INTERNATIONAL ISO/IEC
STANDARD 23643

First edition
2020-06

Software and systems engineering —
Capabilities of software safety and
security verification tools

Ingénierie du logiciel et des systémes — Capacités des outils|de
vérification de la streté et de la-Sécurité des logiciels

Reference number
ISO/IEC 23643:2020(E)

© ISO/IEC 2020

https://standardsiso.com/api/?name=1f54662bcdcbf165815ab0fc2078e3af

ISO/IEC 23643:2020(E)

COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2020

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting
on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address
below or ISO’s member body in the country of the requester.

ISO copyright office

CP 401 ¢ Ch. de Blandonnet 8

CH-1214 Vernier, Geneva

Phone: +41 22 749 01 11

Email: copyright@iso.org

Website: www.iso.org

Published in Switzerland

ii © ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=1f54662bcdcbf165815ab0fc2078e3af

ISO/IEC 23643:2020(E)

Contents Page
FFOT@WOTMooccccceeeesse e85 5588585555555 iv
IIUETOQUICEION........cco s \%
1
2
3
4
5 Models for software safety and security verification tools ... SO0 7
6 Use cases of software safety and security verification tools.................. S5

6.1 [T 1<) - SO . A

6.2 Verification for low criticality software..........

6.3 Verification for medium criticality software

6.4 Verification for high criticality software ...
7 Entity relationship chart of software safety and security verification

Categories, capabilities of and requirements for software safety and security

VeTTfICATION TOOIS ... s et
8.1 GENETAL ..o
8.2 Categories of software safety verification tools .
8.2.1 General.... e A
8.2.2 Specification and refinement tools"....
8.2.3 Model checking tools........... s,
8.2.4 Program analysis t0O0IS..... . s
8.2.5 PIOOF E0O0IS. ..ot vt
8.2.6 Monitoring tools......s8 i,
8.2.7 Programming rulescheckers.....................
8.3 Categories of software se¢urity verification tools...
8.3.1 General.... s
8.3.2 Vulnerability-analysis tools...............
8.3.3 SecuritymMOdeling tOOIS ...
8.3.4 ThreatimModeling tOOIS ...

8.4 Capabilities.of software safety and security verification tools
8.5 Common requirements for safety and security verification tools

8.6 Requirements for specification and refinement toolS. ...,

8.7 Regqtliirements for model checking toolscc.....

8.8 Regtiirements for program analysis tools

8.9 Requirements for Proof t001S ...

8.10\/ Requirements for MONitOring tOOIS. ...

8:1'1 Requirements for programming rules checking tools

8.12 Requirements for vulnerability analysis t0OlS ...

813 Requirements for security modeling tools

8.14 Requirements for threat Modeling tOOLS ...,
Annex A (informative) Evaluation assurance levels of ISO/IEC 15408 common criteria.................. 24
Annex B (informative) How to use this document with ISO/IEC 2074 1............ccoocomosssirnsinsssnns 28
BIDIIOGIAPIIY ... 29

© ISO/IEC 2020 - All rights reserved iii

https://standardsiso.com/api/?name=1f54662bcdcbf165815ab0fc2078e3af

ISO/IEC

23643:2020(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that
are members of ISO or IEC participate in the development of International Standards through
technical committees established by the respective organization to deal with particular fields of
technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other
international organizations, governmental and non-governmental, in liaison with ISO and IEC, also
take part in the work.

The proc
described
the differ
editorial

Attention
of patent
rights. D¢
Introduct
list of pat]

Any tradg
constitut

For an e
expressig
World Tr4
iso/forew

in the ISO/IEC Directives, Part 1. In particular, the different approval criteria neéded
ent types of document should be noted. This document was drafted in accordance with t
ules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

is drawn to the possibility that some of the elements of this document may-be the subijg
rights. ISO and IEC shall not be held responsible for identifying any or all such patg
tails of any patent rights identified during the development of the deewment will be in t
ion and/or on the ISO list of patent declarations received (see www.i§oyorg/patents) or the |
ent declarations received (see http://patents.iec.ch).

b name used in this document is information given for the cenvénience of users and does 1
e an endorsement.

kplanation of the voluntary nature of standards, the. meaning of ISO specific terms a
ns related to conformity assessment, as well as infermation about ISO's adherence to t
ide Organization (WTO) principles in the Technical/Barriers to Trade (TBT) see www.iso.on]
ord.html.

This doc
Subcomn

hment was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technolo
ittee SC 7, Software and systems engineering.

Any feedback or questions on this document shiould be directed to the user’s national standards body

complete

listing of these bodies can be found'at www.iso.org/members.html.

pdures used to develop this document and those intended for its further maintenanee %re

or
he

ct
nt
he
- C

ot

hd
he

g/

)Y

© ISO/IEC 2020 - All rights reserved

https://www.iso.org/directives-and-policies.html
https://www.iso.org/iso-standards-and-patents.html
http://patents.iec.ch/
https://www.iso.org/foreword-supplementary-information.html
https://www.iso.org/foreword-supplementary-information.html
https://www.iso.org/members.html
https://standardsiso.com/api/?name=1f54662bcdcbf165815ab0fc2078e3af

ISO/IEC 23643:

Introduction

2020(E)

