O 2 >3
< OE 2 i s
L R
<« : D o
1 M /0\ ..m
o o [T
T = % 3
2. SN @
(@) V) 5
/W o
N \\O 8
o
&) & &
E Y0 o M
S 95
) £
[| a
S
>
o]
o
c
o
o |
|

Part 15-10: Content Synchronization Devic

Service

INTERNATIONAL

Information technology

(2)1102:01-GL-L¥EBZ O3I/OSI

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f

THIS PUBLICATION IS COPYRIGHT PROTECTED
Copyright © 2011 ISO/IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form
or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from
either IEC or IEC's member National Committee in the country of the requester.

If you have any questions about ISO/IEC copyright or have an enquiry about obtaining additional rights to this
publication, please contact the address below or your local IEC member National Committee for further information.

IEC Central Office

3, rue de Varembé
CH-1211 Geneva 20
Switzerland

Email: inmail@iec.ch
Web: www.iec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes
International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Pleas€é make sure that you have the
latest edition, a corrigenda or an amendment might have been published.

" Catalogue of IEC publications: www.iec.ch/searchpub
The IEC on-line Catalogue enables you to search by a variety of criteria (referénce number, text, technical committee,...).
It also gives information on projects, withdrawn and replaced publications.

® |EC Just Published: www.iec.ch/online_news/justpub
Stay up to date on all new IEC publications. Just Published details twicesa month all new publications released. Available
on-line and also by email.

" Electropedia: www.electropedia.org

The world's leading online dictionary of electronic and electrical terms containing more than 20 000 terms and definitions
in English and French, with equivalent terms in additional dafhguages. Also known as the International Electrotechnical
Vocabulary online.

® Customer Service Centre: www.iec.ch/webstore/custserv

If you wish to give us your feedback on this publication or need further assistance, please visit the Customer Service
Centre FAQ or contact us:

Email: csc@iec.ch

Tel.: +41 22 919 02 11

Fax: +41 22 919 03 00

mailto:inmail@iec.ch
http://www.iec.ch/
http://www.iec.ch/searchpub
http://www.iec.ch/online_news/justpub
http://www.electropedia.org/
http://www.iec.ch/webstore/custserv
mailto:csc@iec.ch
https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f

IEC ISO/IEC 29341-15-10

Edition 1.0 2011-09

INTERNATIONAL
STANDARD -

)
N
'\"\QD
q(bb‘ coloyr
Qq/ insidle
O\\Qx
N

Information technology — UPnP device archi@re -
Part 15-10: Content Synchronization Devic&\c ntrol Protocol — Synchronization

b

Service o

INTERNATIONAL
ELECTROTECHNICAL
COMMISSION PRICE CODE X

ICS 35.200 ISBN 978-2-88912-655-2

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f

29341-15-10 © ISO/IEC:2011(E)

CONTENTS

N O V=T VTNV Ta Vo B o] o = P 4
0 R 1 014 o o [T] 10} o P 4
1.1.1 ContentSYNC FUNCHIONot 6

1.1.2 Media Server Device and ContentDirectory ServiCecocovveevieeneniennnnnnns 6

2 Lo =11 o] o PP 7
I R I ¥ 1 = T 1Y o 1= TR P 8

1.3 Vendor-defined EXtENSIONSiviiniiiiiii e N 8
1.4 Namespace for ContentSYNC SErviCecoviiiiiiiiiiiiii i e 8
1.5 REfEreNCES..cuieiiii N 8
2 Service Modeling DefinitionS.......cccoviiiiiiiiiiiieee O 10
2.0 S BIVICE T Y P ittt e 10
2.2 T BIMIS i e e e 10
2.2.1 Synchronization Object and Paircoovuiiimm\ S 10

2.2.2 Synchronization Data Structure..........cocooe . G 11

2.2.3 Synchronization Policy and Behavior........ .28 o 12
2.2.4 Minimally Complete Synchronization Relationship Data Structure 15

2.3 Synchronization Data Structure Managementiv.oo i 16
2.3.1 Synchronization Data Structure AAitionccoiiiiiii 16

2.3.2 Synchronization Data Structure Modificationcccooviiiiiiiiiniinenn. 16

2.3.3 Synchronization Data Structure Deletioncooeviiiiiiiiiiiee 17

2.4 Synchronization Operation (CDS$0 CDS) ...ccuiiuiiiiiiiiiiee e 17
2.5 Synchronization Operation (CDSt0 NON CDS)....c.ovviiiiiiiiiiiieeee e 19
2.6 Garbage ColleCtioN i 20
2.7 State Variable s . o o 20
A 0 A}V o Vo @3 0 7= 1 Vo - 21

2.7.2 SYNCStAtUSUDAALE .. euieieiiie e et 22

2.7.3 A ARGOTYPE ACIONCAIEE iuitiiiiiit et e e 28
274 A ARG TYPE SYNCDAIA . iciiuiitiitiiiiie ettt e e 28
2.7.5 A ARG TYPE SYNCPAII ittt e ne e 33
2.7.6NA ARG _TYPE SYNCID .ttt ittt e e 33
27.7 A ARG TYPE ODBJECHID .euiiiii et 33
257.8 A ARG TYPE SYNCSIAIUS .uivuiieiitiiiiiiie ettt e e 33
2.7.9 A ARG TYPE ChanQELOg «uocuieiuieiitiiiieii et e ee e ee e ee e e aeaneeanenen 34
2.7.10 A ARG _TYPE INGEX ttttuititeineiiaetetteeiae e ettt e e ae e et a e e e e e aaaeens 35
2.7.11 A ARG _TYPE COUNttttiitiiiiei et e e e et e e e e e e e e e e 35
2.0.12 A ARG _TYPE RESETOD[ECILIST ..iivuvveiiiiiieesseieessaannersssannnresssnnnresssnnnnessns 30

2.8 Eventing and MOGErationie.ie i 36
72 T Y o] {0 0 BN 36
2.9.1 AdASYNCDALIAN) tutvuenienetiettie et 37

2.9.2 MOAIfYSYNCDALA() 1tueueteniteneiit et et 38

2.9.3 DeleteSYNCDALA() ttuteuerenttren ettt 40
2.9.4 GEeISYNCDALA() cetruenenenen ettt ettt 41

2.9.5 EXChangeSyYNCDAtA() «iueuveenieiiiieiii e e 42

2.9.6 AdASYNCPAIN() teuttutntnitiiit et eaes 43

2.9.7 MOIYSYNCPAIN() +iutiniitiiitie e e ettt et ettt e e e eeaaans 44

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f

29341-15-10 © ISO/IEC:2011(E)

2.9.8 DEleteSYNCPAIN() +iiiniit it 45
2.9.9 SHAIESYNC() iutntntitititii e e e 47
2.9. 10 ADOIISYNC() tutntntttneeet et et 48
A T A =] {4 g = g o 1= o Yo (O 49

2.9.12 49
2.9.13 RESEICNANGELOG() i tututt ettt ettt et et et e et e et e et reeaas 50
2.9.14 RESEISTAIUS() ttuvriritiniiiti ittt e e 51

2.9.15 51
2.9.16 GeISYNCSTATUS() tvuiininititii i e e e 52
2.9.17 Non-Standard Actions Implemented by a UPnP Vendor e it 53
2.9.18 CommOoN Error COAES ..uiviiiiiiiii e N e 53
2.10 Theory of OpPeration.ccciiii i e e e, 54
2.10.1 INtrodUCTION . uieir e N 54
2.10.2 CDS Synchronization.........ccocoiiiieiiiiiiee e Y e 54
2.10.3 Synchronization of a Reference Object..............coo ST, 72
3 XML Service DeSCIIPLION ..ovuieiiii e e e 77
O 1= . T S 82
Annex A (normative) AV Working Committee Properties.........a i, 83
A.1 Base Properties OVEIVIEWc.ouiiuiiiiiiiiiiie e 83
Nt (2 o 83
A.2 Resource Encoding Characteristics Properti€s...........ccooiiiiiiiiiiiiiii e 83
A.2.1 res@aveS:SYNCAIIOWED ..vuieie e e et e e e e et e e e e e e e e e e e a e aaeneens 83
A.2.2 1es@aveS:reSMOAIfIEd......oviie B er i 83
A.3 Content Synchronization-related Propertiescccovvviiiiii i, 84
A.3.1 AVCS SYNCADIE e P e 84
A.3.2 AVCSISYNCIN 0. et 84
A.3.3 aves:synclnfo@UPBATEIDc.ovirieii 85
A.3.4 AVCS:SYNCINTO @I . eueie ettt e 85
A.3.5 avcs:syncinfoXpair@syncRelationshiplDc..ccveveiiiiiiiiiiiiiiceeee e, 85
A.3.6 avcs:syntinfo::pair@partnershiplDccovuieeiriiiii e 85
A.3.7 avcs:Syhncinfo:: pair@pairGroupIDcc.cviiiiiii e 86
A.3.8 avcsssyncinfo::ipair::iremoteODID....c.iveiii i 86
A.3.9 cavcs:syncinfo::pair::remoteParentODbjIDc.covveieiiiiiiiiii e, 86
A.3.40avcs:syncinfo::pair::virtualRemoteParentObjIDccccovveveiiiiiiieec e 86
AO3L1 aves:SyNCINfO i PaIr i POlICY vuuiniei it 86
A.3.12 aves:SyNCINfo:iPair i StAtUS . .iiu i 87
Annex:B’(normative) Syncable Objects and Properties ... 88
B.1 Deciding Syncability of CDS ODbjeCtcooiviiii 88
B.2 Synchronization of CDS object properties (Informative)........ooeeeeeeieeiieiieiieeieeenn.... 89
Figure 1 — Content Synchronization Model..........couiiiiiiii e 4
Figure 2 — High-level Synchronization FIOW Diagram..........ccoveiiuiiiniiiiiiiiie e 5
Figure 3 — Unidirectional Contents Synchronizationcooiiiiiiii e 6
Figure 4 — ContentSYNC FUNCHION.. ...t e e e e 6
Figure 5 — Types of Synchronization Pair..........c..ooiiiiii i 11
Figure 6 — Synchronization Data STUCTUIEoiuiiiii e 12

Figure 7 — Interaction Diagram (Synchronization Operation)ccocoiiiiiiiiiiiiinieans 17

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f

29341-15-10 © ISO/IEC:2011(E)

Figure 8 — Synchronization Relationship between two CDSSccoviiiiiiiiiiiii e 55
Figure 9 — Synchronization Relationship between two CDSSccoiiiiiiiiiiiiiea 73
Table 1-1 — Namespace DefiNitioNS ... e 8
Table 2-1 — State Variables ... 20
Table 2-2 — Status Codes of Synchronization Operation...........c.cooiiiiiiiiiiiee, 27
1AaDIE Z-5 — EVENT IMOUETATIONttt titee it esaesatesrsesssseassesatesrasessasssassssatestanesansssaneesanesrnns S0
T DI 2-4 —— AT ONS oot o 37
Table 2-5 — Arguments for AddSYNCDALA() ..uvveririiiieiee e e 38
Table 2-6 — Error Codes for AddSYNCDATA() .. cu uuieenaeiineie e pe e Seaenes 38
Table 2-7 — Arguments for ModifySyncData()....ocveeeeriireiiiiiieiei e N e aeeaes 39
Table 2-8 — Error Codes for ModifySyncData()vveuveneeneeniiniiiiiiieeinene e e e 40
Table 2-9 — Arguments for DeleteSYNCDAA() . vvuveieieneiieeiir e Pk e 41
Table 2-10 — Error Codes for DeleteSyncData() ...ocevvvveveneeniniiniienii g 41
Table 2-11 — Arguments for GetSyncData() ...ooovvvveiiiiiiiiiie N s 41
Table 2-12 — Error Codes for GetSyncData()oveoveevveneeneenee o Gm T 42
Table 2-13 — Arguments for EXchangeSyNCData()ccuvvvewmmheeeeneeneetaetietieieeeeieeieenneaeenas 42
Table 2-14 — Error Codes for ExchangeSyncData().....omiGeneiniiiiiii e 42
Table 2-15 — Arguments for AAdSYNCPaIr() c.ovveviee s S s 44
Table 2-16 — Error Codes for AAdSYNCPAIN() «.v el i ettt ea e 44
Table 2-17 — Arguments for ModifySYNCPaIN(mii .. e 45
Table 2-18 — Error Codes for MOdifySYNCRAINT) «.uvvuieieneiieiii e ee e 45
Table 2-19 — Arguments for DeleteSYNGERAIN) ovuvrier i e eaes 46
Table 2-20 — Error Codes for Delet@SYNCPAIN() «.uveuieien e 46
Table 2-21 — Arguments fOr STAarESYNC() . .uvurnitiiiii e e 47
Table 2-22 — Error Codes fORSEartSYNC() ..uuuie ettt e eans 48
Table 2-23 — ArgumentSfOr ADOITSYNC() cvvuiuiir it e e eaes 48
Table 2-24 — Error Codes for ADOIESYNC() «vuu et 49
Table 2-25 — Arguments for GetChangeLOG() . cu eeueeuienei ittt 50
Table 2-26 — Ertor Codes for GetChangeLog() . e eu e ieenaeieaiae e eeaeaes 50
Table 2-27 < Arguments for ResetChangeLlog() «uuveeeeririieiiieiei e e e 51
Table 2-28>— Error Codes for ReSetChangeLlog() «.veueeeeeeirietiiieeeii et ie et eetneaee e 51
Table 2229 — Arguments for RESEtSTATUS() «vuuvrirniniiiie et 51
Table 2-30 — Error Codes for RESEESTAtUS() «uvrvuirenitiiiiii e aeaes 52
Table 2-31 — Arguments for GetSyncStatus() 52
Table 2-32 — Error Codes for GetSYNCSTATUS() vevuvrrieieniieiiitii e 53
Table 2-33 — ComMMON EFTOr COUBS ..uuiuiiiiiiii et e e e 53
Table 2-34 — Actions for eXample SEQUENCE.... ... 56
Table A.1 — Content Synchronization-related Properties OVerviewcc.coeevivviieiininnennnn. 84
Table B.1 — Syncability of CDS 0bject ClassS.......cccvvviiiii e 88

Table B.2 — Syncability of CDS ObjJECt PrOoperty ..o 90

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f

29341-15-10 © ISO/IEC:2011(E)

INFORMATION TECHNOLOGY -
UPNP DEVICE ARCHITECTURE -

Part 15-10: Content Synchronization Device Control
Protocol — Synchronization Service

FOREWORD

1) ISO (International Organization for Standardization) and IEC (International Electrotechnical Commission) farm-the
specialized system for worldwide standardization. National bodies that are members of ISO or IEC participdte in
the development of International Standards. Their preparation is entrusted to technical committees; any tfSO and
IEC member body interested in the subject dealt with may participate in this preparatory work{. International
governmental and non-governmental organizations liaising with ISO and IEC also participate in this,preparation.

2) In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.
Draft International Standards adopted by the joint technical committee are circulated to nafional bodies for voting.
Publication as an International Standard requires approval by at least 75 % of the national’bodies casting a vote.

3) The formal decisions or agreements of IEC and ISO on technical matters expréssy as nearly as possible, an
international consensus of opinion on the relevant subjects since each technical’\ecommittee has representation
from all interested IEC and ISO member bodies.

4) IEC, ISO and ISO/IEC publications have the form of recommendations fof“international use and are accepted
by IEC and ISO member bodies in that sense. While all reasonaple efforts are made to ensure that the
technical content of IEC, ISO and ISO/IEC publications is accuraté, |IEC or ISO cannot be held responsible for
the way in which they are used or for any misinterpretation by any,end user.

5) In order to promote international uniformity, IEC and IS@\member bodies undertake to apply IEC, ISO and
ISO/IEC publications transparently to the maximum extent‘possible in their national and regional publications.
Any divergence between any ISO/IEC publication and“the corresponding national or regional publication
should be clearly indicated in the latter.

6) 1SO and IEC provide no marking procedure to indicate their approval and cannot be rendered responsible for
any equipment declared to be in conformity withyan ISO/IEC publication.

7) All users should ensure that they have thé Jatest edition of this publication.

8) No liability shall attach to IEC or ISQ_or its directors, employees, servants or agents including individual experts
and members of their technical /€ommittees and IEC or ISO member bodies for any personal injury, property
damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees)
and expenses arising out of the publication of, use of, or reliance upon, this ISO/IEC publication or any other IEC,
ISO or ISO/IEC publications:

9) Attention is drawn to the normative references cited in this publication. Use of the referenced publications is
indispensable for theycorrect application of this publication.

10) Attention is drawn to the possibility that some of the elements of this International Standard may be the subject of
patent rights\|SO and IEC shall not be held responsible for identifying any or all such patent rights.

International Standard ISO/IEC 29341-15-10 was prepared by UPnP Forum Steering
committee?, was adopted, under the fast track procedure, by subcommittee 25:
Interconnection of information technology equipment, of ISO/IEC joint technical committee 1:
Information technology.

The list of all currently available parts of the ISO/IEC 29341 series, under the general title
Information technology — UPnP device architecture, can be found on the IEC web site.

This International Standard has been approved by vote of the member bodies, and the voting
results may be obtained from the address given on the second title page.

1 UPnP Forum Steering committee, UPnP Forum, 3855 SW 153" Drive, Beaverton, Oregon 97006 USA. See also
“Introduction”.

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f

29341-15-10 © ISO/IEC:2011(E)

IMPORTANT - The “colour inside” logo on the cover page of this publication indicates
that it contains colours which are considered to be useful for the correct understanding
of its contents. Users should therefore print this publication using a colour printer.

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f

— 4 — 29341-15-10 © ISO/IEC:2011(E)

1 Overview and Scope
This service definition is compliant with the UPnP Device Architecture version 1.0.

1.1 Introduction

Content Synchronization service enables two or more ContentDirectory services [CDS] to

syncnronize COMtENt With—eaciT other. TS Service also enapies a PP Tontrot poin[116
synchronize content with a ContentDirectory service. We refer this service as “CSS” \or
“ContentSync service” from hereon. If a CDS wants to support synchronization of objects ‘@nd
its resources with other CDSs, the implementation MUST enable this ContentSync service
(CSS). CSS keeps change log as part of CDS object property that describe which’ CDS
objects are added or modified or deleted since it has synchronized last. Since
synchronization enables interaction between ContentSync services, each service has a
Control Point (CP) functionality that invokes actions to other ContentSync setvice to achieve
synchronization of contents with each other.

Control Point

Synchronization Relationship <«—> UPnP actions
Management -t » Out-of-band

ContentSync Service ContentSync Service
¥
.
Synchronizing
$ Operation A
\ 4 \ 4
Change | ContentDirectory ContentDirectory "cpange
Log Service Service Log
Media Server A Media Server B

- i upugu
Transfer (Pull) resource binaries
(Out-of-band)

cececccccccccccccccccccccccccccca)

Figure 1 — Content Synchronization Model

Figuré 1 shows how synchronization is accomplished between two CSSs. In the figure above,
a stand alone control point is managing the synchronization between two CSSs. This includes
management of content synchronization data structure (i.e., creating, browsing and deleting

of synchronization data structure) and invocation of synchronization operation, etc. An
embedded control point in the CSS has the role of performing the actual synchronization of
objects which include retrieving the change log for objects that have changed, monitoring the
status of the other CSS and updating the synchronization data structure when an object is
successfully synchronized etc.

Figure 2 shows a high-level flow diagram of how Content Sync services, ContentDirectory
services and Control Point interact with each other to achieve content synchronization..

Firstly, a stand-alone control point (controlled by a user) creates a synchronization
relationship that describes which devices to participate in the synchronization, which objects

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f

29341-15-10 © ISO/IEC:2011(E) —5—

are to be synchronized, and how to resolve conflicts and so on. When the control point
creates a synchronization relationship, it MUST be responsible to define valid information for
the CSS. If the synchronization relationship is successfully created, the CDS implementation
that supports CSS MUST keep track of change log of the objects that are subject to
synchronization. When a synchronization relationship is created between two devices,
identical synchronization data structure information is maintained in both devices.

Once a synchromzanon relatlonshlp is created, a stand-alone control point can trlgger a

falealal £+l falelal

K +a £] H
QyII\JIIIUIIILGLIUII UPCI(J.I.IUII UTT CIurct Ul IO, LILJ are —IJ o |cauy LU QyII\JIIIUIIILU \I A~

successfully respond to the trigger from the stand-alone control point), the embedded control
point in the CSS retrieves change log from the other partner device.

After obtaining the change log, the CSS parses and interprets the change log. The CSS then
updates the CDS by retrieving object information from the partner device based on the
change log and the rule defined in this specification. In this step, the CSS notifies'the CSS of
the partner device whenever an object in the change log is dealt with regardless of success
or failure. If successful update for an object is notified, the CSS implementation MUST clear
the change log for that object and the CDS must keep track of new change“log since this last
synchronization.

ContentDirectory
Service

ContenFSync Control Point ContentSync ContentD_| rectory
Service Service Service

Create

Synchronization Relationship / Cfeate])
Synchronization Relationship

A

A 4

Track Track
Change Log | Change Log

RN Trigger "

Synchronization Operatian Trigger

Synchronization Operation

A

4

4

Get Change Log (Pull)

A

— A -
Asynchronous transfer (pull} to obtain resources >
HTTP GET
Update CDS '\ {) Update CDS
Track New Indicate end of sync, error conditions, > Track New
Reset Change Lo <
Change Log < 9 9 € completion of syncing single object > q??nge Log
N -l (//‘,’

Figure 2 — High-level Synchronization Flow Diagram

The=ContentSync service also provides a functionality by which a control point can only track
changes of objects that the control point is interested in. This functionality is helpful for
unidirectional synchronization. Figure 3 shows such a scenario. In this scenario, a control

point with its own local storage (not compliant to CDS) can synchronize with a CDS by its
own local policy. In other words, the control point does not follow any policies that are
defined in this specification. The control point creates synchronization relationship
information on a CDS with its interest for the CDS to track some objects. The CDS keeps
change log for the objects the control point is interested. Therefore, an embedded control
point in the CSS is disabled for this type of synchronization. Subclause 2.5 explains in details
how this kind of unidirectional synchronization can be achived.

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f

—6 — 29341-15-10 © ISO/IEC:2011(E)

<—» UPnP actions

- » Out-of-band
Synchronization Relationship
M t ContentSync Service
Control Point anagemen » y
e
4 Getting Change Log $
v \ 4
Storage Change ContentD-lrectory
Log Service

Media Server

ceccccccccccccccsccccccccccccccana,

4--------------------------------
Transfer (Pull) resource binaries
(Out-of-band)

Figure 3 — Unidirectional Contents Synchronization

1.1.1 ContentSync Function

ContentSync Function

ContentSync Service
ContentSync
Service interface
for external €ontentSync CP
Control Point

Control Point interface to other
ContentSync Service

Figure 4 — ContentSync Function

The Content Syncfunction is an essential part of the Content Synchronization. This function
is a combination~ef"a ContentSync service and a Content Sync CP in a CSS as shown in
Figure 4.

ContentSyac Service:

CantéentSync service is responsible for managing synchronization data structure and
performing synchronization operation with a partner CSS.

contentSync CP:

The Contentsync CP provides control Point functonality that controls other Contentsync
service running on the network.

The interface between the ContentSync CP and the ContentSync service is device-dependent
and not defined by the UPnP ContentSync Service specifications.

1.1.2 Media Server Device and ContentDirectory Service

Since a ContentSync service provides the functionality to synchronize ContentDirectory
service objects, ContentSync service implementation MUST appear together with
ContentDirectory service implementation and MUST be also deployed on an UPnP Media
Server device [MSD] that supports synchronization. Therefore, a Media Server

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f

29341-15-10 © ISO/IEC:2011(E) —7—

implementation MUST expose an XML device description document which contains
description of both ContentSync service and ContentDirectory service when the Media Server
implementation supports synchronization of CDS objects.

The following device type identifies a Media Server device that is compliant with this
specification:

urn:schemas-upnp-org:device:MediaServer:2

The following service type identifies a ContentDirectory service that is compliant with this
specification:

urn:schemas-upnp-org:service:ContentDirectory:2

To enable synchronization of CDS objects, this specification imposes additional requirements
on ContentDirectory:2 service specification. When supporting synchronization of-CDS objects,
these additional requirements MUST be implemented on top of ContentDirectory:2 service
implementation. See Annex A for the additional requirements on CententDirectory:2
service specification (especially CDS properties of ContentDirectory:2 service).

Additionally, since this specification adds extended properties.\fe” CDS, the AVCS XML
schema [AVCS-XSD] for those properties is specified in this specification, not in UPnP AV. In
other words, a CDS object expressed by original DIDL-Lite XME document MUST also refer
to the AVCS XML schema when the new properties are added to the object. (The schema of
the DIDL-Lite XML document does not have any reference to the AVCS XML schema). Note
that the schema is informative only and hence ,thee XML data types defined in this
specification take precedence over all the XML schemas.

1.2 Notation

e In this document, features are described” as Required, Recommended, or Optional as
follows:

The key words “MUST,” “MUST NQOT,” “REQUIRED,” “SHALL,” “SHALL NOT,” “SHOULD,”
“SHOULD NOT,” “RECOMMENDED,” “MAY,” and “OPTIONAL" in this specification are to
be interpreted as described in"[RFC 2119].

