urn:schemas-upnp-org:service:ContentDirectory:2 

To enable synchronization of CDS objects, this specification imposes additional requirements 
on ContentDirectory:2 service specification. When supporting synchronization of CDS objects, 
these additional requirements MUST be implemented on top of ContentDirectory:2 service 
implementation. See Annex A for the additional requirements on ContentDirectory:2 
service specification (especially CDS properties of ContentDirectory:2 service). 

Additionally, since this specification adds extended properties to CDS, the AVCS XML 
schema [AVCS-XSD] for those properties is specified in this specification, not in UPnP AV. In 
other words, a CDS object expressed by original DIDL-Lite XML document MUST also refer 
to the AVCS XML schema when the new properties are added to the object. (The schema of 
the DIDL-Lite XML document does not have any reference to the AVCS XML schema). Note 
that the schema is informative only and hence the XML data types defined in this 
specification take precedence over all the XML schemas.  

1.2 Notation 
• In this document, features are described as Required, Recommended, or Optional as 

follows: 
The key words “MUST,” “MUST NOT,” “REQUIRED,” “SHALL,” “SHALL NOT,” “SHOULD,” 
“SHOULD NOT,” “RECOMMENDED,” “MAY,” and “OPTIONAL” in this specification are to 
be interpreted as described in [RFC 2119]. 
In addition, the following keywords are used in this specification: 
PROHIBITED – The definition or behavior is an absolute prohibition of this specification. 
Opposite of REQUIRED. 
CONDITIONALLY REQUIRED – The definition or behavior depends on a condition. If the 
specified condition is met, then the definition or behavior is REQUIRED, otherwise it is 
PROHIBITED. 
CONDITIONALLY OPTIONAL – The definition or behavior depends on a condition. If the 
specified condition is met, then the definition or behavior is OPTIONAL, otherwise it is 
PROHIBITED. 
These keywords are thus capitalized when used to unambiguously specify requirements 
over protocol and application features and behavior that affect the interoperability and 
security of implementations. When these words are not capitalized, they are meant in 
their natural-language sense. 

• Strings that are to be taken literally are enclosed in “double quotes”. 

• Words that are emphasized are printed in italic. 

• Keywords that are defined by the UPnP ContentSync and AV Working Committee are 
printed using the forum character style. 

• Keywords that are defined by the UPnP Device Architecture are printed using the arch 
character style. 

• A double colon delimiter, “::”,  signifies a hierarchical parent-child (parent::child) 
relationship between the two objects separated by the double colon. This delimiter is used 

29341-15-10 © ISO/IEC:2011(E)29341-15-10 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
5-1

0:2
01

1

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f


XXXX: © IEC:2010 — 8 — 

in multiple contexts, for example: Service::Action(), Action()::Argument, 
parentProperty::childProperty. 

1.2.1 Data Types 

This specification uses data type definitions from two different sources. The UPnP Device 
Architecture defined data types are used to define state variable and action argument data 
types. 

For UPnP Device Architecture defined Boolean data types, it is strongly RECOMMENDED to 
use the value “0” for false, and the value “1” for true. However, when used as input 
arguments, the values “false”, “no”, “true”, “yes” may also be encountered and MUST be 
accepted. Nevertheless, it is strongly RECOMMENDED that all state variables and output 
arguments be represented as “0” and “1”. 

For XML Schema defined Boolean data types, it is strongly RECOMMENDED to use the value 
“0” for false, and the value “1” for true. However, when used as input properties, the values 
“false”, “true” may also be encountered and MUST be accepted. Nevertheless, it is strongly 
RECOMMENDED that all properties be represented as “0” and “1”. 

1.3 Vendor-defined Extensions 

Whenever vendors create additional vendor-defined state variables, actions or properties, 
their assigned names and XML representation MUST follow the naming conventions and XML 
rules as specified in [DEVICE] 

1.4 Namespace for ContentSync Service 

All data types represented by XML document in this specification MUST use the following 
namespaces and XML schemas. Note that this schema is informative only and hence the 
XML data types defined in this specification take precedence over the XML schema. 

Table 1-1 — Namespace Definitions 

Standar
d Name-

space 
Prefix Namespace Name Namespace Description

Normative 
Definition 
Document 
Reference 

cs: urn:schemas-upnp-org:cs 

Reference: 
http://www.upnp.org/schemas/cs/cs-v1-
2007xxxx.xsd 

Common data types for 
use in ContentSync 
schema 

[CSS-XSD] 

avcs: urn:schemas-upnp-org:cs:avcs 

Reference: 
http://www.upnp.org/schemas/cs/avcs-v1-
2007xxxx.xsd 

Metadata for UPnP AV 
CDS 

[AVCS-XSD] 

 

1.5 References 

[RFC 2119] – IETF RFC 2119, Key words for use in RFCs to Indicate Requirement Levels, S. 
Bradner, 1997. 

[RFC 4122] – IETF RFC 4122, A Universally Unique Identifier (UUID) URN Namespace, P. 
Leach, et. al., 2005. 

[CDS] – ContentDirectory:2, UPnP Forum, May 31, 2006. 

29341-15-10 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
5-1

0:2
01

1

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f


XXXX: © IEC:2010 — 9 — 

[DIDL-LITE-XSD] – XML Schema for ContentDirectory:2 Structure and Metadata (DIDL-Lite), 
UPnP Forum, May 31, 2006. 

[CSS-XSD] – XML Schema for ContentSync Service:1, UPnP Forum, July 26, 2007. 

[AVCS-XSD] – XML Schema for additional CDS Object Properties of ContentSync Service:1, 
UPnP Forum, July 26, 2007. 

[DEVICE] – UPnP Device Architecture, version 1.0, UPnP Forum, June 13, 2000. 

[XML] – Extensible Markup Language (XML) 1.0 (Third Edition), François Yergeau, Tim Bray, 
Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, eds., W3C Recommendation, February 4, 
2004. 

[XML SCHEMA-2] – XML Schema Part 2: Data Types, Second Edition, Paul V. Biron, Ashok 
Malhotra, W3C Recommendation, 28 October 2004. 

[MSD] – MediaServer:2, UPnP Forum, May 31, 2006. 

29341-15-10 © ISO/IEC:2011(E)29341-15-10 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
5-1

0:2
01

1

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f


XXXX: © IEC:2010 — 10 — 

2 Service Modeling Definitions 

2.1 ServiceType 

The following service type identifies a service that is compliant with this template: 

 urn:schemas-upnp-org:service:ContentSync:1. 

2.2 Terms 

2.2.1 Synchronization Object and Pair 

A CDS object that is to be synchronized is called a synchronization object. 

A synchronization pair represents a binding between a synchronization object in the local 
device and a synchronization object in the partner device. This binding information is stored 
in the avcs:syncInfo property of the synchronization objects. The avcs:syncInfo property for 
an object also keeps information related to which property or resource has been changed for 
that object since the object synchronized last with a remote object. This property MUST be 
updated whenever there is a change to that object. Therefore, any change to avcs:syncInfo 
property MUST not be perceived as object change. See Annex A and Annex B for details 
on synchronization object property. It is possible that an object that is new or yet to be 
synchronized does not have the corresponding remote object. In that case the remote object 
gets created in the partner device during the synchronization operation if specified by the 
policy. When creating a synchronization pair for an object, one of the three possible 
scenarios as shown in Figure 5 will occur. 

• Scenario 1: an (local) object is paired with an existing remote object in the partner device. 

• Scenario 2: the local object does not have a corresponding remote object in the partner 
device and the remote object gets created under an exsiting container object in the 
partner device which is designated by the control point. The existing container object here 
is called as Remote Parent Object.  

• Scenario 3: This is similar to scenario 2, however the remote parent object under which 
the remote object will be created does not exist either and it gets created along with the 
remote object during the synchronization operation. In scenario 3, the remote parent 
object that will be created MUST be paired with the parent object of the local object which 
is called as Virtual Remote Parent Object. 

29341-15-10 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
5-1

0:2
01

1

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f


XXXX: © IEC:2010 — 11 — 

 

Figure 5 — Types of Synchronization Pair 

The avcs:syncInfo  property for an object can have multiple synchronization pair information 
if the object is paired with multiple remote objects in different devices. In such case, there are 
some restrictions that MUST be followed. See 2.9.6 AddSyncPair() action for details. 

2.2.2 Synchronization Data Structure 

A Synchronization Data Structure consists of the following information. 

• Synchronization PairGroup is the data structure that identifies a group of 
synchronization pairs where identical synchronization policy will be applied. The actual 
synchronization pair information describing which object in the local CDS is paired with an 
object in the partner CDS is contained in the object itself as part of object property. 

• Synchronization Partnership is the data structure that describes a synchronization 
operation between two specific CDSs. These two CDSs are called partners. A 
synchronization partnership contains multiple synchronization pairGroups. A 
synchronization partnership contains policy information that is applicable to all the 
pairGroups contained within that partnership. If a pairGroup has its own policy information 
then the pairGroup policy overrides partnership policy for that specific pairGroup.  

• Synchronization Relationship is the data structure that describes a synchronization 
operation between two or more CDSs. A synchronization relationship is composed of one 
or more synchronization partnerships and each partnership is composed of one or more 
synchronization pairGroups.  

Figure 6 shows an example synchronization data structure with all its components. 

The synchronization data structure allows an object in one device to synchronize with an 
object in another device. Every syncable object in CDS has synchronization pair information 

29341-15-10 © ISO/IEC:2011(E)29341-15-10 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
5-1

0:2
01

1

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f


XXXX: © IEC:2010 — 12 — 

that describes how the object gets synchronized with another object. See Clause 2.2.3 
Synchronization Policy for more details. 

A synchronization relationship or a partnership or a pairGroup is identified by a unique ID. 
Regardless of disappearance/reappearance of this service on the network, the 
implementations that support ContentSync service implementations MUST maintain the same 
value for these IDs in the CDS over its life-time. The value once used MUST be never re-
used. In order to make the value of this state variable globally unique, it must be generated 
using GUID as defined in [RFC 4122]. A GUID is 128 bits long, and can guarantee 
uniqueness across space and time.  

Structurally, single synchronization relationship can have multiple partnerships by definition. 
However, this version of the specification allows only one partnership within a 
synchronization relationship as shown in Figure 6. But, multiple pairGroups within a 
partnership are allowed in this version of the specification. For example, the synchronization 
relationship, S2, is only effective one in the figure below. 

 

    

Figure 6 — Synchronization Data Structure 

 

2.2.3 Synchronization Policy and Behavior 

A synchronization policy indicates how synchronization partners that are involved in a 
synchronization relationship can exchange synchronization objects. In general, a 
synchronization policy indicates which device should provide metadata and resources to 
which device. There are four types of policies defined which is explained below: 

2.2.3.1 “replace” synchronization policy 

In “replace” synchronization policy, one of the synchronization partners becomes the source 
and the other becomes the sink. The purpose of “replace” synchronization is to make a sink 
identical to the source. That is, contents of the sink objects are replaced with the contents of 
the source. The terms source and sink are merely conceptual between the synchronization 
pair. 

The behavior of “replace” synchronization policy is as follows.  

• The object added to the source which does not have any corresponding object in the sink 
MUST be copied to the sink.  

• Any modification, including deletion, to the existing objects in the source will be applied to 
the corresponding objects in the sink. To protect an object in the sink from deletion by 
synchronization, this object MUST be marked as deletion protected in the synchronization 

29341-15-10 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
5-1

0:2
01

1

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f


XXXX: © IEC:2010 — 13 — 

policy. The protected object will not be deleted after synchronization, and will be excluded 
from the relationship. 

Note1: There should not be any object in the sink in a relationship that does not have a 
corresponding object in the source. 

Note2: Any changes in the sink are not useful, as these will be replaced by the source. To 
retain changes in an object in the sink, the object should be excluded from the relationship or 
it needs to be copied before synchronization. 

2.2.3.2  “merge” synchronization policy 

The “merge” synchronization policy defines that after synchronization, each partner will end 
up with a superset of synchronization objects of all the partners. In other words, the 
synchronization objects from all   the partners will be merged according to the following rules:  

• An object added to a synchronization partner that does not have any corresponding object 
in the other partner will be copied to the other partner.  

• Any metadata or resources that are missing on either partner that missing data is copied 
to the other partner. If an object and its corresponding object have the same properties 
with different values, then the values of properties of the partner with higher precedence 
will be copied to the other partner.  

2.2.3.3  “blend” synchronization policy 

The “blend” synchronization policy defines that after synchronization, each partner will end 
up with a superset of synchronization objects of all the partners. In other words, the 
synchronization objects from all   the partners will be blended according to the following 
rules: 

• An object added to a synchronization partner that does not have any corresponding object 
in the other partner will be copied to the other partner.  

• Any metadata or resources that are missing on either partner that missing data is copied 
to the other partner. If an object and its corresponding object have the same properties 
with different values, then the values are left as is on both partners.  

2.2.3.4  “tracking” synchronization policy 

A “tracking” synchronization policy is useful only when synchronizing between a CDS and a 
non-CDS device.  The actual synchronization operation for this policy is out of the scope of 
this specification. In this policy, only the device having a CDS keeps track of the change log 
for synchronization objects. The device clears the change log by invocation of the 
ResetChangeLog() action and starts keeping new log from that point. The device stops 
keeping change log when the synchronization relationship is destroyed.  

The behavior of “tracking” synchronization policy is as follows.  

• A new object is automatically added to a synchronization pairGroup of its parent object if 
the parent object (container) of the newly added object is also a synchronization object 
and the autoObjAdd (automatic addition of new child object to synchronization pairGroup) 
option in the policy of the parent object is set to "1". 

• However, descendent objects except direct child object are not affected by the option 
above. 

2.2.3.5 Deleting object from synchronization relationship 

If a user wants to delete an object from the CDS permanently, the user MUST exclude that 
object from the relationship. The object may be created again by a synchronization operation 
if the object is just deleted and not excluded from the synchronization relationship. If an 

29341-15-10 © ISO/IEC:2011(E)29341-15-10 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
5-1

0:2
01

1

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f


XXXX: © IEC:2010 — 14 — 

object is associated with multiple synchronization relationships, it is not permanently deleted 
until the object is excluded from all the synchronization relationships. 

2.2.3.6 policy Data Format 

The synchronization policy is included in the <policy> element in the ContentSync XML 
document which contains zero or more synchronization data structure (See Clause 2.7.4 
A_ARG_TYPE_SyncData state variable) and in the avcs:syncInfo::pair::policy property in a 
CDS object if overriding policy is necessary (See clause A.3 Content Synchronization-
related Properties.) The following example shows an XML fragment of the policy. 

Example: 

<policy> 
 <syncType>replace</syncType> 
 <priorityPartnerID>1</priorityPartnerID> 
 <delProtection>1</delProtection> 
<policy> 

The (one and only) root element, <policy>, MUST contain zero or more elements, each of 
which represents a synchronization policy. 

The following example shows a generalized “template” for the format of the policy XML 
document. Additional elements and/or attributes MAY be added to future versions of this 
specification.  Furthermore, a 3rd-party vendor MAY add vendor-defined elements and/or 
attributes.  However, by definition, this specification does not define the format and/or values 
for these 3rd-party elements. In order to eliminate element/attribute naming conflicts, the 
name of any vendor-defined element/attribute MUST follow the rules set forth in Clause 1.3 
“Vendor-defined Extensions” All control points should gracefully ignore any 
element/attribute that it does not understand. 

The following notation includes the forum character style to indicate names that are defined 
by the ContentSync Working Committee. Additionally, fields that need to be filled out by 
individual implementations are shown in the vendor character style. 

<?xml version="1.0"?> 
<policy 
  xmlns="urn:schemas-upnp-org:cs" 
  xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
  xsi:schemaLocation="urn:schemas-upnp-org:cs 
   http://www.upnp.org/schemas/cs/cs-v1-20070XXXX.xsd"> 
 <syncType>synchronization policy type</syncType>syncDataUpdate  
 <priorityPartnerID>Role of a partner</priorityPartnerID> 
 <delProtection>Protect an object deletion</delProtection> 
 <autoObjAdd>flag indicating automatic addition of new direct child to a  
   pairGroup</autoObjAdd> 
</policy> 

xml 
OPTIONAL. Case sensitive. 

SyncChange 
REQUIRED. MUST have “urn:schemas-upnp-org:av:css-event” (which is the UPnP ContentSync Working Committee 
Schema) as the value for the xmlns attribute that declares the default namespace;  Contains all elements and attributes 
defined by the CDS Event schema as follows: 

syncType 
REQUIRED. Indicates whether it is a “replace” or “merge” or "blend" or "tracking" synchronization. 

priorityPartnerID 
OPTIONAL. Indicates the role of a partner. If present, in a “replace” synchronization policy, it identifies the 
partner that is a source device. If present, in a “merge” synchronization policy, it identifies the partner that takes 
precedence on conflict. In "blend" and "tracking" synchronization, it is not applicable, therefore it could be omitted. 

29341-15-10 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
5-1

0:2
01

1

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f


XXXX: © IEC:2010 — 15 — 

The value of the element MUST be the partner@id in a synchronization data structure. See 2.7.4.1 
A_ARG_TYPE_SyncData_Data Format for details. Because of the definition of <partner> element in the 
synchronization data structure, the vaule MUST be either "1" or "2".  

delProtection 
OPTIONAL. indicates whether an object will remain or not in the CDS hierarchy even after the deletion of the 
object by a synchronization operation. A default behavior is that an object will be deleted by synchronization. If 
this property is not appeared in the policy property of the avcs:syncInfo::pair::policy property, the default behavior 
MUST be applied. 

autoObjAdd 
OPTIONAL. indicates whether a new direct child object will be automatically added into the synchronization 
pairGroup of the parent object.  

Although there are four types of synchronization polices defined above, some properties of 
an objects in a CDS MUST be dealt with apart from synchronization. For example, the values 
of @id and @parentID are dependent on local CDS and a CDS cannot assign a new value to 
@id and @parentID by copying these values from other objects. They MUST NOT be 
considered as syncable and the changes on them MUST be ignored during the 
synchronization operation. These properties that are independent of synchronization are 
listed in the Annex B, "Syncablility of CDS object." 

2.2.3.7 Synchronization behavior 

A synchronization operation updates metadata and resource(s) of a synchronization object 
using change log in order to keep same metadata and resources between two objects in two 
different CDSs. While synchronizing objects between two CDSs, the following behavior MUST 
be applied; 

• There is a case where a CDS does not support some metadata that the other 
synchronization partner supports. In this situation, the CDS that does not support those 
metadata MUST ignore them. 

• Synchronizing two objects under the merge synchronization policy, both of the objects will 
end up with a superset of all properties between these two objects. However, in case of a 
property that exists in both objects, the object without precedence will copy the value of 
the property from the object with precedence. The same rule applies to in case of multi-
value property. For example, if an object has two properties of the same (i.e. multi-value 
property) and this object takes precedence while synchronizing with another object, then 
these properties will be copied to the other object after synchronization even if the other 
has less or more properties of the same than the object with precedence. 

• In the case of the res property, the res@avcs:resModified property indicates whether the 
resource has been changed. Therefore, while synchronizing, an object without 
precedence MUST always retrieve the resource from the other object with precedence if 
the res@avcs:resModified property of the object with precedence has set to "1". 

• For replace synchronization policy, when source object is deleted, the sink object MUST 
be deleted after synchronization. 

• Note that deleted object information SHOULD be provided in change log. 

• For merge synchronization policy, when an object with precedence is deleted, it will be 
revived with all metadata and resource of the partner object after synchronization when 
change log from the partner device contains the partner object. 

2.2.4 Minimally Complete Synchronization Relationship Data Structure 

A minimally complete synchronization data structure defines exactly one synchronization 
relationship, exactly one partnership within synchronization relationship and exactly one 
pairGroup within that partnership. See 2.7.4 A_ARG_TYPE_SyncData state variable for 
details. 

29341-15-10 © ISO/IEC:2011(E)29341-15-10 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
5-1

0:2
01

1

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f


XXXX: © IEC:2010 — 16 — 

2.3 Synchronization Data Structure Management 

This subclause describes how a synchronization data structure gets added, modified and 
deleted. The synchronization data structure is defined by the A_ARG_TYPE_SyncData state 
variable (See Clause 2.7.4) and any changes to the data structures get evented by the 
SyncChange state variable. See 2.7.1, SyncChange state variable, and 2.8 "Eventing and 
Moderation" for details on how to send an event message for the synchronization data 
structure change. 

2.3.1 Synchronization Data Structure Addition 

Since the same synchronization data structure is kept in the partner devices within a 
partnership, any addition to the existing synchronization data structure such as adding a new 
synchronization relationship or new a pairGroup within an existing partnership MUST abide 
by the following rules: 

Note: a new partnership within an existing synchronization relationship is not allowed in 
this version of the specification. 

• When adding a new synchronization relationship or adding a new pairGroup, the two 
partner devices MUST be in the network. When a partner leaves the network while 
adding a synchronization data structure, the first partner that receives this addition 
request MUST not update its synchronization data structure. Likewise, when a partner 
fails for some reason after receiving a successful response for addition from the 
second partner, added synchronization relationship or pairGroup in the second 
partner MUST be destroyed. To remove such stale data in the second partner, the 
second partner exchanges its own synchronization data structure with the first partner 
by invoking the UPnP action ExchangeSyncData() when the first partner comes back 
to the network.. 

2.3.2 Synchronization Data Structure Modification 

Since the same synchronization data structure is kept in all the partner devices, any 
modifications to the existing synchronization data structure such as modification to an XML 
element in a synchronization relationship or in a partnership within an existing 
synchronization relationship or in a pairGroup within an existing partnership MUST follow the 
following rules: 

• To modify a synchronization relationship or a partnership or a pairGroup, all partner 
devices MUST be in the network. When a partner leaves the network while modifying a 
synchronization data structure, the first partner that receives this modification request 
MUST not update its synchronization data structure..When a partner fails for some reason 
after receiving a successful response for modifications from the second partner, the 
modified synchronization relationship or pairGroup in the second partner MUST be 
destroyed. To remove such stale data in the second partner, the second partner 
exchanges its own synchronization data structure with the first partner by invoking the 
UPnP action ExchangeSyncData() when the first partner comes back to the network..The 
partner device can determine the staleness of its partnership or pairGroup data by 
comparing the partnership@updateID attribute and the pairGroup@updateID with the one 
in the other partner device, respectively. Upon creation of a synchronization data 
structure, all partner devices MUST keep the partnership@updateID and the 
pairGroup@updateID attributes that are increased by 1 whenever a change is made on 
the partnership or pairGroup that the partner belongs to. If the values of the 
partnership@updateID or pairGroup@updateID are different then the partnership 
information with higher value of partnership@updateID or pairGroup@updateID is up-to-
date, and the partner with the lower value MUST update its partnership or pairGroup 
information with the one from the other partner. After update, the partnership@updateID 
and pairGroup@updateID values on both the partners become identical. 