Since a few decades, the importance of software safety and security verification tools has increased for
several reasons: 1) rapidly increasing complexity of software applications and systems, 2) increasing
number of safety-critical systems through growing integration between software applications and
systems (e.g. in critical infrastructures), 3) the rapid increase of the number of cyber threats, and 4)
the urgent needs of safety in high and medium critical software-driven systems (e.g. transportation,
energy production, Internet of Things (IoT), and general purpose Operating Systems and middleware).
Additionally, the number of products and system development cases, where the origin of all software
COJTIPOTNENTS o be used 15 Not exactly KNowT, even foT 0pen-Source applications, 15 iNcreasing

m

Th
fr

It
th

hking safety and security verification and validation (V&V) essential.

is document restricts its point of view to software and excludes computing and any other
m the context. In these other domains, other V&V methods and tools are used.

s important to realize that verification of safety and security of software does-not necessal
e system safety and system security of a system using the software as @ component. Hoy

SY]
C

and thus

hardware

ily verify
vever, if a

stem consists of software components which are not verified, the safety,and security of the system

not be guaranteed at any level.

“Cpntinuous everything”, including continuous software development and thus versioning
refjuires continuous software safety and security verification. At’every new version, V&V ne
redone. The popular “agile development processes” permitssherter development iterations

frequent product delivery, and consequently this requiresinore frequent verification than t
dgvelopment approaches. Verification is needed durihg software development as well :
software maintenance, whenever safety or security of Software can be endangered.

Validation answers the question “are we building the right product?”

Vdrification answers the question “are we building the product right?”

S

re
w
an
s
1tS
in
th

T}
IS

Th
T}

ftware validation checks if the software product satisfies the intended use, such as d
guirements and specifications. In_other words (ISO/IEC 17029): “purpose of validation is tq
nether a declared information (¢laiin) is plausible”. Software verification checks if the sped
d requirements are met either by running the software (testing) or by reviewing its
pecification, model, or pseude.code). The latter can consist of animating or analyzing staticg
artefacts. ISO/IEC 17029.defines that the “purpose of verification is to find out, whether 3
formation (claim) is truthful”. This document does not concern testing but animating and

is document s, prepared as one of the series of single tool capabilities which are u
D/IEC 2074 1<

delivery,
eds to be
hnd more
raditional
is during

efined in
find out,
ifications
artefacts
lly one of
declared
hnalyzing

e artefacts, because-“testing tools” is already well covered by and is the subject of ISO/IEC 30130.

sed with

is document defines capabilities of and requirements for software safety and security verifica

as|

50Ciated tools are of general purpose, and can fit into different kinds of problems (e.g.

ion tools.

is flocument is independent of the target application domains, as the languages, methods and

nctional

Sp

ecification languages can be used for any functional program).

© ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=1f54662bcdcbf165815ab0fc2078e3af

https://standardsiso.com/api/?name=1f54662bcdcbf165815ab0fc2078e3af

INTERNATIONAL STANDARD ISO/IEC 23643:

2020(E)

Software and systems engineering — Capabilities of
software safety and security verification tools

ch

T}
re
an
ve

T}

3

fention to safety and/or security of software. This document guides the verificatign tool
ovide as high-quality products as possible and helps the users to understand thé capabi
aracteristics of verification tools.

ationship model related to them. This document also introduces toolcatégories for softwsi
d security verification tools and gives category specific guidancé and requirements fol
ndors and developers.

Normative references

ere are no normative references in this document.

Terms and definitions

Fdr the purposes of this document, the following terms and definitions apply.

IS

af
w

3.

A

D and IEC maintain terminological databases for use in standardization at the following add

ISO Online browsing platform;awvailable at https://www.iso.org/obp

IEC Electropedia: availablévat http://www.electropedia.org/

plication domain
]1-defined set of applications

D

4

capability

qu
[S

ality of being able to perform a given activity

DURCE=1SO 19439:2006, 3.5]

3.

ities and

is document introduces use cases for software safety and security yérification tools and entity

ire safety
the tool

resses:

B

ce

rtificate

attestation document issued by an independent third-party certification body

[SOURCE: ISO 22222:2005, 3.2]

3.4
defect
fault, or deviation from the intended level of performance of a system or software (3.19)

© ISO/IEC 2020 - All rights reserved

https://www.iso.org/obp/ui
http://www.electropedia.org/
https://standardsiso.com/api/?name=1f54662bcdcbf165815ab0fc2078e3af

ISO/IEC

3.5
dynamic

23643:2020(E)

program analysis

process of evaluating a software (3.19) system or component based on its behaviour during execution

Note 1 to entry: The definition means that the software shall actually be compiled and run on a certain number of
input data test cases. The physical response from the system is then examined and compared to expected results.
Dynamic program analysis can be done manually or using an automated process. The results are examined either
manually (e.g. with small input test data) or automatically using oracles.