In addition, the following Keywords are used in this specification:

PROHIBITED — The definition or behavior is an absolute prohibition of this specification.
Opposite of REQUIRED.

CONDITIONALLY 'REQUIRED — The definition or behavior depends on a condition. If the
specified condition is met, then the definition or behavior is REQUIRED, otherwise it is
PROHIBITED.

CONDIFIONALLY OPTIONAL — The definition or behavior depends on a condition. If the
specified condition is met, then the definition or behavior is OPTIONAL, otherwise it is
PROHIBITED.

These keywords are thus capitalized when used to unambiguously specify requirements
over protocol and application features and behavior that affect the interoperability and
security of implementations. When these words are not capitalized, they are meant in

their natural-language sense.
e Strings that are to be taken literally are enclosed in “double quotes”.
e Words that are emphasized are printed in italic.

e Keywords that are defined by the UPnP ContentSync and AV Working Committee are
printed using the forum character style.

e Keywords that are defined by the UPnP Device Architecture are printed using the arch
character style.

e A double colon delimiter, “::", signifies a hierarchical parent-child (parent::child)
relationship between the two objects separated by the double colon. This delimiter is used

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f

—8 — 29341-15-10 © ISO/IEC:2011(E)

in multiple contexts, for example: Service::Action(), Action()::Argument,
parentProperty::childProperty.

1.2.1 Data Types

This specification uses data type definitions from two different sources. The UPnP Device
Architecture defined data types are used to define state variable and action argument data

types.

For UPnP Device Architecture defined Boolean data types, it is strongly RECOMMENDED to
use the value “0” for false, and the value “1" for true. However, when used as inpput
arguments, the values “false”, “no”, “true”, “yes” may also be encountered and MUST, be
accepted. Nevertheless, it is strongly RECOMMENDED that all state variables and. output
arguments be represented as “0” and “1”.

For XML Schema defined Boolean data types, it is strongly RECOMMENDED to*use the value
“0” for false, and the value “1” for true. However, when used as input properties, the values
“false”, “true” may also be encountered and MUST be accepted. Nevertheless, it is strongly
RECOMMENDED that all properties be represented as “0” and “1".

1.3 Vendor-defined Extensions

Whenever vendors create additional vendor-defined state V“ariables, actions or properties,
their assigned names and XML representation MUST follow‘the naming conventions and XML
rules as specified in [DEVICE]

1.4 Namespace for ContentSync Service

All data types represented by XML documentin this specification MUST use the following
namespaces and XML schemas. Note that this schema is informative only and hence the
XML data types defined in this specificatioen:take precedence over the XML schema.

Table 1s1--— Namespace Definitions

Standar Normative
d Name- Definition
space Document
Prefix Naméspace Name Namespace Description Reference
cs: urn:schemas-upnp=org:cs Common data types for [CSS-XSD]
use in ContentSync
Reference: schema

http://wwWw-apnp.org/schemas/cs/cs-v1-
2007xxxxxsd

avcs: urnischemas-upnp-org:cs:aves Metadata for UPnP AV [AVCS-XSD]

CDS
Reference:

http://www.upnp.org/schemas/cs/avcs-vl-
2007xxxx.xsd

1.5 References

[RFC 2119] — IETF RFC 2119, Key words for use in RFCs to Indicate Requirement Levels, S.
Bradner, 1997.

[RFC 4122] — IETF RFC 4122, A Universally Unique Identifier (UUID) URN Namespace, P.
Leach, et. al., 2005.

[CDS] — ContentDirectory:2, UPnP Forum, May 31, 2006.

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f

29341-15-10 © ISO/IEC:2011(E) —9—

[DIDL-LITE-XSD] — XML Schema for ContentDirectory:2 Structure and Metadata (DIDL-Lite),
UPnP Forum, May 31, 2006.

[CSS-XSD] — XML Schema for ContentSync Service:1, UPnP Forum, July 26, 2007.

[AVCS-XSD] — XML Schema for additional CDS Object Properties of ContentSync Service:1,
UPnP Forum, July 26, 2007.

[DEVICE] — UPnP Device Architecture, version 1.0, UPnP Forum, June 13, 2000.

[XML] — Extensible Markup Language (XML) 1.0 (Third Edition), Frangois Yergeau, Tim.'Bray,
Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, eds., W3C Recommendation, February 4,
2004.

[XML SCHEMA-2] — XML Schema Part 2: Data Types, Second Edition, PaulyV.*Biron, Ashok
Malhotra, W3C Recommendation, 28 October 2004.

[MSD] — MediaServer:2, UPnP Forum, May 31, 2006.

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f

— 10 — 29341-15-10 © ISO/IEC:2011(E)

2 Service Modeling Definitions

2.1 ServiceType

The following service type identifies a service that is compliant with this template:

urn:schemas-upnp-org:service:ContentSync:1.

2.2 Terms
2.2.1 Synchronization Object and Pair

A CDS object that is to be synchronized is called a synchronization object.

A synchronization pair represents a binding between a synchronization object in the local
device and a synchronization object in the partner device. This binding information is stored
in the avcs:syncinfo property of the synchronization objects. The avcs:syncinfo property for
an object also keeps information related to which property or resource _has been changed for
that object since the object synchronized last with a remote object.“This property MUST be
updated whenever there is a change to that object. Therefore, any change to avcs:syncinfo
property MUST not be perceived as object change. See Annex’A and Annex B for details
on synchronization object property. It is possible that an\object that is new or yet to be
synchronized does not have the corresponding remote object. In that case the remote object
gets created in the partner device during the synchr@nization operation if specified by the
policy. When creating a synchronization pair for “@n object, one of the three possible
scenarios as shown in Figure 5 will occur.

e Scenario 1: an (local) object is paired with~an existing remote object in the partner device.

e Scenario 2: the local object does not have a corresponding remote object in the partner
device and the remote object gets.Cteated under an exsiting container object in the
partner device which is designated by the control point. The existing container object here
is called as Remote Parent Object:

e Scenario 3: This is similarsto-scenario 2, however the remote parent object under which
the remote object will be eréated does not exist either and it gets created along with the
remote object during the synchronization operation. In scenario 3, the remote parent
object that will be created MUST be paired with the parent object of the local object which
is called as Virtual'Remote Parent Object.

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f

29341-15-10 © ISO/IEC:2011(E) — 11 —

Partner 1 Partner 2 Partner 1 Partner 2
Pair Pair
LO RO LO { RO
N N —
Scenario 1 Scenario 2
Partner 1 Partner 2

— Notation

Q Existing object

() Object to be created

{ RPO |
) ’ LO: Local object
RO: Remotelobject

RPO: Remote parent object
VRPOVirtual remote parent object

/ \

! \

R |

\ (0]]
\ /
\ /

Scenario 3

Figure 5 — Types.of Synchronization Pair

The avcs:syncinfo property for an object can have multiple synchronization pair information
if the object is paired with multiple remote objects in different devices. In such case, there are
some restrictions that MUST be.followed. See 2.9.6 AddSyncPair() action for details.

2.2.2 Synchronization Data.Structure

A Synchronization Data.Structure consists of the following information.

Synchronization’ PairGroup is the data structure that identifies a group of
synchronization pairs where identical synchronization policy will be applied. The actual
synchronization pair information describing which object in the local CDS is paired with an
object in-the partner CDS is contained in the object itself as part of object property.

Symchronization Partnership is the data structure that describes a synchronization
operation between two specific CDSs. These two CDSs are called partners. A
synchronization partnership contains multiple synchronization pairGroups. A
synchronization partnership contains policy information that is applicable to all the

pairGroups contamed-withimthat partmership—Hfa parGrouphasits ownpoticy information
then the pairGroup policy overrides partnership policy for that specific pairGroup.

Synchronization Relationship is the data structure that describes a synchronization
operation between two or more CDSs. A synchronization relationship is composed of one
or more synchronization partnerships and each partnership is composed of one or more
synchronization pairGroups.

Figure 6 shows an example synchronization data structure with all its components.

The synchronization data structure allows an object in one device to synchronize with an
object in another device. Every syncable object in CDS has synchronization pair information

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f

—12 — 29341-15-10 © ISO/IEC:2011(E)

that describes how the object gets synchronized with another object. See Clause 2.2.3
Synchronization Policy for more details.

A synchronization relationship or a partnership or a pairGroup is identified by a unique ID.
Regardless of disappearance/reappearance of this service on the network, the
implementations that support ContentSync service implementations MUST maintain the same
value for these IDs in the CDS over its life-time. The value once used MUST be never re-
used. In order to make the value of this state variable globally unique, it must be generated

LD <l o 44991 A ol e 4

+ oo £ <l + LD a0 loit L pu | +
uoliy OUTU do UTTITICTU T TIRNFC S L], A OUTU 1o 120 UTto TUTIHY, dadlfu Al yudraritctT

uniqueness across space and time. ,\'\

Structurally, single synchronization relationship can have multiple partnerships by definition.
However, this version of the specification allows only one partnership Within a
synchronization relationship as shown in Figure 6. But, multiple pairGrou ‘within a
partnership are allowed in this version of the specification. For example, the synchronization
relationship, S2, is only effective one in the figure below. (bb‘

%))

(l/
&

——— Synchronization Relationship #1 Synchroni Relationship #2

—— Partnership #1

O
Figure ch;j;%ynchronization Data Structure

o

2.2.3 Synchronizatie)@olicy and Behavior

A synchronizaticz:ﬁrgbélicy indicates how synchronization partners that are involved in a
synchronization\ “relationship can exchange synchronization objects. In general, a
synchroniza'@r policy indicates which device should provide metadata and resources to
which device™There are four types of policies defined which is explained below:

2.2.3%0replace” synchronization policy

‘Eplace" synchronization policy, one of the synchronization partners becomes the source
d the other becomes the sink. The purpose of “replace” synchronization is to make a sink

identical to the source. That is, contents of the sink objects are replaced with the contents of
the source. The terms source and sink are merely conceptual between the synchronization
pair.

The behavior of “replace” synchronization policy is as follows.

e The object added to the source which does not have any corresponding object in the sink
MUST be copied to the sink.

¢ Any modification, including deletion, to the existing objects in the source will be applied to
the corresponding objects in the sink. To protect an object in the sink from deletion by
synchronization, this object MUST be marked as deletion protected in the synchronization

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f

29341-15-10 © ISO/IEC:2011(E) — 13 —

policy. The protected object will not be deleted after synchronization, and will be excluded
from the relationship.

Notel: There should not be any object in the sink in a relationship that does not have a
corresponding object in the source.

Note2: Any changes in the sink are not useful, as these will be replaced by the source. To
retain changes in an object in the sink, the object should be excluded from the relationship or

Htneeds tabe conied befaore svynchranization
t P Y e+ -

2.2.3.2 "merge” synchronization policy

The “merge” synchronization policy defines that after synchronization, each partnenwill end
up with a superset of synchronization objects of all the partners. In other quords, the
synchronization objects from all the partners will be merged according to the following rules:

e An object added to a synchronization partner that does not have any corresSponding object
in the other partner will be copied to the other partner.

e Any metadata or resources that are missing on either partner that.missing data is copied
to the other partner. If an object and its corresponding objectihave the same properties
with different values, then the values of properties of the paftner with higher precedence
will be copied to the other partner.

2.2.3.3 *“blend” synchronization policy

The “blend” synchronization policy defines that after_synchronization, each partner will end
up with a superset of synchronization objects of. all the partners. In other words, the
synchronization objects from all the partners®will be blended according to the following
rules:

e An object added to a synchronization partner that does not have any corresponding object
in the other partner will be copied to\ttié other partner.

e Any metadata or resources that:are missing on either partner that missing data is copied
to the other partner. If an objeet and its corresponding object have the same properties
with different values, then thevalues are left as is on both partners.

2.2.3.4 *“tracking” synchronization policy

A “tracking” synchronization policy is useful only when synchronizing between a CDS and a
non-CDS device. JFhe-“actual synchronization operation for this policy is out of the scope of
this specification-In‘this policy, only the device having a CDS keeps track of the change log
for synchronization objects. The device clears the change log by invocation of the
ResetChangéhoq() action and starts keeping new log from that point. The device stops
keeping change log when the synchronization relationship is destroyed.

The behavior of “tracking” synchronization policy is as follows.

e “A new object is automatically added to a synchronization pairGroup of its parent object if

nnnnn + ahb cantainar) o

thao HP-V-X A H fithao nowhy addad Al ant 1o Alen o cvnechea ooty At
are 'J(AIUIIL UIJJC\.’I. \\JUIII.(AIIIUI/ AV A BN B A3 IICV\IIy auutTu UUJU\JI. o UAToU T OyII\JIIIUIIIl_(ALIUII UUJC\J‘-
and the autoObjAdd (automatic addition of new child object to synchronization pairGroup)
option in the policy of the parent object is set to "1".

e However, descendent objects except direct child object are not affected by the option
above.

2.2.3.5 Deleting object from synchronization relationship

If a user wants to delete an object from the CDS permanently, the user MUST exclude that
object from the relationship. The object may be created again by a synchronization operation
if the object is just deleted and not excluded from the synchronization relationship. If an

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f

— 14 — 29341-15-10 © ISO/IEC:2011(E)

object is associated with multiple synchronization relationships, it is not permanently deleted
until the object is excluded from all the synchronization relationships.

2.2.3.6 policy Data Format

The synchronization policy is included in the <policy> element in the ContentSync XML

document which contains zero or more synchronization data structure (See Clause 2.7.4

A ARG TYPE SyncData state variable) and in the avcs:syncinfo::pair::policy property in a
o

CDhS _ohicet f aovareidina ooy, 1o mnacnccarny (Can olaoicn A D OContant COyunoheon ation
T

1z
COoO - UOjC et T OV e IO g PO Ty To et ooty (Pt Touot—7 v o CUTTItCTIT Oy oot TzatroTT

related Properties.) The following example shows an XML fragment of the policy.

Example:

<policy>
<syncType>replace</syncType>
<priorityPartnerlID>1</priorityPartneriD>
<delProtection>1</delProtection>
<policy>

The (one and only) root element, <policy>, MUST contain zero or/more elements, each of
which represents a synchronization policy.

The following example shows a generalized “template” for ‘the format of the policy XML
document. Additional elements and/or attributes MAY be cadded to future versions of this
specification. Furthermore, a 3rd—party vendor MAY add vendor-defined elements and/or
attributes. However, by definition, this specification dees not define the format and/or values
for these 3rd—party elements. In order to eliminate element/attribute naming conflicts, the
name of any vendor-defined element/attribute MUSTT follow the rules set forth in Clause 1.3
“Vendor-defined Extensions” All control, points should gracefully ignore any
element/attribute that it does not understand:

The following notation includes the foruni“character style to indicate names that are defined
by the ContentSync Working Committee. Additionally, fields that need to be filled out by
individual implementations are shownrin the vendor character style.

<?xml version="1.0"?> Cjbf
<policy
xmIns=""urn:schemas-up
xmIns:xsd="http://
xmIns:xsi="http:/
Xsi:schemaLocation=""urn:schemas-upnp-org:cs
http://www.u org/schemas/cs/cs-v1-20070XXXX . xsd"">
<syncType>syn nization policy type</syncType>syncDataUpdate
<priorityPartReriD>Role of a partner</priorityPartnerlID>
>Protect an object deletion</delProtection>

xml

OPTIONAL, Case sensitive

SyncChange
REQUIRED. MUST have “urn:schemas-upnp-org:av:css-event” (which is the UPnP ContentSync Working Committee
Schema) as the value for the xmins attribute that declares the default namespace; Contains all elements and attributes
defined by the CDS Event schema as follows:

syncType
REQUIRED. Indicates whether it is a “replace” or “merge” or "blend" or "tracking" synchronization.

priorityPartneriD
OPTIONAL. Indicates the role of a partner. If present, in a “replace” synchronization policy, it identifies the
partner that is a source device. If present, in a “merge” synchronization policy, it identifies the partner that takes
precedence on conflict. In "blend" and "tracking" synchronization, it is not applicable, therefore it could be omitted.

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f

29341-15-10 © ISO/IEC:2011(E) — 15 —

The value of the element MUST be the partner@id in a synchronization data structure. See 2.7.4.1
A ARG TYPE SyncData Data Format for details. Because of the definition of <partner> element in the
synchronization data structure, the vaule MUST be either "1" or "2".

delProtection
OPTIONAL. indicates whether an object will remain or not in the CDS hierarchy even after the deletion of the
object by a synchronization operation. A default behavior is that an object will be deleted by synchronization. If
this property is not appeared in the policy property of the avcs:syncinfo::pair::policy property, the default behavior
MUST be applied.

autoObjAdd
OPTIONAL. indicates whether a new direct child object will be automatically added into the synchronization
pairGroup of the parent object.

Although there are four types of synchronization polices defined above, some properties of
an objects in a CDS MUST be dealt with apart from synchronization. For example{the values
of @id and @parentID are dependent on local CDS and a CDS cannot assign a new value to
@id _and @parentlD by copying these values from other objects. They \WMUST NOT be
considered as syncable and the changes on them MUST be ignored during the
synchronization operation. These properties that are independent ofcsynchronization are
listed in the Annex B, "Syncablility of CDS object."

2.2.3.7 Synchronization behavior

A synchronization operation updates metadata and resource(s) of a synchronization object
using change log in order to keep same metadata and resources between two objects in two
different CDSs. While synchronizing objects between two,€DSs, the following behavior MUST
be applied;

e There is a case where a CDS does not support some metadata that the other
synchronization partner supports. In this situation, the CDS that does not support those
metadata MUST ignore them.

e Synchronizing two objects under the mrerge synchronization policy, both of the objects will
end up with a superset of all properties between these two objects. However, in case of a
property that exists in both objects, the object without precedence will copy the value of
the property from the object with precedence. The same rule applies to in case of multi-
value property. For exampléenif an object has two properties of the same (i.e. multi-value
property) and this object takes precedence while synchronizing with another object, then
these properties will bé.copied to the other object after synchronization even if the other
has less or more properties of the same than the object with precedence.

e In the case of the'res property, the res@avcs:resModified property indicates whether the
resource has'‘\been changed. Therefore, while synchronizing, an object without
precedence-'MUST always retrieve the resource from the other object with precedence if
the res@aves:resModified property of the object with precedence has set to "1".

e For replace synchronization policy, when source object is deleted, the sink object MUST
be deleted after synchronization.

e..» Note that deleted object information SHOULD be provided in change log.

e~ 'For merge synchronization policy, when an object with precedence is deleted, it will be

revived-with—atmetadataandresourceof thepartnmer objectafter synchromizatiomwien
change log from the partner device contains the partner object.

2.2.4 Minimally Complete Synchronization Relationship Data Structure

A minimally complete synchronization data structure defines exactly one synchronization
relationship, exactly one partnership within synchronization relationship and exactly one
pairGroup within that partnership. See 2.7.4 A _ ARG TYPE SyncData state variable for
details.

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f

— 16 — 29341-15-10 © ISO/IEC:2011(E)

2.3 Synchronization Data Structure Management

This subclause describes how a synchronization data structure gets added, modified and
deleted. The synchronization data structure is defined by the A ARG TYPE SyncData state
variable (See Clause 2.7.4) and any changes to the data structures get evented by the
SyncChange state variable. See 2.7.1, SyncChange state variable, and 2.8 "Eventing and
Moderation" for details on how to send an event message for the synchronization data
structure change.

2.3.1 Synchronization Data Structure Addition

Since the same synchronization data structure is kept in the partner devices within™ a
partnership, any addition to the existing synchronization data structure such as adding.a new
synchronization relationship or new a pairGroup within an existing partnership MUST abide
by the following rules:

Note: a new partnership within an existing synchronization relationshipyis*not allowed in
this version of the specification.

e When adding a new synchronization relationship or adding a new pairGroup, the two
partner devices MUST be in the network. When a partner.l€aves the network while
adding a synchronization data structure, the first partner~that receives this addition
request MUST not update its synchronization data structure. Likewise, when a partner
fails for some reason after receiving a successfulresponse for addition from the
second partner, added synchronization relationship or pairGroup in the second
partner MUST be destroyed. To remove such stale data in the second partner, the
second partner exchanges its own synchronizatioh data structure with the first partner
by invoking the UPnP action ExchangeSynecBRata() when the first partner comes back
to the network..

2.3.2 Synchronization Data Structure Modification

Since the same synchronization data.structure is kept in all the partner devices, any
modifications to the existing synchronization data structure such as modification to an XML
element in a synchronization relationship or in a partnership within an existing
synchronization relationship or in-a pairGroup within an existing partnership MUST follow the
following rules:

e To modify a synchranization relationship or a partnership or a pairGroup, all partner
devices MUST be inthe network. When a partner leaves the network while modifying a
synchronization data structure, the first partner that receives this modification request
MUST not update its synchronization data structure..When a partner fails for some reason
after receiving) a successful response for modifications from the second partner, the
modified _synchronization relationship or pairGroup in the second partner MUST be
destroyed,) To remove such stale data in the second partner, the second partner
exchanges its own synchronization data structure with the first partner by invoking the
UPRABR‘action ExchangeSyncData() when the first partner comes back to the network..The
partner device can determine the staleness of its partnership or pairGroup data by
comparing the partnership@updatelD attribute and the pairGroup@updatelD with the one
in the other partner device, respectively. Upon creation of a synchronization data

Structure, all_pariner devices MUST Keep the parmnership@updatelD and the
pairGroup@updatelD attributes that are increased by 1 whenever a change is made on
the partnership or pairGroup that the partner belongs to. If the values of the
partnership@updatelD or pairGroup@updatelD are different then the partnership
information with higher value of_partnership@updatelD or pairGroup@updatelD is up-to-
date, and the partner with the lower value MUST update its partnership or pairGroup
information with the one from the other partner. After update, the partnership@updatelD
and pairGroup@updatelD values on both the partners become identical.

e The change of the partner device in a partnership is NOT allowed.

e A device which is currently processing a maodification request MUST reject any
subsequent modification requests on the same data structure or part of the data structure

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f

29341-15-10 © ISO/IEC:2011(E) — 17 —

that is the target of the current modification request which is in progress. When a device
is performing a synchronization operation, any modification request on the associated
data structure MUST be rejected.

2.3.3 Synchronization Data Structure Deletion

Any deletions to an existing data structure MUST follow the following rules:

e When a synchronization relationship or a partnership or a pairGroup is deleted from an

existing data structure, the changed data structure after the deletion MUST be
synchronized among all the partners.

e Any deletions in one of the partners are allowed. However, the deleted information MUST
be synchronized when the other partner come to the network.

e When a synchronization relationship is deleted, all related information stored in“the device
such as partnership, pairGroup, synchronization pair and deleted object |list relevant to
the relationship MUST be deleted.

e After a partnership is deleted, all information associated with this partnership such as
pairGroup, synchronization pair and deleted object list MUST be deleted.

e When a pairGroup is deleted, all related information stored<in the device such as
synchronization pair and deleted object list relevant to the paifrGroup MUST be deleted.

e When the last pairGroup within an existing partnership is deleted, the partnership MUST
be deleted as well because the synchronization data structure does not allow a
partnership without at least one pairGroup.

2.4 Synchronization Operation (CDS to CDS)

A Synchronization operation is performed according to the policies described in the
synchronization data structure and/or intlie synchronization pair. Therefore, before
synchronizing objects between two or more, CDSs, the synchronization data structure MUST
be created, if it does not exist, by describing the devices to be involved in the synchronization
along with the policies to be applied and‘synchronization pair information for objects that are
to be synchronized. See 2.9.6 AddSyncPair() action for details on how to add
synchronization pair informationk

Figure 7 and the texts below describe the sequence of steps during a synchronization
operation:

ContentDirectory ContentSync : ContentSync ContentDirectory
. . Control Point . .
Service Setvice Service Service

GetSyncData()

A

StartSync() [called once]

A

StartSync() [called once]

A 4

GetChangeLog() [called once]

A
Y

>

Asynchronous transfer (pull) to obtain resources
(HTTP GET)

Update CDS Update CDS

4

ResetChangeLog() to indicate end of sync, error conditions,
Completion of syncing single object
[called whenever the object status is changed]

A
A 4

Figure 7 — Interaction Diagram (Synchronization Operation)

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f

— 18 — 29341-15-10 © ISO/IEC:2011(E)

a) A control point MAY invoke GetSyncData() action to retrieve existing synchronization data
structure. The result of this action is a collection of synchronization relationships.

b)

The control point triggers a synchronization operation by invoking the StartSync() action
on one of the partner devices in the selected synchronization relationship. While invoking
this action, the control point passes the target synchronization ID for identifying the
synchronization relationship or partnership or pairGroup that is to be synchronized.

1) The partner that receives the StartSync() action from a control point, MUST also

trigger the synchronization operation on the other partner by invoking the StartSync()

c)

action on the partner.

Once the synchronization operation has been triggered successfully, the devices thatCare
part of the synchronization operation perform the synchronization simultaneously. [The
subsequent process is as follows:

1

2)

Each device invokes GetChangelog() action on the partner device,'t0 retrieve
synchronization objects, which basically include the change log as-objects are
updated in the CDS.