• The change of the partner device in a partnership is NOT allowed. 

• A device which is currently processing a modification request MUST reject any 
subsequent modification requests on the same data structure or part of the data structure 

29341-15-10 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
5-1

0:2
01

1

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f


XXXX: © IEC:2010 — 17 — 

that is the target of the current modification request which is in progress. When a device 
is performing a synchronization operation, any modification request on the associated 
data structure MUST be rejected. 

2.3.3 Synchronization Data Structure Deletion 

Any deletions to an existing data structure MUST follow the following rules: 

• When a synchronization relationship or a partnership or a pairGroup is deleted from an 
existing data structure, the changed data structure after the deletion MUST be 
synchronized among all the partners. 

• Any deletions in one of the partners are allowed. However, the deleted information MUST 
be synchronized when the other partner come to the network. 

• When a synchronization relationship is deleted, all related information stored in the device 
such as partnership, pairGroup, synchronization pair and deleted object list relevant to 
the relationship MUST be deleted. 

• After a partnership is deleted, all information associated with this partnership such as 
pairGroup, synchronization pair and deleted object list MUST be deleted.  

• When a pairGroup is deleted, all related information stored in the device such as 
synchronization pair and deleted object list relevant to the pairGroup MUST be deleted. 

• When the last pairGroup within an existing partnership is deleted, the partnership MUST 
be deleted as well because the synchronization data structure does not allow a 
partnership without at least one pairGroup. 

2.4 Synchronization Operation (CDS to CDS) 

A Synchronization operation is performed according to the policies described in the 
synchronization data structure and/or in the synchronization pair. Therefore, before 
synchronizing objects between two or more CDSs, the synchronization data structure MUST 
be created, if it does not exist, by describing the devices to be involved in the synchronization 
along with the policies to be applied and synchronization pair information for objects that are 
to be synchronized. See 2.9.6 AddSyncPair() action for details on how to add 
synchronization pair information.  

Figure 7 and the texts below describe the sequence of steps during a synchronization 
operation:  

ContentSync
Service Control Point ContentSync

Service

GetSyncData()

GetChangeLog() [called once]

ResetChangeLog() to indicate end of sync, error conditions, 
Completion of syncing single object

[called whenever the object status is changed]

Update CDS Update CDS

StartSync() [called once]

StartSync() [called once]

ContentDirectory
Service

ContentDirectory
Service

Asynchronous transfer (pull) to obtain resources
(HTTP GET)

 

Figure 7 — Interaction Diagram (Synchronization Operation) 

 

29341-15-10 © ISO/IEC:2011(E)29341-15-10 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
5-1

0:2
01

1

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f


XXXX: © IEC:2010 — 18 — 

a) A control point MAY invoke GetSyncData() action to retrieve existing synchronization data 
structure. The result of this action is a collection of synchronization relationships. 

b) The control point triggers a synchronization operation by invoking the StartSync() action 
on one of the partner devices in the selected synchronization relationship. While invoking 
this action, the control point passes the target synchronization ID for identifying the 
synchronization relationship or partnership or pairGroup that is to be synchronized. 
1) The partner that receives the StartSync() action from a control point, MUST also 

trigger the synchronization operation on the other partner by invoking the StartSync() 
action on the partner. 

c) Once the synchronization operation has been triggered successfully, the devices that are 
part of the synchronization operation perform the synchronization simultaneously. The 
subsequent process is as follows: 
1) Each device invokes GetChangeLog() action on the partner device to retrieve 

synchronization objects, which basically include the change log as objects are 
updated in the CDS. 

2) After receiving responses for the two actions above, each partner device parses and 
interprets the received DIDL-Lite XML document (Change log) to get synchronization 
object information. Since during the synchronization operation, some of the objects 
need to be created under a container object which itself needs to be created as well, 
the order how objects are to be synchronized should be handled very carefully. The 
synchronization operation MUST be done according to the following orders. See 
Clause "2.10 Theory of Operation" for details on how individual object is 
synchronized. 
Note: Each object in the change log MUST have one of the following XML elements; 

avcs:pair::remoteObjID  
or avcs:pair::remoteParentObjID 
or avcs:pair::virtualRemoteParentObjID 

• First, the device MUST synchronize objects (Scenario 1 pair) that have the 
avcs:pair::remoteObjID property. 

• Second, the device MUST synchronize objects (Scenario 2 pair) that have the 
avcs:pair::remoteParentObjID property. 

• The device creates new (local) object under the object that is identified by 
the value of the avcs:pair::remoteParentObjID property. 

• The partner device MUST replace the avcs:pair::remoteParentObjID 
property with the the avcs:pair::remoteObjID property and the value of 
which MUST be set to object@id of the newly created object. (See Step 5 
below how the partner device receives the information of the newly 
created object)  

• Finally, the device MUST synchronize objects that have the 
avcs:pair::virtualRemoteParentObjID  property. The device starts with the 
objects for which the value of the avcs:pair::virtualRemoteParentObjID property,  
is found in the avcs:pair::remoteObjID property of the objects. Once 
synchronized, the partner device MUST replace the 
avcs:pair::virtualRemoteParentObjID property with the avcs:pair::remoteObjID 
property and the value of which MUST be set to object@id of the newly created 
object. The device continues this process recursively until all objects are 
synchronized. 

3) Whenever a device obtains the DIDL-Lite XML fragment for each synchronization 
object, the device updates the local CDS in accordance with the synchronization 
policy as described in 2.2.3. 

4) Finally, the partner devices transfer resources using HTTP GET method as the 
transport protocol. Each partner device sends an event message whenever an object 
is processed. This event message includes the status of synchronization (i.e. 
SyncStatusUpdate state variable) which indicates whether the object is synchronized 
successfully or is failed to synchronize. When an object is synchronized successfully 

29341-15-10 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
5-1

0:2
01

1

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f


XXXX: © IEC:2010 — 19 — 

the corresponding change log for that objects gets cleared and the CDS starts keeping 
log for new changes. 

Note: Each CDS object MUST have at least one res property of which resource 
MUST be transferred using HTTP GET method if the object has a resource. 

5) When a device receives the ResetChangeLog() action with objects that have 
synchronized, the device updates the avcs:pair property in the CDS object. 
i) Each device MUST invoke the ResetChangeLog() action on the partner device to 

inform (acknowledge) the partner which remote objects have successfully 
synchronized with the local objects. A device can acknowledge multiple objects by 
a single action invocation. When invoking the ResetChangeLog() action, the device 
MUST provide the avcs:syncInfo@updateID for each object that is extracted from 
the result of the last GetChangeLog() action in order for the partner to decide what 
to reset in the change log. See Clause 2.9.13 ResetChangeLog() how to reset 
the change log. 

d) After receiving an event message from the partner device that notifies the end of 
synchronization for all objects, the device releases all system resources that are involved 
in the synchronization operation. 

2.5 Synchronization Operation (CDS to non CDS)  

The synchronization between a CDS and a non-CDS (Control Point) is unidirectional and 
consists of the following steps: 

a) A UPnP Control Point creates a new synchronization data structure containing a single 
synchronization relationship on the device with which the control point wants to 
synchronize. The process of creating such data structure is defined in 2.10.2.2. The 
following rules MUST be applied while creating a synchronization data structure for CDS-
non CDS synchronization: 

• Either <partner id="1"> or <partner id="2"> elements in the <partnership> element 
MUST be assigned to Non-CDS entity and its <deviceUDN> element and <serviceID> 
MUST have the empty string. 

• If one of two partners is a non-CDS, adding another partnership is NOT allowed. 

• A partnership between CDS and Non-CDS can not be added into an existing 
synchronization relationship. 

The following XML document shows an example format of the synchronization data structure 
for CDS and Non-CDS synchronization. (See Clause 2.7.4 A_ARG_TYPE_SyncData for 
details on a synchronization data structure) 

<syncRelationship id="1cce93c2-6144-4093-9650-ae6c7ba28c91" active="1"  
  xmlns="urn:schemas-upnp-org:cs" 
  xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
  xsi:schemaLocation="urn:schemas-upnp-org:cs 
   http://www.upnp.org/schemas/cs/cs-v1-20070XXXX.xsd"> 
 <title>ABC Electronic Program Guide</title> 
 <partnership id="3fa8e9f8-ff21-47ee-90c8-7730793a613f" active="1"> 
  <partner id="1"> 
   <deviceUDN>e832a654-9c64-429b-9f34-8f55278f73a7</deviceUDN> 
   <serviceID>AcmeContentSync-001</serviceID> 
  </partner> 
  <partner id="2"> 
   <deviceUDN></deviceUDN> 
   <serviceID></serviceID> 
  </partner> 
  <policy> 
   <syncType>tracking<syncType> 
   <priorityPartnerID>1</priorityPartnerID> 
   <autoObjAdd>1</autoObjAdd> 
  </policy> 
  <pairGroup id="bca02e62-e9d6-454c-b1b2-a52e199e02e7" active="1"/> 
 </partnership> 
</syncRelationship> 

29341-15-10 © ISO/IEC:2011(E)29341-15-10 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
5-1

0:2
01

1

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f


XXXX: © IEC:2010 — 20 — 

 

b) Once the synchronization data structure is created and pair information is added to the 
CDS objects, the CDS starts keeping track of changes to the objects. 

c) A control point can retrieve the change log for all the objects that are part of the 
synchronization relationship by invoking the GetChangeLog() action defined in 2.9.11. 
After retrieving the change log, a control point can invoke the ResetChangeLog() action to 
instruct the CDS whether to continue accumulating the change log once it has been 
retrieved or starts keeping new log after flushing  out the old logs. 

d) Once the change log is retrieved, the control point compares the changes to objects with 
its internal database and updates its internal data base and hence essentially 
synchronizing with the CDS. 

e) When a control point is no-longer interested in the change log for objects that are part of 
a synchronization relationship, the control point will delete the synchronization 
relationship by invoking the action DeleteSyncData() defined in 2.9.3. 

f) Any resource transfer on this type of a synchronization relationship is out of scope of the 
specificatieon. Therefore, the StartSync() action invocation on the synchronization 
relationship containing a partnership between a CDS and a non-CDS MUST fail with an 
appropriate error code. 

2.6 Garbage Collection 

If a synchronization data structure is either inactive or has not been used for a long time for 
the purpose of synchronization, a CSS implementation can decide to remove that data 
structure and similarly the CDS implementation related to that CSS MUST remove all pair 
information associated with that data structure. 

A synchronization pair that is not synchronized for a long time, an implementation can decide 
to remove that synchronization pair as well. 

The future version of this specification will investigate to provide a standardized mechanism 
for garbage collection. 

2.7 State Variables 

Table 2-1 — State Variables 

Variable Name Req. or 
Opt. a 

Data 
Type 

Allowed 
Value b  

Default 
Value  

Eng. 
Units 

SyncChange R string    

SyncStatusUpdate R string    

A_ARG_TYPE_ActionCaller R string    

A_ARG_TYPE_SyncData R string    

A_ARG_TYPE_SyncPair R string    

A_ARG_TYPE_SyncID R string    

A_ARG_TYPE_ObjectID R string    

A_ARG_TYPE_SyncStatus R string    

A_ARG_TYPE_ChangeLog R string    

A_ARG_TYPE_Index R ui4    

A_ARG_TYPE_Count R ui4    

A_ARG_TYPE_ResetObjectList R string    

Non-standard state variables implemented by 
an UPnP vendor go here. 

X TBD TBD TBD TBD 

29341-15-10 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
5-1

0:2
01

1

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f


XXXX: © IEC:2010 — 21 — 

Variable Name Req. or 
Opt. a 

Data 
Type 

Allowed 
Value b  

Default 
Value  

Eng. 
Units 

a R = Required, O = Optional, X = Non-standard 

b Values listed in this column are required. To specify standard optional values or to delegate assignment of 
values to the vendor, you must reference a specific instance of an appropriate table below. 

2.7.1 SyncChange 

The SyncChange state variable contains an XML document identifying all changes that have 
occurred since the last time the SyncChange state variable was evented. Synchronization 
data structure change and synchronization object chage are evented in this version of the 
specification. See 2.8 for details.  Individual events MUST be buffered and delivered in the 
order that they occurred with the most recent event corresponding to the last XML element 
within the SyncChange XML Document that is stored in the SyncChange state variable. Refer 
to 2.7.1.1, “SyncChange Data Format” and the “ContentSync service Event Schema” 
document for more details. 

The SyncChange state variable is evented and moderated according to the GENA eventing 
mechanism as defined by the UPnP Device Architecture specification [DEVICE]. When 
multiple changes of object and synchronization data structure occur within the same 
moderation period (as determined by the implementation), each change MUST be 
accumulated in the SyncChange state variable and MUST be evented as a single event 
notification message when the current moderation period expires.  After the event notification 
message has been sent to all subscribed control points, the value of the SyncChange state 
variable is reset when an update to the SyncChange state variable becomes necessary i.e. 
when the next event occurs.  The resulting value is a fresh XML document that contains a 
single element that represents the update (i.e. it contains the first update event following the 
distribution of the previous event message to all subscribers).  Subsequently, additional 
update elements are added to the XML document until the current moderation period ends 
and the current value of the SyncChange state variable (i.e. the current event message) is 
propagated to all event subscribers. 

2.7.1.1  SyncChange Data Format 

The optional XML header <?xml version=”1.0” ?> is allowed. The (one and only) root 
element, <SyncChange>, MUST contain zero or more elements, each of which represents a 
change to a specific synchronization data structure. 

The following example shows a generalized “template” for the format of the SyncChange 
state variable.  Additional elements and/or attributes MAY be added to future versions of this 
specification.  Furthermore, a 3rd-party vendor MAY add vendor-defined elements and/or 
attributes.  However, by definition, this specification does not define the format and/or values 
for these 3rd-party elements. In order to eliminate element/attribute naming conflicts, the 
name of any vendor-defined element/attribute MUST follow the rules set forth in Clause 1.3 
“Vendor-defined Extensions” All control points should gracefully ignore any 
element/attribute that it does not understand. 

Note: The content of this state variable (i.e. the SyncChange XML document) MUST be 
properly escaped before it is sent to an event subscriber via GENA.  

The following notation includes the forum character style to indicate names that are defined 
by the ContentSync Working Committee. Additionally, fields that need to be filled out by 
individual implementations are shown in the vendor character style. 

<?xml version="1.0"?> 
<SyncChange 
  xmlns="urn:schemas-upnp-org:cs" 
  xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
  xsi:schemaLocation="urn:schemas-upnp-org:cs 
   http://www.upnp.org/schemas/cs/cs-v1-20070XXXX.xsd"> 

29341-15-10 © ISO/IEC:2011(E)29341-15-10 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
5-1

0:2
01

1

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f


XXXX: © IEC:2010 — 22 — 

 <syncDataUpdate syncID="synchronization relationship or partnership or  
   pairGroup ID of updated synchronization relationship"/> 
 <syncObjUpdate objectID="object ID of updated synchronization object"/> 
</SyncChange> 

xml 
OPTIONAL. Case sensitive. 

SyncChange 
REQUIRED. MUST have “urn:schemas-upnp-org:cs” (which is the UPnP ContentSync Working Committee Schema) as the 
value for the xmlns attribute that declares the default namespace;  Contains all elements and attributes defined by the CDS 
Event schema as follows: 

syncDataUpdate 
OPTIONAL. Indicates that a synchronization relationship among the local device and other partner devices has 
been modified on line. If the device receives this state variable, the local device MUST browse updated 
relationship on the partner devices and update its local relationship information with the partner device’s 
relationship information. This asynchronous update behavior only happens in case of deletion of the 
synchronization data structure.   See 2.3.3 "Synchronization Data Structure Deletion" for details on the 
synchronization data structure update. The contents of this element MUST be the empty string.  However, future 
versions of this specification may define specific values for this element.  Consequently, control points must be 
prepared to gracefully ignore any element contents and/or element attributes that it does not understand.  
Contains all of the following attributes: 

syncID 
REQUIRED. xsd:string, Contains the @id attribute of the synchronization relationship or partnership or 
pairGroup that was added or modified. 

syncObjUpdate 
OPTIONAL. Indicates that a synchronization object has been modified since last synchronization operation. If the 
partner device receives this state variable, the local device can do synchronization operation immediately. The 
contents of this element MUST be the empty string.  However, future versions of this specification may define 
specific values for this element.  Consequently, control points must be prepared to gracefully ignore any element 
contents and/or element attributes that it does not understand.  Contains all of the following attributes: 

objectID 
REQUIRED. xsd:string, Contains the object@id property of the synchronization object that was 
modified. 

2.7.2 SyncStatusUpdate 

This state variable is used for eventing purposes which allow a control point to receive 
meaningful event notifications whenever there is a update in synchronization operation 
involving a synchronization relationship. [CSS-XSD] defines the schema for the 
SyncStatusUpdate XML Document used in this state variable. The optional XML header =<? 
xml version="1.0"?> is allowed. One root element, <SyncStatusUpdate> has a list of 
one or more synchronization operation information structures representing currently ongoing 
synchronization operations. A synchronization operation information structure includes the 
status of the opreation. Other update elements MAY be added in the future CSS 
specifications as needed. 

SyncStatusUpdate state variable is sent whenever a synchronization object is successfully 
synchronized or failed to synchronize during a synchronization operation. This state variable 
only contains new updates since the last time the state variable was evented. Once the 
update is sent, this update information is never sent again. 

Example (before XML escaping): 

<?xml version="1.0" encoding="utf-8"> 
<SyncStatusUpdate 
  xmlns="urn:schemas-upnp-org:cs" 
  xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
  xsi:schemaLocation="urn:schemas-upnp-org:cs 
   http://www.upnp.org/schemas/cs/cs-v1-20070XXXX.xsd"> 
 <syncRelationship id="d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d"> 
  <status numberOfTotalObjects="50" numberOfCompletedObjects="47" 

29341-15-10 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
5-1

0:2
01

1

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f


XXXX: © IEC:2010 — 23 — 

    numberOfFailedObjects="2"> 
   IN_PROGRESS_WITH_ERROR 
  </status> 
  <partnership id="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6"> 
   <status numberOfTotalObjects="50" numberOfCompletedObjects="45" 
     numberOfFailedObjects="2"> 
    IN_PROGRESS_WITH_ERROR 
   </status> 
   <pairGroup id="0ada9f4f-596f-4906-93d0-230f9df78a10"> 
    <status numberOfTotalObjects="25" numberOfCompletedObjects="23" 
      numberOfFailedObjects="1"> 
     IN_PROGRESS_WITH_ERROR 
    </status> 
    <logEntry> 
     <localObjectID>obj01</localObjectID> 
     <remoteObjectID>robj07</remoteObjectID> 
     <statusCode>001</statusCodes> 
     <statusDescription>Succeeded completely</statusDescription> 
    </logEntry> 
   </pairGroup> 
   <pairGroup id=’70a74981-35f3-4262-84e8-ba0ec1794c0c’> 
    <status numberOfTotalObjects="25" numberOfCompletedObjects="22" 
      numberOfFailedObjects="1"> 
     IN_PROGRESS_WITH_ERROR 
    </status> 
    <logEntry> 
     <localObjectID>obj03</localObjectID> 
      <remoteObjectID>robj02</remoteObjectID> 
      <statusCode>001</statusCodes> 
      <statusDescription>Succeeded completely</statusDescription> 
     </logEntry> 
    </pairGroup> 
  </partnership> 
 </syncRelationship> 
</SyncStatusUpdate> 

The SyncStatusUpdate state variable MUST only be cleared just before adding the first 
update event that occurs after the last event message was sent.  

A series of updates and the resulting eventing activity are illustrated in their temporal order in 
the example shown above. 

2.7.2.1 SyncStatusUpdate Data Format 

The optional XML header <?xml version=”1.0” ?> is allowed. The (one and only) root 
element, <SyncStatusUpdate>, MUST contain zero or more elements, each of which 
represents a log of the synchronization object that is synchronized.  

The following example shows a generalized “template” for the format of the 
SyncStatusUpdate state variable.  Additional elements and/or attributes MAY be added to 
future versions of this specification.  Furthermore, a 3rd-party vendor MAY add vendor-
defined elements and/or attributes.  However, by definition, this specification does not define 
the format and/or values for these 3rd-party elements. In order to eliminate element/attribute 
naming conflicts, the name of any vendor-defined element/attribute MUST follow the rules set 
forth in Clause 1.3 “Vendor-defined Extensions” All control points should gracefully ignore 
any element/attribute that it does not understand. 

The following notation includes the forum character style to indicate names that are defined 
by the ContentSync Working Committee. Additionally, fields that need to be filled out by 
individual implementations are shown in the vendor character style. 

<?xml version="1.0"?> 
<SyncStatusUpdate 
  xmlns="urn:schemas-upnp-org:cs" 
  xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
  xsi:schemaLocation="urn:schemas-upnp-org:cs 
  http://www.upnp.org/schemas/cs/cs-v1-20070XXXX.xsd"> 

29341-15-10 © ISO/IEC:2011(E)29341-15-10 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
5-1

0:2
01

1

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f


XXXX: © IEC:2010 — 24 — 

 <syncRelationship id="synchronization relationship ID"> 
  <status numberOfTotalObjects="total number of synchronizing objects" 
    numberOfCompletedObjects="number of synchronized objects" 
    numberOfFailedObjects="number of synchronization-failed objects"> 
   synchronization status of this synchronization relationship 
  </status> 
  <partnership id="synchronization partnership ID" 
   <status numberOfTotalObjects="total number of synchronizing objects" 
     numberOfCompletedObjects="number of synchronized objects" 
     numberOfFailedObjects="number of synchronization-failed objects"> 
    synchronization status of this synchronization partnership 
   </status> 
   <pairGroup id="synchronization pairGroup ID" 
    <status numberOfTotalObjects="total number of synchronizing objects" 
      numberOfCompletedObjects="number of synchronized objects 
       within this pairGroup" 
      numberOfFailedObjects="number of synchronization-failed objects">  
     synchronization status of this synchronization pairGroup 
    </status> 
    <logEntry> 
     <localObjID>local object ID</localObjID> 
     <remoteObjID>remote object ID</remoteObjID> 
     <statusCode>synchronization status codes</statusCode> 
     <statusDesc>synchronization status description</statusDesc> 
    </logEntry> 
   </pairGroup> 
  </partnership> 
 </syncRelationship> 
</SyncStatusUpdate> 

xml 
OPTIONAL. Case sensitive. 

SyncStatusUpdate 
REQUIRED. MUST have “urn:schemas-upnp-org:cs” (which is the UPnP ContentSync Working Committee Schema) as the 
value for the xmlns attribute that declares the default namespace;  Contains all elements and attributes defined by the CSS 
schema as follows: 

syncRelationship 
OPTIONAL. a wrapper element that holds the synchronization operation information associated with a 
synchronization relationship. This element can appear multiple times to contain multiple synchronization 
relationships in the XML document. 