3.6
entity

data congd
[SOURCE
3.7

evaluatof

competer

3.8

false negative

true defeq

Note 1 to
applicatio
defects in
heuristics

39

false posjitive

observed

Note 1 to
applicatio
precision

3.10
formal v

activity proving or disproving the)correctness of intended applications with respect to a forn

specificat

3.11
malfunct
behaviou

3.12

protectign

process t

ept that may have attributes and relationships to other entities

ISO/TR 25100:2012, 2.1.3, modified — Note 1 to entry has been removed.]

t person engaged in the verification (3.33) or validation (3.32) of a system,er séftware (3.19]

t (3.4) that has not been observed
entry: The term is used for analysis tools producing defect information during the analysis of
1. In the presence of false negatives, the tool is said to be inceniplete with respect to the real se]

the software (3.19) under analysis. False negatives can be dugto several reasons such as 1) the use
for detecting defects, 2) too restrictive analysis data.

defect (3.4) which does not correspond to a trie defect

entry: The term is used for analysis tools~producing defect information during the analysis of
1. False positives appear during the analysis because of several possible reasons, such as lack
fthe analysis rules.

brification

ion or a property, using'fdrmal methods of mathematics

ion
I of a systemvorcomponent that deviates from the specifications

D secure content

an
of
of

an
of

al

[SOURCE

3.13
risk

TISO/TECT5444-872007, 3724}

effect of uncertainty on objectives

Note 1 to entry: ISO 22538-4 defines risk as “probability of loss or injury from a hazard”.

[SOURCE: ISO 31000:2018, 3.1, modified — Notes 1, 2 and 3 to entry have been removed; a new Note 1
to entry has been added.]

3.14
safety

freedom from unacceptable risk (3.13)

2

© ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=1f54662bcdcbf165815ab0fc2078e3af

ISO/IEC 23643:2020(E)

3.15
safety-critical system
system whose failure or malfunction (3.11) may result in one (or more) of the following outcomes:

— death or serious injury to people
— loss or severe damage to equipment/property
— environmental harm

EXAMPLE Examples of safety-critical systems are critical infra-structures, medical equipment,
trgnsportation, and nuclear power plants. Safety-critical systems are also sometimes called life-criticdl systems.

sents the

=

all or part of the programs, procedures, rules, and associated documentation of an information
processing system

[SPURCE: ISO/IEC 19770-3:2016, 3.1.26, modified — Note 1 to entry has been removed.]

3.0

software item
identifiable part of a software\(3.19) product, consisting of source code, object code, confrol code,
control data, or a collection‘ofthese

Ndte 1 to entry: Softwarfe item is a generic term that designates well-identified parts of software source code,
object code or data. Asoftware item belongs to a syntactic category of the programming language in|which the
software is written,‘Examples are classes, variables, functions and types. A software item is an identifiable part
of p software product.

3.p1

sgftware sdfety

ability of software (3.19) to be free from unacceptable risk (3.13)

thb 1 t\J hlltl]- lt ;J thb Clb;};t)’ Uf auftvvoub tU l\,;);-)t fa;}ulb C\lld lllul’]“ullbtl’ull;) (3-11) thClL calr }bﬂd t death Or

serious injury to people, loss or severe damage to property, or severe environmental harm.

Note 2 to entry: Software quality, including software safety, is achieved using software engineering. Software
engineering for safety-critical systems (3.15) emphasizes the following directions:

— process engineering and management;

— selecting the appropriate tools and environment for the system; the principle of using the best tools fit to the
purpose prevails as in most engineering disciplines;

— adherence to requirements.

© ISO/IEC 2020 - All rights reserved 3

https://standardsiso.com/api/?name=1f54662bcdcbf165815ab0fc2078e3af

ISO/IEC 23643:2020(E)

3.22
software security
ability of software (3.19) to protect its assets from a malicious attacker

Note 1 to entry: According to software product quality model in ISO/IEC 25010, software security applies to
software assets and is decomposed into the following set of properties: confidentiality, integrity, availability,
authentication, authorization and non-repudiation.

3.23

software unit
smallest in . of softy 3 A an b a
tested with the relevant data on whether it performs to specification

3.24

sub-field fof formal methods concerned by analyzing the properties of a software (3.19)-code withdqut

Note 1 to [entry: A system is defined as a set or group of interacting, interrelated or interdependent elemeits
or parts, that are organized and integrated to form a collective unity or aunified whole, to achieve a commjon
objective. [n a broader view the definition of a system consists in the hardware, software (3.19), human systens
integratioh, procedures and training. Therefore, system safety is part 6f the systems engineering process and
should sys$tematically address all of these domains and areas in engineering and operations in a concerted
fashion to[prevent, eliminate and control hazards.

Note 2 to ¢ntry: A system safety concept helps the system designer(s) to model, analyze, gain awareness abolut,
understand and eliminate the hazards, and apply controls~to achieve an acceptable level of safety (3.14). The
systems-bpsed approach to safety requires the application.of scientific, technical and managerial skills to hazqrd
identificatfion, hazard analysis, and elimination, control, or management of hazards throughout the life-cyfle
of a system, program, project or an activity or a,product. Hazop is one of several techniques available for ghe
identificatfion of hazards.

3.26
target of|verification
TOV
software [3.19), or a set of software items (3.20) or units (3.23), to be verified (e.g. in terms of safqty
(3.14) and security (3.16))

Note 1 to [entry: Target of-€tdluation (TOE) is a commonly used term in systems security techniques. TOH is
defined as|a set of software/firmware and/or hardware possibly accompanied by guidance.

3.27
target software
final productof a software (3.19) development process, containing at least the binary code able to rjn
on the tafget computer

Note 1 to entry: Target software may consist of several files, including binary and source files, libraries,
installation and compilation script files, documentation and data files. The target software often relies on
underlying layers of software, that are not part of the target software, but that are necessary to be executed on
the target platform, for instance libraries.

3.28
target system
complete computing platform capable of running the target software (3.27)

Note 1 to entry: A target system consists of hardware resources and software (3.19) resources installed on the
hardware.