After receiving responses for the two actions above, each partner-dévice parses and

interprets the received DIDL-Lite XML document (Change log)-to 'get synchronization
object information. Since during the synchronization operation;y some of the objects
need to be created under a container object which itself needs to be created as well,
the order how objects are to be synchronized should be\handled very carefully. The
synchronization operation MUST be done according\to the following orders. See
Clause "2.10 Theory of Operation"” for detailsyon how individual object is
synchronized.

Note: Each object in the change log MUST have ohe of the following XML elements;

avcs:pair::remoteObjlD
or avcs:pair::remoteParentObjlD
or avcs:pair::virtualRemoteParentQBOND

e First, the device MUST synchronize objects (Scenario 1 pair) that have the
avcs:pair::remoteObjlD property.

e Second, the device MUST synchronize objects (Scenario 2 pair) that have the
avcs:pair::remoteParentObjlD property.

e The device(creates new (local) object under the object that is identified by
the valuge of the avcs:pair::remoteParentObjlD property.

e The (partner device MUST replace the avcs:pair::remoteParentObjlD
property with the the avcs:pair::remoteObjlD property and the value of
which MUST be set to object@id of the newly created object. (See Step 5
below how the partner device receives the information of the newly
created object)

o Finally, the device MUST synchronize objects that have the
avcs:pair::virtualRemoteParentObjID property. The device starts with the
objects for which the value of the avcs:pair::virtualRemoteParentObjlD property,
is found in the avcs:pair::remoteObjlD property of the objects. Once
synchronized, the partner device MUST replace the
avcs:pair:virtualRemoteParentObjlD property with the avcs:pair::remoteObjlD

3)

4)

property and the value of which MUST be set to object@id of the newly created
object. The device continues this process recursively until all objects are
synchronized.

Whenever a device obtains the DIDL-Lite XML fragment for each synchronization
object, the device updates the local CDS in accordance with the synchronization
policy as described in 2.2.3.

Finally, the partner devices transfer resources using HTTP GET method as the
transport protocol. Each partner device sends an event message whenever an object
is processed. This event message includes the status of synchronization (i.e.
SyncStatusUpdate state variable) which indicates whether the object is synchronized
successfully or is failed to synchronize. When an object is synchronized successfully

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f

29341-15-10 © ISO/IEC:2011(E) — 19 —

the corresponding change log for that objects gets cleared and the CDS starts keeping
log for new changes.

Note: Each CDS object MUST have at least one res property of which resource
MUST be transferred using HTTP GET method if the object has a resource.

5) When a device receives the ResetChangelLog() action with objects that have
synchronized, the device updates the avcs:pair property in the CDS object.

i) Each device MUST invoke the ResetChangelog() action on the partner device to

Hform—tackrovwtedger—the—parther—which—remote—objects—havre—sueeessiuy
synchronized with the local objects. A device can acknowledge multiple objects by
a single action invocation. When invoking the ResetChangelLog() action, the device
MUST provide the avcs:syncinfo@updatelD for each object that is extracted from
the result of the last GetChangelLog() action in order for the partner to decide what
to reset in the change log. See Clause 2.9.13 ResetChangelLog() how/to reset
the change log.

d) After receiving an event message from the partner device that notifies the end of
synchronization for all objects, the device releases all system resources that are involved
in the synchronization operation.

2.5 Synchronization Operation (CDS to non CDS)

The synchronization between a CDS and a non-CDS (ControlPoint) is unidirectional and
consists of the following steps:

a) A UPnP Control Point creates a new synchronization data structure containing a single
synchronization relationship on the device with™which the control point wants to
synchronize. The process of creating such data*structure is defined in 2.10.2.2. The
following rules MUST be applied while creating.a synchronization data structure for CDS-
non CDS synchronization:

e Either <partner id="1"> or <partnern id="2"> elements in the <partnership> element
MUST be assigned to Non-CDS entity and its <deviceUDN> element and <servicelD>
MUST have the empty string.

e |f one of two partners is a noh-CDS, adding another partnership is NOT allowed.

e A partnership betweern’ CDS and Non-CDS can not be added into an existing
synchronization relationship.

The following XML document shows an example format of the synchronization data structure
for CDS and Non-CBS-synchronization. (See Clause 2.7.4 A ARG TYPE SyncData for
details on a synchrenization data structure)

<syncRelationship id="1cce93c2-6144-4093-9650-ae6¢c7ba28c91" active=""1"

xmlns=""urn:schemas-upnp-org:cs"

xmiIns:xsd="http://www.w3.0rg/2001/XMLSchema"

xmIns:xs@="http://www.w3.0rg/2001/XMLSchema-instance"

Xsi:sehemalLocation=""urn:schemas-upnp-org:cs
httpz//www._upnp.org/schemas/cs/cs-v1-20070XXXX.xsd">

<title>ABC Electronic Program Guide</title>

<partnership id="3fa8e9f8-ff21-47ee-90c8-7730793a613f" active=""1">

<partner id="1">

devieedbN=e832a654—9664—429b—9¥F343F55273F/3ar</devicedbN

<servicelD>AcmeContentSync-001</servicelD>

</partner>

<partner id="2">

<deviceUDN></deviceUDN>

<servicelD></servicelD>

</partner>

<policy>

<syncType>tracking<syncType>

<priorityPartnerlID>1</priorityPartneriD>

<autoObjAdd>1</autoObjAdd>

</policy>

<pairGroup id="bca02e62-e9d6-454c-b1b2-a52e199e02e7" active="1"/>
</partnership>
</syncRelationship>

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f

— 20 — 29341-15-10 © ISO/IEC:2011(E)

b) Once the synchronization data structure is created and pair information is added to the
CDS objects, the CDS starts keeping track of changes to the objects.

¢) A control point can retrieve the change log for all the objects that are part of the
synchronization relationship by invoking the GetChangelLog() action defined in 2.9.11.
After retrieving the change log, a control point can invoke the ResetChangelLog() action to
instruct the CDS whether to continue accumulating the change log once it has been

retrieved or starts keenina new loa after flushina out the old loas
L J J J J

d) Once the change log is retrieved, the control point compares the changes to objects with
its internal database and updates its internal data base and hence essentially
synchronizing with the CDS.

e) When a control point is no-longer interested in the change log for objects that,are* part of
a synchronization relationship, the control point will delete the synchronization
relationship by invoking the action DeleteSyncData() defined in 2.9.3.

f) Any resource transfer on this type of a synchronization relationship is gut of scope of the
specificatieon. Therefore, the StartSync() action invocation on (the synchronization
relationship containing a partnership between a CDS and a non-CDS MUST fail with an
appropriate error code.

2.6 Garbage Collection

If a synchronization data structure is either inactive or has not been used for a long time for
the purpose of synchronization, a CSS implementationr can decide to remove that data
structure and similarly the CDS implementation relatéd/to that CSS MUST remove all pair
information associated with that data structure.

A synchronization pair that is not synchronized for a long time, an implementation can decide
to remove that synchronization pair as well.

The future version of this specification.will investigate to provide a standardized mechanism
for garbage collection.

2.7 State Variables

Table 2-1 — State Variables

Variable Name Req. or Data Allowed Default Eng.
Opt. & Type Value b Value Units
SyncChange R string
SyncStatusUpdate R string
A _ARG_TYREs ActionCaller R string
A _ARG\TYPE SyncData R string
ARG _TYPE_ SyncPair R string
AJARG TYPE SynclD R string
A ARG TYPE ObjectiD R string
A ARG TYPE SyncStatus R string
A ARG _TYPE Changelog R string
A ARG TYPE Index R ui4
A ARG TYPE Count R ui4
A ARG TYPE ResetObjectList R string
Non-standard state variables implemented by | X TBD TBD TBD TBD
an UPnP vendor go here.

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f

29341-15-10 © ISO/IEC:2011(E) — 21 —

Variable Name Req. or Data Allowed Default Eng.
Opt. a Type Value b Value Units

a8 R = Required, O = Optional, X = Non-standard

b values listed in this column are required. To specify standard optional values or to delegate assignment of
values to the vendor, you must reference a specific instance of an appropriate table below.

2.7.1 SyncChange

The syncChange state variable contains an XML document rdentitying all changes that have
occurred since the last time the SyncChange state variable was evented. Synchronizatien
data structure change and synchronization object chage are evented in this version of\the
specification. See 2.8 for details. Individual events MUST be buffered and delivered.in“the
order that they occurred with the most recent event corresponding to the last XML element
within the SyncChange XML Document that is stored in the SyncChange state variable. Refer
to 2.7.1.1, “SyncChange Data Format” and the “ContentSync service Event Schema”
document for more details.

The SyncChange state variable is evented and moderated according_to ithe GENA eventing
mechanism as defined by the UPnP Device Architecture specification [DEVICE]. When
multiple changes of object and synchronization data structure\'eccur within the same
moderation period (as determined by the implementation){ Jeach change MUST be
accumulated in the SyncChange state variable and MUST «b@) evented as a single event
notification message when the current moderation period expires. After the event notification
message has been sent to all subscribed control points¢the value of the SyncChange state
variable is reset when an update to the SyncChange State variable becomes necessary i.e.
when the next event occurs. The resulting value is\a fresh XML document that contains a
single element that represents the update (i.e. it cantains the first update event following the
distribution of the previous event message to_all subscribers). Subsequently, additional
update elements are added to the XML documient until the current moderation period ends
and the current value of the SyncChange state variable (i.e. the current event message) is
propagated to all event subscribers.

2.7.1.1 SyncChange Data Format

The optional XML header <?xmEk-version="1.0" ?> is allowed. The (one and only) root
element, <SyncChange>, MUST contain zero or more elements, each of which represents a
change to a specific synchronization data structure.

The following example’ shows a generalized “template” for the format of the SyncChange
state variable. Additional elements and/or attributes MAY be added to future versions of this
specification. _Kurthermore, a 3rd—party vendor MAY add vendor-defined elements and/or
attributes. Hewever, by definition, this specification does not define the format and/or values
for these 3rd-party elements. In order to eliminate element/attribute naming conflicts, the
name of any vendor-defined element/attribute MUST follow the rules set forth in Clause 1.3
“Vendortdefined Extensions” All control points should gracefully ignore any
element/attribute that it does not understand.

Note: The content of this state variable (i e _the SvuncChanae XM dnmlmnnf) MUST he
—_—t = = =

properly escaped before it is sent to an event subscriber via GENA.

The following notation includes the forum character style to indicate names that are defined
by the ContentSync Working Committee. Additionally, fields that need to be filled out by
individual implementations are shown in the vendor character style.

<?xml version="1.0"?>
<SyncChange
xmIns=""urn:schemas-upnp-org:cs"
xmIns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
Xsi:schemaLocation=""urn:schemas-upnp-org:cs
http://www.upnp.org/schemas/cs/cs-v1-20070XXXX.xsd"">

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f

— 22 — 29341-15-10 © ISO/IEC:2011(E)

<syncDataUpdate synclD="synchronization relationship or partnership or

pairGroup ID of updated synchronization relationship"/>
<syncObjUpdate objectlID="object ID of updated synchronization object"/>
</SyncChange>

xml
OPTIONAL. Case sensitive.

SyncChange

REQUIRED. MUST have “urn:schemas-upnp-org:cs” (which is the UPnP ContentSync Working Committee Schema) as the
value for the xmins attribute that declares the default namespace; Contains all elements and attributes defined by the CDS
Event schema as follows:

syncDataUpdate

OPTIONAL. Indicates that a synchronization relationship among the local device and other partper-devices has
been modified on line. If the device receives this state variable, the local device MUST Morewse updated
relationship on the partner devices and update its local relationship information with thespartner device’s
relationship information. This asynchronous update behavior only happens in casé, of deletion of the
synchronization data structure. See 2.3.3 "Synchronization Data Structure Deletion" for details on the
synchronization data structure update. The contents of this element MUST be the empty string. However, future
versions of this specification may define specific values for this element. Consequently, control points must be
prepared to gracefully ignore any element contents and/or element attributes_that it does not understand.
Contains all of the following attributes:

synciD
REQUIRED. xsd:string, Contains the @id attribute of the §ynehronization relationship or partnership or
pairGroup that was added or modified.

syncObjUpdate
OPTIONAL. Indicates that a synchronization object has‘been modified since last synchronization operation. If the
partner device receives this state variable, the local device can do synchronization operation immediately. The
contents of this element MUST be the empty string.\ However, future versions of this specification may define
specific values for this element. Consequently, coftrol points must be prepared to gracefully ignore any element
contents and/or element attributes that it does*hot understand. Contains all of the following attributes:

objectlID
REQUIRED. xsd:string, Contains the object@id property of the synchronization object that was
modified.

2.7.2 SyncStatusUpdate

This state variable is used for eventing purposes which allow a control point to receive
meaningful event notifieations whenever there is a update in synchronization operation
involving a synchrgnization relationship. [CSS-XSD] defines the schema for the
SyncStatusUpdate, XML Document used in this state variable. The optional XML header =<?
xml version="1-0"?> is allowed. One root element, <SyncStatusUpdate> has a list of
one or more syAchronization operation information structures representing currently ongoing
synchronization operations. A synchronization operation information structure includes the
status of {he opreation. Other update elements MAY be added in the future CSS
specifications as needed.

SyncStatusUpdate state variable is sent whenever a synchronization object is successfully
synchronized or failed to synchronize during a synchronization operation. This state variable

only contains new updates since the last time the state variable was evented. Once the
update is sent, this update information is never sent again.

Example (before XML escaping):

<?xml version="1.0" encoding=""utf-8">

<SyncStatusUpdate
xmlns=""urn:schemas-upnp-org:cs"
xmIns:xsd="http://www.w3.0rg/2001/XMLSchema""
xmIns:xsi="http://www.w3_.0rg/2001/XMLSchema-instance"
xsi:schemaLocation=""urn:schemas-upnp-org:cs

http://www.upnp.org/schemas/cs/cs-v1-20070XXXX.xsd">

<syncRelationship id="d8c9fal3-d79b-4a0c-999b-6ae2ff91a46d" >
<status numberOfTotalObjects="50" numberOfCompletedObjects=""47"

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f

29341-15-10 © ISO/IEC:2011(E) — 23 —

numberOfFailedObjects="2">
IN_PROGRESS_WITH_ERROR
</status>
<partnership id="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6"">
<status numberOfTotalObjects="50" numberOfCompletedObjects="45"
numberOfFailedObjects=""2">
IN_PROGRESS_WITH_ERROR
</status>
<pairGroup id="0ada9f4f-596F-4906-93d0-230f9df78al1l0"">

<status numberOfTotalObjects="25" numberOfCompletedObjects="23"
numberQfEai Iprlﬂhj ects=""1">

IN_PROGRESS_WITH_ERROR

</status>

<logEntry>
<localObjectID>o0bjOl</localObjectlID>
<remoteObjectlID>robj07</remoteObjectlD>
<statusCode>001</statusCodes>
<statusDescription>Succeeded completely</statusDescription>

</logEntry>

</pairGroup>

<pairGroup id="70a74981-35f3-4262-84e8-balec1794c0c’>

<status numberOfTotalObjects="25" numberOfCompletedObjects=""22"
numberOfFailedObjects=""1">
IN_PROGRESS_WITH_ERROR

</status>

<logEntry>
<localObjectID>0bj03</localObjectlID>
<remoteObjectlD>robj02</remoteObjectiD>
<statusCode>001</statusCodes>
<statusDescription>Succeeded completely</statusDescription>
</logEntry>

</pairGroup>

</partnership>
</syncRelationship>
</SyncStatusUpdate>

The SyncStatusUpdate state variable MUST only be cleared just before adding the first
update event that occurs after the last event message was sent.

A series of updates and the resulting-eventing activity are illustrated in their temporal order in
the example shown above.

2.7.2.1 SyncStatusUpdate Data Format

The optional XML header <?xml version=""1.0" ?> is allowed. The (one and only) root
element, <SyncStatusUpdate>, MUST contain zero or more elements, each of which
represents a log ©f the synchronization object that is synchronized.

The following example shows a generalized “template” for the format of the
SyncStatusUpdate state variable. Additional elements and/or attributes MAY be added to
future <versions of this specification. Furthermore, a 3rd-party vendor MAY add vendor-
defimed elements and/or attributes. However, by definition, this specification does not define
the Yformat and/or values for these 3rd-party elements. In order to eliminate element/attribute
naming conflicts, the name of any vendor-defined element/attribute MUST follow the rules set

forth im Cfause 1.3 “Vendor-defined EXTENsIioNs Al CONtrol points shoufd gracefuily f[gnore
any element/attribute that it does not understand.

The following notation includes the forum character style to indicate names that are defined
by the ContentSync Working Committee. Additionally, fields that need to be filled out by
individual implementations are shown in the vendor character style.

<?xml version="1.0"?>

<SyncStatusUpdate
xmIns="urn:schemas-upnp-org:cs"
xmIns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
Xxsi:schemalLocation="urn:schemas-upnp-org:cs
http://www.upnp.org/schemas/cs/cs-v1-20070XXXX.xsd">

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f

— 24 — 29341-15-10 © ISO/IEC:2011(E)

<syncRelationship id="synchronization relationship ID">
<status numberOfTotalObjects="total number of synchronizing objects"
numberOfCompletedObjects="number of synchronized objects"
numberOfFailedObjects="number of synchronization-failed objects">
synchronization status of this synchronization relationship
</status>
<partnership id="synchronization partnership ID"
<status numberOfTotalObjects="total number of synchronizing objects"
numberOfCompletedObjects="number of synchronized objects"
numberOfFailedObjects="number of synchronization-failed objects">
synchronization status of this synchronization partnership
/status

<pairGroup id="synchronization pairGroup ID"
<status numberOfTotalObjects="total number of synchronizing objects"
numberOfCompletedObjects="number of synchronized objects
within this pairGroup”
numberOfFailedObjects="number of synchronization-failed objects">
synchronization status of this synchronization pairGroup
</status>
<logEntry>
<localObjID>local object I1D</localObjlID>
<remoteObj ID>remote object ID</remoteObjID>
<statusCode>synchronization status codes</statusCode>
<statusDesc>synchronization status description</statusDesc>
</logEntry>
</pairGroup>
</partnership>
</syncRelationship>
</SyncStatusUpdate>

xml
OPTIONAL. Case sensitive.

SyncStatusUpdate
REQUIRED. MUST have “urn:schemas-upnp-org:cs” (which is,the UPnP ContentSync Working Committee Schema) as the
value for the xmins attribute that declares the default namespace; Contains all elements and attributes defined by the CSS
schema as follows:

syncRelationship
OPTIONAL. a wrapper element that“holds the synchronization operation information associated with a
synchronization relationship. This .element can appear multiple times to contain multiple synchronization
relationships in the XML document.

@id
REQUIRED. xseé:string, contains an identifier to distinguish synchronization relationship from other
synchronization relationships.

status
REQUIRED. xsd:string, indicates the status of a synchronization operation of the synchronization
relationship identified by @id attribute above. This element MUST assume one of the following
enumerated values:

IN_PROGRESS: The operation is in progress without any errors.

IN_PROGRESS_WITH_ERROR: The operation is in progress where some objects are
failed to synchronization.

COMPLETED: The operation is completed.

COMPLETED_WITH_ERROR: The operation is finished, but some objects are failed to
synchronization.

STOPPED: The operation is stopped by any reasons.

TEMPORARILY_STOPPED: The operation is temporarily stopped by any reason. This
operation could be resumed at any time.

@numberOfTotalObjects
REQUIRED. xsd:unsignedint, contains the total number of synchronization objects that are
in the change log.

@numberOfCompletedObjects
REQUIRED. xsd:unsignedint, contains the total number of objects that are successfully
imported into the local CDS.

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f

29341-15-10 © ISO/IEC:2011(E) — 25 —

@numberOfFailedObjects
REQUIRED. xsd:unsignedint, contains the number of objects that are failed to be imported
into the local CDS.

partnership
REQUIRED. xsd:string, a wrapper element that holds the synchronization operation information
associated with a synchronization partnership.

@id
REQUIRFD xsd-
partnerships in a synchronization relationship.
status
REQUIRED. xsd:string, indicates the status of a synchronization operatiany of the
synchronization partnership identified by @id attribute above. This element MUST “assume
one of the following enumerated values:
IN_PROGRESS: The operation is in progress without any errors.
IN_PROGRESS_WITH_ERROR: The operation is inpregress where some
objects are failed to synchronization.
COMPLETED: The operation is completed.
COMPLETED_WITH_ERROR: The operation ‘g’ finished, but some objects are
failed to synchronization.
STOPPED: The operation is stopped by @ny reasons.
TEMPORARILY_STOPPED: The operation is temporarily stopped by any reason.
This operation could be resumedrat any time.
@numberOfTotalObjects
REQUIRED. xsd:unsignédint, contains the total number of synchronization objects
that are found in the éhange log from a partner device.
@numberOfCompletedObjects
REQUIRED. “xsd:unsignedint, contains the total number of objects that are
successfullyimported into the local CDS.
@numberQOfFailedObjects
REQUIRED. xsd:unsignedint, contains the number of objects that are failed to be
imported into the local CDS.
pairGroup

REQUIRED. xsd:string, a wrapper element that holds the synchronization operation
information associated with a synchronization pairGroup.

@id
REQUIRED. xsd:string, contains an identifier to distinguish a pairGroup from other
pairGroups in a synchronization partnership.

status
REQUIRED. xsd:string, indicates the status of a synchronization operation of the
synchronization pairGroup identified by @id attribute above. This element MUST
assume one of the following enumerated values:

IN_PROGRESS: The operation is in progress without any errors.

IN_PROGRESS_WITH_ERROR: The operation is in progress where
some objects are failed to synchronize.

COMPLETED: The operation is completed.

COMPLETED_WITH_ERROR: The operation is finished, but some
objects are failed to synchronize.

STOPPED: The operation is stopped by any reasons.

TEMPORARILY_STOPPED: The operation is temporarily stopped for
any reason. This operation could be resumed at any time.

@numberOfTotalObjects

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f

— 26 — 29341-15-10 © ISO/IEC:2011(E)

REQUIRED. xsd:unsignedint, contains the total number of
synchronization objects that are found in the change log from a partner
device.

@numberOfCompletedObjects
REQUIRED. xsd:unsignedint, contains the total number of objects that
are successfully imported into the local CDS.

@numberOfFailedObjects

DFQI IIRED vcr\l'lm:ignndlnf contains-the number of r\hjnr‘f: that are

failed to be imported into the local CDS.

logEntry
REQUIRED. xsd:string, contains the result of synchronization operatioffor each
synchronization object.

localObjID
REQUIRED. xsd:string, identifies a CDS object that resides on the local
CDS of the device issuing the event. When the' SyncStatusUpdate XML
document is sent to the partner as an event-message, this localObjID
element is perceived as a remote object by the partner.

remoteObj ID
REQUIRED. xsd:string, identifies a)CDS object in the partner CDS that
is paired with an object in thetloeal CDS for synchronization. When the
partner receives the Syn¢StatusUpdate XML document as an event
message, this remoteObjlD)element is perceived as a local object at the
partner device.

statusCode

REQUIRED., xsd:unsignedint, indicates pre-defined status codes for a
synchronization operation for the logEntry element. The table below
defines.the status codes to identify various synchronization conditions.
This status list can be extended in the future by vendors. The status
codes are grouped into separate categories and labeled as 1xx, 2xx,
3xx'and 4xx, where each group represents the nature of status; such as:
success status, general errors, media errors, system error and
synchronization errors, respectively. The grouping of status codes
allows a control point to be able to understand the nature of status when
an unknown status code (that is: extended specification or vendor
extended) is encountered. For example, for an unknown error labeled
as 2xx, it can be interpreted by the control point as 200.

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f

29341-15-10 © ISO/IEC:2011(E) — 27 —

Table 2-2 — Status Codes of Synchronization Operation

Value R/O Description

Non-positive N/A These error codes are reserved for future use. Control points should
gracefully ignore any non-positive error codes.

001-099 N/A Non-Error Group

001 R Success — Synchronization of an object is succeeded.

CCZ O Pﬂltla: SU\.’L’COQ = Syllb:IIUII;Lat;UII Uf artt Ull.Jijt ;3 OU\.’L’CCdCUI, qut
some DIDL-Lite properties are missing due to device capability.

003 R Not Accepted - the object is not accepted due to device capability

004-099 N/A Reserved

100-199 N/A General Error Code Group - arbitrary errors, which do not belong to
other groups.

100 R General Problem —a problem is confirmed, but no speeific reason can
be identified.

101 [e] Disabled Sync Operation- the synchronization)operation is disabled by
the user.

102 (o) The destination for the new object is not{specified.

102-149 N/A Reserved for future General Error.Codes.

150-199 N/A Reserved for vendor-defined General Error Codes.

200-299 N/A Media Error Code Group arbitrary media related errors.

200 o General Media Problem—some trouble related to media is detected.
Checking the media teresolve it.

201 [e] Insufficient Disk.Space—storage of the sync device (i.e., HDD or Flash
Memory, etc..,),does not have enough available space to complete the
synchronization.

202 o] Storage Low Space - the storage of sync device has low available
space(@and the synchronization process may fail. The criteria to
detelmine “low space” is vendor dependent and may be independent
from the size of the sync contents to synchronize.

203-249 N/A Reserved for future Media Error Codes.

250-299 NTA Reserved for vendor-defined Media Error Codes.

300-399 N/A System Error Code Group - arbitrary system related error.