@id 
REQUIRED. xsd:string, contains an identifier to distinguish synchronization relationship from other 
synchronization relationships.  

status 
REQUIRED. xsd:string, indicates the status of a synchronization operation of the synchronization 
relationship identified by @id attribute above. This element MUST assume one of the following 
enumerated values: 

IN_PROGRESS: The operation is in progress without any errors. 

IN_PROGRESS_WITH_ERROR: The operation is in progress where some objects are 
failed to synchronization. 

COMPLETED: The operation is completed. 

COMPLETED_WITH_ERROR: The operation is finished, but some objects are failed to 
synchronization. 

STOPPED: The operation is stopped by any reasons. 

TEMPORARILY_STOPPED: The operation is temporarily stopped by any reason. This 
operation could be resumed at any time. 

@numberOfTotalObjects 
REQUIRED. xsd:unsignedInt, contains the total number of synchronization objects that are 
in the change log.  

@numberOfCompletedObjects 
REQUIRED. xsd:unsignedInt, contains the total number of objects that are successfully 
imported into the local CDS. 

29341-15-10 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
5-1

0:2
01

1

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f


XXXX: © IEC:2010 — 25 — 

@numberOfFailedObjects 
REQUIRED. xsd:unsignedInt, contains the number of objects that are failed to be imported 
into the local CDS. 

partnership 
REQUIRED. xsd:string, a wrapper element that holds the synchronization operation information 
associated with a synchronization partnership. 

@id 
REQUIRED. xsd:string, contains an identifier to distinguish a partnership from other 
partnerships in a synchronization relationship.  

status 
REQUIRED. xsd:string, indicates the status of a synchronization operation of the 
synchronization partnership identified by @id attribute above. This element MUST assume 
one of the following enumerated values:  

IN_PROGRESS: The operation is in progress without any errors. 

IN_PROGRESS_WITH_ERROR: The operation is in progress where some 
objects are failed to synchronization. 

COMPLETED: The operation is completed. 

COMPLETED_WITH_ERROR: The operation is finished, but some objects are 
failed to synchronization. 

STOPPED: The operation is stopped by any reasons. 

TEMPORARILY_STOPPED: The operation is temporarily stopped by any reason. 
This operation could be resumed at any time. 

@numberOfTotalObjects 
REQUIRED. xsd:unsignedInt, contains the total number of synchronization objects 
that are found in the change log from a partner device. 

@numberOfCompletedObjects 
REQUIRED. xsd:unsignedInt, contains the total number of objects that are 
successfully imported into the local CDS. 

@numberOfFailedObjects 
REQUIRED. xsd:unsignedInt, contains the number of objects that are failed to be 
imported into the local CDS. 

pairGroup 
REQUIRED. xsd:string, a wrapper element that holds the synchronization operation 
information associated with a synchronization pairGroup. 

@id 
REQUIRED. xsd:string, contains an identifier to distinguish a pairGroup from other 
pairGroups in a synchronization partnership.  

status 
REQUIRED. xsd:string, indicates the status of a synchronization operation of the 
synchronization pairGroup identified by @id attribute above. This element MUST 
assume one of the following enumerated values:  

IN_PROGRESS: The operation is in progress without any errors. 

IN_PROGRESS_WITH_ERROR: The operation is in progress where 
some objects are failed to synchronize. 

COMPLETED: The operation is completed. 

COMPLETED_WITH_ERROR: The operation is finished, but some 
objects are failed to    synchronize. 

 STOPPED: The operation is stopped by any reasons. 

TEMPORARILY_STOPPED: The operation is temporarily stopped for 
any reason. This operation could be resumed at any time. 

@numberOfTotalObjects 

29341-15-10 © ISO/IEC:2011(E)29341-15-10 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
5-1

0:2
01

1

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f


XXXX: © IEC:2010 — 26 — 

REQUIRED. xsd:unsignedInt, contains the total number of 
synchronization objects that are found in the change log from a partner 
device. 

@numberOfCompletedObjects 
REQUIRED. xsd:unsignedInt, contains the total number of objects that 
are successfully imported into the local CDS. 

@numberOfFailedObjects 
REQUIRED. xsd:unsignedInt, contains the number of objects that are 
failed to be imported into the local CDS. 

logEntry 
REQUIRED. xsd:string, contains the result of synchronization operation for each 
synchronization object. 

localObjID 
REQUIRED. xsd:string, identifies a CDS object that resides on the local 
CDS of the device issuing the event. When the SyncStatusUpdate XML 
document is sent to the partner as an event message, this localObjID 
element is perceived as a remote object by the partner. 

remoteObjID 
REQUIRED. xsd:string, identifies a CDS object in the partner CDS that 
is paired with an object in the local CDS for synchronization. When the 
partner receives the SyncStatusUpdate XML document as an event 
message, this remoteObjID element is perceived as a local object at the 
partner device. 

statusCode 
REQUIRED. xsd:unsignedInt, indicates pre-defined status codes for a 
synchronization operation for the logEntry element. The table below 
defines the status codes to identify various synchronization conditions. 
This status list can be extended in the future by vendors. The status 
codes are grouped into separate categories and labeled as 1xx, 2xx, 
3xx and 4xx, where each group represents the nature of status; such as: 
success status, general errors, media errors, system error and 
synchronization errors, respectively. The grouping of status codes 
allows a control point to be able to understand the nature of status when 
an unknown status code (that is: extended specification or vendor 
extended) is encountered. For example, for an unknown error labeled 
as 2xx, it can be interpreted by the control point as 200. 

29341-15-10 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
5-1

0:2
01

1

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f


XXXX: © IEC:2010 — 27 — 

Table 2-2 — Status Codes of Synchronization Operation 

Value R/O Description 

Non-positive N/A These error codes are reserved for future use. Control points should 
gracefully ignore any non-positive error codes. 

001-099 N/A Non-Error Group

001 R Success – Synchronization of an object is succeeded. 

002 O Partial Success – Synchronization of an object is succeeded, but 
some DIDL-Lite properties are missing due to device capability. 

003 R Not Accepted - the object is not accepted due to device capability 

004-099 N/A Reserved 

100-199 N/A General Error Code Group - arbitrary errors, which do not belong to 
other groups. 

100  R General Problem –a problem is confirmed, but no specific reason can 
be identified. 

101 O Disabled Sync Operation- the synchronization operation is disabled by 
the user. 

102 O The destination for the new object is not specified. 

102-149 N/A Reserved for future General Error Codes.

150-199 N/A Reserved for vendor-defined General Error Codes. 
200-299 N/A Media Error Code Group - arbitrary media related errors. 

200 O General Media Problem–some trouble related to media is detected. 
Checking the media to resolve it. 

201 O Insufficient Disk Space–storage of the sync device (i.e., HDD or Flash 
Memory, etc…) does not have enough available space to complete the 
synchronization. 

202 O Storage Low Space - the storage of sync device has low available 
space and the synchronization process may fail. The criteria to 
determine “low space” is vendor dependent and may be independent 
from the size of the sync contents to synchronize. 

203-249 N/A Reserved for future Media Error Codes. 

250-299 N/A Reserved for vendor-defined Media Error Codes. 
300-399 N/A System Error Code Group - arbitrary system related error. 

300  O General System Problem –a problem related to the system is 
detected. It may affect all synchronization processes in the sync-
enabled Content Directory service. 

301 O Insufficient Memory- the system does not have enough system 
memory to complete the synchronization processes. 

302 O Insufficient Processing - the system does not have enough CPU 
power to execute the designated synchronization processes. 

303 O Low Memory - the system has low available memory and the 
designated synchronization process may fail. The criteria to determine 
“low memory” is vendor dependent and may be independent from the 
size of the sync content to synchronize. 

304 O Low Processing - the system has low available CPU power and the 
designated synchronization process may fail. The criteria to determine 
“low processing” is vendor dependent and may be independent from 
the size of the sync content to synchronize. 

305-349  N/A Reserved for future System Error Codes.

350-399  N/A Reserved for vendor-defined System Error Codes. 
400-499 N/A Content Error Code Group - arbitrary errors related to the content to 

be synchronized. 

400 O General Content Problem –a problem related to the content is 
detected. It may be associated with the content that is being 
synchronized. 

29341-15-10 © ISO/IEC:2011(E)29341-15-10 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
5-1

0:2
01

1

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f


XXXX: © IEC:2010 — 28 — 

Value R/O Description 

401 O No Sync Content–the necessary content is missing from the sync 
devices. 

402 O Content Write Protect - write access to the recording content is 
prohibited. 

403 O Synchronization Loser –there are other synchronizing process with the 
same contents(i.e., CDS objects) at the same period, and the current 
synchronization process is superseded by the conflicting 
synchronization process. 

404 O Content Locked- the originally sync content has been preempted by 
another synchronization process. 

405 O Invalid XML – xml document format for content metadata is not valid. 

404-449  N/A Reserved for future Content Error Codes. 

450-499 N/A Reserved for vendor-defined Content Error Codes. 

500 and above  N/A Reserved for future new category information extensions. 

statusDesc 
REQUIRED. xsd:string, expresses readable error status of the 
synchronization operation for this logEntry element. 

2.7.3 A_ARG_TYPE_ActionCaller 

This state variable is introduced to provide type information for the ActionCaller argument in 
various actions. The ActionCaller argument identifies the caller of an action. If the caller is a 
control point embedded in a UPnP device then the value MUST be the device’s UDN. 
Otherwise the value MUST be set to the empty string indicating that the caller is a stand-
alone control point. 

2.7.4 A_ARG_TYPE_SyncData 

This state variable is introduced to provide type information for various arguments that 
contain different parts of a synchronization data structure to be used in various actions. The 
A_ARG_TYPE_SyncData state variable MUST contain one of the following types of 
synchronization-related XML fragments: 

• Synchronization relationship data: Represents synchronization relationship level 
information.  

• Partnership data: Represents partnership level information for a given synchronization 
relationship. This fragment MUST NOT contain any synchronization or pairGroup level 
information. 

• Pairgroup data: Represents pairGroup level information in a synchronization relationship 
for a given partnership. This fragment MUST NOT contain any synchronization or 
partnership level information. 

All instances of this data type MUST comply with the [CSS-XSD] schema. 

Note that since the ContentSync format of an argument of data type A_ARG_TYPE_SyncData 
is an XML document, it needs to be escaped (using the normal XML rules: [XML] Clause 2.4 
Character Data and Markup) before embedding in a SOAP response message. 

The example below shows synchronization data structure for synchronization between two 
CDSs: 

Example: 

<?xml version="1.0" encoding="utf-8"> 
<ContentSync xmlns="urn:schemas-upnp-org:cs" 
  xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

29341-15-10 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
5-1

0:2
01

1

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f


XXXX: © IEC:2010 — 29 — 

  xsi:schemaLocation="urn:schemas-upnp-org:cs 
   http://www.upnp.org/schemas/cs/cs-v1-20070XXXX.xsd"> 
 <syncRelationship id="d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d" active="1"> 
  <title>Sync between My iPod, My PMP and Home Media Server</title> 
  <partnership id="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6" active="1" 
    updateID="0"> 
   <partner id="1"> 
    <deviceUDN>343bd2a2-189b-40c0-8eb5-ea91ea730402</deviceUDN> 
    <serviceID>service_ID_A</serviceID> 
   </partner> 
   <partner id="2"> 
    <deviceUDN>05de2732-5df5-4c48-922b-12f73473f0e9</deviceUDN> 
    <serviceID>service_ID_B</serviceID> 
   </partner> 
   <policy> 
    <syncType>merge<syncType> 
    <priorityPartnerID>1</priorityPartnerID> 
   </policy> 
   <pairGroup id="ba8e57de-7f66-4102-ae4b-31b96c86f173" active="1"> 
    <policy>  
     <syncType>replace</syncType> 
     <priorityPartnerID>1</priorityPartnerID> 
    </policy> 
   </pairGroup> 
   <pairGroup id="0ada9f4f-596f-4906-93d0-230f9df78a10" active="1"> 
    <policy> 
     <syncType>replace</syncType> 
     <priorityPartnerID>2</priorityPartnerID> 
    </policy> 
   </pairGroup> 
   <!-- More pairGroups can go here --> 
  </partnership> 
  <partnership id="864074ec-dad5-4d2c-b5c6-41e3e6f53b79" active="1"  
    updateID="0"> 
   <partner id="1"> 
    <deviceUDN>343bd2a2-189b-40c0-8eb5-ea91ea730402</deviceUDN> 
    <serviceID>service_ID_A</serviceID> 
   </partner> 
   <partner id="2"> 
    <deviceUDN>e832a654-9c64-429b-9f34-8f55278f73a7</deviceUDN> 
    <serviceID>service_ID_C</serviceID> 
   </partner> 
   <policy> 
    <syncType>merge</syncType> 
    <priorityPartnerID>2</priorityPartnerID> 
   </policy> 
   <pairGroup id="265193c0-0b07-4f33-979c-f4701a98a1d9" active="1"/> 
  </partnership> 
  <!-- More partnerships can go here --> 
 </syncRelationship> 
 <syncRelationship id="e884c276-c489-44f0-bcec-332450dab074" active="1"> 
  <title>Sync between My PMP and Home Media Server</title> 
  <partnership id="1ab3fef4-777e-496a-82ed-d2580cdafa75" active="1"  
    updateID="0"> 
   <partner id="1"> 
    <deviceUDN>343bd2a2-189b-40c0-8eb5-ea91ea730402</deviceUDN> 
    <serviceID>service_ID_A</serviceID> 
   </partner> 
   <partner id="2"> 
    <deviceUDN>ef7c6650-5748-4cc7-9cde-6a5b8719615f</deviceUDN> 
    <serviceID>service_ID_D</serviceID> 
   </partner> 
   <policy> 
    <syncType>replace</syncType> 
    <priorityPartnerID>2</priorityPartnerID> 
   </policy> 
   <pairGroup id="c1bc5bd7-0207-4226-beee-b528fe63a919" active="1"/> 
  </partnership> 
 </syncRelationship> 
</ContentSync> 

29341-15-10 © ISO/IEC:2011(E)29341-15-10 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
5-1

0:2
01

1

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f


XXXX: © IEC:2010 — 30 — 

The XML document example above contains multiple synchronization relationships and 
multiple partnerships in the first synchronization relationship. However, only one partnership 
is allowed in a synchronization relationship in this version of the specification. 

A synchronization relationship (and its syncRelationship data structure) is identified by a 
globally unique syncRelationship@id element. A synchronization relationship is composed of 
one or more partnerships (see below). A synchronization relationship can be in an active or 
inactive state. An active state means that the synchronization relationship participates in a 
synchronization operation whereas an inactive synchronization relationship does not 
participate in a synchronization operation. The active state of a synchronization relationship 
is expressed by the syncRelationship@active element.  

A partnership identifies two specific partner devices containing content that is synchronized 
during a synchronization operation. A partnership exists only between two sync partner 
devices. The partner devices are identified by their respective UDN values. Each partnership 
is identified by a globally unique partnership@id element.  

Each partnership consists of one or more synchronization PairGroups. A PairGroup identifies 
a set of synchronization pairs where identical synchronization policies are applied. Each 
object that belongs to a pair and is associated with a pairGroup includes a avcs:syncInfo::pair 
property that contains a reference to that PairGroup via the PairGroup’s id.  . 

Within every synchronization data structure (relationship, partnership, and PairGroup) a 
default policy is defined such that all dependent structures inherit that policy unless the 
dependent structure specifies a policy on its own.For example if policies are defined for a 
PairGroup and for a pair under that pairGroup, the pair policy will override the pairGroup 
policy. Similarly, if policies are defined for a partnership and a pairGroup under that 
partnership, then pairGroup policy will override partnership policy.  

The partnership@updateID element can be used to determine whether locally cached 
partnership information has become stale. The partnership@updateID element value is 
increased by one whenever the partnership information is modified. See the action 
ModifySyncData() for more details. 

The synchronization data structure for a given synchronization relationship MUST be identical 
in all devices that are referenced within that synchronization relationship before performing 
any synchronization operation. 

2.7.4.1  A_ARG_TYPE_SyncData Data Format 

The optional XML header <?xml version=”1.0” ?> is allowed. The (one and only) root 
element, <ContentSync>, MUST contain zero or more elements, each of which represents a 
synchronization data structure.  

The following example shows a generalized “template” for the format of the 
A_ARG_TYPE_SyncData state variable.  Additional elements and/or attributes MAY be added 
to future versions of this specification.  Furthermore, a 3rd-party vendor MAY add vendor-
defined elements and/or attributes.  However, by definition, this specification does not define 
the format and/or values for these 3rd-party elements. In order to eliminate element/attribute 
naming conflicts, the name of any vendor-defined element/attribute MUST follow the rules set 
forth in Clause 1.3 “Vendor-defined Extensions”. All control points should gracefully ignore 
any element/attribute that it does not understand. 

The following notation includes the forum character style to indicate names that are defined 
by the ContentSync Working Committee. Additionally, fields that need to be filled out by 
individual implementations are shown in the vendor character style. 

<?xml version="1.0"?> 
<ContentSync 

29341-15-10 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
5-1

0:2
01

1

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f


XXXX: © IEC:2010 — 31 — 

  xmlns="urn:schemas-upnp-org:cs" 
  xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
  xsi:schemaLocation="urn:schemas-upnp-org:cs 
   http://www.upnp.org/schemas/cs/cs-v1-20070XXXX.xsd"> 
 <syncRelationship id="synchronization relationship ID"  
   active="flag indicates whether a relationship is enabled or disabled" 
   systemUpdateID="system update ID of the CDS at the time of change"> 
  <title>title of this synchronization relationship</title> 
  <partnership id="synchronization partnership ID"  
    active="flag indicates whether a partnership is enabled or disabled" 
    updateID="uniquely assigned ID when a partnership is updated"> 
   <partner id="1"> 
    <deviceUDN>device UDN of the first partner</deviceUDN> 
    <serviceID>ID of a service of the first partner</serviceID> 
   </partner> 
   <partner id="2"> 
    <deviceUDN>device UDN of the second partner</deviceUDN> 
    <serviceID>ID of a service of the second partner</serviceID> 
   </partner> 
   <policy>synchronization policy in a partnership level</policy> 
   <pairGroup id="synchronization pairGroup ID"  
     active="flag indicates whether a pairGroup is enabled or disabled"> 
    <policy>synchronization policy in a pairGroup level</policy> 
   </pairGroup> 
  </partnership> 
 </syncRelationship> 
</ContentSync> 

xml 
OPTIONAL. Case sensitive. 

ContentSync 
REQUIRED. MUST have “urn:schemas-upnp-org:cs” (which is the UPnP ContentSync Working Committee Schema) as the 
value for the xmlns attribute that declares the default namespace;  Contains all elements and attributes defined by the CSS 
schema as follows: 

syncRelationship 
OPTIONAL. a wrapper element that holds the information associated with a synchronization relationship. This 
element can appear multiple times to contain multiple synchronization relationship in the XML document. 

@id 
REQUIRED. xsd:string, contains an identifier to distinguish a synchronization relationship from other 
synchronization relationships. The value of this attribute MUST be generated using GUID as defined in 
RFC 4122. A GUID is 128 bits long and can guarantee uniqueness across space and time. 

@active 
REQUIRED. xsd:boolean, Indicates whether a synchronization relationship is enabled. To indicate a 
synchronization relationship is currently disabled, the syncRelationship@active attribute MUST be set 
to false (“0”). Attempting to synchronize a disabled synchronization relationship MUST result in an 
error. Each synchronization partner MUST keep its local Change Log even though the synchronization 
relationship is disabled. Enabling is accomplished by setting the active attribute to true (“1”). If a 
relationship is disabled then all partnerships under this relationship will be treated as disabled 
regardsless of the setting of the active flags of those partnerships. 

@systemUpdateID 
REQUIRED. xsd:string, Indicates systemUpdateID property of the CDS at the time of change 

title 
REQUIRED. xsd:string, contains a user-friendly name for the synchronization relationship. 

partnership 
REQUIRED. xsd:string, indicates which two devices in a synchronization relationship are partnered 
together. Sub-properties of the partnership element describe detailed information of the partnership. 
This element MUST appear under the <syncRelationship> element. 

@id 
REQUIRED. xsd:string, contains an identifier to distinguish a partnership from other 
partnerships in a synchronization relationship. The value of the partnership@id attribute 

29341-15-10 © ISO/IEC:2011(E)29341-15-10 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
5-1

0:2
01

1

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f


XXXX: © IEC:2010 — 32 — 

MUST be generated using GUID as defined in RFC 4122. A GUID is 128 bits long and can 
guarantee uniqueness across space and time. 

@active 
REQUIRED. xsd:boolean, indicates whether a partsnerhip is enabled. To indicate that a 
partnership is currently disabled, the partnership@active MUST be set to false (“0”). 
Attempting to synchronize a disabled partnership MUST result in an error. Each 
synchronization partner MUST keep its local Change Log even though the partnership is 
disabled. Enabling is accomplished by setting the active attribute to true (“1”). If a 
partnership is disabled then all pairGroups under this partnership will be treated as disabled 
regardsless of the setting of the active flags of those pairGroups. 

@updateID 
REQUIRED. xsd:string, a counter that increases its value whenever there is a change in this 
partnership. The value of the change must be increased by 1. This attribute is used to 
prevent updates with stale data. 

partner 
REQUIRED. xsd:string, indicates individual device information that is involved in a 
partnership. 

@id 
REQUIRED. xsd:string, contains the unique ID to identify a partner in a 
partnership. The value of partner@id attribute is static, “1” or “2”. “1” represents 
the first partner and “2” represents the second partner. 

deviceUDN 
REQUIRED. xsd:string, contains the UDN of the device that provides ContentSync 
service. 

serviceID 
REQUIRED. xsd:string, contains the service ID of the CSS of the partner device. 

policy 
REQUIRED. xsd:string, indicates how to synchronize objects that are involved in a 
synchronization partnership. See 2.2.3 “Synchronization Policy and Behavior” for policy 
definition and format. 

pairGroup 
REQUIRED. xsd:string, indicates pairGroup information within a partnership. This element 
can appears multiple times under the <partnership> element. 

@id 
REQUIRED. xsd:string, uniquely identifies a pairGroup within a partnership to 
distinguish it from other pairGroups in a synchronization partnership. The value of 
this attribute MUST be generated using GUID as defined in RFC 4122. A GUID is 
128 bits long and can guarantee uniqueness across space and time. 