4 © ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=1f54662bcdcbf165815ab0fc2078e3af

ISO/IEC 23643:2020(E)

3.29
toolbox
set of tools completing each other in terms of capabilities, to cover a larger area of their intended use

3.30
trust
degree to which a user or other stakeholder has confidence that a product or system will behave as
intended

[SOURCE: ISO/IEC 25010:2011, 4.1.3.2]

3.51
ude case

S

pdrform, interacting with actors of the system

[SPURCE: 1SO 15745-1:2003, 3.35, modified — The domain "<class>" at the beginning and "
the end of the definition has been removed.]

3.B2
validation

C
u§y

EX
th

V§

confirmation, through the provision ofiobjective evidence, that specified requirements h

fu
[S

3.
ve
m

3.
ve
in
ve,

3.
vy

B3

cification of a sequence of actions, including variants, that a system (or other .entity

firmation, through the provision of objective evidence, that the requirements for a specifig
e or application have been fulfilled

AMPLE Safety (3.14) validation has been defined as an assurance, based on examination and
e safety goals are sufficient and have been achieved (I1SO 26262-1).

DURCE: ISO/IEC 25000:2014, 4.41, modified — Note'1 to entry have been removed; EXAI
en added.]

rification
filled
DURCE: ISO/IEC 25000:2014, 4.43,)modified — Note 1 to entry have been removed.]

B4
rification method

3.6)) can

[UML]" at

intended

tests, that

MPLE has

ave been

ethod for producing objective evidence that specified requirements of a system have been fulfilled

B5

rification tool

strument that-Can be used during verification (3.33) to collect information about the
Fification{:3¢(26), to perform interpretation of information or to automate part of the verifica

B6
Inerability

target of
tion

pa

tential flaw or weakness in Cnff\A/nrp ('2 1Q\ dpclon ar lmn]pmpnfnhnn that could be

xercised

(accidentally triggered or 1ntent10nally exp101ted) and result in harm to the system

Note 1 to entry: The CVE classification (see Reference [25]) defines the de-facto standard classes of the known
software vulnerabilities.

Note 2 to entry: A vulnerability is exploitable if it can be activated in practice.

© ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=1f54662bcdcbf165815ab0fc2078e3af

ISO/IEC 23643:2020(E)

4 Abbreviated terms

AASPE automated assurance of security policy enforcement tool
ACSL ANSI/ISO C specification language

ARM advanced RISC machine

BDD binary decision diagram

BNF Backus—Naurform

CASE computer-aided software engineering tool

cC common criteria

CSPN Certification de Sécurité de Premier Niveau
CTL computation tree logic

dns domain name server, domain name system

DREAD | damage, reproducibility, exploitability, affected users, and discoverability risk assess-
ment model

EAL evaluation assurance level
FMEA failure mode and effects analysis
HAZOP | hazard and operability analysis
LTL linear temporal logic

OSINT open-source intelligence

RM reference manual

SAT satisfiability

SCL Safety Culture Ladder

SDLC software developiient life-cycle

SMT satisfiability-modulo theory

SQL structured query language

STRIDE | spoofing, tampering, repudiation, information disclosure, denial of service and elevation qf
privilege

SWOT strengths, weaknesses, opportunities and threats

UML unified modeling language

VDM-SL Vienna development method - specification language
V&V verification and validation

XSS cross-site scripting

6 © ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=1f54662bcdcbf165815ab0fc2078e3af

ISO/IEC 23643:2020(E)

5 Models for software safety and security verification tools

The model for software safety and security verification is needed to define capabilities of and
requirements for tools by their input, processes and output. The model consists of the following
elements:

a) asetofuse cases for concretizing the use of software safety and security verification tools,

b) a set of entities that represents identifiable information which appears in software safety and
security verification activities, and

c)| acategorization for software safety and security verification tools.

Ll . <<refer t0>> (e . e
Verification use cases fF------ > Verification entities

0
I
| <<refer to>>
1
1

Verification tool categories

Figure 1 — Overall structure of models of software safety and security verificatipn

pdrson (or a thing) develops safety and/or security critical software. Any change to the soffware can
al$o require new verification actiyities (e.g. a whole new verification process). Other typicall uses for
software safety and security verification tools are related to software quality evaluation and|software
certification cases. The use_efisuch tools may be part of system or application security verification
process, as defined in ISO/IEC 27034 (all parts).

Sdftware safety and security verification-activities, including use of tools, are needed wheiever any

A4 safety and security issues are becoming increasingly important within software intensivq industry
arld software intensive systems, a lot of new terms and concepts emerge more and more ffequently.
Terms like cyber-séeurity, systems of systems, and Internet of Things were never heard of sqme years
ago, and today they are supposed to be recognized and understood by anyone using or developing
software and”systems. Unfortunately, there is still a lot of space for loose communicgtion and
misunderstanding. Commonly accepted and mutually understood terminology between the developers
arld users of safety and security verification tools is needed. The most often needed terms ar{d entities
are defined in Clause 3 and discussed in Clause 7.

Clause 6 introduces the use cases of software safety and security verification through some usage
scenarios. They describe the way how software developers or evaluators are intended to use verification
and validation tools to ensure that the end-product becomes of the adequate quality in terms of safety
and security. The target level of safety and security is often defined during the requirements stage of
each development case.