300 (o) General System Problem —a problem related to the system is
detected. It may affect all synchronization processes in the sync-
enabled Content Directory service.

30L o Insufficient Memory- the system does not have enough system
memory to complete the synchronization processes.

302 o] Insufficient Processing - the system does not have enough CPU
power to execute the designated synchronization processes.

303 o Low Memory - the system has low available memory and the
designated synchronization process may fail. The criteria to determine
“low memory” is vendor dependent and may be independent from the
size of the sync content to synchronize.

304 © towProcessimyg—=thesystenm tras tow avaitabte CPUpoweramd-the
designated synchronization process may fail. The criteria to determine
“low processing” is vendor dependent and may be independent from
the size of the sync content to synchronize.

305-349 N/A Reserved for future System Error Codes.

350-399 N/A Reserved for vendor-defined System Error Codes.

400-499 N/A Content Error Code Group - arbitrary errors related to the content to
be synchronized.

400 o General Content Problem —a problem related to the content is
detected. It may be associated with the content that is being
synchronized.

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f

— 28 — 29341-15-10 © ISO/IEC:2011(E)

Value R/O Description

401 (o) No Sync Content-the necessary content is missing from the sync
devices.

402 o] Content Write Protect - write access to the recording content is
prohibited.

403 (o) Synchronization Loser —there are other synchronizing process with the
same contents(i.e., CDS objects) at the same period, and the current
synchronization process is superseded by the conflicting
SyRehferiZaton-process:

404 (o) Content Locked- the originally sync content has been preempted by
another synchronization process.

405 o] Invalid XML — xml document format for content metadata is notwvalid.

404-449 N/A Reserved for future Content Error Codes.

450-499 N/A Reserved for vendor-defined Content Error Codes.

500 and above | N/A Reserved for future new category information extensions.

statusDesc
REQUIRED. xsd:string, expresses, readable error status of the
synchronization operation for this logEntry element.

2.7.3 A ARG TYPE ActionCaller

This state variable is introduced to provide type information_for the ActionCaller argument in
various actions. The ActionCaller argument identifies the<caller of an action. If the caller is a
control point embedded in a UPnP device then the‘walue MUST be the device’'s UDN.
Otherwise the value MUST be set to the empty string indicating that the caller is a stand-
alone control point.

2.7.4 A ARG TYPE SyncData

This state variable is introduced to provide type information for various arguments that
contain different parts of a synchronization data structure to be used in various actions. The
A ARG _TYPE SyncData state variable MUST contain one of the following types of
synchronization-related XML fragments:

e Synchronization relationship data: Represents synchronization relationship level
information.

e Partnership data:(Represents partnership level information for a given synchronization
relationship. This -fragment MUST NOT contain any synchronization or pairGroup level
information.

e Pairgroup~data: Represents pairGroup level information in a synchronization relationship
for a given partnership. This fragment MUST NOT contain any synchronization or
partnership level information.

All instances of this data type MUST comply with the [CSS-XSD] schema.

Note that since the CantentSync format of an argument of data type A ARG TYPFE SyncData

is an XML document, it needs to be escaped (using the normal XML rules: [XML] Clause 2.4
Character Data and Markup) before embedding in a SOAP response message.

The example below shows synchronization data structure for synchronization between two
CDSs:

Example:

<?xml version="1.0" encoding=""utf-8">

<ContentSync xmlns="urn:schemas-upnp-org:cs"
xmIns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f

29341-15-10 © ISO/IEC:2011(E) — 29 —

Xxsi:schemaLocation=""urn:schemas-upnp-org:cs
http://www_upnp.org/schemas/cs/cs-v1-20070XXXX.xsd">
<syncRelationship id="d8c9fal3-d79b-4a0c-999b-6ae2ff91lad46d" active="1">
<title>Sync between My iPod, My PMP and Home Media Server</title>
<partnership id="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6" active=""1"
updatelD=""0"">
<partner id="1">
<deviceUDN>343bd2a2-189b-40c0-8eb5-ea91ea730402</deviceUDN>
<servicelD>service_ID_A</servicelD>

</partner>
<nartner id=""2">

<deviceUDN>05de2732-5df5-4c48-922b-12¥73473f0e9</deviceUDN>
<servicelD>service_ID_B</servicelD>
</partner>
<policy>
<syncType>merge<syncType>
<priorityPartneriID>1</priorityPartneriD>
</policy>
<pairGroup id="ba8e57de-7f66-4102-ae4b-31b96c86f173" active=""1">
<policy>
<syncType>replace</syncType>
<priorityPartnerlID>1</priorityPartnerID>
</policy>
</pairGroup>
<pairGroup id="0ada9f4f-5961-4906-93d0-230F9df78al0" actiwve="1">
<policy>
<syncType>replace</syncType>
<priorityPartnerID>2</priorityPartneriD>
</policy>
</pairGroup>
<l-- More pairGroups can go here -->
</partnership>
<partnership i1d=""864074ec-dad5-4d2c-b5c6-41e3e6¥53b79" active=""1"
updatelD=""0"">
<partner id="1">
<deviceUDN>343bd2a2-189b-40c0-8eb5-ea9lea730402</deviceUDN>
<servicelD>service_ID_A</servicelD>
</partner>
<partner id="2">
<deviceUDN>e832a654-9c64-429b-9F34-8F55278F73a7</deviceUDN>
<servicelD>service_ID_C</servicelD>
</partner>
<policy>
<syncType>merge</syncType>
<priorityPartnerlID>2</priorityPartneriD>
</policy>
<pairGroup id="265193¢c0-0b07-4¥33-979c-f4701a98al1d9" active="1"/>
</partnership>
<l-- More partnerships can go here -->
</syncRelationship>
<syncRelationship i1d="e884c276-c489-44f0-bcec-332450dab074" active="1">
<title>Sync-hetween My PMP and Home Media Server</title>
<partnership id="1lab3fef4-777e-496a-82ed-d2580cdafa75" active=""1"
updatedb=""0">
<partper id="1">
<deviceUDN>343bd2a2-189b-40c0-8eb5-ea91ea730402</deviceUDN>
<servicelD>service_ID_A</servicelD>
</partner>
<partner id="2">
<deviceUDN>ef7c6650-5748-4cc7-9cde-6a5b8719615f</deviceUDN>

<servicelD>service_ID_D</servicelD>
</partner>
<policy>
<syncType>replace</syncType>
<priorityPartnerlID>2</priorityPartneriD>
</policy>
<pairGroup id="clbc5bd7-0207-4226-beee-bh528fe63a919" active=""1"/>
</partnership>
</syncRelationship>
</ContentSync>

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f

— 30 — 29341-15-10 © ISO/IEC:2011(E)

The XML document example above contains multiple synchronization relationships and
multiple partnerships in the first synchronization relationship. However, only one partnership
is allowed in a synchronization relationship in this version of the specification.

A synchronization relationship (and its syncRelationship data structure) is identified by a
globally unique syncRelationship@id element. A synchronization relationship is composed of
one or more partnerships (see below). A synchronization relationship can be in an active or
inactive state. An actlve state means that the synchronlzauon relat|onsh|p part|C|pates in a

™ [y [1 |
QyII\JIIIUIIILaLIUII U'.ICIG.I.IUII vWITTT T AO Aarlt IIIG.\.:LIVC QyII\JIIIUIIILaLIUII IUIGLIUIIDIIIP \JUCQ IIUI.

participate in a synchronization operation. The active state of a synchronization relationship
is expressed by the syncRelationship@active element.

A partnership identifies two specific partner devices containing content that is synchronized
during a synchronization operation. A partnership exists only between two sync partner
devices. The partner devices are identified by their respective UDN values. Each partnership
is identified by a globally unique partnership@id element.

Each partnership consists of one or more synchronization PairGroups..A PairGroup identifies
a set of synchronization pairs where identical synchronization policies are applied. Each
object that belongs to a pair and is associated with a pairGroup includés a avcs:synclinfo::pair
property that contains a reference to that PairGroup via the PairGroup’s id.

Within every synchronization data structure (relationshipiypartnership, and PairGroup) a
default policy is defined such that all dependent structures inherit that policy unless the
dependent structure specifies a policy on its own.Fof\example if policies are defined for a
PairGroup and for a pair under that pairGroup, the “pair policy will override the pairGroup
policy. Similarly, if policies are defined for agpartnership and a pairGroup under that
partnership, then pairGroup policy will override partnership policy.

The partnership@updatelD element canibe used to determine whether locally cached
partnership information has become stale. The partnership@updatelD element value is
increased by one whenever the partnership information is modified. See the action
ModifySyncData() for more details.

The synchronization data structure for a given synchronization relationship MUST be identical
in all devices that are referenced within that synchronization relationship before performing
any synchronization operation.

2.7.41 A ARG TYPE SyncData Data Format

The optional XML header <?xml version="1.0" ?> is allowed. The (one and only) root
element, <ContentSync>, MUST contain zero or more elements, each of which represents a
synchronization data structure.

The ~following example shows a generalized “template” for the format of the
ACARG TYPE SyncData state variable. Additional elements and/or attributes MAY be added
to future versions of this specification. Furthermore, a 3. party vendor MAY add vendor-

defined elements and/or attributes. However by definition, this specification does not define
the format and/or values for these 3™ -party elements. In order to eliminate element/attribute
naming conflicts, the name of any vendor-defined element/attribute MUST follow the rules set
forth in Clause 1.3 “Vendor-defined Extensions”. All control points should gracefully ignore
any element/attribute that it does not understand.

The following notation includes the forum character style to indicate names that are defined
by the ContentSync Working Committee. Additionally, fields that need to be filled out by
individual implementations are shown in the vendor character style.

<?xml version="1.0"?>
<ContentSync

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f

29341-15-10 © ISO/IEC:2011(E) — 31 —

xmlns=""urn:schemas-upnp-org:cs"
xmIns:xsd=""http://www.w3.0rg/2001/XMLSchema"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
Xsi:schemaLocation=""urn:schemas-upnp-org:cs

http://www.upnp.org/schemas/cs/cs-v1-20070XXXX.xsd"">
<syncRelationship id="synchronization relationship ID"

active="flag indicates whether a relationship is enabled or disabled"

systemUpdatelD=""system update ID of the CDS at the time of change">
<title>title of this synchronization relationship</title>
<partnership id="synchronization partnership ID"

PPN LY o VNIV AT ST SO0 o SN O et N PPN N P2V B PN o |
o

o
oeTTve oy oot St T o pPot e TS o o Croo et oT— oot

updatelD=""uniquely assigned ID when a partnership is updated"> N
<partner id="1"> N
<deviceUDN>device UDN of the first partner</deviceUDN> q/Q
<servicelD>ID of a service of the first partner</servicelD> Q

</partner>
<partner id="2"> Q.)'
<deviceUDN>device UDN of the second partner</deviceUDN> '\

<servicelD>ID of a service of the second partner</servicelD>
</partner> b&
<poI|cy>synchron|zat|on policy in a partnership level</policy> O.)(b
<palrGroup id="synchronization pairGroup ID"

active="flag indicates whether a pairGroup is enabled or abled">
<policy>synchronization policy in a pairGroup level</poli
</pairGroup>

</partnership> O
</syncRelationship> \O.)
</ContentSync> X
xml

OPTIONAL. Case sensitive.

ContentSync
REQUIRED. MUST have “urn:schemas-upnp-org:cs” (which.is the UPnP ContentSync Working Committee Schema) as the
value for the xmins attribute that declares the default namespace; Contains all elements and attributes defined by the CSS
schema as follows:

syncRelationship
OPTIONAL. a wrapper element, that holds the information associated with a synchronization relationship. This
element can appear multiple times to contain multiple synchronization relationship in the XML document.

@id
REQUIRED:, xsd:string, contains an identifier to distinguish a synchronization relationship from other
synchronization relationships. The value of this attribute MUST be generated using GUID as defined in
RFC4122. A GUID is 128 bits long and can guarantee uniqueness across space and time.

@active

REQUIRED. xsd:boolean, Indicates whether a synchronization relationship is enabled. To indicate a
synchronization relationship is currently disabled, the syncRelationship@active attribute MUST be set
to false (“0"). Attempting to synchronize a disabled synchronization relationship MUST result in an
error. Each synchronization partner MUST keep its local Change Log even though the synchronization
relationship is disabled. Enabling is accomplished by setting the active attribute to true (“1”). If a
relationship is disabled then all partnerships under this relationship will be treated as disabled
regardsless of the setting of the active flags of those partnerships.

@systemUpdatelD

REQUIRED. xsd:string, Indicates systemUpdatelD property of the CDS at the time of change

title
REQUIRED. xsd:string, contains a user-friendly name for the synchronization relationship.

partnership
REQUIRED. xsd:string, indicates which two devices in a synchronization relationship are partnered
together. Sub-properties of the partnership element describe detailed information of the partnership.
This element MUST appear under the <syncRelationship> element.

@id
REQUIRED. xsd:string, contains an identifier to distinguish a partnership from other
partnerships in a synchronization relationship. The value of the partnership@id attribute

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f

— 32 — 29341-15-10 © ISO/IEC:2011(E)

MUST be generated using GUID as defined in RFC 4122. A GUID is 128 bits long and can
guarantee unigueness across space and time.

@active
REQUIRED. xsd:boolean, indicates whether a partsnerhip is enabled. To indicate that a
partnership is currently disabled, the partnership@active MUST be set to false (“0”).
Attempting to synchronize a disabled partnership MUST result in an error. Each
synchronization partner MUST keep its local Change Log even though the partnership is
disabled. Enabling is accomplished by setting the active attribute to true (“17). If a
partnership is disabled then all pairGroups under this partnership will be treated as disabled

regarusicss U tie SEUTNg U uie attve Tidgs O those pgairsroups.

@updatelD
REQUIRED. xsd:string, a counter that increases its value whenever there is a change in this
partnership. The value of the change must be increased by 1. This attribute, is used to
prevent updates with stale data.

partner
REQUIRED. xsd:string, indicates individual device information -that is involved in a
partnership.

@id
REQUIRED. xsd:string, contains the uniquelD to identify a partner in a
partnership. The value of partner@id attribute, is static, “1” or “2". “1” represents
the first partner and “2” represents the seeond’partner.

deviceUDN
REQUIRED. xsd:string, contains,the UDN of the device that provides ContentSync
service.

servicelD

REQUIRED. xsd:stringy Contains the service ID of the CSS of the partner device.

policy
REQUIRED. xsd:stringy indicates how to synchronize objects that are involved in a
synchronization partnership. See 2.2.3 “Synchronization Policy and Behavior” for policy
definition and format.

pairGroup
REQUIRED. xsd:string, indicates pairGroup information within a partnership. This element
can appears multiple times under the <partnership> element.

@id
REQUIRED. xsd:string, uniquely identifies a pairGroup within a partnership to
distinguish it from other pairGroups in a synchronization partnership. The value of
this attribute MUST be generated using GUID as defined in RFC 4122. A GUID is
128 hits long and can guarantee uniqueness across space and time.

@active
REQUIRED. xsd:string, indicates whether a pairGroup is enabled. To indicate that
a pairGroup is currently disabled, the pairGroup@active MUST be set to false (“0”).
Attempting to synchronize a disabled pairGroup MUST result in an error. Each
synchronization partner MUST keep its local Change Log even though the
pairGroup is disabled. Enabling is accomplished by setting the active attribute to
true (“1").

@updatelD
REQUIRED. xsd:string, a counter that increases its value whenever there is a
change in this pairGroup.

policy
REQUIRED. xsd:string, indicates how to synchronize objects that are involved in a
synchronization pairGroup. See 2.2.3 “Synchronization Policy and Behavior”
for policy definition and format.

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f

29341-15-10 © ISO/IEC:2011(E) — 33 —

2.7.5 A ARG TYPE SyncPair

This state variable is introduced to provide type information for various arguments that
contain a synchronization pair for a CDS object to be used in various actions.

The following illustrates a typical example of the A_ ARG _TYPE SyncPair state variable

Example:

<?xml version="1.0" encoding="UTF-8"?>
<synclInfo updatelD="3" xmlns="urn:schemas-upnp-org:cs:avcs"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
Xxsi:schemalLocation=""urn:schemas-upnp-org:cs:avcs
http://www.upnp.org/schemas/cs/avcs-v1-20070XXXX.xsd"">
<pair
syncRelationshiplD="d8c9fal3-d79b-4a0c-999b-6ae2ff91a46d""
partnershiplD="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6""
pairGrouplD="ba8e57de-7f66-4102-ae4b-31b96c86F173"">
<remoteObjI1D>B1</remoteObj ID>
<policy>
<syncType>replace</syncType>
<priorityPartnerlID>1</priorityPartneriD>
</policy>
<status>MODIFIED</status>
</pair>
<pair
syncRelationshiplD="e884c276-c489-44f0-bcec-332450dab074""
partnershiplD="1ab3fef4-777e-496a-82ed-d2580cdafa75"
pairGrouplD="clbc5bd7-0207-4226-beee-b528fe63a919"">
<remoteParentObj ID>B2</remoteParentObj ID>
<status>NEW</status>
</pair>
</synclinfo>

Since XML elements in this state variable<are CDS object property, see Annex A for details of
pair information. Also, see [CSS-XSD] for a schema of the A_ ARG TYPE SyncPair state
variable.

2.7.6 A ARG TYPE SynclID

This state variable is intreduced to provide type information for various action arguments that
uniquely identify a synchronization relationship, or a partnership or a pairGroup. The value of
this variable MUST._be/generated using GUID as defined in RFC 4122. A GUID is 128 bits
long and can guarantee uniqueness across space and time.

2.7.7 A ARG)TYPE ObjectlD

This state/variable is introduced to provide type information for various action arguments that
uniquely’ identify a CDS object. The format of the A_ ARG TYPE ObjectID state variable
MUST follow the definition of the A_ ARG TYPE ObjectID in the ContentDirectory:2 Service
specification and the definition of the @id property in Annex A.

2.7.8 A ARG TYPE SyncsStatus

This state variable is introduced to provide type information for the SyncStatus argument in
the GetSyncStatus() action which contains a list of zero or more synchronization operation
information structures representing both currently ongoing and the previous synchronization
operation. A synchronization operation information structure includes the status of the
opreation. All instances of this data type MUST comply with the SyncStatus XML document
schema. See 2.7.2 SyncStatusUpdate state variable for details.

Note that since the SyncStatus format of an argument of data type
A ARG _TYPE SyncStatus is an XML document, it needs to be escaped (using the normal

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f

— 34 — 29341-15-10 © ISO/IEC:2011(E)

XML rules: [XML] Clause 2.4 Character Data and Markup) before embedding in a SOAP
response message.

This value of this state variable is identical to the value of the SyncStatusUpdate state
variable except that the SyncStatusUpdate only contains the status of currently ongoing
synchronization operations. The A_ARG_TYPE_ SyncStatus state variable contains the status
of both currently ongoing synchronization operations and the status of the last
synchronization operation.

When a synchronization operation is invoked on a relationship level, the status information of
the last synchronization operation of that specific synchronization relationship including\the
status of the last synchronization operations of all partnerships within that relationship,and
the status of the last synchronization operations of all pairGroups within each partnership
MUST be cleared. When a synchronization operation is invoked on a partnership-level then
the status information of the last synchronization operation for that specific partnership
including the status of last synchronization operations of all pairGroups within that
partnership MUST be cleared. When a synchronization operation is invoked on a pairGroup
level then the status information of the last synchronization operation” for that specific
pairGroup MUST be cleared.

2.7.9 A ARG TYPE Changelog

This state variable is introduced to provide type information<for the ChangelLog argument in
the GetChangelLog() action. The structure of the ChangelLog argument is a DIDL-Lite XML
Document.

A change log is a list of CDS objects represented byDIDL-Lite XML document with extension
in this specification. The change log contains the €DS objects which have changed since the
last synchronization operation. When the .¢hange log is returned as a reponse of the
GetChangelLog() action, it contains only the changed CDS objects which are bound to a
specific synchronization relationship or partnhership or pairGroup.

e Optional XML declaration <?xmlk‘version="1_.0" ?>
e <DIDL-Lite> is the root element.

e <container> is the element representing objects of class container and all its derived
classes, which has been changed since the last synchronization operation.

e <item> is the element representing objects of class item and all its derived classes,
which has been-changed since the last synchronization operation.

e Elements in“the Dublin Core (dc) and UPnP (upnp) namespaces represent object
metadata.

e See the~DIDL-Lite schema [DIDL-LITE-XSD] for more details on the structure. The
availabte properties and their names are described in Annex B, "AV Working Committee
Extended Properties" in the ContentDirectory:2 service [CDS].

Note that since the value of ChangelLog is XML, it needs to be escaped (using the normal
XML rules: [XML] Clause 2.4 Character Data and Markup) before embedding in a SOAP

response message.

For objects that are deleted outside of synchronization operation, the change log SHOULD
provide deleted objects information with only item or container, and its avcs:syncinfo
properties if and only if a synchronization policy is replace. If an object which is deleted is
part of multiple synchronization pairs, then deleted information MUST be kept until all
synchronization pairs are synchronized. The following gives an example of deleted objects
information in a change log.

Example: (The namesapce declaration is omitted)

<item id="A3" parentlD="A2">

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f

29341-15-10 © ISO/IEC:2011(E) — 35 —

<avcs:synclnfo updatelD="1">
<avcs:pair
syncRelationshiplD="d8c9fal3-d79b-4a0c-999b-6ae2ff9lad6d""
partnershiplD="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6""
pairGrouplD="a8e57de-7f66-4102-ae4b-31b96c86F173"">
<avcs:remoteObjID>B3</avcs:remoteObj D>
<avcs:status>DELETED</avcs:status>
</avcs:pair>
</avcs:synclnfo>
</item>

2.7.10 A_ ARG TYPE Index

This state variable is introduced to provide type information for an argument in narious
actions. Arguments specify an offset into an arbitrary list of objects (change log). A value of 0
represents the first CDS object in the change log.

2.7.11 A ARG TYPE Count

This state variable is introduced to provide type information for an ‘@rgument in various
actions. Arguments specify an ordinal number of arbitrary objects.

2.7.12 A ARG TYPE ResetObjectlList

This state variable is introduced to provide type informationfor an argument that contains a
list of synchronization objects of which the change log will,be’cleaned.

The structure of the argument of data type A_ARG TYPE ResetObjectList is an XML
document (See [CSS-XSD]):

Note that since A_ ARG _TYPE ResetObjectlsst’ is an XML document, it needs to be escaped
(using the normal XML rules: [XML] Clause 2.4 Character Data and Markup) before
embedding in a SOAP response messages

Example:

<ResetObjectList xmIns="urn=schemas-upnp-org:cs
xmIns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmIns:xsi="http://www Ww3:0rg/2001/XMLSchema-instance"
xsi:schemalLocation=*urh:schemas-upnp-org:cs
http://www_upnp.erg/schemas/cs/cs-v1-20070XXXX . xsd">
<object i1d="Al" remeteObjlID=""32" updatelD="2"/>
<object 1d="A72"_remoteObjID="9547" updatelD="4"/>
</ResetObjectList>

2.7.12.1 K)ARG TYPE ResetObjectList Data Format

The optional XML header <?xml version=71.0" ?> is allowed. The (one and only) root
element, <ResetObjectList>, MUST contain zero or more elements, each of which identifies a
synchronization object.

The following example shows a generalized “template” for the format of the
A ARG _TYPE ResetObjectList state variable. Additional elements and/or attributes MAY be
added to future versions of this specification. Furthermore, a 3’d—party vendor MAY add
vendor-defined elements and/or attributes. However, by definition, this specification does not
define the format and/or values for these 3‘d—party elements. In order to eliminate
element/attribute naming conflicts, the name of any vendor-defined element/attribute MUST
follow the rules set forth in Clause 1.3 “Vendor-defined Extensions”. All control points
should gracefully ignore any element/attribute that it does not understand.

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f

— 36 — 29341-15-10 © ISO/IEC:2011(E)

The following notation includes the forum character style to indicate names that are defined
by the ContentSync Working Committee. Additionally, fields that need to be filled out by
individual implementations are shown in the vendor character style.

<?xml version="1.0"?>

<ResetObjectList
xmIns=""urn:schemas-upnp-org:cs"
xmIns:xsd=""http://www.w3.0rg/2001/XMLSchema*
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
Xsi:schemalLocation=""rn:schemas-upnp-org:cs

http://www.upnp.org/schemas/cs/cs-v1-20070XXXX.xsd">

<objectlID id="object ID" r\'\
remoteObjID="object ID of a partner paired with this object"” Q
updatelD="uniquely assigned ID when the object is changed"> ‘],

</objectlID> Q :

</ResetObjectList> s ,'\
xml

OPTIONAL. Case sensitive.

ResetObjectList
REQUIRED. MUST have “urn:schemas-upnp-org:cs” (which is the UPnP ContentSyncAV/C-Schema) as the value for the
xmins attribute that declares the default namespace; Contains all elements and attributes defined by the CSS schema as
follows:

objectlD
OPTIONAL. xsd:string, contains object@id property of the CDS which identifies the object of which changed log
will be cleaned.
@id
REQUIRED. xsd:string, contains the ID ofithe’object of which change log to be reset.

@remoteObj ID
REQUIRED. xsd:string, contains.the object ID in a partner, which is paired with the local object.