@active 
REQUIRED. xsd:string, indicates whether a pairGroup is enabled. To indicate that 
a pairGroup is currently disabled, the pairGroup@active MUST be set to false (“0”). 
Attempting to synchronize a disabled pairGroup MUST result in an error. Each 
synchronization partner MUST keep its local Change Log even though the 
pairGroup is disabled. Enabling is accomplished by setting the active attribute to 
true (“1”). 

@updateID 
REQUIRED. xsd:string, a counter that increases its value whenever there is a 
change in this pairGroup. 

policy 
REQUIRED. xsd:string, indicates how to synchronize objects that are involved in a 
synchronization pairGroup. See 2.2.3 “Synchronization Policy and Behavior” 
for policy definition and format. 

29341-15-10 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
5-1

0:2
01

1

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f


XXXX: © IEC:2010 — 33 — 

2.7.5 A_ARG_TYPE_SyncPair 

This state variable is introduced to provide type information for various arguments that 
contain a synchronization pair for a CDS object to be used in various actions. 

The following illustrates a typical example of the A_ARG_TYPE_SyncPair state variable 

Example: 

<?xml version="1.0" encoding="UTF-8"?> 
<syncInfo updateID="3" xmlns="urn:schemas-upnp-org:cs:avcs" 
  xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
  xsi:schemaLocation="urn:schemas-upnp-org:cs:avcs 
   http://www.upnp.org/schemas/cs/avcs-v1-20070XXXX.xsd"> 
 <pair 
   syncRelationshipID="d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d" 
   partnershipID="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6" 
   pairGroupID="ba8e57de-7f66-4102-ae4b-31b96c86f173"> 
  <remoteObjID>B1</remoteObjID> 
<policy> 
 <syncType>replace</syncType> 
 <priorityPartnerID>1</priorityPartnerID> 
</policy> 
  <status>MODIFIED</status> 
 </pair> 
 <pair 
   syncRelationshipID="e884c276-c489-44f0-bcec-332450dab074" 
   partnershipID="1ab3fef4-777e-496a-82ed-d2580cdafa75" 
   pairGroupID="c1bc5bd7-0207-4226-beee-b528fe63a919"> 
<remoteParentObjID>B2</remoteParentObjID> 
<status>NEW</status> 
 </pair> 
</syncInfo> 

Since XML elements in this state variable are CDS object property, see Annex A for details of 
pair information. Also, see [CSS-XSD] for a schema of the A_ARG_TYPE_SyncPair state 
variable. 

2.7.6 A_ARG_TYPE_SyncID 

This state variable is introduced to provide type information for various action arguments that 
uniquely identify a synchronization relationship, or a partnership or a pairGroup. The value of 
this variable MUST be generated using GUID as defined in RFC 4122. A GUID is 128 bits 
long and can guarantee uniqueness across space and time. 

2.7.7 A_ARG_TYPE_ObjectID 

This state variable is introduced to provide type information for various action arguments that 
uniquely identify a CDS object. The format of the A_ARG_TYPE_ObjectID state variable 
MUST follow the definition of the A_ARG_TYPE_ObjectID in the ContentDirectory:2 Service 
specification and the definition of the @id property in Annex A. 

2.7.8 A_ARG_TYPE_SyncStatus 

This state variable is introduced to provide type information for the SyncStatus argument in 
the GetSyncStatus() action which contains a list of zero or more synchronization operation 
information structures representing both currently ongoing and the previous synchronization 
operation. A synchronization operation information structure includes the status of the 
opreation. All instances of this data type MUST comply with the SyncStatus XML document 
schema. See 2.7.2 SyncStatusUpdate state variable for details. 

Note that since the SyncStatus format of an argument of data type 
A_ARG_TYPE_SyncStatus is an XML document, it needs to be escaped (using the normal 

29341-15-10 © ISO/IEC:2011(E)29341-15-10 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
5-1

0:2
01

1

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f


XXXX: © IEC:2010 — 34 — 

XML rules: [XML] Clause 2.4 Character Data and Markup) before embedding in a SOAP 
response message. 

This value of this state variable is identical to the value of the SyncStatusUpdate state 
variable except that the SyncStatusUpdate only contains the status of currently ongoing 
synchronization operations. The A_ARG_TYPE_SyncStatus state variable contains the status 
of both currently ongoing synchronization operations and the status of the last 
synchronization operation.  

When a synchronization operation is invoked on a relationship level, the status information of 
the last synchronization operation of that specific synchronization relationship including the 
status of the last synchronization operations of all partnerships within that relationship and 
the status of the last synchronization operations of all pairGroups within each partnership 
MUST be cleared. When a synchronization operation is invoked on a partnership level then 
the status information of the last synchronization operation for that specific partnership 
including the status of last synchronization operations of all pairGroups within that 
partnership MUST be cleared. When a synchronization operation is invoked on a pairGroup 
level then the status information of the last synchronization operation for that specific 
pairGroup MUST be cleared. 

2.7.9 A_ARG_TYPE_ChangeLog 

This state variable is introduced to provide type information for the ChangeLog argument in 
the GetChangeLog() action. The structure of the ChangeLog argument is a DIDL-Lite XML 
Document. 

A change log is a list of CDS objects represented by DIDL-Lite XML document with extension 
in this specification. The change log contains the CDS objects which have changed since the 
last synchronization operation. When the change log is returned as a reponse of the 
GetChangeLog() action, it contains only the changed CDS objects which are bound to a 
specific synchronization relationship or partnership or pairGroup. 

• Optional XML declaration <?xml version="1.0" ?> 

• <DIDL-Lite> is the root element. 

• <container> is the element representing objects of class container and all its derived 
classes, which has been changed since the last synchronization operation. 

• <item> is the element representing objects of class item and all its derived classes, 
which has been changed since the last synchronization operation. 

• Elements in the Dublin Core (dc) and UPnP (upnp) namespaces represent object 
metadata. 

• See the DIDL-Lite schema [DIDL-LITE-XSD] for more details on the structure. The 
available properties and their names are described in Annex B, "AV Working Committee 
Extended Properties" in the ContentDirectory:2 service [CDS]. 

Note that since the value of ChangeLog is XML, it needs to be escaped (using the normal 
XML rules: [XML] Clause 2.4 Character Data and Markup) before embedding in a SOAP 
response message. 

For objects that are deleted outside of synchronization operation, the change log SHOULD 
provide deleted objects information with only item or container, and its avcs:syncInfo 
properties if and only if a synchronization policy is replace. If an object which is deleted is 
part of multiple synchronization pairs, then deleted information MUST be kept until all 
synchronization pairs are synchronized. The following gives an example of deleted objects 
information in a change log. 

Example: (The namesapce declaration is omitted) 

<item id="A3" parentID="A2"> 

29341-15-10 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
5-1

0:2
01

1

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f


XXXX: © IEC:2010 — 35 — 

 <avcs:syncInfo updateID="1"> 
  <avcs:pair 
    syncRelationshipID="d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d" 
    partnershipID="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6" 
    pairGroupID="a8e57de-7f66-4102-ae4b-31b96c86f173"> 
    <avcs:remoteObjID>B3</avcs:remoteObjID> 
    <avcs:status>DELETED</avcs:status> 
  </avcs:pair> 
 </avcs:syncInfo> 
</item> 

2.7.10 A_ARG_TYPE_Index 

This state variable is introduced to provide type information for an argument in various 
actions. Arguments specify an offset into an arbitrary list of objects (change log). A value of 0 
represents the first CDS object in the change log. 

2.7.11 A_ARG_TYPE_Count 

This state variable is introduced to provide type information for an argument in various 
actions. Arguments specify an ordinal number of arbitrary objects. 

2.7.12 A_ARG_TYPE_ResetObjectList 

This state variable is introduced to provide type information for an argument that contains a 
list of synchronization objects of which the change log will be cleaned. 

The structure of the argument of data type A_ARG_TYPE_ResetObjectList is an XML 
document (See [CSS-XSD]): 

Note that since A_ARG_TYPE_ResetObjectList is an XML document, it needs to be escaped 
(using the normal XML rules: [XML] Clause 2.4 Character Data and Markup) before 
embedding in a SOAP response message. 

Example: 

<ResetObjectList xmlns="urn:schemas-upnp-org:cs 
  xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
  xsi:schemaLocation="urn:schemas-upnp-org:cs 
   http://www.upnp.org/schemas/cs/cs-v1-20070XXXX.xsd"> 
 <object id="A1" remoteObjID="32" updateID="2"/> 
 <object id="A72" remoteObjID="9547" updateID="4"/> 
</ResetObjectList> 

2.7.12.1 A_ARG_TYPE_ResetObjectList Data Format 

The optional XML header <?xml version=”1.0” ?> is allowed. The (one and only) root 
element, <ResetObjectList>, MUST contain zero or more elements, each of which identifies a 
synchronization object. 

The following example shows a generalized “template” for the format of the 
A_ARG_TYPE_ResetObjectList state variable.  Additional elements and/or attributes MAY be 
added to future versions of this specification.  Furthermore, a 3rd-party vendor MAY add 
vendor-defined elements and/or attributes.  However, by definition, this specification does not 
define the format and/or values for these 3rd-party elements. In order to eliminate 
element/attribute naming conflicts, the name of any vendor-defined element/attribute MUST 
follow the rules set forth in Clause 1.3 “Vendor-defined Extensions”. All control points 
should gracefully ignore any element/attribute that it does not understand. 

29341-15-10 © ISO/IEC:2011(E)29341-15-10 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
5-1

0:2
01

1

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f


XXXX: © IEC:2010 — 36 — 

The following notation includes the forum character style to indicate names that are defined 
by the ContentSync Working Committee. Additionally, fields that need to be filled out by 
individual implementations are shown in the vendor character style. 

<?xml version="1.0"?> 
<ResetObjectList 
  xmlns="urn:schemas-upnp-org:cs" 
  xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
  xsi:schemaLocation="rn:schemas-upnp-org:cs 
   http://www.upnp.org/schemas/cs/cs-v1-20070XXXX.xsd"> 
 <objectID id="object ID"  
   remoteObjID="object ID of a partner paired with this object" 
   updateID="uniquely assigned ID when the object is changed"> 
 </objectID> 
</ResetObjectList> 

xml 
OPTIONAL. Case sensitive. 

ResetObjectList 
REQUIRED. MUST have “urn:schemas-upnp-org:cs” (which is the UPnP ContentSync WC Schema) as the value for the 
xmlns attribute that declares the default namespace;  Contains all elements and attributes defined by the CSS schema as 
follows: 

objectID 
OPTIONAL. xsd:string, contains object@id property of the CDS which identifies the object of which changed log  
will be cleaned. 

@id 
REQUIRED. xsd:string, contains the ID of the object of which change log to be reset. 

@remoteObjID 
REQUIRED. xsd:string, contains the object ID in a partner, which is paired with the local object. 

@updateID 
REQUIRED. xsd:unsignedInt, contains the value of avcs:syncInfo@updatedID which was retrieved by 
the GetChangelog() action before. 

2.8 Eventing and Moderation 

Table 2-3 — Event Moderation 

Variable Name Evented Moderated 
Event 

Max Event 
Rate 

Logical 
Combination 

Min Delta 
per Event 

SyncChange YES YES 0.2 sec   

SyncStatusUpdate YES YES 0.2 sec   

The SyncStatusUpdate state variable is evented and moderated. When multiple updates 
occur between moderation periods, the SyncStatusUpdate state variable accumulates all 
updates within that period and sends an event message at the end of the moderation period 
that contains all of the accumulated events.  The SyncStatusUpdate state variable MUST only 
be cleared just before adding the first update event that occurs after the last event message 
was sent.  

2.9 Actions 

Immediately following this table is detailed information about these actions, including short 
descriptions of the actions, the effects of the actions on state variables, and error codes 
defined by the actions. 

29341-15-10 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
5-1

0:2
01

1

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f


XXXX: © IEC:2010 — 37 — 

Table 2-4 — Actions 

Name Req. or Opt. a 

AddSyncData()  R 

ModifySyncData()  R 

DeleteSyncData() R 

GetSyncData() R 

ExchangeSyncData() R 

AddSyncPair() R 

ModifySyncPair() R 

DeleteSyncPair() R 

StartSync() O 

AbortSync() O 

GetChangeLog() R 

ResetChangeLog() R 

ResetStatus() R 

GetSyncStatus() O 

Non-standard actions implemented by an UPnP vendor go here. X 

a R = Required, O = Optional, X = Non-standard 

2.9.1 AddSyncData() 

This action creates either a new synchronization relationship template, or a new partnership 
template within an existing relationship or a new pairGroup template within an existing 
partnership. 

When creating a new synchronization relationship by invoking the AddSyncData() action, the 
SyncData input argument MUST contain a minimally complete synchronization relationship 
data structure. The control point can add additional pairGroups for the partnership by 
invoking the AddSyncData() action where the SyncData input argument contain the pairGroup 
data structure. See Clause "2.7.4 A_ARG_TYPE_SyncData state variable" for details. 

The ActionCaller argument identifies the deviceUDN of the caller. See Clause "2.7.3 
A_ARG_TYPE_ActionCaller state variable" for details. 

If the ActionCaller argument specifies a deviceUDN then this action is invoked by a partner 
device and the caller does not need to disseminate synchronization data structure 
(SyncData) to the partner device. However, if the ActionCaller argument is null, the device 
MUST disseminate the synchronization data structure (SyncData) to the partner device, by 
invoking the AddSyncData() action on the partner .  

When creating a new synchronization relationship, the partner device involved in the 
relationship MUST be in the network. See "Clause 2.3.1 Synchronization Data Structure 
Addition" for detailed rules. 

When a device receives the AddSyncData() action from a stand-alone control point to create 
a new synchronization relationship, the device generates three IDs to identify the 
synchronization relationship, the partnership and the pairGroup for the minimally complete 
synchronization data structure. The generated IDs conform to the requirement of 
A_ARG_TYPE_SyncID state variable.  

When a stand-alone control point is adding a synchronization relationship, the value of the 
SyncID input argument MUST be set to the empty string. While adding a partnership, the 
SyncID argument will contain the SyncID of an existing synchronization relationship where 

29341-15-10 © ISO/IEC:2011(E)29341-15-10 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
5-1

0:2
01

1

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f


XXXX: © IEC:2010 — 38 — 

the partnership information will be added. Likewise, while adding a pairGroup, the SyncID 
argument will contain the SyncID of an existing partnership where the pairGroup information 
will be added. 

The SyncDataResult output argument returns the synchronization relationship data structure 
containing the newly added data specified by the SyncData argument. In the case of adding a 
pairGroup to an existing synchronization relationship, the SyncDataResult argument will 
return the whole synchronization relationship data structure which contains that pairGroup. 

2.9.1.1  Arguments 

Table 2-5 — Arguments for AddSyncData() 

Argument Direction Related State Variable 

ActionCaller IN A_ARG_TYPE_ActionCaller 

SyncID IN A_ARG_TYPE_SyncID 

SyncData IN A_ARG_TYPE_SyncData 

SyncDataResult OUT A_ARG_TYPE_SyncData 

2.9.1.2 Dependency on State 

None. 

2.9.1.3 Effect on State 

None. 

2.9.1.4 Errors 

Table 2-6 — Error Codes for AddSyncData() 

errorCode errorDescription Description 

400-499 TBD See UPnP Device Architecture clause on Control. 

500-599 TBD See UPnP Device Architecture clause on Control. 

600-699 TBD See UPnP Device Architecture clause on Control. 

701 No such sync data The AddSyncData() request failed because the specified SyncID 
argument is invalid. 

702 Invalid XML The AddSyncData() request failed because the specified SyncData 
argument 

703 Invalid action caller The AddSyncData() request failed because the action caller is a 
part of the sync data. 

704 Partner Timeout The AddSyncData() request failed because the sync data structure 
could not be exchanged due to time out of the partner device. 

705 Partner not online  The AddSyncData() request failed because partner device is not in 
the network. 

 

2.9.2 ModifySyncData() 

This action modifies either a synchronization relationship, or a partnership within an existing 
relationship or a pairGroup within an existing partnership. 

To modify synchronization relationship level information, all partner devices involved in the 
relationship MUST be in the network. See "Clause 2.3.2 Synchronization Data Structure 
Modification" for detailed rules.  

29341-15-10 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
5-1

0:2
01

1

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f


XXXX: © IEC:2010 — 39 — 

To modify a synchronization data structure, SyncID argument that identifies which 
synchronization data structure is being modified MUST be specified. 

To maintain identical synchronization relationship, partnership and pairGroup information on 
all partner devices, the device that receives this action MUST invoke the ModifySyncData() 
action on the partner device by including identical synchronization relationship, partnership or 
pairGroup data structure in the SyncData action argument. 

The ActionCaller argument identifies the deviceUDN of the caller. See Clause "2.7.3 
A_ARG_TYPE_ActionCaller state variable" for details. 

If the ActionCaller argument specifies a deviceUDN then this action is invoked by a partner 
device and the caller does not need to disseminate synchronization data structure 
(SyncData) to the partner device. However, if the ActionCaller argument is empty string, the 
device MUST disseminate the synchronization data structure (SyncData) to the partner 
device, by invoking the ModifySyncData() action on the partner .  

To prevent updating synchronization data structure by stale data, the SyncData input 
argument MUST contain the @updateID attribute of a partnership or pairGroup when the 
partnership or pairGroup level is modified. 

If the modification would result in a synchronization relationship that is no longer valid, the 
ModifySyncData() action MUST fail without any change and return an appropriate error code. 

2.9.2.1 Arguments 

Table 2-7 — Arguments for ModifySyncData() 

Argument Direction Related State Variable 

ActionCaller IN A_ARG_TYPE_ActionCaller 

SyncID IN A_ARG_TYPE_SyncID 

SyncData IN A_ARG_TYPE_SyncData 

2.9.2.2 Dependency on State 

None. 

2.9.2.3 Effect on State 

None. 

29341-15-10 © ISO/IEC:2011(E)29341-15-10 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
5-1

0:2
01

1

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f


XXXX: © IEC:2010 — 40 — 

2.9.2.4 Errors 

Table 2-8 — Error Codes for ModifySyncData() 

errorCode errorDescription Description 

400-499 TBD See UPnP Device Architecture clause on Control. 

500-599 TBD See UPnP Device Architecture clause on Control. 

600-699 TBD See UPnP Device Architecture clause on Control. 

701 No such sync data The ModifySyncData() request failed because the specified SyncID 
argument is invalid. 

702 Invalid XML The ModifySyncData() request failed because the specified 
SyncData argument 

703 Invalid action caller The ModifySyncData() request failed because the action caller is a 
part of the sync data. 

704 Partner Timeout The ModifySyncData() request failed because the sync data 
structure could not be exchanged due to time out of the partner 
device. 

705 Partner not online  The ModifySyncData() request failed because partner device is not 
in the network. 

706 Update in-progress The ModifySyncData() request failed because another action 
request is still being processed. 

707 Stale data The ModifySyncData() request failed because the sync data is 
stale. 

2.9.3 DeleteSyncData() 

This action deletes either a synchronization relationship, or a partnership within an existing 
synchronization relationship or a pairGroup within an existing partnership. The SyncID 
argument of the action DeleteSyncData() identifies the synchronization relationship or the 
partnership or the pairGroup to be deleted. 

The ActionCaller argument identifies the deviceUDN of the caller. See Clause "2.7.3 
A_ARG_TYPE_ActionCaller state variable" for details. 

If the ActionCaller argument specifies a deviceUDN then this action is invoked by a partner 
device and the caller does not need to inform the partner device of the deletion. However, if 
the ActionCaller argument is null, the device MUST inform the partner device of the deletion, 
by invoking the DeleteSyncData() action on the partner. 

A deletion of a partnership or a pairGroup is allowed even when one of the partner devices is 
not in the network. In this case, the other partner device gets updated synchronization data 
structure by invoking the ExchangeSyncData() action before performing any synchronization 
operation when the device rejoins the network. See "Clause 2.3.3 Synchronization Data 
Structure Deletion" for detailed rules. 

When the last pairGroup within an existing partnership is deleted, the partnership MUST be 
deleted as well because the synchronization data structure does not allow a partnership 
without at least one pairGroup. 

Likewise, when the last partnership within an existing relationship is deleted, the relationship 
MUST be deleted, as well. 

29341-15-10 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
5-1

0:2
01

1

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f


XXXX: © IEC:2010 — 41 — 

2.9.3.1  Arguments 

Table 2-9 — Arguments for DeleteSyncData() 

Argument Direction Related State Variable 

ActionCaller IN A_ARG_TYPE_ActionCaller 

SyncID IN A_ARG_TYPE_SyncID 

2.9.3.2  Dependency on State 

None. 

2.9.3.3  Effect on State 

None. 

2.9.3.4  Errors 

Table 2-10 — Error Codes for DeleteSyncData() 

errorCode errorDescription Description 

400-499 TBD See UPnP Device Architecture clause on Control. 

500-599 TBD See UPnP Device Architecture clause on Control. 

600-699 TBD See UPnP Device Architecture clause on Control. 

701 No such sync data The DeleteSyncData() request failed because the specified SyncID 
argument is invalid. 

703 Invalid action caller The DeleteSyncData() request failed because the action caller is a 
part of the sync data. 

 

2.9.4 GetSyncData() 

This action returns the synchronization data structure identified by the SyncID input argument. 
If the value of the action argument SyncID identifies a synchronization relationship then the 
SyncData output argument contains the entire synchronization data structure for that 
synchronization relationship including all partnerships within that relationship and all 
pairGroups for each partnership contained within that relationship. If the value of the action 
argument SyncID identifies a partnership then the SyncData output argument contains the 
synchronization data structure for that partnership including all pairGroups contained within 
that partnership. If the value of the action argument SyncID identifies a pairGroup then the 
SyncData output argument contains the synchronization data structure for the identified 
pairGroup. If the value of the action argument SyncID is the empty string then the SyncData 
output argument contains the synchronization data structure for all synchronization 
relationships. 

2.9.4.1  Arguments 

Table 2-11 — Arguments for GetSyncData() 

Argument Direction Related State Variable 

SyncID IN A_ARG_TYPE_SyncID 

SyncData OUT A_ARG_TYPE_SyncData 

2.9.4.2  Dependency on State 

None. 

29341-15-10 © ISO/IEC:2011(E)29341-15-10 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
5-1

0:2
01

1

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f


XXXX: © IEC:2010 — 42 — 

2.9.4.3 Effect on State 

None. 

2.9.4.4 Errors 

Table 2-12 — Error Codes for GetSyncData() 

errorCode errorDescription Description 

400-499 TBD See UPnP Device Architecture clause on Control. 

500-599 TBD See UPnP Device Architecture clause on Control. 

600-699 TBD See UPnP Device Architecture clause on Control. 

701 No such sync data The GetSyncData() request failed because the specified SyncID 
argument is invalid. 

 

2.9.5 ExchangeSyncData() 

This action exchanges a synchronization data structure between two partner devices. When 
the partner device joins the network, the device MUST evaluate whether or not the 
synchronization data structure is stale by exchanging its own synchronization data structure 
with other partner devices that are also in the network. 