Both safety and security of software are equally essential. However, there are no single tools that can
manage both of such areas of requirements perfectly. That is why the users need to use several tools,
representing several tool categories, when they want to convince themselves and other stakeholders
to trust the overall safety and security of the target software. Clause 8 introduces the verification tool
categories, each specified by capabilities of the tools in the category, and specifies requirements for
software safety and security verification tools.

© ISO/IEC 2020 - All rights reserved 7

https://standardsiso.com/api/?name=1f54662bcdcbf165815ab0fc2078e3af

ISO/IEC 23643:2020(E)

Software industry recognizes several different software development life-cycle (SDLC) models and
development approaches, known for example as V-shaped, linear, prototypical or agile. In safety and
security critical cases, the work often follows a standard SDLC where the activities of the development
process are represented and well-identified with the same names and same order. Software cannot be
tested before being programmed. Verification cannot be done and verification tools cannot be used if
there are no specified requirements. To highlight the verification opportunities during a standard SDLC,
Figure 2 introduces a case of V-shaped life-cycle for developing safety and security critical software.

Requirements .
Defigition Global System Integration,
Speci fi(‘.; tion /\ '\ Testing and Validation
D c .
. VETIIICAUIOIT dITU
Requirements and N v validation tools
ecification languages

Requirem:nts

Detailed Specification Integration, Software
Specification languages Integration Testing
(e.g. ACSL) Tésting tools
Specification J Target software
J
Unit Testing,
Refinement/Design Verification and
Specification and design Validation
languages (e.g. UML) Testing, verification and
validation tools

Implementation
Gompilers and
debuggers

Figurd 2 — A simplified view of safety and security critical software development life-cycle

Each box|in Figure 2 represeiits an activity and grey arrows represent the flow of artefacts betwegn
the activities. For each activity the text in the box indicates some exemplary tools needed to perform
verificatipn and/or validation tasks. The horizontal arrows in Figure 2 represent the links betwegn
pairs of dctivities when V&V activities occur. For each V&V activity on the right side the arrows sh¢w
the correppondence‘to-a development activity on the left side against which outcomes verification apd
validation are performed. The related verification actions are actually performed immediately after
provision of development outcomes on the left side, before moving to the next development activity, apd
the validdtion.actions only after the implementation and preceding V&V activities. In more details, the
followinglcorrespondences occur:

— conformance of unitary V&V to the detailed specifications and to the design;
— conformance of software integration V&V to the specifications;
— conformance of system integration to the requirements and global specifications.

For each activity, Figure 2 indicates its main outcome (also sometimes called main artefact or by-
product) as a small black box. Different techniques, methods and tools can be used to provide
understandable form for artefacts (e.g. UML, ACSL).

8 © ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=1f54662bcdcbf165815ab0fc2078e3af

ISO/IEC 23643:2020(E)

6 Use cases of software safety and security verification tools

6.1 General

By definition the use cases specify a sequence of actions that a system can perform, when interacting
with its users (i.e. the actors of the system). In this document, the use cases are defined at a level where
the users interact with one or more software safety and security verification tools. Selection of the
tools to be used can be made following the processes of ISO/IEC 20741, which introduces the generic
process for evaluating and selecting any software engineering tools (see Annex B).

In|this document the detailed variations for using specific tools are ignored because the-pphrpose of
infroducing use cases here is not to give specifications for building the tools but to help-the 1leaders to
urfderstand the environment where the tools are used. For that purpose, the use cases argnot presented
infany standard format, but rather as usage scenarios, although the term “use case”,is’still usgd.

Adtors of software verification are as follows:

—| Developers perform the development and verification tasks given in the\life-cycle. They pfoduce all
intermediate products to be verified. They also perform the validation.of the intermediate products
and testing, sometimes together with the client.

—|{ Evaluators are verifying and validating the software against.some safety or security ptandard.
They are independent from the developers’ tasks, but may belong to the same (15! pajty) or an
independent third-party organization.

—|{ Certification bodies examine the verification resultstalready done, perform further veififications
if needed and deliver, if acceptable, a certificate to-the software verified. Certification Hodies are
always third-party organizations (ISO/IEC 17000).

Fig 3 introduces the overview of verification use cases and the actors related to them. Purpose of

pure

the verification and the criticality of the TOV'are the main differentiators of the use cases. The higher
thg criticality of the TOV is in terms of saféty and security, the more demanding the verification process
is{and the more expertise is required fitom the evaluator(s).

Verification for low |
7 criticality software
/ I : >‘ Evalpator
~ Verification for medium
[criticality software
— Verification for high /
Develo per criticality software —

Certification
body

Figure 3 — Use cases of software safety and security verification tools

Formality of the verification varies by the criticality of the TOV. In some cases it is good enough to
run an informal or a semi-formal verification whereas in the most critical cases, a formal verification
is required. For the lowest criticality level, when the purpose of verification is not to achieve a
certificate, an independent evaluator is not needed at all. All verification use cases aiming to certify a
TOV shall specify the target safety and/or security level within an applicable standard (e.g. evaluation
assurance levels EAL1 to EAL7 of common criteria for information technology security evaluation in

© ISO/IEC 2020 - All rights reserved 9

https://standardsiso.com/api/?name=1f54662bcdcbf165815ab0fc2078e3af

ISO/IEC 23643:2020(E)

ISO/IEC 15408 (all parts) or DO-178 B/C). The definitions of evaluation assurance levels of Common
Criteria are in Annex A.

6.2 to 6.4 introduce the lists of actions of the verification use cases.