@updatelD
REQUIRED. xsd:unsignedint, contains the value of avcs:syncinfo@updatedID which was retrieved by
the GetChangelog(),action before.

2.8 Eventing and Moderation

Table 2-3 — Event Moderation

Variable Namg Evented Moderated Max Event Logical Min Delta

Event Rate Combination per Event
SyncChange YES YES 0.2 sec
SyncStatusUpdate YES YES 0.2 sec

The SyncStatusUpdate state variable is evented and moderated. When multiple updates
occur-between moderation periods, the SyncStatusUpdate state variable accumulates all
updates within that period and sends an event message at the end of the moderation period
that contains all of the accumulated events. The SyncStatusUpdate state variable MUST only

pe Cleared jUS[perore aaaing the first update event that OCCUrs arlter the I1ast event message
was sent.

2.9 Actions

Immediately following this table is detailed information about these actions, including short
descriptions of the actions, the effects of the actions on state variables, and error codes
defined by the actions.

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f

29341-15-10 © ISO/IEC:2011(E) — 37 —

Table 2-4 — Actions

Name Req. or Opt. @

AddSyncData() R
ModifySyncData() R
DeleteSyncData() R
GetSyncData() R
ExchangeSyncData() R
AddSyncPair() R
ModifySyncPair() R
DeleteSyncPair() R
StartSync() o
AbortSync() Q
GetChangelLog() R
ResetChangelog() R
ResetStatus() R
GetSyncStatus() o
Non-standard actions implemented by an UPnP vendor go here. X
a R = Required, O = Optional, X = Non-standard

2.9.1 AddSyncData()

This action creates either a new synchronization relationship template, or a new partnership
template within an existing relationship or)avhew pairGroup template within an existing
partnership.

When creating a new synchronization.relationship by invoking the AddSyncData() action, the
SyncData input argument MUST contain a minimally complete synchronization relationship
data structure. The control pointcan add additional pairGroups for the partnership by
invoking the AddSyncData() action where the SyncData input argument contain the pairGroup
data structure. See Clause “2.7.4 A_ARG TYPE SyncData state variable" for details.

The ActionCaller argument identifies the deviceUDN of the caller. See Clause "2.7.3
A ARG TYPE ActionCaller state variable" for details.

If the ActionCaHler argument specifies a deviceUDN then this action is invoked by a partner
device and{the caller does not need to disseminate synchronization data structure
(SyncData).to the partner device. However, if the ActionCaller argument is null, the device
MUST «disseminate the synchronization data structure (SyncData) to the partner device, by
invoking the AddSyncData() action on the partner .

When creating a new synchronization relationship, the partner device involved in the

relationship MUST be In the network. See "Clause 2.3.1 Synchronization Data Structure
Addition" for detailed rules.

When a device receives the AddSyncData() action from a stand-alone control point to create
a new synchronization relationship, the device generates three IDs to identify the
synchronization relationship, the partnership and the pairGroup for the minimally complete
synchronization data structure. The generated IDs conform to the requirement of
A ARG _TYPE SynclD state variable.

When a stand-alone control point is adding a synchronization relationship, the value of the
SynclID input argument MUST be set to the empty string. While adding a partnership, the
SynclID argument will contain the SyncID of an existing synchronization relationship where

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f

— 38 — 29341-15-10 © ISO/IEC:2011(E)

the partnership information will be added. Likewise, while adding a pairGroup, the SyncID
argument will contain the SyncID of an existing partnership where the pairGroup information
will be added.

The SyncDataResult output argument returns the synchronization relationship data structure
containing the newly added data specified by the SyncData argument. In the case of adding a
pairGroup to an existing synchronization relationship, the SyncDataResult argument will
return the whole synchronization relationship data structure which contains that pairGroup.

2.9.1.1 Arguments

Table 2-5 — Arguments for AddSyncData()

Argument Direction Related State Variable

ActionCaller |

=

A_ARG_TYPE ActionCallet

SynclD IN A ARG _TYPE SynclD
SyncData IN A ARG _TYPE SyncData
SyncDataResult ouT A ARG _TYPE/ZSyacData

2.9.1.2 Dependency on State

None.

2.9.1.3 Effect on State

None.

2.9.1.4 Errors

Table 2-6 — Error,Codes for AddSyncData()

errorCode errorDescription Description

400-499 TBD See UPnP Device Architecture clause on Control.

500-599 TBD See UPnP Device Architecture clause on Control.

600-699 TBD See UPnP Device Architecture clause on Control.

701 No such'synhc data The AddSyncData() request failed because the specified SynclD
argument is invalid.

702 Inyalid XML The AddSyncData() request failed because the specified SyncData
argument

703 Invalid action caller | The AddSyncData() request failed because the action caller is a
part of the sync data.

704 Partner Timeout The AddSyncData() request failed because the sync data structure
could not be exchanged due to time out of the partner device.

705 Partner not online The AddSyncData() request failed because partner device is not in

the network.

2.9.2 ModifySyncData()

This action modifies either a synchronization relationship, or a partnership within an existing
relationship or a pairGroup within an existing partnership.

To modify synchronization relationship level information, all partner devices involved in the
relationship MUST be in the network. See "Clause 2.3.2 Synchronization Data Structure
Modification" for detailed rules.

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f

29341-15-10 © ISO/IEC:2011(E) — 39 —

To modify a synchronization data structure, SynclD argument that identifies which
synchronization data structure is being modified MUST be specified.

To maintain identical synchronization relationship, partnership and pairGroup information on
all partner devices, the device that receives this action MUST invoke the ModifySyncData()
action on the partner device by including identical synchronization relationship, partnership or
pairGroup data structure in the SyncData action argument.

The ActionCaller argument identifies the deviceUDN of the caller. See Clause "2.7.3
A ARG TYPE ActionCaller state variable" for details.

If the ActionCaller argument specifies a deviceUDN then this action is invoked by a(partner
device and the caller does not need to disseminate synchronization data ,structure
(SyncData) to the partner device. However, if the ActionCaller argument is empty'string, the
device MUST disseminate the synchronization data structure (SyncData) ito” the partner
device, by invoking the ModifySyncData() action on the partner .

To prevent updating synchronization data structure by stale data; the SyncData input
argument MUST contain the @updatelD attribute of a partnershigor pairGroup when the
partnership or pairGroup level is modified.

If the modification would result in a synchronization relationship that is no longer valid, the
ModifySyncData() action MUST fail without any change and‘teturn an appropriate error code.

2.9.2.1 Arguments

Table 2-7 — Arguments for’ModifySyncData()

Argument Direction Related State Variable

Z

ActionCaller A _ARG_TYPE ActionCaller

SynclD IN A ARG _TYPE SynclD
SyncData IN A ARG _TYPE SyncData

2.9.2.2 Dependency on State

None.

2.9.2.3 Effect on State

None.

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f

— 40 — 29341-15-10 © ISO/IEC:2011(E)

2.9.2.4 Errors

Table 2-8 — Error Codes for ModifySyncData()

errorCode errorDescription Description

400-499 TBD See UPnP Device Architecture clause on Control.

500-599 TBD See UPnP Device Architecture clause on Control.

600-699 IBD See UPnP Device Architecture clause on Control

701 No such sync data The ModifySyncData() request failed because the specified SynclD
argument is invalid.

702 Invalid XML The ModifySyncData() request failed because the specified
SyncData argument

703 Invalid action caller | The ModifySyncData() request failed because the action caller is a
part of the sync data.

704 Partner Timeout The ModifySyncData() request failed because the sync data
structure could not be exchanged due to time out-of.the partner
device.

705 Partner not online The ModifySyncData() request failed because/partner device is not
in the network.

706 Update in-progress | The ModifySyncData() request failed\because another action
request is still being processed.

707 Stale data The ModifySyncData() requestfailed because the sync data is
stale.

2.9.3 DeleteSyncData()

This action deletes either a synchronization relationship, or a partnership within an existing
synchronization relationship or a pairGroup_within an existing partnership. The SynclD
argument of the action DeleteSyncData() identifies the synchronization relationship or the
partnership or the pairGroup to be deleted:

The ActionCaller argument identifies the deviceUDN of the caller. See Clause "2.7.3
A ARG TYPE ActionCaller state variable” for details.

If the ActionCaller argument specifies a deviceUDN then this action is invoked by a partner
device and the caller doesinot need to inform the partner device of the deletion. However, if
the ActionCaller argumentis null, the device MUST inform the partner device of the deletion,
by invoking the DeletéSyncData() action on the partner.

A deletion of a_partnership or a pairGroup is allowed even when one of the partner devices is
not in the network. In this case, the other partner device gets updated synchronization data
structure by invoking the ExchangeSyncData() action before performing any synchronization
operationywhen the device rejoins the network. See "Clause 2.3.3 Synchronization Data
Structure Deletion” for detailed rules.

When the last pairGroup within an existing partnership is deleted, the partnership MUST be

deleted as well hecause the Qym‘hrnni7afinn data_structure daoes not allow a In.'-)r'rm:\rqhiln
without at least one pairGroup.

Likewise, when the last partnership within an existing relationship is deleted, the relationship
MUST be deleted, as well.

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f

29341-15-10 © ISO/IEC:2011(E) — 41 —

2.9.3.1 Arguments

Table 2-9 — Arguments for DeleteSyncData()

Argument Direction Related State Variable
ActionCaller IN A _ARG_TYPE ActionCaller
SynclD IN A ARG _TYPE SynclD

£.9.9.2 UB[JEHU'EII(.,y Ol Stdadle

None.

2.9.3.3 Effect on State

None.

2.9.3.4 Errors

Table 2-10 — Error Codes for DeleteSyncDatd()

errorCode errorDescription Description

400-499 TBD See UPnP Device Architecture clausé on Control.

500-599 TBD See UPnP Device Architecture\clause on Control.

600-699 TBD See UPnP Device Architécture clause on Control.

701 No such sync data The DeleteSyncDataf() request failed because the specified SyncID
argument is invalid.

703 Invalid action caller | The DeleteSynaeData() request failed because the action caller is a
part of the sync data.

2.9.4 GetSyncData()

This action returns the synchronization data structure identified by the SyncID input argument.
If the value of the action argument SynclD identifies a synchronization relationship then the
SyncData output argument ‘contains the entire synchronization data structure for that
synchronization relationship including all partnerships within that relationship and all
pairGroups for each partnership contained within that relationship. If the value of the action
argument SynclD identifies a partnership then the SyncData output argument contains the
synchronization_data structure for that partnership including all pairGroups contained within
that partnership:*If the value of the action argument SynclD identifies a pairGroup then the
SyncData Qutput argument contains the synchronization data structure for the identified
pairGroup.df'the value of the action argument SynclD is the empty string then the SyncData
outputsargument contains the synchronization data structure for all synchronization
relatiohships.

2.9.4.1 Arguments

Table 2-11 — Arguments for GetSyncData()

Argument Direction Related State Variable
SynclD IN A ARG _TYPE SynclD
SyncData ouT A_ARG TYPE SyncData

2.9.4.2 Dependency on State

None.

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f

— 42 — 29341-15-10 © ISO/IEC:2011(E)

2.9.4.3 Effect on State

None.

2.9.4.4 Errors

Table 2-12 — Error Codes for GetSyncData()

errorCode errorDescription Description

400-499 TBD See UPnP Device Architecture clause on Control.

500-599 TBD See UPnP Device Architecture clause on Control.

600-699 TBD See UPnP Device Architecture clause on Control.

701 No such sync data The GetSyncData() request failed because the specified SynclD
argument is invalid.

2.9.5 ExchangeSyncData()

This action exchanges a synchronization data structure between-two partner devices. When
the partner device joins the network, the device MUST gevaluate whether or not the
synchronization data structure is stale by exchanging its own“synchronization data structure
with other partner devices that are also in the network.

The LocalSyncData input argument contains the synChronization data structure for the local
device. The partner device's synchronization\ data structure is returned in the
RemoteSyncData output argument as response tothe ExchangeSyncData() action.

The RemoteSyncData output argument MUST-contain the synchronization data structure that
is updated with the LocalSyncData input argument. It means that the partner device MUST do
the update operation before responding.to the the ExchangeSyncData() action.

2.9.5.1 Arguments

Table 2-13'— Arguments for ExchangeSyncData()

Argument Direction Related State Variable
LocalSyncData IN A ARG _TYPE SyncData
RemoteSyncDatd ouT A_ARG TYPE SyncData

2.9.5.2 Dependency on State

None.

2.95-3 Effect on State

None.

2.9.5.4 Errors

Table 2-14 — Error Codes for ExchangeSyncData()

errorCode errorDescription Description
400-499 TBD See UPnP Device Architecture clause on Control.
500-599 TBD See UPNnP Device Architecture clause on Control.

600-699 TBD See UPnP Device Architecture clause on Control.

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f

29341-15-10 © ISO/IEC:2011(E) — 43 —

2.9.6 AddSyncPair()

This action adds synchronization pair information into a CDS object. See Clause "2.2.1
Synchronization Object and Pair" definition for details.

The ActionCaller input argument identifies the deviceUDN of the caller. See Clause "2.7.3
A ARG TYPE ActionCaller state variable" for details. If the ActionCaller argument
specifies a deviceUDN then this action is invoked by a partner device and the caller does not

noad to diccaminata nair infarmatinn +n tha nartnar doviien Hlowvwavar if tha ActinnCollay
Heea—0—aiSSeHate—pati— ot o—o—e—pattthet—aevree—owe e —H—e——Ec 8 oateH

argument is null then the device that receives this action MUST invoke the AddSyncPair()
action on the partner device to maintain identical pair information on the partner.

The ObjectID input argument of the action identifies the object to which the pairGroup
information is being added.

The SyncPair input argument includes an XML fragment containing the pair, information. See
"Clause A.3 Content Synchronization-related Properties"” for details.

There are three possible scenarios that may occur while invoking/this action while adding
pairGroup information for an object:

e Both objects that are part of the pair already exist (Scenarie1):

The object@id value of the remote object ‘MUST be included in the
avcs:pair::remoteObjlD element.

e Object on only one of the partner exists (Scenario'2 and Scenario 3):

e The partner device does not have a corresponding partner object for the pair. The
object will be created on the partner device during the first synchronization operation.
The rules to create an object on the partner device are as follows:

o If the parent container objectpunder which the new object item will be created
exists in the partner device," the avcs:pair::remoteParentObjlD element MUST
include the object@id value’of the parent container object.

e If the parent container(object does not exist in the partner and the container object
under which the neéw+object item will be located is to be created from the local
container object, the avcs:pair::virtualRemoteParentObjlD element MUST include
the object@id-value of the local container (i.e. this container object will be the
parent object_in the partner device.) This parent container object MUST have an
pair in the\same partnership as well. During the synchronization operation, if a
local device determines that no corresponding object exist in the local device for
the pair, the device MUST create a new object in the local device and MUST
update the avcs:pair::RemoteODbjlD by assigning the value of the object ID of the
newly created object. The device then MUST delete the
avcs:pair::remoteParentObjID or the avcs:pair::virtualRemoteParentObjlD.

A result of the AddSyncPair() action is that the avcs:pair property is added into avcs:syncinfo
property of the CDS object. If this is the first synchronization pair for this object the
avcs:synclnfo property MUST be created first and then the avcs:pair property is added into it.

An object can be part of multiple pairGroups within a single synchronization relationship. But,
the following rules apply in such cases:

e If the synchronization policy is ‘replace’, the object that is a source is allowed to have
multiple pairs.

e If the synchronization policy is ‘blend’, the object with precedence is allowed to have
multiple pairs.

o If the synchronization policy is ‘merge’, only single pairGroup is allowed.

However, the rules above are not applied between multiple synchronization relationships.

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f

— 44 — 29341-15-10 © ISO/IEC:2011(E)

The avcs:pair::policy property overrides any policy that are specified in the upper level
hierarchy of the synchronization relationship structure.

2.9.6.1 Arguments

Table 2-15 — Arguments for_ AddSyncPair()

Argument Direction Related State Variable

P

ActionCaller | A ARG TYPE ActionCaller

ObjectID IN A ARG _TYPE ObjectID
SyncPair IN A_ARG_TYPE_ SyncPair

2.9.6.2 Dependency on State

None.

2.9.6.3 Effect on State

None.

2.9.6.4 Errors

Table 2-16 — Error Codes for AddSyhcPair()

errorCode errorDescription Description
400-499 TBD See UPnP Device Atehitecture clause on Control.
500-599 TBD See UPnP Deviee Architecture clause on Control.
600-699 TBD See UPnP Deyice Architecture clause on Control.
703 Invalid action caller | The AddSyncPair() request failed because the action caller is a part

of the 'sync data.

704 Partner Timeout The.AddSyncPair() request failed because the sync data structure
could not be add due to time out of the partner device.

705 Partner not online The AddSyncPair() request failed because partner device is not in
the network.

708 Invalid object The AddSyncPair() request failed because the specified ObjectID
argument is invalid.

709 Invalidspair The AddSyncPair() request failed because the specified SyncPair
argument is invalid.

2.9.7 MadNySyncPair()

The ModifySyncPair() action modifies the synchronization pair property for a CDS object.

This modification includes only the policy information. All other modifications are not allowed.

The ActionCaller argument identifies the deviceUDN of the caller. See Clause "2.7.3
A ARG TYPE ActionCaller state variable" for details. If the ActionCaller argument
specifies a deviceUDN then this action is invoked by a partner device and the caller does not
need to disseminate pairGroup information to the partner device. However, if the ActionCaller
argument is null then the action is called by a stand-alone control point and to maintain
identical pair information on the partner device, the device MUST disseminate the pair
information included in the SyncPair to the partner device, by invoking the ModifySyncPair()
action on the partner.

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f

29341-15-10 © ISO/IEC:2011(E) — 45 —

The ObjectlD argument identifies the object whose pair information is to be modified. The
SyncPair input argument includes an XML fragment containing the pair information to be
added.

The SyncPair input argument includes an XML fragment containing the pair information. In
the SyncPair argument, avcs:pair@syncRelationshiplD, avcs:pair@partnershiplD and
avcs:pair@pairGrouplD MUST be specified and valid. A SyncPair also includes either a

avcs:pair::remoteObject or a avcs:pair::remoteParentObjlD or a
HT Y LD + ImY Yal "t inY AALICT |y Y 2l [l ne~| A o Yl + +
AVUO.. VITLUAIT\TITTIULCTT ATCTITITNV UL i o'l uT Opcblllcu. D CT wiauotT IaYE"] CUITTLTTITU

Synchronization-related Properties"” for details.

2.9.7.1 Arguments

Table 2-17 — Arguments for ModifySyncPair()

Argument Direction Related State Vatiable

P

ActionCaller | A ARG _TYPE ActiodCatter

ObjectID IN A ARG _TYPE QfjectiD
SyncPair IN A ARG _TYPEXSYncPair

2.9.7.2 Dependency on State

None.

2.9.7.3 Effect on State

None.

2.9.7.4 Errors

Table 2-18 — Errar Codes for ModifySyncPair()

errorCode errorDescription Description

400-499 TBD See UPnP Device Architecture clause on Control.

500-599 TBD See UPnP Device Architecture clause on Control.

600-699 TBD See UPnP Device Architecture clause on Control.

703 Invalid agtion caller | The ModifySyncPair() request failed because the action caller is a
part of the sync data.

704 Partner Timeout The ModifySyncPair() request failed because the sync data
structure could not be modified due to time out of the partner
device.

705 Partner not online The ModifySyncPair() request failed because partner device is not
in the network.

708 Invalid object The ModifySyncPair() request failed because the specified
ObjectID argument is invalid.

709 Invalid pair The ModifySyncPair() request failed because the specified SyncPair
argument is invalid.

2.9.8 DeleteSyncPair()

The DeleteSyncPair() action sets the value of the avcs:syncinfo::pair::status property of a
synchronizing object to “EXCLUDED".

The ActionCaller argument identifies the deviceUDN of the caller. See Clause "2.7.3
A ARG TYPE ActionCaller state variable" for details. If the ActionCaller argument
specifies a deviceUDN then this action is invoked by a partner device and the caller does not

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f

— 46 — 29341-15-10 © ISO/IEC:2011(E)

need to disseminate pair information to the partner device. However, if the ActionCaller
argument is null then the action is called by a stand-alone control point and to maintain
identical pair information on the partner device, the device MUST disseminate the pair
information included in the SyncPair to the partner device, by invoking the DeleteSyncPair()
action on the partner.

The ObjectID argument identifies the CDS object in which avcs:syncinfo::pair::status property
is to be set.

The SynclD input argument identifies the target of the deletion. If the SynclD identifiesha
synchronization relationship then all pairs that are associated with the relationship MUST. be
deleted. . If the SyncID identifies a synchronization partnership, then all pairs thatvare
associated with the partnership MUST be deleted. . If the SynclD identifies a synchronization
pairGroup, then all pairs associated with the pairGroup MUSt be deleted.

Once the status property is set to “EXCLUDED”, the_avcs:pair property, of the object is
deleted during the next synchronization operation and thereby the object is permanently
excluded from the synchronization relationship.

2.9.8.1 Arguments

Table 2-19 — Arguments for DeleteSywnePair()

Argument Direction Related State Variable

pd

ActionCaller | A _ARG_TYPE ActionCaller

ObjectID IN A_ARG_TYPE ObjectID
SynclD IN A ARG _TYPE SyncID

2.9.8.2 Dependency on State

None.

2.9.8.3 Effect on State

None.

2.9.8.4 Errors

Table 2-20 — Error Codes for DeleteSyncPair()

errorCode errorDescription Description

400-499 TBD See UPnP Device Architecture clause on Control.

5004599 TBD See UPnP Device Architecture clause on Control.

600-699 TBD See UPnP Device Architecture clause on Control.

701 No such sync data The DeleteSyncPair() request failed because the specified SynclD
argument is invalid.

703 Invalid action caller | The DeleteSyncPair() request failed because the action caller is a
part of the sync data.

704 Partner Timeout The DeleteSyncPair() request failed because the sync data
structure could not be modified due to time out of the partner
device.

705 Partner not online The DeleteSyncPair() request failed because partner device is not

in the network.

708 No such object The DeleteSyncPair() request failed because the specified Object|D
argument is invalid.

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f

29341-15-10 © ISO/IEC:2011(E) — 47 —

2.9.9 StartSync()

The StartSync() action triggers a synchronization operation which is performed
asynchronously in other words, the action MAY return to the caller before the synchronization
operation completes (or even before the synchronization starts). The status of the
synchronization operation can be monitored through the eventing of the SyncStatusUpdate
state variable or via the GetSyncStatus() action. The SyncStatusUpdate state variable
contains incremental synchronization status information which is evented and the
GetSyncStatus() action returns the value of the SyncStatus state variable which contains the

accumulation of all synchronization status information from when the synchronization
operation was started.

When the StartSync() action is invoked, the device prepares itself for the synchrghization
operation e.g., locking internal data structure and returns to the caller. After returning to the
caller, the device asynchronously performs the synchronization operation. The 'ecaller of the
action may leave the network anytime without effecting the synchronization operation.

The ActionCaller argument identifies the deviceUDN of the caller. (See Clause "2.7.3
A ARG TYPE ActionCaller state variable" for details. The ActignCaller argument also
determines the behavior of the StartSync() action. If the ActionCallef argument is the empty
string then the device MUST invoke the StartSync() action en\the partner(s) to trigger
synchronization operations on the partner(s). The list of partnets,can be determined from the
synchronization relationship that contains the specified_SyncID. However, If the value of
ActionCaller argument is set to a deviceUDN, then the‘’device MUST NOT invoke the
StartSync() action on the partner(s).

The SynclID action argument identifies what is to be synchronized. If the SyncID argument
identifies a pairGroup then only that specific pairGroup MUST be synchronized. If the SyncID
argument identifies a partnership then all pairGfoups within that specific partnership MUST
be synchronized. If the SynclD argument_identifies a synchronization relationship then all
pairGroups within each partnership confained within that specific relationship MUST be
synchronized.

2.9.9.1 Arguments

Table’2-21 — Arguments for StartSync()

Argument Direction Related State Variable
ActionCaller IN A_ARG_TYPE ActionCaller
SynclD IN A ARG _TYPE SynclD

2.9.9.2 Dependency on State

None.

2.919:3 Effect on State

None.

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f

— 48 — 29341-15-10 © ISO/IEC:2011(E)

2.9.9.4 Errors

Table 2-22 — Error Codes for StartSync()

errorCode errorDescription Description
400-499 TBD See UPnP Device Architecture clause on Control.
500-599 TBD See UPnP Device Architecture clause on Control.
600-699 IBD See UPnP Device Architecture clause on Control
701 No such sync data The StartSync() request failed because the specified SynclD
argument is invalid.
703 Invalid action caller | The StartSync() request failed because the action caller is a part’of
the sync data.
704 Partner Timeout The StartSync() request_failed because the sync operation'could not
progress due to time out of the partner device.
705 Partner not online The StartSync() request_failed because partner device is not in the
network.
710 Inactive state The StartSync() request_failed because the specified SynclD
argument is not active.
711 Sync operation in- The StartSync() request_failed because the sync operation of the
progress specified sync data is in-progress.
712 Invalid Sync The StartSync() request_failed becalse the relationship contain a
operation non-CDS partner.
invocation

2.9.10 _AbortSync()

This action cancels an active synchronization operation which is being performed
asynchronously.