The LocalSyncData input argument contains the synchronization data structure for the local 
device. The partner device’s synchronization data structure is returned in the 
RemoteSyncData output argument as response to the ExchangeSyncData() action. 

The RemoteSyncData output argument MUST contain the synchronization data structure that 
is updated with the LocalSyncData input argument. It means that the partner device MUST do 
the update operation before responding to the the ExchangeSyncData() action. 

2.9.5.1 Arguments 

Table 2-13 — Arguments for ExchangeSyncData() 

Argument Direction Related State Variable 

LocalSyncData IN A_ARG_TYPE_SyncData 

RemoteSyncData OUT A_ARG_TYPE_SyncData 

2.9.5.2 Dependency on State 

None. 

2.9.5.3 Effect on State 

None. 

2.9.5.4 Errors 

Table 2-14 — Error Codes for ExchangeSyncData() 

errorCode errorDescription Description 

400-499 TBD See UPnP Device Architecture clause on Control. 

500-599 TBD See UPnP Device Architecture clause on Control. 

600-699 TBD See UPnP Device Architecture clause on Control. 

 

29341-15-10 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
5-1

0:2
01

1

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f


XXXX: © IEC:2010 — 43 — 

2.9.6 AddSyncPair() 

This action adds synchronization pair information into a CDS object. See Clause "2.2.1 
Synchronization Object and Pair" definition for details. 

The ActionCaller input argument identifies the deviceUDN of the caller. See Clause "2.7.3 
A_ARG_TYPE_ActionCaller state variable" for details. If the ActionCaller argument 
specifies a deviceUDN then this action is invoked by a partner device and the caller does not 
need to disseminate pair information to the partner device. However, if the ActionCaller 
argument is null then the device that receives this action MUST invoke the AddSyncPair() 
action on the partner device to maintain identical pair information on the partner.  

The ObjectID input argument of the action identifies the object to which the pairGroup 
information is being added. 

The SyncPair input argument includes an XML fragment containing the pair information. See 
"Clause A.3 Content Synchronization-related Properties" for details. 

There are three possible scenarios that may occur while invoking this action while adding 
pairGroup information for an object: 

• Both objects that are part of the pair already exist (Scenario 1): 
The object@id value of the remote object MUST be included in the 
avcs:pair::remoteObjID element. 

• Object on only one of the partner exists (Scenario 2 and Scenario 3): 

• The partner device does not have a corresponding partner object for the pair. The 
object will be created on the partner device during the first synchronization operation. 
The rules to create an object on the partner device are as follows: 

• If the parent container object under which the new object item will be created 
exists in the partner device, the avcs:pair::remoteParentObjID element MUST 
include the object@id value of the parent container object. 

• If the parent container object does not exist in the partner and the container object 
under which the new object item will be located is to be created from the local 
container object,  the avcs:pair::virtualRemoteParentObjID element MUST include 
the  object@id value of the local container (i.e. this container object will be the 
parent object in the partner device.) This parent container object MUST have an 
pair in the same partnership as well. During the synchronization operation, if a 
local device determines that no corresponding object exist in the local device for 
the pair, the device MUST create a new object in the local device and MUST 
update the avcs:pair::RemoteObjID by assigning the value of the object ID of the 
newly created object. The device then MUST delete the 
avcs:pair::remoteParentObjID or the avcs:pair::virtualRemoteParentObjID. 

A result of the AddSyncPair() action is that the avcs:pair property is added into avcs:syncInfo 
property of the CDS object. If this is the first synchronization pair for this object the 
avcs:syncInfo property MUST be created first and then the avcs:pair property is added into it. 

An object can be part of multiple pairGroups within a single synchronization relationship. But, 
the following rules apply in such cases: 

• If the synchronization policy is ‘replace’, the object that is a source is allowed to have 
multiple pairs. 

• If the synchronization policy is ‘blend’, the object with precedence is allowed to have 
multiple pairs. 

• If the synchronization policy is ‘merge’, only single pairGroup is allowed. 

However, the rules above are not applied between multiple synchronization relationships. 

29341-15-10 © ISO/IEC:2011(E)29341-15-10 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
5-1

0:2
01

1

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f


XXXX: © IEC:2010 — 44 — 

The avcs:pair::policy property overrides any policy that are specified in the upper level 
hierarchy of the synchronization relationship structure. 

2.9.6.1 Arguments 

Table 2-15 — Arguments for AddSyncPair() 

Argument Direction Related State Variable 

ActionCaller IN A_ARG_TYPE_ActionCaller 

ObjectID IN A_ARG_TYPE_ObjectID 

SyncPair IN A_ARG_TYPE_SyncPair 

2.9.6.2 Dependency on State 

None. 

2.9.6.3 Effect on State 

None. 

2.9.6.4 Errors 

Table 2-16 — Error Codes for AddSyncPair() 

errorCode errorDescription Description 

400-499 TBD See UPnP Device Architecture clause on Control. 

500-599 TBD See UPnP Device Architecture clause on Control. 

600-699 TBD See UPnP Device Architecture clause on Control. 

703 Invalid action caller The AddSyncPair() request failed because the action caller is a part 
of the sync data. 

704 Partner Timeout The AddSyncPair() request failed because the sync data structure 
could not be add due to time out of the partner device. 

705 Partner not online  The AddSyncPair() request failed because partner device is not in 
the network. 

708 Invalid object The AddSyncPair() request failed because the specified  ObjectID 
argument is invalid. 

709 Invalid pair The AddSyncPair() request failed because the specified SyncPair 
argument is invalid. 

 

2.9.7 ModifySyncPair() 

The ModifySyncPair() action modifies the synchronization pair property for a CDS object.  

This modification includes only the policy information. All other modifications are not allowed. 

The ActionCaller argument identifies the deviceUDN of the caller. See Clause "2.7.3 
A_ARG_TYPE_ActionCaller state variable" for details. If the ActionCaller argument 
specifies a deviceUDN then this action is invoked by a partner device and the caller does not 
need to disseminate pairGroup information to the partner device. However, if the ActionCaller 
argument is null then the action is called by a stand-alone control point and to maintain 
identical pair information on the partner device, the device MUST disseminate the pair 
information included in the SyncPair to the partner device, by invoking the ModifySyncPair() 
action on the partner. 

29341-15-10 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
5-1

0:2
01

1

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f


XXXX: © IEC:2010 — 45 — 

The ObjectID argument identifies the object whose pair information is to be modified. The 
SyncPair input argument includes an XML fragment containing the pair information to be 
added. 

The SyncPair input argument includes an XML fragment containing the pair information. In 
the SyncPair argument, avcs:pair@syncRelationshipID, avcs:pair@partnershipID and 
avcs:pair@pairGroupID MUST be specified and valid. A SyncPair also includes either a 
avcs:pair::remoteObject or a avcs:pair::remoteParentObjID or a 
avcs::virtualRemoteParentObjID MUST be specified. See "Clause A.3 Content 
Synchronization-related Properties" for details. 

2.9.7.1 Arguments 

Table 2-17 — Arguments for ModifySyncPair() 

Argument Direction Related State Variable 

ActionCaller IN A_ARG_TYPE_ActionCaller 

ObjectID IN A_ARG_TYPE_ObjectID 

SyncPair IN A_ARG_TYPE_SyncPair 

2.9.7.2 Dependency on State 

None. 

2.9.7.3 Effect on State 

None. 

2.9.7.4 Errors 

Table 2-18 — Error Codes for ModifySyncPair() 

errorCode errorDescription Description 

400-499 TBD See UPnP Device Architecture clause on Control. 

500-599 TBD See UPnP Device Architecture clause on Control. 

600-699 TBD See UPnP Device Architecture clause on Control. 

703 Invalid action caller The ModifySyncPair() request failed because the action caller is a 
part of the sync data. 

704 Partner Timeout The ModifySyncPair() request failed because the sync data 
structure could not be modified due to time out of the partner 
device. 

705 Partner not online  The ModifySyncPair() request failed because partner device is not 
in the network. 

708 Invalid object The ModifySyncPair() request failed because the specified  
ObjectID argument is invalid. 

709 Invalid pair The ModifySyncPair() request failed because the specified SyncPair 
argument is invalid. 

 

2.9.8 DeleteSyncPair() 

The DeleteSyncPair() action sets the value of the avcs:syncInfo::pair::status property of a 
synchronizing object to “EXCLUDED”.  

The ActionCaller argument identifies the deviceUDN of the caller. See Clause "2.7.3 
A_ARG_TYPE_ActionCaller state variable" for details. If the ActionCaller argument 
specifies a deviceUDN then this action is invoked by a partner device and the caller does not 

29341-15-10 © ISO/IEC:2011(E)29341-15-10 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
5-1

0:2
01

1

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f


XXXX: © IEC:2010 — 46 — 

need to disseminate pair information to the partner device. However, if the ActionCaller 
argument is null then the action is called by a stand-alone control point and to maintain 
identical pair information on the partner device, the device MUST disseminate the pair 
information included in the SyncPair to the partner device, by invoking the DeleteSyncPair() 
action on the partner. 

The ObjectID argument identifies the CDS object in which avcs:syncInfo::pair::status property 
is to be set.  

The SyncID input argument identifies the target of the deletion. If the SyncID identifies a 
synchronization relationship then all pairs that are associated with the relationship MUST be 
deleted.  . If the SyncID identifies a synchronization partnership, then all pairs that are 
associated with the partnership MUST be deleted. . If the SyncID identifies a synchronization 
pairGroup, then all pairs associated with the pairGroup MUSt be deleted. 

Once the status property is set to “EXCLUDED”, the avcs:pair property of the object is 
deleted during the next synchronization operation and thereby the object is permanently 
excluded  from the synchronization relationship. 

2.9.8.1 Arguments 

Table 2-19 — Arguments for DeleteSyncPair() 

Argument Direction Related State Variable 

ActionCaller IN A_ARG_TYPE_ActionCaller 

ObjectID IN A_ARG_TYPE_ObjectID 

SyncID IN A_ARG_TYPE_SyncID 

2.9.8.2 Dependency on State 

None. 

2.9.8.3 Effect on State 

None. 

2.9.8.4 Errors 

Table 2-20 — Error Codes for DeleteSyncPair() 

errorCode errorDescription Description 

400-499 TBD See UPnP Device Architecture clause on Control. 

500-599 TBD See UPnP Device Architecture clause on Control. 

600-699 TBD See UPnP Device Architecture clause on Control. 

701 No such sync data The DeleteSyncPair() request failed because the specified SyncID 
argument is invalid. 

703 Invalid action caller The DeleteSyncPair() request failed because the action caller is a 
part of the sync data. 

704 Partner Timeout The DeleteSyncPair() request failed because the sync data 
structure could not be modified due to time out of the partner 
device. 

705 Partner not online  The DeleteSyncPair() request failed because partner device is not 
in the network. 

708 No such object The DeleteSyncPair() request failed because the specified ObjectID 
argument is invalid. 

 

29341-15-10 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
5-1

0:2
01

1

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f


XXXX: © IEC:2010 — 47 — 

2.9.9 StartSync() 

The StartSync() action triggers a synchronization operation which is performed 
asynchronously in other words, the action MAY return to the caller before the synchronization 
operation completes (or even before the synchronization starts). The status of the 
synchronization operation can be monitored through the eventing of the SyncStatusUpdate 
state variable or via the GetSyncStatus() action. The SyncStatusUpdate state variable 
contains incremental synchronization status information which is evented and the 
GetSyncStatus() action returns the value of the SyncStatus state variable which contains the 
accumulation of all synchronization status information from when the synchronization 
operation was started. 

When the StartSync() action is invoked, the device prepares itself for the synchronization 
operation e.g., locking internal data structure and returns to the caller. After returning to the 
caller, the device asynchronously performs the synchronization operation. The caller of the 
action may leave the network anytime without effecting the synchronization operation. 

The ActionCaller argument identifies the deviceUDN of the caller. See Clause "2.7.3 
A_ARG_TYPE_ActionCaller state variable" for details. The ActionCaller argument also 
determines the behavior of the StartSync() action. If the ActionCaller argument is the empty 
string then the device MUST invoke the StartSync() action on the partner(s) to trigger 
synchronization operations on the partner(s). The list of partners can be determined from the 
synchronization relationship that contains the specified SyncID. However, If the value of 
ActionCaller argument is set to a deviceUDN, then the device MUST NOT invoke the 
StartSync() action on the partner(s). 

The SyncID action argument identifies what is to be synchronized. If the SyncID argument 
identifies a pairGroup then only that specific pairGroup MUST be synchronized. If the SyncID 
argument identifies a partnership then all pairGroups within that specific partnership MUST 
be synchronized. If the SyncID argument identifies a synchronization relationship then all 
pairGroups within each partnership contained within that specific relationship MUST be 
synchronized.  

2.9.9.1 Arguments 

Table 2-21 — Arguments for StartSync() 

Argument Direction Related State Variable 

ActionCaller IN A_ARG_TYPE_ActionCaller 

SyncID IN A_ARG_TYPE_SyncID 

2.9.9.2 Dependency on State 

None. 

2.9.9.3 Effect on State 

None. 

29341-15-10 © ISO/IEC:2011(E)29341-15-10 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
5-1

0:2
01

1

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f


XXXX: © IEC:2010 — 48 — 

2.9.9.4 Errors 

Table 2-22 — Error Codes for StartSync() 

errorCode errorDescription Description 

400-499 TBD See UPnP Device Architecture clause on Control. 

500-599 TBD See UPnP Device Architecture clause on Control. 

600-699 TBD See UPnP Device Architecture clause on Control. 

701 No such sync data The StartSync() request failed because the specified SyncID 
argument is invalid. 

703 Invalid action caller The StartSync() request failed because the action caller is a part of 
the sync data. 

704 Partner Timeout The StartSync() request failed because the sync operation could not 
progress due to time out of the partner device. 

705 Partner not online  The StartSync() request failed because partner device is not in the 
network. 

710 Inactive state The StartSync() request failed because the specified SyncID 
argument is not active. 

711 Sync operation in-
progress 

The StartSync() request failed because the sync operation of the 
specified sync data is in-progress. 

712 Invalid Sync 
operation 
invocation 

The StartSync() request failed because the relationship contain a 
non-CDS partner. 

 

2.9.10  AbortSync() 

This action cancels an active synchronization operation which is being performed 
asynchronously. 

The ActionCaller argument identifies the deviceUDN of the caller. See Clause "2.7.3 
A_ARG_TYPE_ActionCaller state variable" for details. The ActionCaller argument also 
determines the behavior of the AbortSync() action. If the ActionCaller argument is the empty 
string then the device MUST invoke the AbortSync() action on the partner(s) to abort 
synchronization operations on the partner(s). The list of partners can be determined from the 
synchronization relationship that contains the specified SyncID. However, If the value of 
ActionCaller argument is set to a deviceUDN, then the device MUST NOT invoke the 
AbortSync() action on the partner(s). 

The SyncID action argument identifies which on-going synchronization operation is to be 
aborted. The SyncID argument is the same as was used to start the synchronization 
operation via the StartSync() action. 

When a device aborts a synchronization operation, the CDS MUST be left in a fully consistent 
state. When aborting an implementation MUST NOT roll back any changes that already have 
been exposed on the network. Consequently, the resulting Content Directory database will 
reflect either the state prior to the synchronization or partial synchronization. 

2.9.10.1 Arguments 

Table 2-23 — Arguments for AbortSync() 

Argument Direction Related State Variable 

ActionCaller IN A_ARG_TYPE_ActionCaller 

SyncID IN A_ARG_TYPE_SyncID 

29341-15-10 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
5-1

0:2
01

1

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f


XXXX: © IEC:2010 — 49 — 

2.9.10.2 Dependency on State 

None. 

2.9.10.3 Effect on State 

None. 

2.9.10.4 Errors 

Table 2-24 — Error Codes for AbortSync() 

errorCode errorDescription Description 

400-499 TBD See UPnP Device Architecture clause on Control. 

500-599 TBD See UPnP Device Architecture clause on Control. 

600-699 TBD See UPnP Device Architecture clause on Control. 

701 No such sync data The AbortSync() request failed because the specified SyncID 
argument is invalid. 

703 Invalid action caller The AbortSync() request failed because the action caller is a part of 
the sync data. 

704 Partner Timeout The AbortSync() request failed because the sync operation could 
not progress due to time out of the partner device. 

705 Partner not online  The AbortSync() request failed because partner device is not in the 
network. 

2.9.11 GetChangeLog() 

2.9.12  

This action allows a caller to get all the objects that have changed since the last 
synchronization operation. The SyncID identifies a synchronization relationship or a 
partnership or a pairGroup for which changed objects to be retrieved. 

StartingIndex is zero-based offset to enumerate changed objects associated with SyncID. 

RequestedCount is requested number of entries under the change log associated with 
SyncID. RequestedCount = 0 indicates request all entries. 

A CDS MUST keep track of all objects since the last synchronization operation to provide 
response to the GetChangeLog() action. The deleted objects information can be deleted 
when the synchronization relationship, partnership or pairGroup that the objects belong to are 
deleted.  

The Result output argument includes all the objects that have changed since the last 
synchronization operation. The format of the Result argument is represented by the 
A_ARG_TYPE_ChangeLog. 

NumberReturned is number of objects returned in the Result argument. 

TotalMatches MUST be set to the total number of objects in the changed log specified for the 
GetChangeLog() action (independent of the starting index specified by the StartingIndex 
argument). If the ContentSync service implementation cannot timely compute the value of 
TotalMatches, but there are matching objects that have been found by the ContentSync 
service implementation, then the GetChangeLog() action MUST successfully return with the 
TotalMatches argument set to zero and the NumberReturned argument indicating the number 
of returned objects. If the ContentSync service implementation cannot timely compute the 
value of TotalMatches, and there are no matching objects found, then the GetChangeLog() 
action MUST return error code 712. 

29341-15-10 © ISO/IEC:2011(E)29341-15-10 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
5-1

0:2
01

1

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f


XXXX: © IEC:2010 — 50 — 

2.9.12.1 Arguments 

Table 2-25 — Arguments for GetChangeLog() 

Argument Direction Related State Variable 

SyncID IN A_ARG_TYPE_SyncID 

StartingIndex IN A_ARG_TYPE_Index 

RequestedCount IN A_ARG_TYPE_Count 

Result OUT A_ARG_TYPE_ChangeLog 

NumberReturned OUT A_ARG_TYPE_Count 

TotalMatches OUT A_ARG_TYPE_Count 

2.9.12.2 Dependency on State 

None. 

2.9.12.3 Effect on State 

None. 

2.9.12.4 Errors 

Table 2-26 — Error Codes for GetChangeLog() 

errorCode errorDescription Description 

400-499 TBD See UPnP Device Architecture clause on Control. 

500-599 TBD See UPnP Device Architecture clause on Control. 

600-699 TBD See UPnP Device Architecture clause on Control. 

701 No such sync data The GetChangeLog() request failed because the specified SyncID 
argument is invalid. 

720 Cannot process the 
request 

The GetChangeLog() request failed because the ContentSync 
service is unable to compute, in the time allotted, the total number 
of objects that are a match for the synchronization ID and is 
additionally unable to return, in the time allotted, any objects that 
match the synchronization ID. 

 

2.9.13 ResetChangeLog() 

This action allows a caller to clear the existing change log of synchronization objects and 
start keeping new logs. 

The SyncID identifies a pairGroup for which the change log of all objects included in the 
identified synchronization data structure will be cleared. 

The ObjectIDs argument identifies individual objects for which the change logs will be cleared 
and contains one or more CDS object IDs. In other word, the device MUST clear the change 
logs of multiple objects within the action processing period if the ObjectIDs argument has 
multiple object IDs. When all synchronization objects that are involved with a pairGroup or a 
partnership or a relationship are to be cleared, this input argument should have the value of 
"*". Otherwise, this argument should have a list of individual object@id. In order to clear the 
change log of the objects that are involved in different pairGroups, the SyncID should be 
empty string. 

By comparing the @updateID in the ObjectIDs input argument and avcs:pair@updateID of the 
CDS object, the device can determine whether the CDS object has changed. A caller keeps 
this @updateID value until it invokes the ResetChangeLog() action. Whenever the property of 

29341-15-10 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
5-1

0:2
01

1

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f


XXXX: © IEC:2010 — 51 — 

a synchronization object is changed, the CDS MUST increase the @updateID property of the 
object by 1. The device sets the avcs:pair:status value as "MODIFIED" if two values 
(@updateID in the ObjectIDs input argument and avcs:pair@updateID of the CDS object) are 
different from each other. Otherwise, the value of avcs:pair:status property is reset to 
“SYNC’ED”. This process removes the necessity for the device to lock object properties while 
it is synchronizing. 

2.9.13.1 Arguments 

Table 2-27 — Arguments for ResetChangeLog() 

Argument Direction Related State Variable 

SyncID IN A_ARG_TYPE_SyncID 

ObjectIDs IN A_ARG_TYPE_ResetObjectList 

2.9.13.2 Dependency on State 

None. 

2.9.13.3 Effect on State 

None. 

2.9.13.4 Errors 

Table 2-28 — Error Codes for ResetChangeLog() 

errorCode errorDescription Description 

400-499 TBD See UPnP Device Architecture clause on Control. 

500-599 TBD See UPnP Device Architecture clause on Control. 

600-699 TBD See UPnP Device Architecture clause on Control. 

701 No such sync data The ResetChangeLog() request failed because the specified 
SyncIDs argument is invalid. 

 

2.9.14 ResetStatus() 

2.9.15  

This action allows a caller to reset status of synchronization pairs that are bound to a 
synchronization relationship or partnership or pairGroup regardless of current status of the 
pair. In other words, the action changes the value of status of a synchronization pair to 
"NEW" similar to as a newly created synchronization pair. 

This action is only effective when the policy defined for a synchronization relationship or 
partnership or pairGroup is a tracking policy. 

The SyncID identifies a synchronization relationship, or a partnership or a pairGroup for 
which the status of change log of all objects included in the identified synchronization data 
structure will be reseted. 

2.9.15.1 Arguments 

Table 2-29 — Arguments for ResetStatus() 

Argument Direction Related State Variable 

SyncID IN A_ARG_TYPE_SyncID 

29341-15-10 © ISO/IEC:2011(E)29341-15-10 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
5-1

0:2
01

1

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f


XXXX: © IEC:2010 — 52 — 

2.9.15.2 Dependency on State 

None. 

2.9.15.3 Effect on State 

None. 

2.9.15.4 Errors 

Table 2-30 — Error Codes for ResetStatus() 

errorCode errorDescription Description 

400-499 TBD See UPnP Device Architecture clause on Control. 

500-599 TBD See UPnP Device Architecture clause on Control. 