6.2 Verification for low criticality software

For low-criticality software, requirements can be handled through informal methods and developers
often perform their own testing. If the goal of the verification is certification there are additional
actions for reaching a minimum level of safety and security. These additional actions are the optional

items €), 1), g), h) and k) below.

The scendrio may include the following actions:

a)
b)
‘)
d)
e)

f)
g)
h)
i)
j)
k)

6.3 Verification for medium criticality software

informal specification and design;
implgmentation;

verification by testing;
integfration;

selection of an evaluation and certification scheme capable of assessing low criticality softwdre
(e.g. €SPN, SCL or CC) — third-party verification;

selection of the desired minimum certification level — third-party verification;
evalyation of the TOV to a defined level of safety or security’— third-party verification;
certification by some certification body to obtain approval — third-party verification;
deplgyment/acceptance;

updafe/maintenance;

re-evialuation — third-party verification:

Medium ¢riticality developments-do not need verification to their full extent, but a rigorous approach
with intefmediate products fartefacts) is used. The intermediate products may use different languaggs,
which mgy require annual translations between activities. For each activity it is best to use only one
language|If the goal of the,verification is certification there are additional steps for reaching a minimym

level of sdfety and security. These additional actions are the optional items c), k), m), n) and q) below,

The scendrio may.include the following actions:

a)
b)
‘)
d)
e)
f)
g)

10

qualification of tools (e.g. compilers);

requirements definition using preferably a semi-formal specification language;
selection of the certification level and definition of the TOV — third-party verification;
detailed specifications using preferably a formal specification language;

detailed design, using a semi-formal design language (e.g. UML);

implementation;

unit testing to give an intuitive understanding of the TOV made so far; the generation of the
corresponding test cases can use the specifications to delimit them; testing consists of e.g. in
coverage and boundary testing;

© ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=1f54662bcdcbf165815ab0fc2078e3af

h)

j)
k)
D)

ISO/IEC 23643:2020(E)

verification of the components of the TOV, to check the satisfiability of the specifications, e.g. using
the later as assertions;

integration of the components;
integration testing;
verification and validation of the integrated software — third-party verification;

system integration;

C

official third-party evaluation later.

TH
fo

a)
b)
‘)
d)
e)
f)
g)
h)
i)

6.4 Verification for high criticality software

evaluation of the TOV to a defined level of safety or security — third-party verification;
certification to obtain approval — third-party verification;

deployment/acceptance;

update/maintenance;

re-evaluation — third-party verification.

Aalﬁr software provider organization developing high criticality components (e.g. embedded software)

be willing to verify the safety and security of their products first without certification and start the

is use case deals with the production of high criticality software. The scenario may include the
lowing actions:

qualification of tools (e.g. compilers);

requirements definition using preferably*a semi-formal specification language;

selection of the certification level and definition of the TOV — third-party verification;
detailed specifications using aformal specification language (e.g. VDM-SL, B, Z, or ACSL);
specifications refinement (optional) or formal design with a formal compliance check;
implementation;

unit testing to give’an intuitive understanding of the TOV made so far;

completingunit testing by static program analysis — third-party verification;

verification of the components of the TOV, to extract low-level (e.g. run-time) faults and high-level
behavioural faults; the later checks the satisfiability of the specifications by the code; the formal
specifications produced above are used for compliance verification, using e.g. Hoare Logic and
formal proofs are done;

©lI

formal verification of the components — third-party verification;
integration of the components;

integration testing;

verification and validation of the integrated TOV;

system integration;

system testing on the target system;

evaluation of the TOV to a defined level of safety or security — third-party verification;

SO/IEC 2020 - All rights reserved 11

https://standardsiso.com/api/?name=1f54662bcdcbf165815ab0fc2078e3af

ISO/IEC 23643:2020(E)

q) deployment/acceptance;
r) update/maintenance;

s) re-evaluation — third-party verification.

7 Entity relationship chart of software safety and security verification

It is important to use common and well-defined terms with software safety and security verification
tools, services, and methods, that might be evaluated, compared and selected by any third-party

representatives. The nature of and the relationships among the most important entities can pe
understopd in similar ways by all the actors of a verification activity.
The entitles involved in the area of interest of this document are organized in the diagram if-Figure 4.
Certification Evaluator
Body Expertise
Certificate Evaluator
Security
Level
Toolbox Verification
Method
Systefn Safety Level
Software (TOV) Verification ~_ Verification Tool
+ programming language +costs Tool category
+sjze + efforts - specification language
+ result - prooftool ...
Softwhre Software Vulnerability ~_ Vulnerability Capability
Unif Item Type
Higure 4 — EntityTrelationship chart of software safety and security verification
The mostfimportafitentities in the world of software safety and security verification tools are “softwarg”,
“verificatjon” afid “verification tool”. In every instance of verification, the target of verification meajns
software| which consists of one or more software units and/or software items. The software may pe
part of a §ysfem or several systems, but it is not relevant from the software verification point of vie

A person called evaluator is running the verification, where he or she uses one or more verification
tools. The tools are usually based on one or more verification methods (e.g. dynamic or static program
analysis or formal verification). Tools based on same methods often represent the same tool category,
having similar capabilities for identifying potential vulnerabilities of the software (i.e. TOV). Several
tools with different capabilities that mostly complete each other, may together constitute a toolbox.
Selection of an applicable toolbox or set of applicable tools can be made based on the known required
safety and/or security levels of the TOV.