The ActionCaller argument identifies the deviceUDN of the caller. See Clause "2.7.3
A ARG TYPE ActionCaller state-variable" for details. The ActionCaller argument also
determines the behavior of the“AbortSync() action. If the ActionCaller argument is the empty
string then the device MUST invoke the AbortSync() action on the partner(s) to abort
synchronization operations on the partner(s). The list of partners can be determined from the
synchronization relationship that contains the specified_SyncID. However, If the value of
ActionCaller argumeft;is set to a deviceUDN, then the device MUST NOT invoke the
AbortSync() actionfon-the partner(s).

The SynclD_action argument identifies which on-going synchronization operation is to be
aborted. The/SyncID argument is the same as was used to start the synchronization
operationvia the StartSync() action.

Whenta device aborts a synchronization operation, the CDS MUST be left in a fully consistent
state. When aborting an implementation MUST NOT roll back any changes that already have

heen exposed on the network Consequently the resulting Caontent Directory database will
reflect either the state prior to the synchronization or partial synchronization.

2.9.10.1 Arguments

Table 2-23 — Arguments for AbortSync()

Argument Direction Related State Variable

z

ActionCaller A ARG _TYPE ActionCaller

=

SynclD A_ARG_TYPE_ SyncID

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f

29341-15-10 © ISO/IEC:2011(E) — 49 —

2.9.10.2 Dependency on State

None.

2.9.10.3 Effect on State

None.
29 10#AFrrors
Table 2-24 — Error Codes for AbortSync()
errorCode errorDescription Description
400-499 TBD See UPnP Device Architecture clause on Control.
500-599 TBD See UPnP Device Architecture clause on Control.
600-699 TBD See UPnP Device Architecture clause on Control.
701 No such sync data The AbortSync() request failed because the specified SynclD
argument is invalid.
703 Invalid action caller | The AbortSync() request failed because the” action caller is a part of
the sync data.
704 Partner Timeout The AbortSync() request failed because the sync operation could
not progress due to time out of.the partner device.
705 Partner not online The AbkortSync() request failéd because partner device is not in the
network.

2.9.11 GetChangelLodq()

2.9.12
This action allows a caller to get all.the objects that have changed since the last

synchronization operation. The Synch3”’ identifies a synchronization relationship or a
partnership or a pairGroup for which ghanged objects to be retrieved.

Startinglndex is zero-based offset.to enumerate changed objects associated with SynciD.

RequestedCount is requésted number of entries under the change log associated with
SynclID. RequestedCounty= 0 indicates request all entries.

A CDS MUST keep)track of all objects since the last synchronization operation to provide
response to theGetChangelog() action. The deleted objects information can be deleted
when the synchronization relationship, partnership or pairGroup that the objects belong to are
deleted.

The Result output argument includes all the objects that have changed since the last
synchronization operation. The format of the Result argument is represented by the
ARG _TYPE Changelog.

NumberReturned is number of objects returned in the Result argument.

TotalMatches MUST be set to the total number of objects in the changed log specified for the
GetChangelLog() action (independent of the starting index specified by the Startinglndex
argument). If the ContentSync service implementation cannot timely compute the value of
TotalMatches, but there are matching objects that have been found by the ContentSync
service implementation, then the GetChangelog() action MUST successfully return with the
TotalMatches argument set to zero and the NumberReturned argument indicating the number
of returned objects. If the ContentSync service implementation cannot timely compute the
value of TotalMatches, and there are no matching objects found, then the GetChangelLoqg()
action MUST return error code 712.

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f

— 50 — 29341-15-10 © ISO/IEC:2011(E)

2.9.12.1 Arguments

Table 2-25 — Arguments for GetChangelLoq()

Argument Direction Related State Variable
SynclD IN A ARG TYPE SynclD
Startinglndex IN A ARG _TYPE Index
RoauestedCount ﬂ A_ARG TYPE Count
Result ouT A ARG _TYPE Changelog
NumberReturned ouT A ARG _TYPE Count
TotalMatches ouT A ARG _TYPE Count

2.9.12.2 Dependency on State

None.

2.9.12.3 Effect on State

None.

2.9.12.4 Errors

Table 2-26 — Error Codes for Get€hangelLoq()

errorCode errorDescription Description

400-499 TBD See UPnP Device*Architecture clause on Control.

500-599 TBD See UPnP Dgvice Architecture clause on Control.

600-699 TBD See UPnPtDevice Architecture clause on Control.

701 No such sync data The GetChangelog() request failed because the specified SynclD
argument is invalid.

720 Cannot process the {\[The GetChangelLog() request failed because the ContentSync

request service is unable to compute, in the time allotted, the total number

of objects that are a match for the synchronization ID and is
additionally unable to return, in the time allotted, any objects that
match the synchronization ID.

2.9.13 ResetCh@ndgeLodq()

This action @allows a caller to clear the existing change log of synchronization objects and
start keeping new logs.

The_'SynclD identifies a pairGroup for which the change log of all objects included in the
identified synchronization data structure will be cleared.

The ObjectiDs argument identifies individual objects for which the change logs will be cleared
and contains one or more CDS object IDs. In other word, the device MUST clear the change
logs of multiple objects within the action processing period if the ObjectIDs argument has
multiple object IDs. When all synchronization objects that are involved with a pairGroup or a
partnership or a relationship are to be cleared, this input argument should have the value of
"*"_Otherwise, this argument should have a list of individual object@id. In order to clear the
change log of the objects that are involved in different pairGroups, the SynclD should be
empty string.

By comparing the @updatelD in the ObjectIDs input argument and avcs:pair@updatelD of the
CDS object, the device can determine whether the CDS object has changed. A caller keeps
this @updatelD value until it invokes the ResetChangelLog() action. Whenever the property of

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f

29341-15-10 © ISO/IEC:2011(E) — 51 —

a synchronization object is changed, the CDS MUST increase the @updatelD property of the
object by 1. The device sets the avcs:pair:status value as "MODIFIED" if two values
(@updatelD in the ObjectIDs input argument and avcs:pair@updatelD of the CDS object) are
different from each other. Otherwise, the value of avcs:pair:status property is reset to
“SYNC’ED”. This process removes the necessity for the device to lock object properties while
it is synchronizing.

2.9.13.1 Arguments

Table 2-27 — Arguments for ResetChangelLod()

Argument Direction Related State Variable
SynclD IN A_ARG _TYPE SyncID
ObjectIDs IN A ARG TYPE ResetObjectList

2.9.13.2 Dependency on State

None.

2.9.13.3 Effect on State

None.

2.9.13.4 Errors

Table 2-28 — Error Codes for. ResetChangeLoq()

errorCode errorDescription Description
400-499 TBD See UPnP Device Architecture clause on Control.
500-599 TBD See UPpP<Device Architecture clause on Control.
600-699 TBD See UPNP Device Architecture clause on Control.
701 No such sync data The ResetChangeloqg() request failed because the specified
SynclDs argument is invalid.

2.9.14 ResetStatus()
2.9.15

This action allews a caller to reset status of synchronization pairs that are bound to a
synchronization relationship or partnership or pairGroup regardless of current status of the
pair. In other words, the action changes the value of status of a synchronization pair to
"NEW'¢similar to as a newly created synchronization pair.

TAis action is only effective when the policy defined for a synchronization relationship or
partnership or pairGroup is a tracking policy.

The SynclID identifies a synchronization relationship, or a partnership or a pairGroup for
which the status of change log of all objects included in the identified synchronization data
structure will be reseted.

2.9.15.1 Arguments

Table 2-29 — Arguments for ResetStatus|()

Argument Direction Related State Variable

SynclD IN A_ARG_TYPE_ SyncID

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f

— 52 — 29341-15-10 © ISO/IEC:2011(E)

2.9.15.2 Dependency on State

None.

2.9.15.3 Effect on State

None.
2797154 FErrors
Table 2-30 — Error Codes for ResetStatus()
errorCode errorDescription Description

400-499 TBD See UPnP Device Architecture clause on Control.

500-599 TBD See UPnP Device Architecture clause on Control.

600-699 TBD See UPnP Device Architecture clause on Control.

701 Invalid SyncID The ResetStatus() request failed because the specified SyncID

argument is invalid.

2.9.16 GetSyncStatus()

This action returns the status of the current synghronization operation identified by the
SyncID. If the synchronization operation is completed, then invocation of this action returns
the status of the last synchronization operations’ Therefore, the device MUST keep status of
the last synchronization operation until the next synchronization operation starts.

If the action argument SyncID identifies ‘a synchronization relationship then the SyncStatus
output argument contains the current.value of the A_ ARG _TYPE SyncStatus state variable.
If the action argument SyncID ideftifies a partnership then the SyncStatus output argument
contains the status information of that specific partnership contained in the
A ARG _TYPE SyncStatus state variable. If the action argument SyncID identifies a
pairGroup then the SyncStatus output argument contains the status information of that
specific pairGroup contained in the A ARG TYPE SyncStatus state variable.

2.9.16.1 Arguments

Table 2-31 — Arguments for GetSyncStatus()

Argument Direction Related State Variable
Synchd IN A ARG _TYPE SyncID
SyhcStatus ouT A ARG TYPE SyncStatus

279 16 2 Dplnpndpnr‘y an _State

None.

2.9.16.3 Effect on State

None.

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f

29341-15-10 © ISO/IEC:2011(E)

2.9.16.4 Errors

Table 2-32 — Error Codes for GetSyncStatus()

errorCode errorDescription Description
400-499 TBD See UPnP Device Architecture clause on Control.
500-599 TBD See UPnP Device Architecture clause on Control.
600-699 TBD See UPNP Device Architecture clause on Control
701 No such sync data The StartSync() request failed because the specified SynclD
argument is invalid.

2.9.17 Non-Standard Actions Implemented by a UPnP Vendor

To facilitate certification, non-standard actions implemented by UPnP vendors should be
included in this service template. The UPnP Device Architecture lists paming requirements

for non-standard actions (see the clause on Description).

2.9.18 Common Error Codes

The following table lists error codes common to actions for this;service type. If a given action

results in multiple errors, the most specific error MUST be returned.

Table 2-33 — Common Epror Codes

errorCode errorDescription Description

400-499 TBD See UPnP Device Architecture clause on Control.

500-599 TBD See UPnPtDevice Architecture clause on Control.

600-699 TBD See UPnP Device Architecture clause on Control.

701 No such sync data The.action request failed because the specified sync data is invalid.

702 Invalid XML The action failed because given XML fragment violates the XML
schema

703 Invalid action caller | The action failed because the action caller is a part of the sync
data.

704 Partner-Timeout The action failed because the sync data structure could not be
modified due to time out of the partner device.

705 Partrier not online The action failed because partner device is not in the network.

706 Update in-progress The action failed because another action request is still being
processed.

707 Stale data The action failed because the sync data is stale.

708 No such object The action failed because the specified_object is invalid.

709 Invalid pair The action failed because the specified sync pair is invalid.

710 Inactive state The action failed because given sync data is inactive.

711 Sync operation in- The action failed because the sync operation of the specified sync

progress data is in-progress.
712 Cannot process the | The action failed because the ContentSync service was unable to
request complete the necessary computations in the time allotted.

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f

— 54 — 29341-15-10 © ISO/IEC:2011(E)

2.10 Theory of Operation
2.10.1 Introduction

This clause shows several scenarios to illustrate the various actions supported by the
ContentSync service. These include synchronization relationship creation and deletion,
transferring synchronization data structures in preparation for a synchronization operation,
performing a synchronization operation and terminating a synchronization operation.

2.10.2 CDS Synchronization

In order to synchronize objects between two CDSs, a control point must first establish’ a
synchronization relationship and then create synchronization pair(s) that determine§“which
CDS object(s) will be synchronized. After creating the synchronization relationship“and its
synchronization pair(s), the control point can execute the synchronization operation. Once
the initial synchronization operation is successfully done (to establish the basis 6f a common
set of objects between the partners), two CDSs maintain same synchkonization pair(s)
information for the CDS synchronization object. When an object is (changed after the
synchronization, the CDS implementation must recognize which object isrchanged and then
provide information about that object as a change log when thesnext synchronization is
triggered by the control point.

The following shows the example sequence of the lifetime ofsynChronization.

Example Sequence

e Synchronization setup

e Creation of minimally complete synchronization data structure

e Creation of synchronization pair.

e Creation of policy for an synchronization pair (i.e. A3) that overrides partnership
policy

e Trigger first synchronization operation
e Update Objects in partner &
e Update (delete) Objects_in partner 2
e Trigger subsequentisynchronization operation
e Update synchrgnization data structure

e Synchronize‘syhchronization data structure
2.10.2.1 Synchronization Setup

In ordér)to demonstrate how the ContentSync service works, let us consider the following
logical structure of two separate CDSs. The content in Partner 1 includes two music items
andtone container. The content in Partner 2 includes only a single music item. The logical
directory hierarchies for each CDS are presented as follows:

[Partner 1 CDS hierarchy]

¢ Name="Content", ID="A0"
e Name="Would - Alice In Chains.wma", ID="A1", Size="90000"
e Name="My Music", ID="A2"
e Name="Chloe Dancer - Mother Love Bone.mp3", ID="A3", Size="200000"

[Partner 2 CDS hierarchy]

¢ Name="My Multimedia Content", ID="B0"

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f

29341-15-10 © ISO/IEC:2011(E) — 55 —

e Name="Alice In Chains", ID="B1", Size="90000"
e Name="Wonder - Tell Me", ID="B4", Size="500000"
Figure 8 shows a visual representation of two CDS hierarchies above and which object is to

be synchronized (see a solid line between objects) in order to provide better understanding of
the example.

Partner 1 Partner 2

Synchronization

< Relationship > @

/ \
/ \
/ X
\
v
¥ Y
\ /

Figure 8 — Synchronization Relationship between two CDSs

Let us consider that object A1 and B1 are to be synchronized with each other and object A2
is to be synchronized under object BO and object A3.is to synchronize under a new container
object which will be created while synchronizing object A2 and object B4 is to be
synchronized under object AO. In order to perform this synchronization operation, a control
point first MUST create a new synchronization relationship and then, create new
synchronization pairs for each of the three-objects that are to be synchronized. Metadata and
resources for all items in this examplevare expected to synchronize (i.e., each item has
avcs:pair and res@avcs:syncAllowed~properties.). Let us also assume that the example will
create only single partnership and single pairGroup in the synchronization relationship.

The following subclauses deseribe how a synchronization relationship between two devices is
established and synchronization objects in these two devices are synchronized with each
other. Table 2-34 summarizes which action will be invoked for each step of sequence in this
example.

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f

— 56 — 29341-15-10 © ISO/IEC:2011(E)

Table 2-34 — Actions for example sequence

Task Related Action Task Result
Creating a synchronization data AddSyncData() 1 paerro_up _N|th|n 1 _partn_ershlp within 1
structure synchronization relationship
4 synchronization pairs as shown below.
Control point invokes invokes
AddSyncPair() on Partner 1 for pairs 1, 2,
and 3. Control point invokes AddSyncPair()
on partner 2 for 4
1. A1-B1 pair
. N . . ‘ _
Creating a synchronization pair AddSyncPair() 2. A2-new object (B2) (that will be created
under the container object (B0))
3. A3-new object (B3) (that will be‘ereated
under the object B2)
4. B4-new object (A4) (that will be created
under the container object'(A0))
Initiating a synchronization operation StartSync() Patners start the operation
Performing a synchronization operation | GetChangelog() Updated CDS
Resetting a change log ResetChangelog() Reset a change\log of an object

2.10.2.2 Creating a Complete Synchronization Data Structure

To create a synchronization relationship, the control pdint first invokes the AddSyncData()
action with a minimally complete synchronization data-Structure on one of the synchronization
partner devices. It is immaterial which parter of the.rélationship that the control point invokes
the AddSyncData() action on, however, for this example it will be assumed to be Partner 1.

Request: (Control point to Partner 1)

AddSyncData("", ", "
<syncRelationship id="" active="1" xXmiIns="urn:schemas-upnp-org:cs"

xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

Xxsi:schemalLocation=""urn:schemas-upnp-org:cs
http://www._upnp.org/schemas/cs/cs-v1-20070XXXX.xsd"">

<title>Sync between My MP3R/and Home Media Server</title>

<partnership id="" active="1">

<partner id="1">
<deviceUDN>343bd2a2-189b-40c0-8eb5-ea91ea730402</deviceUDN>
<servicelD>service ID_A</servicelD>

</partner>

<partner id="2*>
<deviceUDN>05de2732-5df5-4c48-922b-12¥73473F0e9</deviceUDN>
<servicedD>service_ID_B</servicelD>

</partner>

<policy:>
<syncjlype>merge<syncType>
<priorityPartneriD>1</priorityPartneriD>

</policy>

<pairGroup id="" active="1"></pairGroup>

</partnership>

</syncRelatironship>

):

Upon receiving this action invocation, Partner 1 will initialize its internal data structures for
the relationship and then Partner 1 invokes the AddSyncData() action on Partner 2 with its
deviceUDN as the ActionCaller argument in order to propagate the synchronization data
structure to Partner 2. The difference between the call from the control point to Partner 1 to
initialize the relationship and the call between Partner 1 and Partner 2 to propagate this
information is that the latter invocation of AddSyncData() includes device UDN as the first
argument of the action and the values of synchronization relationship, partnership and
pairGroup ID are not the empty strings. Receiving this call, Partner 2 understands by the
initialized values of the synchronization relationship, partnership and pairGroup IDs and by

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f

29341-15-10 © ISO/IEC:2011(E) — 57 —

the presence of a deviceUDN as the ActionCaller argument that this is an initialized
synchronization relationship and it does not need to propagate the information further.

Request: (Partner 1 to Partner 2)

AddSyncData(''343bd2a2-189b-40c0-8eb5-ea91ea730402", ", "
<syncReIat|onsh|p id="d8c9fal3- d79b 4a0c-999b- 6ae2ff91a46d" active="1"
xmlns=""urn:schemas-upnp-org:cs"
xmlns xsd= "http //www w3 org/2001/XMLSchema"

AT l NNo - AS l - I Il._l._p I I VVWVV . VVJ () | UI LUUJ.I /\IVII_\)\,I 1ICIa= l "o l..al I\,C

xsi:schemalLocation=""urn:schemas-upnp-org:cs
http://www.upnp.org/schemas/cs/cs-v1-20070XXXX.xsd">

<title>Sync between My MP3P and Home Media Server</title>

<partnership id="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6" active=""1">
<partner id=""1">
<deviceUDN>343bd2a2-189b-40c0-8eb5-ea91ea730402</deviceUDN>
<servicelD>service_ID_A</servicelD>

</partner>

<partner id="2">
<deviceUDN>05de2732-5df5-4c48-922b-1273473f0e9</deviceUDN>
<servicelD>service_ID_B</servicelD>

</partner>

<policy>
<syncType>merge<syncType>
<priorityPartnerlID>1</priorityPartneriD>

</policy>

<pairGroup id="ba8e57de-7f66-4102-ae4b-31b96c86F173" cactive=""1""/>

</partnership>

</syncRelationship>

");

At this point, Partner 2 intializes its internal data structures with the relationship and returns a
success or failure response to Partner 1.

Response: (Partner 2 to Partner 1)

AddSyncData(""
<syncRelationship id="d8c9fal3-d79b-4a0c-999b-6ae2ff91a46d" active=""1"

xmIns=""urn:schemas-upnp-org:es"’
xmIns:xsd="http://www.w3.0rg/2001/XMLSchema""
xmIns:xsi="http://www.w3 {0rg/2001/XMLSchema-instance"

Xxsi:schemaLocation=""urn:schemas-upnp-org:cs
http://www_upnp.org/sehemas/cs/cs-v1-20070XXXX.xsd">

<title>Sync between My“MP3P and Home Media Server</title>

<partnership id="aPe4d0a7-3378-4f17-8af2-3f7de3345dc6" active="1">
<partner id="1">
<deviceUDN>343bd2a2-189b-40c0-8eb5-ea91ea730402</deviceUDN>
<servicelD>seprvice_ID_A</servicelD>

</partner>

<partner_“d="2">
<deviceUbN>05de2732-5df5-4c48-922b-12F73473f0e9</deviceUDN>
<servicelD>service_ID_B</servicelD>

</partner>

<policy>
<syncType>merge<syncType>
<priorityPartnerliD>1</priorityPartneriD>

</policy>

<pa|rGroup id=""ba8e57de-7f66-4102-ae4b-31b96c86F173" active="1"/>
</partnership>
</syncRelationship>

");

Only after receiving the response from the call to Partner 2 can Partner 1 responsd to the
original AddSyncData() action.

Response: (Partner 1 to Control Point)

AddSyncData(""
<syncRelationship id="d8c9fal3-d79b-4a0c-999b-6ae2ff91a46d" active=""1"

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f

— 58 — 29341-15-10 © ISO/IEC:2011(E)

xmlns=""urn:schemas-upnp-org:cs"
xmIns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="urn:schemas-upnp-org:cs
http://www_upnp.org/schemas/cs/cs-v1-20070XXXX.xsd">
<title>Sync between My MP3P and Home Media Server</title>
<partnership id="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6" active="1">
<partner id="1">
<deviceUDN>343bd2a2-189b-40c0-8eb5-ea91ea730402</deviceUDN>

<servicelD>service_ID_A</servicelD>
<Ipn rtner>

<partner id="2">
<deviceUDN>05de2732-5df5-4c48-922b-12¥73473f0e9</deviceUDN>
<servicelD>service_ID_B</servicelD>

</partner>

<policy>

<syncType>merge<syncType>
<priorityPartnerlID>1</priorityPartnerlID>

</policy>
<pairGroup id="ba8e57de-7f66-4102-ae4b-31b96c86F173" active="1"/>
</partnership>
</syncRelationship>
")

2.10.2.3 Creating a Synchronization Pair

After creating the synchronization relationship, the control\point creates the necessary
synchronization object pairs and associates the pairs with thie*synchronization relationship. In
this example, object A1 and object B1 are to be synchrofized with each other and objects A2
and A3 are to be synchronized with the objects that wil]\be created during the synchronization
operation.

Creating the pair between object A1l and Bl

In the next step of the process, the congfol point establishes the synchronization pairs that
will be used as part of the synchronization relationship. In order to do this, the control point
invokes the AddSyncPair() action,on_one of the Partners. It must specify the local ID of the
object on the partner that it is inveking as a parameter. The object ID on the other partner is
carried as an element of the sync-pair data structure. Note that the pair between Al and Bl is
Scenario 1 pairing according\to the definition of a synchronization pair, where both objects
currently exist within their«espective CDS.. See 2.2.1 Synchronization Object and Pair for
details.

Request: (Control Boint to Partner 1)

AddSyncPair (i, " AL, ™
<avcs:pailr Xmkns:avcs="'urn:schemas-upnp-org:cs:avcs"
xmiIns:xsi=¥http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation=""urn:schemas-upnp-org:cs:avcs
http:Y/www.upnp.org/schemas/cs/avcs-v1-2007xxxx.xsd""
syneRelationshiplD="d8c9fal3-d79b-4a0c-999b-6ae2ff9lad46d""
partnershiplD="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6""
pairGrouplD="ba8e57de-7f66-4102-ae4b-31b96c86F173"">
<avcs:remoteObjID>Bl</avcs:remoteObjID>

</avcs:palr>

):

Note: a control can know 3 input IDs for the avcs:pair property by invoking the GetSyncData()
action of which purpose is to retrieve a synchronization data structure kept by the device.

Upon receiving the invocation of the AddSyncPair() action, the Partner must initialize its
internal data structures and propagate the call to the other partner in the relationship. In
order to create a pair, the partner 1 device which received the AddSyncPair() action invokes
the AddSyncPair() action on the partner 2 based-on the information described above. The
AddSyncPair() action call to propagate the call from the control point includes device UDN as
the first argument of the action. See clause 2.9.6 for details on AddSyncPair() action.

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f

29341-15-10 © ISO/IEC:2011(E) — 59 —

Request: (Partner 1 to Partner 2)

AddSyncPair(*'343bd2a2-189b-40c0-8eb5-ea91ea730402", "B1", ™

<avcs:pair xmlns:avcs="urn:schemas-upnp-org:cs:avcs"
xmIns:xsi="http://www.w3_.0rg/2001/XMLSchema-instance"
Xxsi:schemaLocation=""urn:schemas-upnp-org:cs:avcs

http://www.upnp.org/schemas/cs/avcs-v1-2007xxxx.xsd""

syncRelationshiplD="d8c9fal3-d79b-4a0c-999b-6ae2ff9la46d""
partnershiplD=""ale4d0a7-3378-4f17-8af2-3f7de3345dc6""
pairGrouplD="ba8e57de-7f66-4102-ae4b-31b96c86F173"">

avio .o CIIIUtCGIUJ =D I:‘\l llaVbD. 1 CIIIUtCCIUJ :D
</avcs:pair>
s
Response: (Partner 2 to Partner 1)

AddSyncPair("")

After receiving the second AddSyncPair() action response, the partner 1 reSponds to the first
AddSyncPair() action.
Response: (Parnter 1 to Control Point)

AddSyncPair(Q);
Creating the pair for object A2

In this case, only one AddSyncPair() action must beiqvoked on the partner 1 because there
is no corresponding remote object on partner 2. In other words, the partner 1 does not invoke
the second AddSyncPair() action to propagate the pair information. Instead of the
remoteObjlD property, object A2 includes thexremoteParentObjlD property.