600-699 TBD See UPnP Device Architecture clause on Control. 

701 Invalid SyncID The ResetStatus() request failed because the specified SyncID 
argument is invalid. 

 

 

2.9.16 GetSyncStatus() 

This action returns the status of the current synchronization operation identified by the 
SyncID. If the synchronization operation is completed, then invocation of this action returns 
the status of the last synchronization operation. Therefore, the device MUST keep status of 
the last synchronization operation until the next synchronization operation starts. 

If the action argument SyncID identifies a synchronization relationship then the SyncStatus 
output argument contains the current value of the A_ARG_TYPE_SyncStatus state variable. 
If the action argument SyncID identifies a partnership then the SyncStatus output argument 
contains the status information of that specific partnership contained in the 
A_ARG_TYPE_SyncStatus state variable. If the action argument SyncID identifies a 
pairGroup then the SyncStatus output argument contains the status information of that 
specific pairGroup contained in the A_ARG_TYPE_SyncStatus state variable. 

2.9.16.1 Arguments 

Table 2-31 — Arguments for GetSyncStatus() 

Argument Direction Related State Variable 

SyncID IN A_ARG_TYPE_SyncID 

SyncStatus OUT A_ARG_TYPE_SyncStatus 

2.9.16.2 Dependency on State 

None. 

2.9.16.3 Effect on State 

None. 

29341-15-10 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
5-1

0:2
01

1

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f


XXXX: © IEC:2010 — 53 — 

2.9.16.4 Errors 

Table 2-32 — Error Codes for GetSyncStatus() 

errorCode errorDescription Description 

400-499 TBD See UPnP Device Architecture clause on Control. 

500-599 TBD See UPnP Device Architecture clause on Control. 

600-699 TBD See UPnP Device Architecture clause on Control. 

701 No such sync data The StartSync() request failed because the specified SyncID 
argument is invalid. 

 

2.9.17 Non-Standard Actions Implemented by a UPnP Vendor 

To facilitate certification, non-standard actions implemented by UPnP vendors should be 
included in this service template. The UPnP Device Architecture lists naming requirements 
for non-standard actions (see the clause on Description). 

2.9.18 Common Error Codes 

The following table lists error codes common to actions for this service type. If a given action 
results in multiple errors, the most specific error MUST be returned. 

Table 2-33 — Common Error Codes 

errorCode errorDescription Description 

400-499 TBD See UPnP Device Architecture clause on Control. 

500-599 TBD See UPnP Device Architecture clause on Control. 

600-699 TBD See UPnP Device Architecture clause on Control. 

701 No such sync data The action request failed because the specified sync data is invalid. 

702 Invalid XML The action failed because given XML fragment violates the XML 
schema 

703 Invalid action caller The action failed because the action caller is a part of the sync 
data. 

704 Partner Timeout The action failed because the sync data structure could not be 
modified due to time out of the partner device. 

705 Partner not online  The action failed because partner device is not in the network. 

706 Update in-progress The action failed because another action request is still being 
processed. 

707 Stale data The action failed because the sync data is stale. 

708 No such object The action failed because the specified object is invalid. 

709 Invalid pair The action failed because the specified sync pair is invalid. 

710 Inactive state The action failed because given sync data is inactive. 

711 Sync operation in-
progress 

The action failed because the sync operation of the specified sync 
data is in-progress. 

712 Cannot process the 
request 

The action failed because the ContentSync service was unable to 
complete the necessary computations in the time allotted. 

 

29341-15-10 © ISO/IEC:2011(E)29341-15-10 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
5-1

0:2
01

1

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f


XXXX: © IEC:2010 — 54 — 

2.10 Theory of Operation 

2.10.1 Introduction 

This clause shows several scenarios to illustrate the various actions supported by the 
ContentSync service. These include synchronization relationship creation and deletion, 
transferring synchronization data structures in preparation for a synchronization operation, 
performing a synchronization operation and terminating a synchronization operation. 

2.10.2 CDS Synchronization 

In order to synchronize objects between two CDSs, a control point must first establish a 
synchronization relationship and then create synchronization pair(s) that determines which 
CDS object(s) will be synchronized. After creating the synchronization relationship and its 
synchronization pair(s), the control point can execute the synchronization operation. Once 
the initial synchronization operation is successfully done (to establish the basis of a common 
set of objects between the partners), two CDSs maintain same synchronization pair(s) 
information for the CDS synchronization object. When an object is changed after the 
synchronization, the CDS implementation must recognize which object is changed and then 
provide information about that object as a change log when the next synchronization is 
triggered by the control point. 

The following shows the example sequence of the lifetime of synchronization. 

Example Sequence 

• Synchronization setup 

• Creation of minimally complete synchronization data structure 

• Creation of synchronization pair. 

• Creation of policy for an synchronization pair (i.e. A3) that overrides partnership 
policy 

• Trigger first synchronization operation 
• Update Objects in partner 1 
• Update (delete) Objects in partner 2 
• Trigger subsequent synchronization operation 
• Update synchronization data structure 
• Synchronize synchronization data structure 

2.10.2.1 Synchronization Setup 

In order to demonstrate how the ContentSync service works, let us consider the following 
logical structure of two separate CDSs. The content in Partner 1 includes two music items 
and one container. The content in Partner 2 includes only a single music item.  The logical 
directory hierarchies for each CDS are presented as follows: 

 [Partner 1 CDS hierarchy] 

• Name="Content", ID="A0" 

• Name="Would - Alice In Chains.wma", ID="A1", Size="90000" 

• Name="My Music", ID="A2" 

• Name="Chloe Dancer - Mother Love Bone.mp3", ID="A3", Size="200000" 

[Partner 2 CDS hierarchy] 

• Name="My Multimedia Content", ID="B0" 

29341-15-10 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
5-1

0:2
01

1

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f


XXXX: © IEC:2010 — 55 — 

• Name="Alice In Chains", ID="B1", Size="90000" 

• Name="Wonder - Tell Me", ID="B4", Size="500000" 

Figure 8 shows a visual representation of two CDS hierarchies above and which object is to 
be synchronized (see a solid line between objects) in order to provide better understanding of 
the example. 

 

Figure 8 — Synchronization Relationship between two CDSs 

Let us consider that object A1 and B1 are to be synchronized with each other and object A2 
is to be synchronized under object B0 and object A3 is to synchronize under a new container 
object which will be created while synchronizing object A2 and object B4 is to be 
synchronized under object A0. In order to perform this synchronization operation, a control 
point first MUST create a new synchronization relationship and then, create new 
synchronization pairs for each of the three objects that are to be synchronized. Metadata and 
resources for all items in this example are expected to synchronize (i.e., each item has 
avcs:pair and res@avcs:syncAllowed properties.). Let us also assume that the example will 
create only single partnership and single pairGroup in the synchronization relationship. 

The following subclauses describe how a synchronization relationship between two devices is 
established and synchronization objects in these two devices are synchronized with each 
other. Table 2-34 summarizes which action will be invoked for each step of sequence in this 
example. 

29341-15-10 © ISO/IEC:2011(E)29341-15-10 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
5-1

0:2
01

1

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f


XXXX: © IEC:2010 — 56 — 

Table 2-34 — Actions for example sequence 

Task Related Action Task Result 

Creating a synchronization data 
structure AddSyncData() 1 pairGroup within 1 partnership within 1 

synchronization relationship 

Creating a synchronization pair AddSyncPair() 

4 synchronization pairs as shown below. 
Control point invokes invokes 
AddSyncPair() on Partner 1 for pairs 1, 2, 
and 3. Control point invokes AddSyncPair() 
on partner 2 for 4. 

 1. A1-B1 pair 

 2. A2-new object (B2) (that will be created 
under the container object (B0)) 

 3. A3-new object (B3) (that will be created 
under the object B2) 

 4. B4-new object (A4) (that will be created 
under the container object (A0)) 

Initiating a synchronization operation StartSync() Patners start the operation 

Performing a synchronization operation GetChangeLog() Updated CDS 

Resetting a change log ResetChangeLog() Reset a change log of an object 

2.10.2.2 Creating a Complete Synchronization Data Structure 

To create a synchronization relationship, the control point first invokes the AddSyncData() 
action with a minimally complete synchronization data structure on one of the synchronization 
partner devices.  It is immaterial which parter of the relationship that the control point invokes 
the AddSyncData() action on, however, for this example it will be assumed to be Partner 1. 

Request: (Control point to Partner 1) 

AddSyncData("", "", " 
<syncRelationship id="" active="1" xmlns="urn:schemas-upnp-org:cs" 
  xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
  xsi:schemaLocation="urn:schemas-upnp-org:cs 
   http://www.upnp.org/schemas/cs/cs-v1-20070XXXX.xsd"> 
 <title>Sync between My MP3P and Home Media Server</title> 
 <partnership id="" active="1"> 
  <partner id="1"> 
   <deviceUDN>343bd2a2-189b-40c0-8eb5-ea91ea730402</deviceUDN> 
   <serviceID>service_ID_A</serviceID> 
  </partner> 
  <partner id="2"> 
   <deviceUDN>05de2732-5df5-4c48-922b-12f73473f0e9</deviceUDN> 
   <serviceID>service_ID_B</serviceID> 
  </partner> 
  <policy> 
   <syncType>merge<syncType> 
   <priorityPartnerID>1</priorityPartnerID> 
  </policy> 
  <pairGroup id="" active="1"></pairGroup> 
 </partnership> 
</syncRelationship> 
"); 

Upon receiving this action invocation, Partner 1 will initialize its internal data structures for 
the relationship and then Partner 1 invokes the AddSyncData() action on Partner 2 with its 
deviceUDN as the ActionCaller argument  in order to propagate the synchronization data 
structure to Partner 2.  The difference between the call from the control point to Partner 1 to 
initialize the relationship and the call between Partner 1 and Partner 2 to propagate this 
information is that the latter invocation of AddSyncData() includes device UDN as the first 
argument of the action and  the values of synchronization relationship, partnership and 
pairGroup ID are not the empty strings.  Receiving this call, Partner 2 understands by the 
initialized values of the synchronization relationship, partnership and pairGroup IDs and by 

29341-15-10 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
5-1

0:2
01

1

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f


XXXX: © IEC:2010 — 57 — 

the presence of a deviceUDN as the ActionCaller argument that this is an initialized 
synchronization relationship and it does not need to propagate the information further. 

Request: (Partner 1 to Partner 2) 

AddSyncData("343bd2a2-189b-40c0-8eb5-ea91ea730402", "", " 
<syncRelationship id="d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d" active="1" 
  xmlns="urn:schemas-upnp-org:cs" 
  xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
  xsi:schemaLocation="urn:schemas-upnp-org:cs 
   http://www.upnp.org/schemas/cs/cs-v1-20070XXXX.xsd"> 
 <title>Sync between My MP3P and Home Media Server</title> 
 <partnership id="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6" active="1"> 
  <partner id="1"> 
   <deviceUDN>343bd2a2-189b-40c0-8eb5-ea91ea730402</deviceUDN> 
   <serviceID>service_ID_A</serviceID> 
  </partner> 
  <partner id="2"> 
   <deviceUDN>05de2732-5df5-4c48-922b-12f73473f0e9</deviceUDN> 
   <serviceID>service_ID_B</serviceID> 
  </partner> 
  <policy> 
   <syncType>merge<syncType> 
   <priorityPartnerID>1</priorityPartnerID> 
  </policy> 
  <pairGroup id="ba8e57de-7f66-4102-ae4b-31b96c86f173" active="1"/> 
 </partnership> 
</syncRelationship> 
"); 

At this point, Partner 2 intializes its internal data structures with the relationship and returns a 
success or failure response to Partner 1. 

Response: (Partner 2 to Partner 1) 

AddSyncData(" 
<syncRelationship id="d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d" active="1" 
  xmlns="urn:schemas-upnp-org:cs" 
  xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
  xsi:schemaLocation="urn:schemas-upnp-org:cs 
   http://www.upnp.org/schemas/cs/cs-v1-20070XXXX.xsd"> 
 <title>Sync between My MP3P and Home Media Server</title> 
 <partnership id="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6" active="1"> 
  <partner id="1"> 
   <deviceUDN>343bd2a2-189b-40c0-8eb5-ea91ea730402</deviceUDN> 
   <serviceID>service_ID_A</serviceID> 
  </partner> 
  <partner id="2"> 
   <deviceUDN>05de2732-5df5-4c48-922b-12f73473f0e9</deviceUDN> 
   <serviceID>service_ID_B</serviceID> 
  </partner> 
  <policy> 
   <syncType>merge<syncType> 
   <priorityPartnerID>1</priorityPartnerID> 
  </policy> 
  <pairGroup id="ba8e57de-7f66-4102-ae4b-31b96c86f173" active="1"/> 
 </partnership> 
</syncRelationship> 
"); 

Only after receiving the response from the call to Partner 2 can Partner 1 responsd to the 
original  AddSyncData() action. 

Response: (Partner 1 to Control Point) 

AddSyncData(" 
<syncRelationship id="d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d" active="1" 

29341-15-10 © ISO/IEC:2011(E)29341-15-10 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
5-1

0:2
01

1

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f


XXXX: © IEC:2010 — 58 — 

  xmlns="urn:schemas-upnp-org:cs" 
  xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
  xsi:schemaLocation="urn:schemas-upnp-org:cs 
   http://www.upnp.org/schemas/cs/cs-v1-20070XXXX.xsd"> 
 <title>Sync between My MP3P and Home Media Server</title> 
 <partnership id="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6" active="1"> 
  <partner id="1"> 
   <deviceUDN>343bd2a2-189b-40c0-8eb5-ea91ea730402</deviceUDN> 
   <serviceID>service_ID_A</serviceID> 
  </partner> 
  <partner id="2"> 
   <deviceUDN>05de2732-5df5-4c48-922b-12f73473f0e9</deviceUDN> 
   <serviceID>service_ID_B</serviceID> 
  </partner> 
  <policy> 
   <syncType>merge<syncType> 
   <priorityPartnerID>1</priorityPartnerID> 
  </policy> 
  <pairGroup id="ba8e57de-7f66-4102-ae4b-31b96c86f173" active="1"/> 
 </partnership> 
</syncRelationship> 
"); 

2.10.2.3 Creating a Synchronization Pair 

After creating the synchronization relationship, the control point creates the necessary 
synchronization object pairs and associates the pairs with the synchronization relationship. In 
this example, object A1 and object B1 are to be synchronized with each other and objects A2 
and A3 are to be synchronized with the objects that will be created during the synchronization 
operation. 

Creating the pair between object A1 and B1 

In the next step of the process, the control point establishes the synchronization pairs that 
will be used as part of the synchronization relationship.  In order to do this, the control point 
invokes the AddSyncPair()  action,on one of the Partners.  It must specify the local ID of the 
object on the partner that it is invoking as a parameter.  The object ID on the other partner is 
carried as an element of the sync pair data structure. Note that the pair between A1 and B1 is 
Scenario 1 pairing according to the definition of a synchronization pair, where both objects 
currently exist within their respective CDS.. See 2.2.1 Synchronization Object and Pair for 
details. 

Request: (Control Point to Partner 1) 

AddSyncPair("", "A1", " 
<avcs:pair xmlns:avcs="urn:schemas-upnp-org:cs:avcs" 
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"  
  xsi:schemaLocation="urn:schemas-upnp-org:cs:avcs  
   http://www.upnp.org/schemas/cs/avcs-v1-2007xxxx.xsd" 
  syncRelationshipID="d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d" 
  partnershipID="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6"  
  pairGroupID="ba8e57de-7f66-4102-ae4b-31b96c86f173"> 
 <avcs:remoteObjID>B1</avcs:remoteObjID> 
</avcs:pair> 
"); 

Note: a control can know 3 input IDs for the avcs:pair property by invoking the GetSyncData() 
action of which purpose is to retrieve a synchronization data structure kept by the device. 

Upon receiving the invocation of the AddSyncPair()  action, the Partner must initialize its 
internal data structures and propagate the call to the other partner in the relationship.  In 
order to create a pair, the partner 1 device which received the AddSyncPair()  action invokes 
the AddSyncPair() action on the partner 2 based-on the information described above. The 
AddSyncPair() action call to propagate the call from the control point includes device UDN as 
the first argument of the action. See clause 2.9.6 for details on AddSyncPair()  action. 

29341-15-10 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
5-1

0:2
01

1

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f


XXXX: © IEC:2010 — 59 — 

Request: (Partner 1 to Partner 2) 

AddSyncPair("343bd2a2-189b-40c0-8eb5-ea91ea730402", "B1", " 
<avcs:pair xmlns:avcs="urn:schemas-upnp-org:cs:avcs" 
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"  
  xsi:schemaLocation="urn:schemas-upnp-org:cs:avcs  
   http://www.upnp.org/schemas/cs/avcs-v1-2007xxxx.xsd" 
  syncRelationshipID="d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d" 
  partnershipID="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6" 
  pairGroupID="ba8e57de-7f66-4102-ae4b-31b96c86f173"> 
 <avcs:remoteObjID>A1</avcs:remoteObjID> 
</avcs:pair> 
"); 

Response: (Partner 2 to Partner 1) 

AddSyncPair("") 

After receiving the second AddSyncPair() action response, the partner 1 responds to the first 
AddSyncPair() action. 

Response: (Parnter 1 to Control Point) 

AddSyncPair(); 

Creating the pair for object A2 

In this case, only one AddSyncPair() action must be invoked on the partner 1 because there 
is no corresponding remote object on partner 2. In other words, the partner 1 does not invoke 
the second AddSyncPair() action to propagate the pair information. Instead of the 
remoteObjID property, object A2 includes the remoteParentObjID property. 

Request: (Control Point to Partner 1) 

AddSyncPair("", "A2", " 
<avcs:pair xmlns:avcs="urn:schemas-upnp-org:cs:avcs" 
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"  
  xsi:schemaLocation="urn:schemas-upnp-org:cs:avcs  
   http://www.upnp.org/schemas/cs/avcs-v1-2007xxxx.xsd" 
  syncRelationshipID="d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d" 
  partnershipID="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6"  
  pairGroupID="ba8e57de-7f66-4102-ae4b-31b96c86f173"> 
 <remoteParentObjID>B0</avcs:remoteParentObjID> 
</avcs:pair> 
"); 

Response: (Parnter 1 to Control Point) 

AddSyncPair(); 

Creating the pair for object A3 with the policy overriding 

In this case, the AddSyncPair() action is invoked on the partner 1 only because the partner 2 
does not contain the object to be synchronized with. In other words, the partner 1 does not 
invoke the second AddSyncPair() action to propagate pair information. Instead of the 
remoteObjID property, object A2 includes the virtualRemoteParentObjID property. 

Request: (Control Point to Parnter 1) 

AddSyncPair("", "A3", " 
<avcs:pair xmlns:avcs="urn:schemas-upnp-org:cs:avcs" 
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"  
  xsi:schemaLocation="urn:schemas-upnp-org:cs:avcs  
   http://www.upnp.org/schemas/cs/avcs-v1-2007xxxx.xsd" 

29341-15-10 © ISO/IEC:2011(E)29341-15-10 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
5-1

0:2
01

1

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f


XXXX: © IEC:2010 — 60 — 

  syncRelationshipID="d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d" 
  partnershipID="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6"  
  pairGroupID="ba8e57de-7f66-4102-ae4b-31b96c86f173"> 
 <avcs:virtualRemoteParentObjID>A2</avcs:virtualRemoteParentObjID> 
 <avcs:policy> 
  <avcs:syncType>replace</avcs:syncType> 
  <avcs:priorityPartnerID>1</avcs:priorityPartnerID> 
 </avcs:policy> 
</avcs:pair> 
"); 

Response: (Partner 1 to Control Point) 

AddSyncPair(); 

Creating the pair for object B4 

Similar to creating the pair for object A2, only one AddSyncPair() action must be invoked on 
the partner 2 because there is no corresponding remote object on partner 1. 

Request: (Control Point to Partner 2) 

AddSyncPair("", "B4", " 
<avcs:pair xmlns:avcs="urn:schemas-upnp-org:cs:avcs" 
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"  
  xsi:schemaLocation="urn:schemas-upnp-org:cs:avcs  
  http://www.upnp.org/schemas/cs/avcs-v1-2007xxxx.xsd" 
  syncRelationshipID="d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d" 
  partnershipID="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6"  
  pairGroupID="ba8e57de-7f66-4102-ae4b-31b96c86f173"> 
 <avcs:remoteParentObjID>A0</avcs:remoteParentObjID> 
</avcs:pair> 
"); 
 

Response: (Parnter 2 to Control Point) 

AddSyncPair(); 

By one AddSyncData() action and four AddSyncPair() action calls, the synchronization data 
structure for this example is established. After creating the synchronization data structure, a 
control point can trigger a synchronization operation with relationship ID or partnership ID or 
pairing ID at any time. 

2.10.2.4 Synchronizing CDS 

In order to synchronize two CDSs, a control point invokes the StartSync() action on either of 
the two partners as shown below. In this example, a synchronization relationship ID is used 
to trigger the CDS to start the synchronization operation. 

Request: (Control Point to Partner 1) 

StartSync("", "d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d"); 

The device that receives this action invokes StartSync() action on Partner 2 subsequently. 

Request: (Partner 1 to Partner 2) 

StartSync("343bd2a2-189b-40c0-8eb5-ea91ea730402", "d8c9fa13-d79b-4a0c-999b-
6ae2ff91a46d"); 

Response: (Parnter 2 to Partner 1) 

StartSync(); 

29341-15-10 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
5-1

0:2
01

1

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f


XXXX: © IEC:2010 — 61 — 

After receiving the second action response, the partner 1 responds to the first StartSync() 
action. 

Response: (Partner 1 to Control Point) 

StartSync(); 

Getting Change Log: 

After the partner devices respond to the StartSync() action successfully, the partner devices 
perform the synchronization operation simultaneously. To get synchronization objects as a 
change log, the embedded control points in the partners invoke GetChangeLog() action which 
is shown below. 

Since during the first synchronization operation, some of the objects need to be created 
under a container object which itself needs to be created as well, the order how objects are 
to be synchronized should be handled very carefully.  

The partner 1 gathers the DIDL-Lite XML document as a change log as shown below. 