The target of verification (software) may be certified by the evaluator representing a certification body,
if the verification proves the software free of vulnerabilities at the target safety and security levels.
The required expertise of the evaluator may be higher, if the purpose of verification is to achieve a
certificate.

12 © ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=1f54662bcdcbf165815ab0fc2078e3af

ISO/IEC 23643:2020(E)

8 Categories, capabilities of and requirements for software safety and security
verification tools

8.1 General

As software, by definition, consists of all or part of the programs, procedures, rules, and associated
documentation of an information processing system, it may be complicated to verify. Because of the
complexity of software, there are many kinds of verification tools. In this document the types of
software safety and security verification tools are divided into several categories, specified by the
capabilitites—of-the—toots—inclurded—in—the—eategory—The—eapabilities—enable—the—tootsto—amalyze and
verify some software code or artefacts. Verification activities are human guided, but very)pften tool
aspisted, and the level of automation varies category by category, and tool by tool withinythe|category.
Vdrification capabilities allow performing various kinds of verification activities in-yarious fasks of a
software development process. Figure 5 introduces the categories of software safety verification tools,
arld Figure 6 the categories of software security verification tools.

8.2 Categories of software safety verification tools

8.2.1 General

Specification\ / Model \ f Program \ f Proof tono\ f Monitoring \ /Progr ming\

and checking analysis tools Q tools rq(:;s
refinement tools Q chedkers

tools \\

O
Qs
Capabilities] [Capabilities] [Capabilities]sz }{ Capabilities] [Capabilities] [CapalHilities]
= \Z G BN = \Z =/

Cammon safety capabilities

Figure 5« 'Categories of software safety verification tools

I

.2 to 8.2.7 define the categories of software safety verification tools introduced in Figure 5

8.2.2 Specification and refinement tools

This safety verification tool category encompasses all tools implementing formal specifidation, i.e.
mathematical based specification techniques and languages. They are used to describe a[software
sypstemsto analyze its behaviour, and to aid in its design by verifying properties of interest byjmeans of
rigorous and effective reasoning. These specifications are formal in the sense that they have g syntax, a
formal semantics and they can be used to infer useful information.

With a specification it is possible to use the formal verification techniques below to demonstrate that
a system design and/or implementation is correct with respect to its specification. Another approach
is to refine a specification step by step in a correct manner to transform it into a design, which is then
transformed into an implementation that is correct by construction.

8.2.3 Model checking tools

Model checking aims mainly at automatically verifying properties of finite-state systems. This safety
verification tool category contains all tools that enable to check automatically or not some specification
on a given model (e.g. an automaton) that represents the behaviour of a system. The specification

© ISO/IEC 2020 - All rights reserved 13

https://standardsiso.com/api/?name=1f54662bcdcbf165815ab0fc2078e3af

ISO/IEC 23643:2020(E)

can contain safety and liveness properties. The model can be extracted from the source code of the

application (e.g. the control flow graph) or can be produced independently (e.g. a Petri Net).

8.2.4 Program analysis tools

In the context of this document, dealing with software safety and security verification tools, the
safety verification tool category of program analysis tools encompasses tools that can discover faults
and vulnerabilities during the programming phases of the development life-cycle. This category can
therefore also be called “static program analysis tools”. With this definition, this category can be
considered as a generic category that also encompasses some of the other categories listed here, but we

distinguish between the static program analysis techniques that apply directly to the source code-a
the technliques that apply to some other representation of the code and its artefacts, keeping enlyt
former tools for this category.

Due to the various underlying techniques, some of them being computationally undecidable, progrg
analysis tools cannot always terminate with the right answer (yes or no) and may return false negativ
false positives or no answer (because they never terminate).

8.2.5 Prooftools

This safefy verification tool category contains all tools aimed at proving.mathematically some forn
specification by means of some computer program called theorem prover. This category decompos
into two nain sub-categories:

— automatic theorem provers, and

— proof assistants also called interactive theorem provers;

8.2.6 Monitoring tools

This safefty verification tool category groups all, tools that check at runtime the specification of
software|application. A specification may dealbwith computing resources consumption, safety
security properties. Most of these properti€s;are stated using a specification language or a subps
thereof that can be executed or evaluated.

Contrary|to the program analysis t@o0ls category, monitoring tools may not be exhaustive as th
verify some specification on a limited number of executions only. Due to their dynamic nature, t
performalnce of these tools is impertant.

8.2.7 Programming rules checkers

Programming rules ‘checkers enforce syntax and semantic rules further to those given in t
programining lapguage reference manual. For instance, they provide warnings and force t
programiners te-respect a uniform style, notation, i.e. a set of conventions. Programming rules 3
sometimgs agsociated to a community of programmers (e.g. in a given project) or associated to a giv|
applicatign’domain (e.g. automobile software industry uses the MISRA C/C++ rules).

hd
he

m
PS,

al

rt

ey
he

14 © ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=1f54662bcdcbf165815ab0fc2078e3af

ISO/IEC 23643:2020(E)

8.3 Categories of software security verification tools

8.3.1 General

(Vulnerability) (Security I Threat \

analysis tools modeling modeling
tools tools
Canahilitiegs [Canahilitiegs] [Canahilities]
(o J L = J L = J
4 N
Common security capabilities
\ y

Figure 6 — Categories of software security verification tools

e
o

.B.2 to 8.3.4 define the categories of software security verification tools introduced in Figurg¢ 6

8.8.2 Vulnerability analysis tools

THhis category contains security verification tools that'are capable to discover the attack surfface or to
find vulnerabilities in TOV. Vulnerability analysis is/different from software testing, since vulherability
arfalysis tries to find a way in which the softwate should not work. Therefore, negative spedifications
shuld be evaluated during a vulnerability analysis (e.g. “only the valid password should be faccepted,
ndthing else”). Because of the nature of vulnerability analysis, the tools in this category gendrally will
ndt provide evidence of the software beingfree from a specific type of vulnerabilities but can[provide a
ligt of vulnerabilities found.