Request: (Control Point to Partner 1)

AddSyncPair(", "A2", "
<avcs:pair xmlns:avcs="urn:schemas-upnp-org:cs:avcs"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
Xsi:schemaLocation=""urn:schemas-upnp-org:cs:avcs
http://www.upnp.org/schemas/cs/avcs-v1-2007xxxx.xsd""
syncRelationshiplD="d8e9fal3-d79b-4a0c-999b-6ae2ff9la46d"
partnershiplD=""ale4dQa7-3378-4f17-8af2-3f7de3345dc6""
pairGrouplD="ba8e57de-7f66-4102-ae4b-31b96c86F173"">
<remoteParentObj 1D>B0</avcs:remoteParentObj I1D>
</avcs:pair>

);

Responsei(Parnter 1 to Control Point)

AddSyncPair(Q);

Creating the pair for object A3 with the policy overriding

In this case, the AddSyncPair() action is invoked on the partner 1 only because the partner 2
does not contain the object to be synchronized with. In other words, the partner 1 does not
invoke the second AddSyncPair() action to propagate pair information. Instead of the
remoteObjlD property, object A2 includes the virtualRemoteParentObjlD property.

Request: (Control Point to Parnter 1)

AddSyncPair("", "A3", "
<avcs:pair xmlns:avcs="urn:schemas-upnp-org:cs:avcs"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
Xsi:schemalLocation=""urn:schemas-upnp-org:cs:avcs
http://www.upnp.org/schemas/cs/avcs-v1-2007xxxx.xsd"

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f

— 60 — 29341-15-10 © ISO/IEC:2011(E)

syncRelationshiplD="d8c9fal3-d79b-4a0c-999b-6ae2ff91lad46d""
partnershiplD=""a0e4d0a7-3378-4f17-8af2-3f7de3345dc6""
pairGrouplD="ba8e57de-7f66-4102-ae4b-31b96c86F173"">
<avcs:virtualRemoteParentObj1D>A2</avcs:virtualRemoteParentObj ID>
<avcs:policy>
<avcs:syncType>replace</avcs:syncType>
<avcs:priorityPartnerlID>1</avcs:priorityPartneriD>
</avcs:policy>
</avcs:pair>

);

Response: (Partner 1 to Control Point)

AddSyncPair(Q);
Creating the pair for object B4

Similar to creating the pair for object A2, only one AddSyncPair() action mustbe invoked on
the partner 2 because there is no corresponding remote object on partner @:

Request: (Control Point to Partner 2)

AddSyncPair('™", "B4", "

<avcs:pair xmlns:avcs="urn:schemas-upnp-org:cs:avcs"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance™
xsi:schemalLocation="'urn:schemas-upnp-org:cs:avcs
http://www.upnp.org/schemas/cs/avcs-v1-2007xxxx _xXsd"
syncRelationshiplD="d8c9fal3-d79b-4a0c-999b-6ae2ff91a46d""
partnershiplD="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6""
pairGrouplD="ba8e57de-7f66-4102-ae4b-31b96c86F173"">
<avcs:remoteParentObj1D>A0</avcs:remoteParentdbj 1D>

</avcs:pair>

);

Response: (Parnter 2 to Control Point)

AddSyncPair(Q);

By one AddSyncData() action and four AddSyncPair() action calls, the synchronization data
structure for this example.is established. After creating the synchronization data structure, a
control point can trigger a'synchronization operation with relationship ID or partnership ID or
pairing ID at any time.

2.10.2.4 Synchronizing CDS
In order ta/synchronize two CDSs, a control point invokes the StartSync() action on either of

the two_partners as shown below. In this example, a synchronization relationship ID is used
to trigger the CDS to start the synchronization operation.

Request: (Control Point to Partner 1)

StartSync (""", "d8c9fal3-d79b-4a0c-999b-6ae2ff91a46d™);
The device that receives this action invokes StartSync() action on Partner 2 subsequently.

Request: (Partner 1 to Partner 2)

StartSync("'343bd2a2-189b-40c0-8eb5-ea91ea730402", '"d8c9fal3-d79b-4a0c-999b-
6ae2ff91a46d™);

Response: (Parnter 2 to Partner 1)

StartSync();

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f

29341-15-10 © ISO/IEC:2011(E) — 61 —

After receiving the second action response, the partner 1 responds to the first StartSync()
action.

Response: (Partner 1 to Control Point)

StartSync();

Getting Change Log:

After the partner devices respond to the StartSync() action successfully, the partner devices
perform the synchronization operation simultaneously. To get synchronization objectsas a
change log, the embedded control points in the partners invoke GetChangelog() actionwhich
is shown below.

Since during the first synchronization operation, some of the objects neednto be created
under a container object which itself needs to be created as well, the order how objects are
to be synchronized should be handled very carefully.

The partner 1 gathers the DIDL-Lite XML document as a change logas-shown below.

Request: (Partner 1 to Partner 2)

GetChangelLog(*'d8c9fal3-d79b-4a0c-999b-6ae2ff91a46d", @, '0);

Response: (Partner 2 to Partner 1)

GetChangeLog(*"

<?xml version="1.0" encoding="UTF-8"?>

<DIDL-Lite xmIns:dc="http://purl.org/dc/elements/1.1/"
xmIns=""urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/""
xmIns:upnp=""urn:schemas-upnp-org:metadata-1-0/upnp/**
xmIns:avcs="urn:schemas-upnp-org:cssavcs"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="urn:schemas~upnp-org:metadata-1-0/DIDL-Lite/
http://upnp.org/standardizeddcps/schemas/avwc/didl-lite/2.00
urn:schemas-upnp-org:metadata-1-0/upnp/
http://upnp.org/standardizeddcps/schemas/avwc/upnp/2.00
urn:schemas-upnp-org:cs:avcs
http://www.upnp.org/schemas/cs/avcs-v1-2007xxxx.xsd" >

<item id="B1" parentID="B0" restricted="1">
<dc:title>Alice Im Chains</dc:title>
<upnp:class>object<item_audioltem.musicTrack</upnp:class>
<res protocol lInfo="http-get:*:audio/x-ms-wma:*" size="90000"

http://10.070.2/getcontent.asp?id=1

</res>

<avcs:syncable/>

<avcs-synclinfo updatelD=""0">

<aves:pair
SyncRelationshiplD="d8c9fal3-d79b-4a0c-999b-6ae2ff91la46d""
partnershiplD="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6""
pairGrouplD="ba8e57de-7f66-4102-ae4b-31b96c86F173"">

<avCs: rﬂmnfﬂﬂhj 1ID>Al</avess: rnmnfnnhj 1D>

<avcs:status>NEW</avcs:status>
</avcs:pair>
</avcs:synclnfo>
</item>
<item id="B4" parentlD="B0" restricted="1">
<dc:title>Wonder - Tell Me</dc:title>
<upnp:class>object. item_audioltem.musicTrack</upnp:class>
<res protocolInfo="http-get:*:audio/mpeg:*" size="500000"
avcs:syncAllowed="ALL" avcs:resModified="0">
http://10.0.0.2/getcontent._asp?id=4
</res>
<avcs:syncable/>
<avcs:synclnfo updatelD="0">
<avcs:pair

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f

— 62 — 29341-15-10 © ISO/IEC:2011(E)

syncRelationshiplD="d8c9fal3-d79b-4a0c-999b-6ae2ff91la46d""
partnershiplD="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6""
pairGrouplD="ba8e57de-7f66-4102-ae4b-31b96c86F173"">
<avcs:remoteParentObj1D>A0</avcs:remoteParentObj 1D>
<avcs:status>NEW</avcs:status>
</avcs:pair>
</avcs:synclnfo>
</item>
</DIDL-Lite>
", 1, 1);

When partner 1 processes the received change log, it does not update object Al as the
object in the partner 2 does not have any new properties that can be added to the objeet Al
in the partner 1. In this example, object Al in partner 1 has the precedence over objeet B1 in
partner 2 as defined in the synchronization policy. Therefore, the dc:title property.-of the
partner 1 in this example is not updated by synchronization. In addition, therg are no
corresponding objects for object A2 and A3 in the change log because the, corresponding
objects will be created in the partner 2 by synchronization.

For object B4 in partner 2, partner 1 creates a new object under the container object AO that
is specified in the remoteParentObjID element of the avcs:pair in ther change log as partner 1
does not have a corresponding pair object for object B4. While \créating the new object,
partner 1 accepts all properties and a resource from object B4. l{et us assume that the newly
created object has A4 as the value of object@id property. This_object A4 is now associated
with object B4, which means that the value of the remote©bjlD element is B4 as shown
below:

<item id="A4" parentlD="A0" restricted="1">
<dc:title>Wonder - Tell Me</dc:title>
<upnp:class>object. item.audioltem.musicTrack</upnp:class>
<res protocolInfo="http-get:*:audio/mpeg:** Ssize="500000"
avcs:syncAllowed="ALL" avcs:resModified="0">
http://10.0.0.1/getcontent._asp?id=4
</res>
<avcs:syncable/>
<avcs:synclnfo updatelD="0"">
<avcs:pair
syncRelationshiplID="d8c9fal8-d79b-4a0c-999b-6ae2ff91a46d"
partnershiplD="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6""
pairGrouplD="ba8e57de-7f66-4102-ae4b-31b96c86F173"">
<avcs:remoteObj ID>B4</avCs:remoteObj1D>
<avcs:status>SYNC"ED</avcs:status>
</avcs:pair>
</avcs:synclinfo>
</item>

After finishingCthe update, partner 1 sends an event message to notify the status of the
operation. The following is an example of an event message for object A1 and A4 in the
partner 1.

GENAMessage: (Partner 1 to Partner 2)

<2xml version="1.0" encoding=""utf-8">
<Q\J/nr‘Qf:|f| 1Sl Ipdnfn xmlns=""urn:-schemas-1 PAP=0rg: cs!

xmIns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="urn:schemas-upnp-org:cs
http://www_upnp.org/schemas/cs/cs-v1-20070XXXX_xsd">
<syncRelationship i1d="d8c9fal3-d79b-4a0c-999b-6ae2ff91a46d">
<status numberOfTotalObjects="2" numberOfCompletedObjects="2"
numberOfFailedObjects="0">
COMPLETED_ALL
</status>
<partnership id="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6"">
<status numberOfTotalObjects="2" numberOfCompletedObjects=""2"
numberOfFailedObjects="0">
COMPLETED_ALL
</status>

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f

29341-15-10 © ISO/IEC:2011(E) — 63 —

<pairGroup id="ba8e57de-7f66-4102-ae4b-31b96c86F173">

<status numberOfTotalObjects="2" numberOfCompletedObjects="2"
numberOfFailedObjects="0">
COMPLETED_ALL

</status>

<logEntry>
<localObjectID>Al</localObjectiID>
<remoteObjectlD>Bl</remoteObjectID>
<statusCode>001</statusCodes>

<statusDescription>Succeeded completely</statusDescription>
</1 ogEntry>

<logEntry>
<localObjectID>A4</localObjectID>
<remoteObjectlD>B4</remoteObjectlD>
<statusCode>001</statusCodes>
<statusDescription>Succeeded completely</statusDescription>
</logEntry>
</pairGroup>
</partnership>
</syncRelationship>
</SyncStatusUpdate>

The GENA event message above is sent for the entire change log entry regardless of
synchronization status. However, the partner device explictly invokes/the ResetChangeloq()
action to Partner 2 in order to inform that an individual object ih“change log is successfully
synchronized.

Request: (Partner 1 to Partner 2)

ResetChangelLog(*'d8c9fal3-d79b-4a0c-999b-6ae2ff9la46d", "
<ResetObjectList xmIns="urn:schemas-upnp-org:cs
xmIns:xsd="http://www.w3.0rg/2001/XMLSchema®
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="urn:schemas-upnp-org:cs
http://www_upnp.org/schemas/cs/cs-v1-20070XXXX._xsd">
<object i1d="B1l" remoteObjID=""Al1" updatelD="0"/>
<object id="B4" remoteObjID=""A4" updatelD="0"/>
</ResetObjectList>
")

Response: (Partner 2 to Partner 1)

ResetChangeLog();

When the partner 2 receives the ResetChangelLog() action, it can now change the value of
the avcs:status property of the object B1 and B4 to "SYNC'ED"

The partnerZ-gathers the DIDL-Lite XML document as change log as shown below:
Request;‘(Partner 2 to Partner 1)

GetChangelLog("d8c9fal3-d79b-4a0c-999b-6ae2ff91a46d", 0, 0);

Response: (Partner 1 to Partner 2)

GetChangeLog("'

<?xml version="1.0" encoding="UTF-8"?>

<DIDL-Lite xmlIns:dc="http://purl.org/dc/elements/1.1/"
xmlns=""urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/"
xmlIns:upnp=""urn:schemas-upnp-org:metadata-1-0/upnp/"
xmIns:avcs="urn:schemas-upnp-org:cs:avcs"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/
http://upnp.org/standardizeddcps/schemas/avwc/didl-1ite/2.00
urn:schemas-upnp-org:metadata-1-0/upnp/
http://upnp.org/standardizeddcps/schemas/avwc/upnp/2.00
urn:schemas-upnp-org:cs:avcs

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f

— 64 — 29341-15-10 © ISO/IEC:2011(E)

http://www._upnp.org/schemas/cs/avcs-v1-2007xxxx.xsd"">

<item id="Al" parentlD="0" restricted=""1">

<dc:title>Would - Alice In Chains.wma</dc:title>

<upnp:class>object.item_audioltem.musicTrack</upnp:class>

<res protocolInfo="http-get:*:audio/x-ms-wma:*""
size=""90000"avcs:syncAllowed="ALL" avcs:resModified="0">
http://10.0.0.1/getcontent.asp?id=Al

</res>

<avcs:syncable/>

<avcs:synclinfo updatelD=""0">
<avecs-pair

syncRelationshiplD="d8c9fal3-d79b-4a0c-999b-6ae2ff91la46d""
partnershiplD="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6""
pairGrouplD="ba8e57de-7f66-4102-ae4b-31b96c86F173"">
<avcs:remoteObjID>Bl</avcs:remoteObj D>
<avcs:status>NEW</avcs:status>
</avcs:pair>
</avcs:synclnfo>
</item>
<item id="A2" parentlD="AQ0" restricted="1">
<dc:title>My Music</dc:title>
<upnp:class>object.container.album</upnp:class>
<avcs:syncable/>
<avcs:synclnfo updatelD="0">
<avcs:pair
syncRelationshiplD="d8c9fal3-d79b-4a0c-999b-6ae2ff91a46d""
partnershiplD="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6"!
pairGrouplD="ba8e57de-7f66-4102-ae4b-31b96c86F173"'>
<avcs:remoteParentObj1D>B0</avcs:RemoteParentObj D>
<avcs:status>NEW</avcs:status>
</avcs:pair>
</avcs:synclInfo>
</item>
<item id="A3" parentlD=""A2" restricted="1">
<dc:title>Chloe Dancer - Mother Love Bone.mp3</dc:title>
<upnp:class>object. item_audioltem.musicFrack</upnp:class>
<res protocolInfo="http-get:*:audio/mpeg:*" size="200000"
avcs:syncAllowed="ALL" avcs:resModified="0">
http://10.0.0.1/getcontent.asp?id=A3
</res>
<avcs:syncable/>
<avcs:synclnfo updatelD="0">
<avcs:pair
syncRelationshiplD="d8c9fal3-d79b-4a0c-999b-6ae2ff91a46d""
partnershiplD="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6"
pairGrouplD="ba8e57de~7f66-4102-ae4b-31b96c86F173"">
<avcs:virtualRemoteRarentObjID>A2</avcs:virtualRemoteParentObj ID>
<avcs:policy>
<avcs:syncType>replace</avcs:syncType>
<avcs:priorityPartnerlID>1</avcs:priorityPartneriD>
</avcs:poliey>
<avcs:statys>NEW</avcs:status>
</avcs:painr>
</avcs:synclInfo>
</iten>
</DIDL<Lite>
"1 31 3)

When partner 2 processes the received change log, it updates its object B1 with dc:title and

downloads a resource from partner 1 because the object in partner 1 is new to partner 2 and
the object in partner 2 does not take precedence by the synchronization policy.

For object A2 in partner 1, partner 2 creates a new object under the container object BO that
is specified in the remoteParentObjlD element of the avcs:pair in the change log as partner 2
does not have a corresponding pair object for object A2. While creating the new object,
partner 2 accepts all properties and a resource from object A2. Let us assume that the newly
created object has B2 as the value of @objectlD property. This object B2 is now associated
with object A2, which means that the value of the remoteObjlID element is A2 as shown
below:

<item id="B2" parentlD="B0" restricted="1">

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f

29341-15-10 © ISO/IEC:2011(E) — 65 —

<dc:title>My Music</dc:title>

<upnp:class>object.container.album</upnp:class>

<avcs:syncable/>

<avcs:synclnfo updatelD="0"">

<avcs:pair
syncRelationshiplD="d8c9fal3-d79b-4a0c-999b-6ae2ff91a46d""
partnershiplD=""a0e4d0a7-3378-4f17-8af2-3f7de3345dc6""
pairGrouplD="ba8e57de-7f66-4102-ae4b-31b96c86F173">

<avcs:remoteObjID>A2</avcs:remoteObj1D>

<avcs:status>SYNC"ED</avcs:status>
</Javes-palr>

</avcs:synclinfo>
</item>

For object A3 in partner 1, partner 2 creates a new object under the newly-created container
object (i.e. B2) during processing of object A2 as shown above. Let us assume,that newly
created object has B3 as the value of the @objectID property. The
virtualRemoteParentObjID> element of the avcs:pair in the change log is replaced with the
remoteObjlD element when creating this new object. This object B3 is now.'associated with
object A3, which means that the value of the remoteObjlD element is A3 as’shown below.

<item id="B3" parentlD="B2" restricted="1">
<dc:title>Chloe Dancer - Mother Love Bone.mp3</dc:title>
<upnp:class>object.item.audioltem.musicTrack</upnp:class>
<res protocolInfo="http-get:*:audio/mpeg:*""
size="200000"avcs:syncAllowed=""ALL" avcs:resModified=0">
http://10.0.0.2/getcontent.asp?id=B3
</res>
<avcs:syncable/>
<avcs:synclnfo updatelD="0"">
<avcs:pair
syncRelationshiplD="d8c9fal3-d79b-4a0c-999b-6ae2ff9lad6d""
partnershiplD="a0e4d0a7-3378-4f17-8af2-3F/de3345dc6""
pairGrouplD="ba8e57de-7f66-4102-ae4b-31096c86F173"">
<avcs:remoteObj ID>A3</avcs:remoteObj 1D
<avcs:policy>
<avcs:syncType>replace</avcs:synclype>
<avcs:priorityPartnerlID>1</avcs:ipriorityPartnerID>
</avcs:policy>
<avcs:status>SYNC"ED</avcs:status>
</avcs:pair>
</avcs:synclnfo>
</item>

After finishing updates.for each object, partner 2 sends an event message to notify the status
of each update operation. The following is an example of an event message that is sent to
partner 1. Here, we Jassume that the first 2 events are sent within a single moderation time
and the third event message will be sent during the next moderation time.

The partnér2'sends a GENA message during the first moderation time as shown below:

GENA-Message: (Partner 2 to Partner 1)

<?xml version="1.0" encoding=""utf-8">
<SyncStatusUpdate xmlns="'urn:schemas-upnp-org:cs""

xmIns:xsd="http://www.w3_.0rg/2001/XMLSchema"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
Xxsi:schemalLocation="urn:schemas-upnp-org:cs
http://www.upnp.org/schemas/cs/cs-v1-20070XXXX.xsd"">
<syncRelationship id="d8c9fal3-d79b-4a0c-999b-6ae2ff91a46d"">
<status numberOfTotalObjects="3" numberOfCompletedObjects="2"
numberOfFailedObjects="0">
IN_PROGRESS
</status>
<partnership id="al0e4d0a7-3378-4f17-8af2-3f7de3345dc6">
<status numberOfTotalObjects="3" numberOfCompletedObjects="2"
numberOfFailedObjects="0">
IN_PROGRESS
</status>

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f

— 66 — 29341-15-10 © ISO/IEC:2011(E)

<pairGroup id="ba8e57de-7f66-4102-ae4b-31b96c86F173">

<status numberOfTotalObjects="3" numberOfCompletedObjects="2"
numberOfFailedObjects="0">
IN_PROGRESS

</status>

<logEntry>
<localObjectID>Bl</localObjectID>
<remoteObjectlD>Al</remoteObjectID>
<statusCode>001</statusCodes>

<statusDescription>Succeeded completely</statusDescription>
</1 ogEntry>

<logEntry>
<localObjectID>B2</localObjectID>
<remoteObjectlID>A2</remoteObjectlD>
<statusCode>001</statusCodes>
<statusDescription>Succeeded completely</statusDescription>
</logEntry>
</pairGroup>
</partnership>
</syncRelationship>
</SyncStatusUpdate>

The partner 2 sends a GENA event message for the second maoderation time as shown
below:

GENA Message: (Partner 2 to Partner 1)

<?xml version="1.0" encoding=""utf-8">
<SyncStatusUpdate xmlns="urn:schemas-upnp-org:cs"
xmIns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="urn:schemas-upnp-org:cs
http://www_upnp.org/schemas/cs/cs-v1-20070XXXX_xsd">
<syncRelationship i1d="d8c9fal3-d79b-4a0c-999b-6ae2ff91a46d">
<status numberOfTotalObjects="3" numberOfCompletedObjects="3"
numberOfFailedObjects="0">
COMPLETED_ALL
</status>
<partnership id="a0e4d0a7-3378-4F17-8af2-3f7de3345dc6"">
<status numberOfTotalObjects="'"3" numberOfCompletedObjects=""3"
numberOfFailedObjects=""0">
COMPLETED_ALL
</status>
<pairGroup id="ba8e57de=-7f66-4102-ae4b-31b96c86F173">
<status numberOfTetalObjects="3" numberOfCompletedObjects="3"
numberOfFailedObjects="0">
COMPLETED_ALL
</status>
<logEntry>
<localOhjectID>B3</localObjectID>
<remoteObjectID>A3</remoteObjectliD>
<statusCode>001</statusCodes>
<statusDescription>Succeeded completely</statusDescription>
</10gEntry>
<f/pairGroup>
</partnership>
</syncRelationship>
</SyncStatusUpdate>

After updating the CDS of Parter 2, it explictly invokes the ResetChangelLog() action to
Partner 1 in order to inform that individual object in change log is successfully synchronized.

Request: (Partner 1 to Partner 2)

ResetChangelLog(*'d8c9fal3-d79b-4a0c-999b-6ae2ff91a46d", ™
<ResetObjectList xmlns="urn:schemas-upnp-org:cs"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
Xxsi:schemaLocation=""urn:schemas-upnp-org:cs
http://www_upnp.org/schemas/cs/cs-v1-20070XXXX.xsd">
<object i1d="Al" remoteObjID="B1" updatelD="0"/>

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f

29341-15-10 © ISO/IEC:2011(E) — 67 —

<object 1d="A2" remoteObjlID=""B2" updatelD="0"/>
<object 1d="A3" remoteObjID=""B3" updatelD="0"/>
</ResetObjectList>

")
Response: (Partner 2 to Partner 1)

ResetChangelLog();

When the partner 1 receives the ResetChangelLog() action, it can now change the value of
the avcs:status property of the object A1, A2 and A3 to "SYNC'ED", repectively. In additian,
the avcs:remoteParentObjlD property of the object A2 and the
avcs:virtualRemoteParentObjlD property of the object A3 are replaced with the
avcs:remoteODbjlD property since the Partner 2 notifies those objects are successfully
synchronized.

After completing the synchronization operation, two CDSs MUST show the following
hierarchies.