Request: (Partner 1 to Partner 2) 

GetChangeLog("d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d", 0, 0); 

Response: (Partner 2 to Partner 1) 

GetChangeLog(" 
<?xml version="1.0" encoding="UTF-8"?> 
<DIDL-Lite xmlns:dc="http://purl.org/dc/elements/1.1/"  
  xmlns="urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/"  
  xmlns:upnp="urn:schemas-upnp-org:metadata-1-0/upnp/"  
  xmlns:avcs="urn:schemas-upnp-org:cs:avcs" 
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"  
  xsi:schemaLocation="urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/  
  http://upnp.org/standardizeddcps/schemas/avwc/didl-lite/2.00  
  urn:schemas-upnp-org:metadata-1-0/upnp/  
  http://upnp.org/standardizeddcps/schemas/avwc/upnp/2.00 
  urn:schemas-upnp-org:cs:avcs  
  http://www.upnp.org/schemas/cs/avcs-v1-2007xxxx.xsd"> 
 <item id="B1" parentID="B0" restricted="1"> 
  <dc:title>Alice In Chains</dc:title> 
  <upnp:class>object.item.audioItem.musicTrack</upnp:class> 
  <res protocolInfo="http-get:*:audio/x-ms-wma:*" size="90000"  
    avcs:syncAllowed="ALL" avcs:resModified="0"> 
   http://10.0.0.2/getcontent.asp?id=1 
  </res> 
  <avcs:syncable/> 
  <avcs:syncInfo updateID="0"> 
   <avcs:pair 
     syncRelationshipID="d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d" 
     partnershipID="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6" 
     pairGroupID="ba8e57de-7f66-4102-ae4b-31b96c86f173"> 
    <avcs:remoteObjID>A1</avcs:remoteObjID> 
    <avcs:status>NEW</avcs:status> 
   </avcs:pair> 
  </avcs:syncInfo> 
 </item> 
 <item id="B4" parentID="B0" restricted="1"> 
  <dc:title>Wonder - Tell Me</dc:title> 
  <upnp:class>object.item.audioItem.musicTrack</upnp:class> 
  <res protocolInfo="http-get:*:audio/mpeg:*" size="500000"  
    avcs:syncAllowed="ALL" avcs:resModified="0"> 
   http://10.0.0.2/getcontent.asp?id=4 
  </res> 
  <avcs:syncable/> 
  <avcs:syncInfo updateID="0"> 
   <avcs:pair 

29341-15-10 © ISO/IEC:2011(E)29341-15-10 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
5-1

0:2
01

1

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f


XXXX: © IEC:2010 — 62 — 

     syncRelationshipID="d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d" 
     partnershipID="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6" 
     pairGroupID="ba8e57de-7f66-4102-ae4b-31b96c86f173"> 
    <avcs:remoteParentObjID>A0</avcs:remoteParentObjID> 
    <avcs:status>NEW</avcs:status> 
   </avcs:pair> 
  </avcs:syncInfo> 
 </item> 
</DIDL-Lite> 
", 1, 1); 

When partner 1 processes the received change log, it does not update object A1 as the 
object in the partner 2 does not have any new properties that can be added to the object A1 
in the partner 1.  In this example, object A1 in partner 1 has the precedence over object B1 in 
partner 2 as defined in the synchronization policy. Therefore, the dc:title property of the 
partner 1 in this example is not updated by synchronization. In addition, there are no 
corresponding objects for object A2 and A3 in the change log because the corresponding 
objects will be created in the partner 2 by synchronization.  

For object B4 in partner 2, partner 1 creates a new object under the container object A0 that 
is specified in the remoteParentObjID element of the avcs:pair in the change log as partner 1 
does not have a corresponding pair object for object B4. While creating the new object, 
partner 1 accepts all properties and a resource from object B4. Let us assume that the newly 
created object has A4 as the value of object@id property. This object A4 is now associated 
with object B4, which means that the value of the remoteObjID element is B4 as shown 
below: 

<item id="A4" parentID="A0" restricted="1"> 
 <dc:title>Wonder - Tell Me</dc:title> 
 <upnp:class>object.item.audioItem.musicTrack</upnp:class> 
 <res protocolInfo="http-get:*:audio/mpeg:*" size="500000"  
   avcs:syncAllowed="ALL" avcs:resModified="0"> 
  http://10.0.0.1/getcontent.asp?id=4 
 </res> 
 <avcs:syncable/> 
 <avcs:syncInfo updateID="0"> 
  <avcs:pair 
    syncRelationshipID="d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d" 
    partnershipID="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6" 
    pairGroupID="ba8e57de-7f66-4102-ae4b-31b96c86f173"> 
   <avcs:remoteObjID>B4</avcs:remoteObjID> 
   <avcs:status>SYNC'ED</avcs:status> 
  </avcs:pair> 
 </avcs:syncInfo> 
</item> 

After finishing the update, partner 1 sends an event message to notify the status of the 
operation. The following is an example of an event message for object A1 and A4 in the 
partner 1. 

GENA Message: (Partner 1 to Partner 2) 

<?xml version="1.0" encoding="utf-8"> 
<SyncStatusUpdate xmlns="urn:schemas-upnp-org:cs" 
  xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
  xsi:schemaLocation="urn:schemas-upnp-org:cs 
   http://www.upnp.org/schemas/cs/cs-v1-20070XXXX.xsd"> 
 <syncRelationship id="d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d"> 
  <status numberOfTotalObjects="2" numberOfCompletedObjects="2" 
    numberOfFailedObjects="0"> 
   COMPLETED_ALL 
  </status> 
  <partnership id="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6"> 
   <status numberOfTotalObjects="2" numberOfCompletedObjects="2" 
     numberOfFailedObjects="0"> 
    COMPLETED_ALL 
   </status> 

29341-15-10 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
5-1

0:2
01

1

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f


XXXX: © IEC:2010 — 63 — 

   <pairGroup id="ba8e57de-7f66-4102-ae4b-31b96c86f173"> 
    <status numberOfTotalObjects="2" numberOfCompletedObjects="2" 
      numberOfFailedObjects="0"> 
     COMPLETED_ALL 
    </status> 
    <logEntry> 
     <localObjectID>A1</localObjectID> 
     <remoteObjectID>B1</remoteObjectID> 
     <statusCode>001</statusCodes> 
     <statusDescription>Succeeded completely</statusDescription> 
    </logEntry> 
    <logEntry> 
     <localObjectID>A4</localObjectID> 
     <remoteObjectID>B4</remoteObjectID> 
     <statusCode>001</statusCodes> 
     <statusDescription>Succeeded completely</statusDescription> 
    </logEntry> 
   </pairGroup> 
  </partnership> 
 </syncRelationship> 
</SyncStatusUpdate> 

The GENA event message above is sent for the entire change log entry regardless of 
synchronization status. However, the partner device explictly invokes the ResetChangeLog() 
action to Partner 2  in order to inform that an individual object in change log is successfully 
synchronized. 

Request: (Partner 1 to Partner 2) 

ResetChangeLog("d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d", " 
<ResetObjectList xmlns="urn:schemas-upnp-org:cs" 
  xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
  xsi:schemaLocation="urn:schemas-upnp-org:cs 
   http://www.upnp.org/schemas/cs/cs-v1-20070XXXX.xsd"> 
 <object id="B1" remoteObjID="A1" updateID="0"/> 
 <object id="B4" remoteObjID="A4" updateID="0"/> 
</ResetObjectList> 
"); 

Response: (Partner 2 to Partner 1) 

ResetChangeLog(); 

When the partner 2 receives the ResetChangeLog() action, it can now change the value of 
the avcs:status property of the object B1 and B4 to "SYNC'ED" 

The partner 2 gathers the DIDL-Lite XML document as change log as shown below: 

Request: (Partner 2 to Partner 1) 

GetChangeLog("d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d", 0, 0); 

Response: (Partner 1 to Partner 2) 

GetChangeLog(" 
<?xml version="1.0" encoding="UTF-8"?> 
<DIDL-Lite xmlns:dc="http://purl.org/dc/elements/1.1/"  
  xmlns="urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/"  
  xmlns:upnp="urn:schemas-upnp-org:metadata-1-0/upnp/"  
  xmlns:avcs="urn:schemas-upnp-org:cs:avcs" 
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"  
  xsi:schemaLocation="urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/  
  http://upnp.org/standardizeddcps/schemas/avwc/didl-lite/2.00  
  urn:schemas-upnp-org:metadata-1-0/upnp/  
  http://upnp.org/standardizeddcps/schemas/avwc/upnp/2.00 
  urn:schemas-upnp-org:cs:avcs  

29341-15-10 © ISO/IEC:2011(E)29341-15-10 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
5-1

0:2
01

1

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f


XXXX: © IEC:2010 — 64 — 

  http://www.upnp.org/schemas/cs/avcs-v1-2007xxxx.xsd"> 
 <item id="A1" parentID="0" restricted="1"> 
  <dc:title>Would - Alice In Chains.wma</dc:title> 
  <upnp:class>object.item.audioItem.musicTrack</upnp:class> 
  <res protocolInfo="http-get:*:audio/x-ms-wma:*"  
    size="90000"avcs:syncAllowed="ALL" avcs:resModified="0"> 
   http://10.0.0.1/getcontent.asp?id=A1 
  </res> 
  <avcs:syncable/> 
  <avcs:syncInfo updateID="0"> 
   <avcs:pair 
     syncRelationshipID="d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d" 
     partnershipID="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6" 
     pairGroupID="ba8e57de-7f66-4102-ae4b-31b96c86f173"> 
    <avcs:remoteObjID>B1</avcs:remoteObjID> 
    <avcs:status>NEW</avcs:status> 
   </avcs:pair> 
  </avcs:syncInfo> 
 </item> 
 <item id="A2" parentID="A0" restricted="1"> 
  <dc:title>My Music</dc:title> 
  <upnp:class>object.container.album</upnp:class> 
  <avcs:syncable/> 
  <avcs:syncInfo updateID="0"> 
   <avcs:pair 
     syncRelationshipID="d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d" 
     partnershipID="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6" 
     pairGroupID="ba8e57de-7f66-4102-ae4b-31b96c86f173"> 
    <avcs:remoteParentObjID>B0</avcs:RemoteParentObjID> 
    <avcs:status>NEW</avcs:status> 
   </avcs:pair> 
  </avcs:syncInfo> 
 </item> 
 <item id="A3" parentID="A2" restricted="1"> 
  <dc:title>Chloe Dancer - Mother Love Bone.mp3</dc:title> 
  <upnp:class>object.item.audioItem.musicTrack</upnp:class> 
  <res protocolInfo="http-get:*:audio/mpeg:*" size="200000"  
    avcs:syncAllowed="ALL" avcs:resModified="0"> 
   http://10.0.0.1/getcontent.asp?id=A3 
  </res> 
  <avcs:syncable/> 
  <avcs:syncInfo updateID="0"> 
   <avcs:pair 
     syncRelationshipID="d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d" 
     partnershipID="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6" 
     pairGroupID="ba8e57de-7f66-4102-ae4b-31b96c86f173"> 
    <avcs:virtualRemoteParentObjID>A2</avcs:virtualRemoteParentObjID> 
    <avcs:policy> 
     <avcs:syncType>replace</avcs:syncType> 
     <avcs:priorityPartnerID>1</avcs:priorityPartnerID> 
    </avcs:policy> 
    <avcs:status>NEW</avcs:status> 
   </avcs:pair> 
  </avcs:syncInfo> 
 </item> 
</DIDL-Lite> 
", 3, 3) 

When partner 2 processes the received change log, it updates its object B1 with dc:title and 
downloads a resource from partner 1 because the object in partner 1 is new to partner 2 and 
the object in partner 2 does not take precedence by the synchronization policy. 

For object A2 in partner 1, partner 2 creates a new object under the container object B0 that 
is specified in the remoteParentObjID element of the avcs:pair in the change log as partner 2 
does not have a corresponding pair object for object A2. While creating the new object, 
partner 2 accepts all properties and a resource from object A2. Let us assume that the newly 
created object has B2 as the value of @objectID property. This object B2 is now associated 
with object A2, which means that the value of the remoteObjID element is A2 as shown 
below: 

<item id="B2" parentID="B0" restricted="1"> 

29341-15-10 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
5-1

0:2
01

1

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f


XXXX: © IEC:2010 — 65 — 

 <dc:title>My Music</dc:title> 
 <upnp:class>object.container.album</upnp:class> 
 <avcs:syncable/> 
 <avcs:syncInfo updateID="0"> 
  <avcs:pair 
    syncRelationshipID="d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d" 
    partnershipID="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6" 
    pairGroupID="ba8e57de-7f66-4102-ae4b-31b96c86f173"> 
  <avcs:remoteObjID>A2</avcs:remoteObjID> 
  <avcs:status>SYNC'ED</avcs:status> 
  </avcs:pair> 
 </avcs:syncInfo> 
</item> 

For object A3 in partner 1, partner 2 creates a new object under the newly-created container 
object (i.e. B2) during processing of object A2 as shown above. Let us assume that newly 
created object has B3 as the value of the @objectID property. The 
virtualRemoteParentObjID> element of the avcs:pair in the change log is replaced with the 
remoteObjID element when creating this new object. This object B3 is now associated with 
object A3, which means that the value of the remoteObjID element is A3 as shown below. 

<item id="B3" parentID="B2" restricted="1"> 
 <dc:title>Chloe Dancer - Mother Love Bone.mp3</dc:title> 
 <upnp:class>object.item.audioItem.musicTrack</upnp:class> 
 <res protocolInfo="http-get:*:audio/mpeg:*"   
   size="200000"avcs:syncAllowed="ALL" avcs:resModified="0"> 
  http://10.0.0.2/getcontent.asp?id=B3 
 </res> 
 <avcs:syncable/> 
 <avcs:syncInfo updateID="0"> 
  <avcs:pair 
    syncRelationshipID="d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d" 
    partnershipID="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6" 
    pairGroupID="ba8e57de-7f66-4102-ae4b-31b96c86f173"> 
   <avcs:remoteObjID>A3</avcs:remoteObjID> 
   <avcs:policy> 
    <avcs:syncType>replace</avcs:syncType> 
    <avcs:priorityPartnerID>1</avcs:priorityPartnerID> 
   </avcs:policy> 
   <avcs:status>SYNC'ED</avcs:status> 
  </avcs:pair> 
 </avcs:syncInfo> 
</item> 

After finishing updates for each object, partner 2 sends an event message to notify the status 
of each update operation. The following is an example of an event message that is sent to 
partner 1. Here, we assume that the first 2 events are sent within a single moderation time 
and the third event message will be sent during the next moderation time. 

The partner 2 sends a GENA message during the first moderation time as shown below: 

GENA Message: (Partner 2 to Partner 1) 

<?xml version="1.0" encoding="utf-8"> 
<SyncStatusUpdate xmlns="urn:schemas-upnp-org:cs" 
  xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
  xsi:schemaLocation="urn:schemas-upnp-org:cs 
   http://www.upnp.org/schemas/cs/cs-v1-20070XXXX.xsd"> 
 <syncRelationship id="d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d"> 
  <status numberOfTotalObjects="3" numberOfCompletedObjects="2" 
    numberOfFailedObjects="0"> 
   IN_PROGRESS 
  </status> 
  <partnership id="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6"> 
   <status numberOfTotalObjects="3" numberOfCompletedObjects="2" 
     numberOfFailedObjects="0"> 
    IN_PROGRESS 
   </status> 

29341-15-10 © ISO/IEC:2011(E)29341-15-10 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
5-1

0:2
01

1

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f


XXXX: © IEC:2010 — 66 — 

   <pairGroup id="ba8e57de-7f66-4102-ae4b-31b96c86f173"> 
    <status numberOfTotalObjects="3" numberOfCompletedObjects="2" 
      numberOfFailedObjects="0"> 
     IN_PROGRESS 
    </status> 
    <logEntry> 
     <localObjectID>B1</localObjectID> 
     <remoteObjectID>A1</remoteObjectID> 
     <statusCode>001</statusCodes> 
     <statusDescription>Succeeded completely</statusDescription> 
    </logEntry> 
    <logEntry> 
     <localObjectID>B2</localObjectID> 
     <remoteObjectID>A2</remoteObjectID> 
     <statusCode>001</statusCodes> 
     <statusDescription>Succeeded completely</statusDescription> 
    </logEntry> 
   </pairGroup> 
  </partnership> 
 </syncRelationship> 
</SyncStatusUpdate> 

The partner 2 sends a GENA event message for the second moderation time as shown 
below: 

GENA Message: (Partner 2 to Partner 1) 

<?xml version="1.0" encoding="utf-8"> 
<SyncStatusUpdate xmlns="urn:schemas-upnp-org:cs" 
  xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
  xsi:schemaLocation="urn:schemas-upnp-org:cs 
   http://www.upnp.org/schemas/cs/cs-v1-20070XXXX.xsd"> 
 <syncRelationship id="d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d"> 
  <status numberOfTotalObjects="3" numberOfCompletedObjects="3" 
    numberOfFailedObjects="0"> 
   COMPLETED_ALL 
  </status> 
  <partnership id="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6"> 
   <status numberOfTotalObjects="3" numberOfCompletedObjects="3" 
     numberOfFailedObjects="0"> 
    COMPLETED_ALL 
   </status> 
   <pairGroup id="ba8e57de-7f66-4102-ae4b-31b96c86f173"> 
    <status numberOfTotalObjects="3" numberOfCompletedObjects="3" 
      numberOfFailedObjects="0"> 
     COMPLETED_ALL 
    </status> 
    <logEntry> 
     <localObjectID>B3</localObjectID> 
     <remoteObjectID>A3</remoteObjectID> 
     <statusCode>001</statusCodes> 
     <statusDescription>Succeeded completely</statusDescription> 
    </logEntry> 
   </pairGroup> 
  </partnership> 
 </syncRelationship> 
</SyncStatusUpdate> 

After updating the CDS of Parter 2, it explictly invokes the ResetChangeLog() action to 
Partner 1  in order to inform that individual object in change log is successfully synchronized. 

Request: (Partner 1 to Partner 2) 

ResetChangeLog("d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d", " 
<ResetObjectList xmlns="urn:schemas-upnp-org:cs" 
  xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
  xsi:schemaLocation="urn:schemas-upnp-org:cs 
   http://www.upnp.org/schemas/cs/cs-v1-20070XXXX.xsd"> 
 <object id="A1" remoteObjID="B1" updateID="0"/> 

29341-15-10 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
5-1

0:2
01

1

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f


XXXX: © IEC:2010 — 67 — 

 <object id="A2" remoteObjID="B2" updateID="0"/> 
 <object id="A3" remoteObjID="B3" updateID="0"/> 
 </ResetObjectList> 
"); 

Response: (Partner 2 to Partner 1) 

ResetChangeLog(); 

When the partner 1 receives the ResetChangeLog() action, it can now change the value of 
the avcs:status property of the object A1, A2 and A3 to "SYNC'ED", repectively. In addition, 
the avcs:remoteParentObjID property of the object A2 and the 
avcs:virtualRemoteParentObjID property of the object A3 are replaced with the 
avcs:remoteObjID property since the Partner 2 notifies those objects are successfully 
synchronized. 

After completing the synchronization operation, two CDSs MUST show the following 
hierarchies. 

CDS hierarchy of the partner 1: 

<?xml version="1.0" encoding="UTF-8"?> 
<DIDL-Lite xmlns:dc="http://purl.org/dc/elements/1.1/"  
  xmlns="urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/"  
  xmlns:upnp="urn:schemas-upnp-org:metadata-1-0/upnp/"  
  xmlns:avcs="urn:schemas-upnp-org:cs:avcs" 
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"  
  xsi:schemaLocation="urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/  
  http://upnp.org/standardizeddcps/schemas/avwc/didl-lite/2.00  
  urn:schemas-upnp-org:metadata-1-0/upnp/  
  http://upnp.org/standardizeddcps/schemas/avwc/upnp/2.00 
  urn:schemas-upnp-org:cs:avcs  
  http://www.upnp.org/schemas/cs/avcs-v1-2007xxxx.xsd"> 
<item id="A1" parentID="A0" restricted="1"> 
  <dc:title>Would - Alice In Chains.wma</dc:title> 
  <upnp:class>object.item.audioItem.musicTrack</upnp:class> 
  <res protocolInfo="http-get:*:audio/x-ms-wma:*" size="90000"  
    avcs:syncAllowed="ALL" avcs:resModified="0"> 
   http://10.0.0.1/getcontent.asp?id=A1 
  </res> 
  <avcs:syncable/> 
  <avcs:syncInfo updateID="0"> 
   <avcs:pair 
     syncRelationshipID="d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d" 
     partnershipID="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6" 
     pairGroupID="ba8e57de-7f66-4102-ae4b-31b96c86f173"> 
    <avcs:remoteObjID>B1</avcs:remoteObjID> 
    <avcs:status>SYNC'ED</avcs:status> 
   </avcs:pair> 
  </avcs:syncInfo> 
 </item> 
 <item id="A2" parentID="A0" restricted="1"> 
  <dc:title>My Music</dc:title> 
  <upnp:class>object.container.album</upnp:class> 
  <avcs:syncable/> 
  <avcs:syncInfo updateID="0"> 
   <avcs:pair 
     syncRelationshipID="d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d" 
     partnershipID="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6" 
     pairGroupID="ba8e57de-7f66-4102-ae4b-31b96c86f173"> 
    <avcs:remoteObjID>B2</avcs:remoteObjID> 
    <avcs:status>SYNC'ED</avcs:status> 
   </avcs:pair> 
  </avcs:syncInfo> 
 </item> 
 <item id="A3" parentID="A2" restricted="1"> 
  <dc:title>Chloe Dancer - Mother Love Bone.mp3</dc:title> 
  <upnp:class>object.item.audioItem.musicTrack</upnp:class> 
  <res protocolInfo="http-get:*:audio/mpeg:*" size="200000"  

29341-15-10 © ISO/IEC:2011(E)29341-15-10 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
5-1

0:2
01

1

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f


XXXX: © IEC:2010 — 68 — 

    avcs:syncAllowed="ALL" avcs:resModified="0"> 
   http://10.0.0.1/getcontent.asp?id=A3 
  </res> 
  <avcs:syncable/> 
  <avcs:syncInfo updateID="0"> 
   <avcs:pair 
     syncRelationshipID="d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d" 
     partnershipID="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6" 
     pairGroupID="ba8e57de-7f66-4102-ae4b-31b96c86f173"> 
    <avcs:remoteObjID>B3</avcs:remoteObjID> 
    <avcs:policy> 
     <avcs:syncType>replace</avcs:syncType> 
     <avcs:priorityPartnerID>1</avcs:priorityPartnerID> 
    </avcs:policy> 
    <avcs:status>SYNC'ED</avcs:status> 
   </avcs:pair> 
  </avcs:syncInfo> 
 </item> 
 <item id="A4" parentID="A0" restricted="1"> 
  <dc:title>Wonder - Tell Me</dc:title> 
  <upnp:class>object.item.audioItem.musicTrack</upnp:class> 
  <res protocolInfo="http-get:*:audio/mpeg:*" size="500000"  
    avcs:syncAllowed="ALL" avcs:resModified="0"> 
   http://10.0.0.1/getcontent.asp?id=4 
  </res> 
  <avcs:syncable/> 
  <avcs:syncInfo updateID="0"> 
   <avcs:pair 
     syncRelationshipID="d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d" 
     partnershipID="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6" 
     pairGroupID="ba8e57de-7f66-4102-ae4b-31b96c86f173"> 
    <avcs:remoteObjID>B4</avcs:remoteObjID> 
    <avcs:status>SYNC'ED</avcs:status> 
   </avcs:pair> 
  </avcs:syncInfo> 
 </item> 
</DIDL-Lite> 

CDS hierarchy of the partner 2: 

<?xml version="1.0" encoding="UTF-8"?> 
<DIDL-Lite xmlns:dc="http://purl.org/dc/elements/1.1/"  
  xmlns="urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/"  
  xmlns:upnp="urn:schemas-upnp-org:metadata-1-0/upnp/"  
  xmlns:avcs="urn:schemas-upnp-org:cs:avcs" 
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"  
  xsi:schemaLocation="urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/  
  http://upnp.org/standardizeddcps/schemas/avwc/didl-lite/2.00  
  urn:schemas-upnp-org:metadata-1-0/upnp/  
  http://upnp.org/standardizeddcps/schemas/avwc/upnp/2.00 
  urn:schemas-upnp-org:cs:avcs  
  http://www.upnp.org/schemas/cs/avcs-v1-2007xxxx.xsd"> 
 <item id="B1" parentID="B0" restricted="1"> 
  <dc:title>Would - Alice In Chains.wma</dc:title> 
  <upnp:class>object.item.audioItem.musicTrack</upnp:class> 
  <res protocolInfo="http-get:*:audio/x-ms-wma:*" size="90000"  
    avcs:syncAllowed="ALL" avcs:resModified="0"> 
   http://10.0.0.2/getcontent.asp?id=B1 
  </res> 
  <avcs:syncable/> 
  <avcs:syncInfo updateID="0"> 
   <avcs:pair 
     syncRelationshipID="d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d" 
     partnershipID="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6" 
     pairGroupID="ba8e57de-7f66-4102-ae4b-31b96c86f173"> 
    <avcs:remoteObjID>A1</avcs:remoteObjID> 
    <avcs:status>SYNC'ED</avcs:status> 
   </avcs:pair> 
  </avcs:syncInfo> 
 </item> 
 <item id="B2" parentID="B0" restricted="1"> 
  <dc:title>My Music</dc:title> 
  <upnp:class>object.container.album</upnp:class> 
  <avcs:syncable/> 

29341-15-10 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
5-1

0:2
01

1

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f


XXXX: © IEC:2010 — 69 — 

  <avcs:syncInfo updateID="0"> 
   <avcs:pair 
     syncRelationshipID="d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d" 
     partnershipID="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6" 
     pairGroupID="ba8e57de-7f66-4102-ae4b-31b96c86f173"> 
    <avcs:remoteObjID>A2</avcs:remoteObjID> 
    <avcs:status>SYNC'ED</avcs:status> 
   </avcs:pair> 
  </avcs:syncInfo> 
 </item> 
 <item id="B3" parentID="B2" restricted="1"> 
  <dc:title>Chloe Dancer - Mother Love Bone.mp3</dc:title> 
  <upnp:class>object.item.audioItem.musicTrack</upnp:class> 
  <res protocolInfo="http-get:*:audio/mpeg:*" size="200000"  
    avcs:syncAllowed="ALL" avcs:resModified="0"> 
   http://10.0.0.2/getcontent.asp?id=B3 
  </res> 
  <avcs:syncable/> 
  <avcs:syncInfo updateID="0"> 
   <avcs:pair 
     syncRelationshipID="d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d" 
     partnershipID="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6" 
     pairGroupID="ba8e57de-7f66-4102-ae4b-31b96c86f173"> 
    <avcs:remoteObjID>A3</avcs:remoteObjID> 
    <avcs:policy> 
     <avcs:syncType>replace</avcs:syncType> 
     <avcs:priorityPartnerID>1</avcs:priorityPartnerID> 
    </avcs:policy> 
    <avcs:status>SYNC'ED</avcs:status> 
   </avcs:pair> 
  </avcs:syncInfo> 
 </item> 
 <item id="B4" parentID="B0" restricted="1"> 
  <dc:title>Wonder - Tell Me</dc:title> 
  <upnp:class>object.item.audioItem.musicTrack</upnp:class> 
  <res protocolInfo="http-get:*:audio/mpeg:*" size="500000"  
    avcs:syncAllowed="ALL" avcs:resModified="0"> 
   http://10.0.0.2/getcontent.asp?id=4 
  </res> 
  <avcs:syncable/> 
  <avcs:syncInfo updateID="0"> 
   <avcs:pair 
     syncRelationshipID="d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d" 
     partnershipID="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6" 
     pairGroupID="ba8e57de-7f66-4102-ae4b-31b96c86f173"> 
    <avcs:remoteObjID>A4</avcs:remoteObjID> 
    <avcs:status>SYNC'ED</avcs:status> 
   </avcs:pair> 
  </avcs:syncInfo> 
 </item> 
</DIDL-Lite> 

2.10.2.5 Next Synchronization after Changing Objects 

2.10.2.6  

Objects changed: 

If an object is changed since the last synchronization, the DIDL-Lite object keeps track of 
which property is changed. In this example, the dc:title property of object A1 in partner 1 is 
changed and object A3 is deleted. To find out the changed object, the embedded control 
point in the partner device uses the GetChangeLog( ) action. To trigger synchronization 
operation, the procedure as described in Clause above needs to be followed. 

Getting Change Log: 

The partner 1 gets no changed CDS objects as there is no change in objects on the partner 2 
in this example. 

29341-15-10 © ISO/IEC:2011(E)29341-15-10 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
5-1

0:2
01

1

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f


XXXX: © IEC:2010 — 70 — 

However, when the partner 2 calls the GetChangeLog() action on the partner 1, it will get the 
following changed CDS objects.. 

Request: (Partner 2 to Partner 1) 

GetChangeLog("d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d", 0, 0); 

Response: (Partner 1 to Partner 2) 

GetChangeLog(" 
<?xml version="1.0" encoding="UTF-8"?> 
<DIDL-Lite xmlns:dc="http://purl.org/dc/elements/1.1/"  
  xmlns="urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/"  
  xmlns:upnp="urn:schemas-upnp-org:metadata-1-0/upnp/"  
  xmlns:avcs="urn:schemas-upnp-org:cs:avcs" 
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"  
  xsi:schemaLocation="urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/  
  http://upnp.org/standardizeddcps/schemas/avwc/didl-lite/2.00  
  urn:schemas-upnp-org:metadata-1-0/upnp/  
  http://upnp.org/standardizeddcps/schemas/avwc/upnp/2.00 
  urn:schemas-upnp-org:cs:avcs  
  http://www.upnp.org/schemas/cs/avcs-v1-2007xxxx.xsd"> 
 <item id="A1" parentID="0" restricted="1"> 
  <dc:title>Alice In Chains(Live)</dc:title> 
  <upnp:class>object.item.audioItem.musicTrack</upnp:class> 
  <res protocolInfo="http-get:*:audio/x-ms-wma:*"  
    size="90000"avcs:syncAllowed="ALL" avcs:resModified="0"> 
   http://10.0.0.1/getcontent.asp?id=A1 
  </res> 
  <avcs:syncable/> 
  <avcs:syncInfo updateID="1"> 
   <avcs:pair 
     syncRelationshipID="d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d" 
     partnershipID="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6" 
     pairGroupID="ba8e57de-7f66-4102-ae4b-31b96c86f173"> 
    <avcs:remoteObjID>A1</avcs:remoteObjID> 
    <avcs:status>MODIFIED</avcs:status> 
   </avcs:pair> 
  </avcs:syncInfo> 
 </item> 
 <item id="A3" parentID="A2"> 
  <avcs:syncInfo updateID="1"> 
   <avcs:pair 
     syncRelationshipID="d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d" 
     partnershipID="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6" 
     pairGroupID="a8e57de-7f66-4102-ae4b-31b96c86f173"> 
    <avcs:remoteObjID>B3</avcs:remoteObjID> 
    <avcs:status>DELETED</avcs:status> 
   </avcs:pair> 
  </avcs:syncInfo> 
 </item> 
</DIDL-Lite> 
", 2, 2) 

Therefore, partner 2 updates the <dc:title> property for object B1 and destroys object B3 
based on the rules defined by the synchronization policy. 

To confirm that the objects in the received change log are successfully synchronized, the 
Partner 2 invokes the GetChangeLog() action with object A1 and A3 information. 

Request: (Partner 2 to Partner 1) 

ResetChangeLog("d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d", " 
<ResetObjectList xmlns="urn:schemas-upnp-org:cs" 
  xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
  xsi:schemaLocation="urn:schemas-upnp-org:cs 
   http://www.upnp.org/schemas/cs/cs-v1-20070XXXX.xsd"> 
 <object id="A1" remoteObjID="B1" updateID="0"/> 

29341-15-10 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
5-1

0:2
01

1

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f


XXXX: © IEC:2010 — 71 — 

 <object id="A3" remoteObjID="B3" updateID="0"/> 
</ResetObjectList> 
"); 

Response: (Partner 1 to Partner 2) 

ResetChangeLog(""); 

When the Partner 1 receives the GetChangeLog() action above, it change the value of the 
avcs:status of the object A1 and A3 to "SYNC'ED" repectively. 

2.10.2.7 Modifications of a Synchronization Data Structure 

To explain how to update a synchronization data structure, assume that there are two 
synchronization partners in a synchronization relationship as described in the XML document 
below. 

<?xml version="1.0" encoding="UTF-8"?> 
<ContentSync xmlns="urn:schemas-upnp-org:cs" 
  xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
  xsi:schemaLocation="urn:schemas-upnp-org:cs 
   http://www.upnp.org/schemas/cs/cs-v1-20070XXXX.xsd"> 
 <syncRelationship id="d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d" active="1"> 
  <title>Sync between My iPod and Home Media Server</title> 
  <partnership id="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6" active="1"  
    updateID="0"> 
   <partner id="1"> 
    <deviceUDN>343bd2a2-189b-40c0-8eb5-ea91ea730402</deviceUDN> 
    <serviceID>service_ID_A</serviceID> 
   </partner> 
   <partner id="2"> 
    <deviceUDN>05de2732-5df5-4c48-922b-12f73473f0e9</deviceUDN> 
    <serviceID>service_ID_B</serviceID> 
   </partner> 
   <policy> 
    <syncType>merge</syncType> 
    <priorityPartnerID>1</priorityPartnerID> 
   </policy> 
   <pairGroup id="ba8e57de-7f66-4102-ae4b-31b96c86f173" active="1"/> 
  </partnership> 
 </syncRelationship> 
</ContentSync> 

The following example demonstrates how to update the partnership in the synchronization 
relationship by the ModifySyncData() action: 

Request: (Control Point to Partner 1) 

ModifySyncData("", "a0e4d0a7-3378-4f17-8af2-3f7de3345dc6", 
<partnership updateID="0" xmlns="urn:schemas-upnp-org:cs" 
  xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
  xsi:schemaLocation="urn:schemas-upnp-org:cs 
   http://www.upnp.org/schemas/cs/cs-v1-20070XXXX.xsd"> 
 <policy> 
  <syncType>merge</syncType> 
  <precedence>2</precedence> 
 </policy> 
</partnership> 
"); 

The partner1 that receives the ModifySyncData() action invokes the ModifySyncData() action 
on the partner 2 to maintain identical information for the synchronization relationship on both 
partner devices. 

Request: (Partner 1 to Partner 2) 

29341-15-10 © ISO/IEC:2011(E)29341-15-10 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
5-1

0:2
01

1

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f


XXXX: © IEC:2010 — 72 — 

ModifySyncData("343bd2a2-189b-40c0-8eb5-ea91ea730402", "a0e4d0a7-3378-4f17-8af2-
3f7de3345dc6", 
<partnership updateID="0" xmlns="urn:schemas-upnp-org:cs" 
  xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
  xsi:schemaLocation="urn:schemas-upnp-org:cs 
   http://www.upnp.org/schemas/cs/cs-v1-20070XXXX.xsd"> 
 <policy> 
  <syncType>merge</syncType> 
  <precedence>2</precedence> 
 </policy> 
</partnership> 
"); 

Response: (Partner 2 to Partner 1) 

ModifySyncData(); 

After receiving the second action response, the partner 1 responds to the first 
ModifySyncData() action. 

Response: (Partner 1 to Control Point) 

ModifySyncData(); 

When the update is successfully processed, the updated synchronization relationship MUST 
be shown as below. (partnership@updateID is increased by 1.) 

<?xml version="1.0" encoding="UTF-8"?> 
<ContentSync xmlns="urn:schemas-upnp-org:cs" 
  xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
  xsi:schemaLocation="urn:schemas-upnp-org:cs 
   http://www.upnp.org/schemas/cs/cs-v1-20070XXXX.xsd"> 
 <syncRelationship id="d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d" active="1"> 
  <title>Sync between My iPod and Home Media Server</title> 
  <partnership id="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6" active="1"  
    updateID="1"> 
   <partner id="1"> 
    <deviceUDN>343bd2a2-189b-40c0-8eb5-ea91ea730402</deviceUDN> 
    <serviceID>service_ID_A</serviceID> 
   </partner> 
   <partner id="2"> 
    <deviceUDN>05de2732-5df5-4c48-922b-12f73473f0e9</deviceUDN> 
    <serviceID>service_ID_B</serviceID> 
   </partner> 
   <policy> 
    <syncType>merge</syncType> 
    <priorityPartnerID>2</priorityPartnerID> 
   </policy> 
   <pairGroup id="ba8e57de-7f66-4102-ae4b-31b96c86f173" active="1"/> 
  </partnership> 
 </syncRelationship> 
</ContentSync> 

2.10.3 Synchronization of a Reference Object 

To explain how to synchronize a reference object, let us consider the following logical 
structure of two separate CDSs as shown below. Each of the CDS exposes physical directory 
structure like a PC file system. The content in the partner 1 includes two items each of which 
is a music item. One of the music items is a reference item. The content in the partner 2 does 
not include anything. 

[Partner 1CDS hierarchy] 

• Name=“Content”, ID=”0” 

• Name=“Would - Alice In Chains.wma”, ID=”A1”, Size=“90000” 

29341-15-10 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
5-1

0:2
01

1

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f


XXXX: © IEC:2010 — 73 — 

• Name=”Music Playlist”, ID=”A2” 

• Name=“Would - Alice In Chains.wma”, ID=”A3”, refID=”A1”, Artist=”Mary” 
Size=“200000” 

[Partner 2CDS hierarchy] 

• Name=“My Multimedia Content”, ID=”0” 

Figure 9 shows the visual Hierarchy of two CDSs. Object A3 refers to object A1 and has an 
additional property such as the upnp:artist property. 

 

A1

A0 B0

Synchronization
Relationship

Partner 1 Partner 2

Reference

A2

A3

 

Figure 9 — Synchronization Relationship between two CDSs 

 

Creating a Pair of a Reference Object: 

Firstly, let us assume that the synchronization relationship is setup. To synchronize a 
reference object, a control point should make a synchronization pair and associate the pair 
with the synchronization relationship. There is no difference in making an pair for a regular 
object such as audio or video item and a reference object. Therefore, the control point 
invokes the AddSyncPair() as shown below. However, this action does not invoke subsequent 
AddSyncPair() action on the partner 2 device since there is no corresponding remote object 
in the partner 2. 

Request: (Control Point to Partner 1) 

AddSyncPair("", "A3", " 
<avcs:pair xmlns:avcs="urn:schemas-upnp-org:cs:avcs" 
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"  
  xsi:schemaLocation="urn:schemas-upnp-org:cs:avcs  
  http://www.upnp.org/schemas/cs/avcs-v1-2007xxxx.xsd" 
  syncRelationshipID="d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d" 
  partnershipID="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6" 
  pairGroupID="ba8e57de-7f66-4102-ae4b-31b96c86f173"> 
 <avcs:remoteParentObjID>B0</avcs:remoteParentObjID> 
 <avcs:policy> 
  <avcs:syncType>replace</avcs:syncType> 
  <avcs:priorityPartnerID>1</avcs:priorityPartnerID> 
 </avcs:policy> 
</avcs:pair> 
"); 

Response: (Partner 1 to Control Point) 

29341-15-10 © ISO/IEC:2011(E)29341-15-10 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
5-1

0:2
01

1

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f


XXXX: © IEC:2010 — 74 — 

AddSyncPair(); 

Once the pair information is created, the DIDL-Lite XML document for object A3 is shown as 
below: 

<?xml version="1.0" encoding="UTF-8"?> 
<DIDL-Lite xmlns:dc="http://purl.org/dc/elements/1.1/"  
  xmlns="urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/"  
  xmlns:upnp="urn:schemas-upnp-org:metadata-1-0/upnp/"  
  xmlns:avcs="urn:schemas-upnp-org:cs:avcs" 
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"  
  xsi:schemaLocation="urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/  
  http://upnp.org/standardizeddcps/schemas/avwc/didl-lite/2.00  
  urn:schemas-upnp-org:metadata-1-0/upnp/  
  http://upnp.org/standardizeddcps/schemas/avwc/upnp/2.00 
  urn:schemas-upnp-org:cs:avcs  
  http://www.upnp.org/schemas/cs/avcs-v1-2007xxxx.xsd"> 
 <item id="A3" parentID="A2" restricted="1"> 
  <dc:title>Alice In Chains</dc:title> 
  <upnp:artist>Mary</upnp:artist> 
  <upnp:class>object.item.audioItem.musicTrack</upnp:class> 
  <res protocolInfo="http-get:*:audio/x-ms-wma:*"    
    size="90000" avcs:syncAllowed="ALL" avcs:resModified="0"> 
   http://10.0.0.2/getcontent.asp?id=1 
  </res> 
  <avcs:syncable/> 
  <avcs:syncInfo> 
   <avcs:pair 
     syncRelationshipID="d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d" 
     partnershipID="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6" 
     pairGroupID="ba8e57de-7f66-4102-ae4b-31b96c86f173"> 
    <avcs:remoteParentObjID>0</avcs:remoteParentObjID> 
    <avcs:status>NEW</avcs:status> 
   </avcs:pair> 
  </avcs:syncInfo> 
 </item> 
</DIDL-Lite> 

Getting Change Log: 

Once the partners are triggered to start the synchronization operation, each partner gets the 
synchronization object by invoking GetChangeLog() actions. 

In this example, the partner 1 will not get anything. However, the partner 2 will get the DIDL-
Lite XML document for object A3 as shown below. 

Request: (Partner 2 to Partner 1) 

GetChangeLog("d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d", 0, 0); 

Response: (Partner 1 to Partner 2) 

GetChangeLog( 
<?xml version="1.0" encoding="UTF-8"?> 
<DIDL-Lite xmlns:dc="http://purl.org/dc/elements/1.1/"  
  xmlns="urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/"  
  xmlns:upnp="urn:schemas-upnp-org:metadata-1-0/upnp/"  
  xmlns:avcs="urn:schemas-upnp-org:cs:avcs" 
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"  
  xsi:schemaLocation="urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/  
  http://upnp.org/standardizeddcps/schemas/avwc/didl-lite/2.00  
  urn:schemas-upnp-org:metadata-1-0/upnp/  
  http://upnp.org/standardizeddcps/schemas/avwc/upnp/2.00 
  urn:schemas-upnp-org:cs:avcs  
  http://www.upnp.org/schemas/cs/avcs-v1-2007xxxx.xsd"> 
 <item id="A3" parentID="A2" restricted="1"> 
  <dc:title>Alice In Chains</dc:title> 
  <upnp:artist>Mary</upnp:artist> 
  <upnp:class>object.item.audioItem.musicTrack</upnp:class> 

29341-15-10 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
5-1

0:2
01

1

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f


XXXX: © IEC:2010 — 75 — 

  <res protocolInfo="http-get:*:audio/x-ms-wma:*"  
    size="90000"avcs:syncAllowed="ALL" avcs:resModified="0"> 
   http://10.0.0.2/getcontent.asp?id=1 
  </res> 
  <avcs:syncable/> 
  <avcs:syncInfo updateID="0"> 
   <avcs:pair 
     syncRelationshipID="d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d" 
     partnershipID="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6" 
     pairGroupID="ba8e57de-7f66-4102-ae4b-31b96c86f173"> 
   <avcs:remoteParentObjID>B0</avcs:remoteParentObjID> 
   <avcs:status>NEW</avcs:status> 
   </avcs:pair> 
  </avcs:syncInfo> 
 </item> 
</DIDL-Lite> 
", 1, 1) 

Then, the partner 2 creates the new object that is paired with object A3. After creating the 
new object, the partner 2 sends an event message to notify the status of the operation. The 
following is an example of the event message for object B1 that is newly created in the 
partner 2. 

GENA Message: (Partner 2 to Partner 1) 

<?xml version="1.0" encoding="utf-8"> 
<SyncStatusUpdate xmlns="urn:schemas-upnp-org:cs" 
  xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
  xsi:schemaLocation="urn:schemas-upnp-org:cs 
   http://www.upnp.org/schemas/cs/cs-v1-20070XXXX.xsd"> 
 <syncRelationship id="d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d"> 
  <status numberOfTotalObjects="1" numberOfCompletedObjects="1" 
    numberOfFailedObjects="0"> 
   COMPLETED_ALL 
  </status> 
  <partnership id="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6"> 
   <status numberOfTotalObjects="1" numberOfCompletedObjects="1" 
     numberOfFailedObjects="0"> 
    COMPLETED_ALL 
   </status> 
   <pairGroup id="pr001"> 
    <status numberOfTotalObjects="1" numberOfCompletedObjects="1" 
      numberOfFailedObjects="0"> 
     COMPLETED_ALL 
    </status> 
    <logEntry> 
     <localObjectID>B1</localObjectID> 
     <remoteObjectID>A3</remoteObjectID> 
     <statusCode>001</statusCodes> 
     <statusDescription>Succeeded completely</statusDescription> 
    </logEntry> 
   </pairGroup> 
  </partnership> 
 </syncRelationship> 
</SyncStatusUpdate> 

To confirm that the object A1 in the received change log are successfully synchronized, the 
Partner 2 invokes the GetChangeLog() action. 

Request: (Partner 2 to Partner 1) 

ResetChangeLog("d8c9fa13-d79b-4a0c-999b-6ae2ff91a46d", " 
<ResetObjectList xmlns="urn:schemas-upnp-org:cs" 
  xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
  xsi:schemaLocation="urn:schemas-upnp-org:cs 
   http://www.upnp.org/schemas/cs/cs-v1-20070XXXX.xsd"> 
 <object id="A3" remoteObjID="B1" updateID="0"/> 
</ResetObjectList> 

29341-15-10 © ISO/IEC:2011(E)29341-15-10 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
5-1

0:2
01

1

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f