CDS hierarchy of the partner 1:

<?xml version="1.0" encoding="UTF-8"?>

<DIDL-Lite xmIns:dc="http://purl.org/dc/elements/1.1/"
xmIns=""urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/"
xmIns:upnp="urn:schemas-upnp-org:metadata-1-0/upnp/"*
xmIns:avcs="urn:schemas-upnp-org:cs:avcs"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/
http://upnp.org/standardizeddcps/schemas/avwe/didl-1ite/2.00
urn:schemas-upnp-org:metadata-1-0/upnp/
http://upnp.org/standardizeddcps/schemas/Zavwc/upnp/2.00
urn:schemas-upnp-org:cs:avcs
http://www._upnp.org/schemas/cs/avcs=v1-2007xxxx.xsd">

<item id="Al" parentlD="A0" restricted="1">
<dc:title>Would - Alice In Chains-wma</dc:title>
<upnp:class>object.item_audioltem.musicTrack</upnp:class>
<res protocolInfo="http-get:*:taudio/x-ms-wma:*" size="90000"

http://10.0.0.1/getcontent.asp?id=Al
</res>
<avcs:syncable/>
<avcs:synclinfo updatelD=""0">
<avcs:pair
syncRelationshiplD="d8c9fal3-d79b-4a0c-999b-6ae2ff91a46d""
partnershiplD="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6""
pairGrouplD=""ba8e57de-7f66-4102-ae4b-31b96c86F173"">
<avcs:remoteObjID>Bl</avcs:remoteObj D>
<avcs:status>SYNC"ED</avcs:status>
</avcspair>
</avesysynclnfo>
</item>
<item id="A2" parentlD="AQ0" restricted="1">
<dc:title>My Music</dc:title>
<upnp:class>object.container.album</upnp:class>

aviec-ovneahla/
S-Sy HEaE1ES/

<avcs:synclnfo updatelD="0">
<avcs:pair
syncRelationshiplD="d8c9fal3-d79b-4a0c-999b-6ae2ff91a46d""
partnershiplD="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6""
pairGrouplD="ba8e57de-7f66-4102-ae4b-31b96c86F173"">
<avcs:remoteObjID>B2</avcs:remoteObj1D>
<avcs:status>SYNC®ED</avcs:status>
</avcs:pair>
</avcs:synclInfo>
</item>
<item id="A3" parentlD="A2" restricted="1">
<dc:title>Chloe Dancer - Mother Love Bone.mp3</dc:title>
<upnp:class>object.item_audioltem.musicTrack</upnp:class>
<res protocolInfo="http-get:*:audio/mpeg:*" size="200000"

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f

— 68 — 29341-15-10 © ISO/IEC:2011(E)

avcs:syncAllowed="ALL" avcs:resModified="0">
http://10.0.0.1/getcontent._asp?id=A3
</res>
<avcs:syncable/>
<avcs:synclnfo updatelD="0">
<avcs:pair
syncRelationshiplD="d8c9fal3-d79b-4a0c-999b-6ae2ff9la46d""
partnershiplD="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6"
pairGrouplD="ba8e57de-7f66-4102-ae4b-31b96c86F173"">

<avcs:remoteObjID>B3</avcs:remoteObj D>
<avCs:t pnl ir~y>

<avcs:syncType>replace</avcs:syncType>
<avcs:priorityPartnerliD>1</avcs:priorityPartneriD>
</avcs:policy>
<avcs:status>SYNC"ED</avcs:status>
</avcs:pair>
</avcs:synclnfo>
</item>
<item id="A4" parentlD="AQ0" restricted="1">
<dc:title>Wonder - Tell Me</dc:title>
<upnp:class>object.item_audioltem.musicTrack</upnp:class>
<res protocolInfo="http-get:*:audio/mpeg:*" size="500000"
avcs:syncAllowed="ALL" avcs:resModified="0">
http://10.0.0.1/getcontent.asp?id=4
</res>
<avcs:syncable/>
<avcs:synclnfo updatelD="0">
<avcs:pair
syncRelationshiplD="d8c9fal3-d79b-4a0c-999b-6ae2ff91a46d""
partnershiplD="a0e4d0a7-3378-4Ff17-8af2-3f7de3345dc6"
pairGrouplD="ba8e57de-7f66-4102-ae4b-31b96c86T173"">
<avcs:remoteObj ID>B4</avcs:remoteObj I1D>
<avcs:status>SYNC®ED</avcs:status>
</avcs:pair>
</avcs:synclnfo>
</item>
</DIDL-Lite>

CDS hierarchy of the partner 2:

<?xml version="1.0" encoding="UTF=8"?>
<DIDL-Lite xmIns:dc="http://purl.org/dc/elements/1.1/"
xmIns=""urn:schemas-upnp-org-metadata-1-0/DIDL-Lite/""
xmIns:upnp="urn:schemas-upnp-org:metadata-1-0/upnp/**
xmIns:avcs="urn:schemas-upnp-org:cs:avcs"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocatiop=urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/
http://upnp.org/standardizeddcps/schemas/avwc/didl-1ite/2.00
urn:schemas-upnp+org:metadata-1-0/upnp/
http://upnp.org/standardizeddcps/schemas/avwc/upnp/2.00
urn:schemas=zupnp-org:cs:avcs
http://wwyupnp.org/schemas/cs/aves-v1-2007xxxx . xsd"">
<item ids2B1" parentlD="B0" restricted="1">
<dc:title>Would - Alice In Chains.wma</dc:title>
<upnp:class>object.item_audioltem.musicTrack</upnp:class>
<res»>protocol Info="http-get:*:audio/x-ms-wma:*" size="90000"
avcs:syncAllowed=""ALL" avcs:resModified="0">
http://10.0.0.2/getcontent.asp?id=B1l
</res>

<avcs:syncable/>
<avcs:synclinfo updatelD="0">
<avcs:pair
syncRelationshiplD="d8c9fal3-d79b-4a0c-999b-6ae2ff91la46d""
partnershiplD="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6""
pairGrouplD="ba8e57de-7f66-4102-ae4b-31b96c86F173"">
<avcs:remoteObjID>Al</avcs:remoteObj D>
<avcs:status>SYNC"ED</avcs:status>
</avcs:pair>
</avcs:synclnfo>
</item>
<item id="B2" parentlD="B0" restricted="1">
<dc:title>My Music</dc:title>
<upnp:class>object.container.album</upnp:class>
<avcs:syncable/>

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f

29341-15-10 © ISO/IEC:2011(E) — 69 —

<avcs:synclinfo updatelD="0">
<avcs:pair
syncRelationshiplD="d8c9fal3-d79b-4a0c-999b-6ae2ff9la46d""
partnershiplD="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6"
pairGrouplD="ba8e57de-7f66-4102-ae4b-31b96c86F173"">
<avcs:remoteObjID>A2</avcs:remoteObj1D>
<avcs:status>SYNC"ED</avcs:status>
</avcs:pair>
</avcs:synclnfo>
</item>
<item 1d=""B3'" parentlD=""B2'" restricted=""1">

<dc:title>Chloe Dancer - Mother Love Bone.mp3</dc:title>
<upnp:class>object.item_audioltem.musicTrack</upnp:class>
<res protocolInfo="http-get:*:audio/mpeg:*" size='"200000"
avcs:syncAllowed="ALL" avcs:resModified="0">
http://10.0.0.2/getcontent._asp?id=B3
</res>
<avcs:syncable/>
<avcs:synclnfo updatelD="0">
<avcs:pair
syncRelationshiplD="d8c9fal3-d79b-4a0c-999b-6ae2ff91la46d""
partnershiplD="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6""
pairGrouplD="ba8e57de-7f66-4102-ae4b-31b96c86F173"">
<avcs:remoteObj ID>A3</avcs:remoteObj I1D>
<avcs:policy>
<avcs:syncType>replace</avcs:syncType>
<avcs:priorityPartneriD>1</avcs:priorityPartneriD>
</avcs:policy>
<avcs:status>SYNC®ED</avcs:status>
</avcs:pair>
</avcs:synclnfo>
</item>
<item id="B4" parentlD="B0" restricted="1">
<dc:title>Wonder - Tell Me</dc:title>
<upnp:class>object.item.audioltem.musicTrack</upnp:class>
<res protocolInfo="http-get:*:audio/mpegi*" size="500000"
avcs:syncAllowed="ALL" avcs:resModifred="0">
http://10.0.0.2/getcontent.asp?id=4
</res>
<avcs:syncable/>
<avcs:synclinfo updatelD="0">
<avcs:pair
syncRelationshiplD="d8c9fal3-d79b-4a0c-999b-6ae2ff9la46d""
partnershiplD="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6"
pairGrouplD="ba8e57de-7t66-4102-ae4b-31b96c86F173"">
<avcs:remoteObjID>A4</avcs:remoteObj1D>
<avcs:status>SYNCHED</avcs:status>
</avcs:pair>
</avcs:synclnfo>
</item>
</DIDL-Lite>

2.10.2.5 Next Synchronization after Changing Objects
2.10.236

Ohjects changed:

If an object is changed since the last synchronization, the DIDL-Lite object keeps track of
which property is changed. In this example, the dc:title property of object Al in partner 1 is
changed and object A3 is deleted. To find out the changed object, the embedded control
point in the partner device uses the GetChangelLog() action. To trigger synchronization
operation, the procedure as described in Clause above needs to be followed.

Getting Change Log:

The partner 1 gets no changed CDS objects as there is no change in objects on the partner 2

in this example.

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f

— 70 — 29341-15-10 © ISO/IEC:2011(E)

However, when the partner 2 calls the GetChangelLogd() action on the partner 1, it will get the
following changed CDS objects..

Request: (Partner 2 to Partner 1)

GetChangeLog(*'d8c9fal3-d79b-4a0c-999b-6ae2ff91a46d", 0, 0);

Response: (Partner 1 to Partner 2)

GetChangeLog(*"
<?xml version="1.0" encoding="UTF-8"?>
<DIDL-Lite xmIns:dc="http://purl._.org/dc/elements/1.1/"
xmlns=""urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/""
xmIns:upnp="urn:schemas-upnp-org:metadata-1-0/upnp/**
xmlns:avcs="urn:schemas-upnp-org:cs:avcs"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation=""urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/
http://upnp.org/standardizeddcps/schemas/avwc/didl-lite/2.00
urn:schemas-upnp-org:metadata-1-0/upnp/
http://upnp.org/standardizeddcps/schemas/avwc/upnp/2.00
urn:schemas-upnp-org:cs:avcs
http://www.upnp.org/schemas/cs/avcs-v1-2007xxxx.xsd"">
<item id="Al" parentlD="0" restricted=""1">
<dc:title>Alice In Chains(Live)</dc:title>
<upnp:class>object.item_audioltem.musicTrack</upnp:class>
<res protocolInfo="http-get:*:audio/x-ms-wma:*""
size=""90000"avcs:syncAllowed="ALL" avcs:resModified="0">
http://10.0.0.1/getcontent._asp?id=Al
</res>
<avcs:syncable/>
<avcs:synclnfo updatelD="1">
<avcs:pair
syncRelationshiplD="d8c9fal3-d79b-4a0c-999b-6ae2ff91a46d""
partnershiplD="a0e4d0a7-3378-4f17-8af2=3f7de3345dc6""
pairGrouplD="ba8e57de-7f66-4102-ae4b-31b96c86F173"">
<avcs:remoteObj ID>Al</avcs: remoteOby'l D>
<avcs:status>MODIFIED</avcs:status>
</avcs:pair>
</avcs:synclinfo>
</item>
<item id="A3" parentlD=""A2">
<avcs:synclinfo updatelD="1%>
<avcs:pair
syncRelationshiplD="d8c9fal3-d79b-4a0c-999b-6ae2ff91la46d""
partnershiplD="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6""
pairGroupID="a8e57de-7f66-4102-ae4b-31b96c86¥173"">
<avcs:remoteObj IID>B3</avcs:remoteObj I1D>
<avcs:status>DELETED</avcs:status>
</avcs:pairs
</avcs:syncinto>
</item>
</DIDL-Lite>
"1 21 2)

Therefore, partner 2 updates the <dc:title> property for object B1 and destroys object B3
based on the rules defined by the synchronization policy.

To confirm that the objects in the received change log are successfully synchronized, the
Partner 2 invokes the GetChangelLog() action with object A1 and A3 information.

Request: (Partner 2 to Partner 1)

ResetChangelLog(*'d8c9fal3-d79b-4a0c-999b-6ae2ff91la46d™, ™
<ResetObjectList xmlns="urn:schemas-upnp-org:cs"
xmIns:xsd="http://www.w3.0rg/2001/XMLSchema""
xmIns:xsi="http://www.w3_.0rg/2001/XMLSchema-instance"
xsi:schemaLocation=""urn:schemas-upnp-org:cs
http://www.upnp.org/schemas/cs/cs-v1-20070XXXX.xsd">
<object i1d="Al" remoteObjID="B1" updatelD="0"/>

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f

29341-15-10 © ISO/IEC:2011(E) — 71—

<object 1d="A3" remoteObjlID=""B3" updatelD="0"/>
</ResetObjectList>
ll) ;

Response: (Partner 1 to Partner 2)

ResetChangeLog(*"'");

When the Partner 1 receives the GetChangelog() action above, it change the value of the

avcs:status of the object A1 and A3 to "SYNC'ED" repectively.

2.10.2.7 Modifications of a Synchronization Data Structure

To explain how to update a synchronization data structure, assume that there, are two
synchronization partners in a synchronization relationship as described in the XML-document
below.

<?xml version="1.0" encoding="UTF-8"?>
<ContentSync xmlns="urn:schemas-upnp-org:cs"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
Xxsi:schemaLocation=""urn:schemas-upnp-org:cs
http://www_upnp.org/schemas/cs/cs-v1-20070XXXX.xsd">
<syncRelationship id="d8c9fal3-d79b-4a0c-999b-6ae2ff9lad6d”™ active="1">
<title>Sync between My iPod and Home Media Server</title>
<partnership id="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6™ active=""1"
updatelD=""0"">
<partner id="1">
<deviceUDN>343bd2a2-189b-40c0-8eb5-ea91ea730402</deviceUDN>
<servicelD>service_ID_A</servicelD>
</partner>
<partner id="2">
<deviceUDN>05de2732-5df5-4c48-922b-12€73473F0e9</deviceUDN>
<servicelD>service_ID_B</servicelD>
</partner>
<policy>
<syncType>merge</syncType>
<priorityPartnerlID>1</priorityPartneriD>

</policy>
<pairGroup id="ba8e57de-7¥66-4102-ae4b-31b96c86F173" active="1"/>
</partnership>

</syncRelationship>

</ContentSync>

The following example’ demonstrates how to update the partnership in the synchronization
relationship by theModifySyncData() action:

Request: (Control Point to Partner 1)

ModifySyncData("""", "ale4d0a7-3378-4Ff17-8af2-3f7de3345dc6",

<partneprship updatelD="0" xmlns="urn:schemas-upnp-org:cs"
xmIgs - xsd=""http://www.w3.0rg/2001/XMLSchema"
xmiIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

Xsi:schemaLocation=""urn:schemas-upnp-org:cs
hffp = LML pAp-oFg [schemas/cs/es=1=20070XXXX xsd

<policy>
<syncType>merge</syncType>
<precedence>2</precedence>
</policy>
</partnership>

):

The partnerl that receives the ModifySyncData() action invokes the ModifySyncData() action
on the partner 2 to maintain identical information for the synchronization relationship on both
partner devices.

Request: (Partner 1 to Partner 2)

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f

— 72 — 29341-15-10 © ISO/IEC:2011(E)

ModifySyncData(''343bd2a2-189b-40c0-8eb5-ea91ea730402", 'ale4d0a7-3378-4Ff17-8af2-
3f7de3345dc6",
<partnership updatelD="0" xmlns="urn:schemas-upnp-org:cs"
xmIns:xsd="http://www.w3.0rg/2001/XMLSchema"*
xmIns:xsi="http://www.w3_.0rg/2001/XMLSchema-instance"
xsi:schemaLocation=""urn:schemas-upnp-org:cs
http://www.upnp.org/schemas/cs/cs-v1-20070XXXX.xsd">
<policy>
<syncType>merge</syncType>
<precedence>2</precedence>
</Innl 1C\/>

</partne?ship>

):

Response: (Partner 2 to Partner 1)

ModifySyncData();

After receiving the second action response, the partner 1 responds' to the first
ModifySyncData() action.

Response: (Partner 1 to Control Point)

ModifySyncData();

When the update is successfully processed, the updated, synchronization relationship MUST
be shown as below. (partnership@updatelD is increased.y 1.)

<?xml version="1.0" encoding="UTF-8"?>
<ContentSync xmlns="urn:schemas-upnp-org:cs"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema
xmIns:xsi="http://www.w3.0rg/2001/XMLSchéma-instance"
Xxsi:schemaLocation=""urn:schemas-upnp-org:cs
http://www_upnp.org/schemas/cs/cs-v1i220070XXXX.xsd">
<syncRelationship id="d8c9fal3-d79b-24a0c-999b-6ae2ff91lad46d" active="1">
<title>Sync between My iPod and Hame Media Server</title>
<partnership id="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6" active=""1"
updatelD=""1"">
<partner id="1">
<deviceUDN>343bd2a2-189b-40c0-8eb5-ea91ea730402</deviceUDN>
<servicelD>service_ID_A</servicelD>
</partner>
<partner id="2">
<deviceUDN>05de2732-5df5-4c48-922b-12¥73473f0e9</deviceUDN>
<servicelD>service_ID_B</servicelD>
</partner>
<policy>
<syncTypezmerge</syncType>
<priorigyPartnerID>2</priorityPartnerliD>

</policy>
<pairGroup id="ba8e57de-7f66-4102-ae4b-31b96c86F173" active=""1"/>
</partnership>

</syncRelationship>

</ContentSync>

2-10-3—Synchromnizationm of a Reference Object

To explain how to synchronize a reference object, let us consider the following logical
structure of two separate CDSs as shown below. Each of the CDS exposes physical directory
structure like a PC file system. The content in the partner 1 includes two items each of which
is a music item. One of the music items is a reference item. The content in the partner 2 does
not include anything.

[Partner 1CDS hierarchy]

¢ Name=“Content”, ID="0"
¢ Name="Would - Alice In Chains.wma”, ID="A1", Size="“90000"

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f

29341-15-10 © ISO/IEC:2011(E) — 73 —

e Name="Music Playlist”, ID="A2"

e Name="Would - Alice In Chains.wma”, ID="A3", reflD="Al", Artist="Mary”
Size="200000"

[Partner 2CDS hierarchy]

¢ Name="My Multimedia Content”, ID="0"

Hegtre-9—showsthe—vistatHierarchy-oftwo-CBSs—Objeet-A3reterstoobjfect-Adland-has—an
additional property such as the upnp:artist property.
Partner 1 Partner 2
Synchronization
Relationship

<\':>

Figure 9 — Synchronization Relationship between two CDSs

Creating a Pair of a Reference Object:

Firstly, let us assume that the synchronization relationship is setup. To synchronize a
reference object, a control'point should make a synchronization pair and associate the pair
with the synchronization relationship. There is no difference in making an pair for a regular
object such as audie_or video item and a reference object. Therefore, the control point
invokes the AddSyncPair() as shown below. However, this action does not invoke subsequent
AddSyncPair() action on the partner 2 device since there is no corresponding remote object
in the partner2.

Request(Control Point to Partner 1)
AddSyncPair("', "A3", "

<av@s:pair xmlns:avcs="urn:schemas-upnp-org:cs:avcs"
Xmlns:xsi="http://www.w3_.0rg/2001/XMLSchema-instance"

http://www.upnp.org/schemas/cs/avcs-v1-2007xxxx.xsd"
syncRelationshiplD="d8c9fal3-d79b-4a0c-999b-6ae2ff9la46d""
partnershiplD=""ale4d0a7-3378-4f17-8af2-3f7de3345dc6""
pairGrouplD="ba8e57de-7f66-4102-ae4b-31b96c86F173"">
<avcs:remoteParentObjI1D>B0</avcs:remoteParentObj ID>
<avcs:policy>
<avcs:syncType>replace</avcs:syncType>
<avcs:priorityPartnerlID>1</avcs:priorityPartnerID>
</avcs:policy>
</avcs:pair>

):

Response: (Partner 1 to Control Point)

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f

— 74 — 29341-15-10 © ISO/IEC:2011(E)
AddSyncPair(Q);

Once the pair information is created, the DIDL-Lite XML document for object A3 is shown as
below:

<?xml version="1.0" encoding="UTF-8"?>

<DIDL-Lite xmlIns:dc="http://purl.org/dc/elements/1.1/"
xmlns=""urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/"
xmIns:upnp=""urn:schemas-upnp-org:metadata-1-0/upnp/"

xmlns-avecs=""urn:-schemas-unnp-ora.cs-avcs'

xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/
http://upnp.org/standardizeddcps/schemas/avwc/didl-1ite/2.00
urn:schemas-upnp-org:metadata-1-0/upnp/
http://upnp.org/standardizeddcps/schemas/avwc/upnp/2.00
urn:schemas-upnp-org:cs:avcs
http://www._upnp.org/schemas/cs/avcs-v1-2007xxxx.xsd"">
<item id="A3" parentlD="A2" restricted="1">
<dc:title>Alice In Chains</dc:title>
<upnp:artist>Mary</upnp:artist>
<upnp:class>object.item_audioltem.musicTrack</upnp:class>
<res protocolInfo="http-get:*:audio/x-ms-wma:*""
size=""90000" avcs:syncAllowed="ALL"™ avcs:resModified=""0">
http://10.0.0.2/getcontent.asp?id=1
</res>
<avcs:syncable/>
<avcs:synclinfo>
<avcs:pair
syncRelationshiplD="d8c9fal3-d79b-4a0c-999b-6a€2ff91a46d""
partnershiplD="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6"
pairGrouplD="ba8e57de-7f66-4102-ae4b-31b96c86¥173"">
<avcs:remoteParentObjI1D>0</avcs:remoteParentObj ID>
<avcs:status>NEW</avcs:status>
</avcs:pair>
</avcs:synclnfo>
</item>
</DIDL-Lite>

Getting Change Log:

Once the partners are triggered.to start the synchronization operation, each partner gets the
synchronization object by invoking GetChangelog() actions.

In this example, the pattner 1 will not get anything. However, the partner 2 will get the DIDL-
Lite XML document for.object A3 as shown below.
Request: (Partner 2 to Partner 1)

GetChangekog(''d8c9fal3-d79b-4a0c-999b-6ae2ff91a46d", 0, 0);

Response: (Partner 1 to Partner 2)

GetChangelLog(
<2xml version="1.0" encoding="UTF-8"?>

<DDt=tite—xminsdc="trttp-77pur t-org7Zdc/etements7 117
xmIns=""urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/""
xmIns:upnp="urn:schemas-upnp-org:metadata-1-0/upnp/**
xmIns:avcs="urn:schemas-upnp-org:cs:avcs"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/
http://upnp.org/standardizeddcps/schemas/avwc/didl-lite/2.00
urn:schemas-upnp-org:metadata-1-0/upnp/
http://upnp.org/standardizeddcps/schemas/avwc/upnp/2.00
urn:schemas-upnp-org:cs:avcs
http://www._upnp.org/schemas/cs/avcs-v1-2007xxxx.xsd"">

<item id="A3" parentlD="A2" restricted=""1">
<dc:title>Alice In Chains</dc:title>
<upnp:artist>Mary</upnp:artist>
<upnp:class>object.item_audioltem.musicTrack</upnp:class>

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f

29341-15-10 © ISO/IEC:2011(E) — 75 —

<res protocolInfo="http-get:*:audio/x-ms-wma:*""
size=""90000"avcs:syncAllowed="ALL" avcs:resModified="0">
http://10.0.0.2/getcontent.asp?id=1
</res>
<avcs:syncable/>
<avcs:synclinfo updatelD="0">
<avcs:pair
syncRelationshiplD="d8c9fal3-d79b-4a0c-999b-6ae2ff91la46d""
partnershiplD="a0e4d0a7-3378-4f17-8af2-3f7de3345dc6""
pairGrouplD="ba8e57de-7f66-4102-ae4b-31b96c86F173"">

<aves-remoteParentQbhilD>BO</Zaves - remotePa rnnfﬁhj 1D>

<avcs:status>NEW</avcs:status>
</avcs:pair>
</avcs:synclnfo>
</item>
</DIDL-Lite>
"1 11 1)

Then, the partner 2 creates the new object that is paired with object A3. After creating the
new object, the partner 2 sends an event message to notify the status of the operation. The
following is an example of the event message for object B1 that is newly created in the
partner 2.

GENA Message: (Partner 2 to Partner 1)

<?xml version="1.0" encoding=""utf-8">
<SyncStatusUpdate xmlns="urn:schemas-upnp-org:cs"
xmIns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="urn:schemas-upnp-org:cs
http://www_upnp.org/schemas/cs/cs-v1-20070XXXX.xsd">
<syncRelationship i1d="d8c9fal3-d79b-4a0c-999h>6ae2ff91a46d ">
<status numberOfTotalObjects="1" numberOf€ompletedObjects=""1"
numberOfFailedObjects="0">
COMPLETED_ALL
</status>
<partnership id="a0e4d0a7-3378-4f17~8af2-3f7de3345dc6"">
<status numberOfTotalObjects="1"" "humberOfCompletedObjects=""1"
numberOfFailedObjects="0"">
COMPLETED_ALL
</status>
<pairGroup id="pro01">
<status numberOfTotalObjects="1" numberOfCompletedObjects=""1"
numberOfFailedObjects="0">
COMPLETED_ALL
</status>
<logEntry>
<localObjeetlD>Bl</localObjectID>
<remoteObjectID>A3</remoteObjectlD>
<statusCode>001</statusCodes>
<statusDescription>Succeeded completely</statusDescription>
</logEntry>
</pairGroup>
</partnership>
</syncRelationship>
</SyincStatusUpdate>

To confirm that the object Al in the received change log are successfully synchronized, the
Partner 2 invokes the GetChangelLog() action

Request: (Partner 2 to Partner 1)

ResetChangelLog(*'d8c9fal3-d79b-4a0c-999b-6ae2ff9la46d", ™
<ResetObjectList xmIns="urn:schemas-upnp-org:cs"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
Xxsi:schemaLocation=""urn:schemas-upnp-org:cs
http://www_upnp.org/schemas/cs/cs-v1-20070XXXX.xsd">
<object i1d="A3" remoteObjID="B1" updatelD="0"/>
</ResetObjectList>

https://standardsiso.com/api/?name=a4b2007081d015c3cbabdfc751f1d18f