8.8.3 Security modeling toaols

The tools in this security yerification tool category help to perform security modeling, such a§ defining
viylnerable assets, security objectives, and security requirements. The results of these |modeling
topls will be the basis-ef further verification activities. They aid defining the exact objedtives and
refguirements, whiehthe verification process should confirm.

8.8.4 Threatmodeling tools

This category of security verification tools contains all tools supporting threat modeling andl analysis
tefhnigues, such as attack trees, attack impact, attack surface, fault trees, misuse cases| attacker
prpfiling, and the STRIDE threat classification model. The aim of threat analysis phase is to njodel how
a Systenrshould ot work—Thisamatysis tam use the Tesuttsof the security modeting toots and as a
result specify the threats to be verified during the further steps of verification.

NOTE STRIDE is a model for identifying computer security threats. It provides a mnemonic for security
threats in six categories. The threats are: Spoofing of user identity, Tampering, Repudiation, Information
disclosure (privacy breach or data leak), Denial of service (D.0.S), and Elevation of privilege. STRIDE was initially
created as part of the process of threat modeling used to help reason and find threats to a system.

8.4 Capabilities of software safety and security verification tools

This document specifies the potential capabilities for safety and security verification tools of each
category. Table 1 introduces the typical capabilities of software safety verification tools of each related
category, and Table 2 the typical capabilities of software security verification tools by their categories.

© ISO/IEC 2020 - All rights reserved 15

https://standardsiso.com/api/?name=1f54662bcdcbf165815ab0fc2078e3af

ISO/IEC 23643:2020(E)

The vendor of a software safety and security verification tool shall specify the category and capabilities
of the tool, so that the users know what they get when acquiring such a tool or a toolbox including
several tools.

Table 1 — Capabilities of software safety verification tools by category

Capability list of software safety verification tools

Tool category Capability Remarks

Specification and refine- |Abstract data-types
ment toolg

Predicates calculus

Algebraic specifications

Temporal logics Relates to model checking

Functional specifications
Model chg¢cking tools Symbolic model checking E.g. BDD, see NOTE 1

Bounded model checking

Explicit-state model checking

Partial order reductions

Abstractions
Program pnalysis tools Hoare logics E.g. Frama-€
Abstract interpretation E.g. Frama-C

Tableau calculus

Control and data flow graphs analysis

Compilers
Proof tools Deductive proofs
Unification
Satisfiability modulo thedries See NOTE 2
Satisfiability solvers See NOTE 3
Proof assistants E.g. Coq
Monitorirjg tools Off-line monitoring Results are exploited after execution
Online monitering Results are exploited during execution.
This category sub-divides into the next twi
categories
In<line monitoring Monitors are built into the code
Out-line monitoring Monitors are separated from the code
Memory debuggers Used frequently during debugging
Assertions checkers Mostly known
Temporal runtime verifiers Verify temporal properties

NOTE 1 Bjnary‘decision diagrams (BDD) are data structures for representing boolean functions, that is, functions that
take boolebhnsas inputs and prndnrp ahoolean asg output These data structures can be considered as r‘nmprpccpd

NOTE 2 In computer science, the satisfiability modulo theories (SMT) problem is a decision problem for logical formulas
with respect to combinations of background theories expressed in classical first-order logic with equality.

NOTE 3 In computer science, the boolean satisfiability problem (sometimes called propositional satisfiability problem and
abbreviated as SATISFIABILITY or SAT) is the problem of determining if there exists an interpretation that satisfies a given
boolean formula. Therefore a SAT solver is a software application that solves this problem.

NOTE 4 HAZOP stands for HAZar and OPerability study and is a structured and systematic examination of a complex
planned or existing process or operation in order to identify and evaluate problems that may represent risks to personnel
or equipment. The intention of performing an HAZOP is to review the design to pick up design and engineering issues that
may otherwise not have been found. The technique is based on breaking the overall complex design of the process into a
number of simpler sections called 'nodes’ which are then individually reviewed. It is carried out by a suitably experienced
multi-disciplinary team (HAZOP) during a series of meetings.

16 © ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=1f54662bcdcbf165815ab0fc2078e3af

ISO/IEC 23643:2020(E)

Table 1 (continued)
Capability list of software safety verification tools
Tool category Capability Remarks
Programming rules Syntactic programming rules
checkers .) Style checkers
Semantic programming rules
Common safety capabil- |Parsers Based on language grammars
ities Semantic analysis Based on language semantics
Code generation binary byte-code high-level programming
language
E.g. HAZOP (See NOTE 4), DELRHI, SWOT

Risks analysis

and FMEA

NPTE 1 Binary decision diagrams (BDD) are data structures for representing boolean functions)that is, funftions that
talke booleans as inputs and produce a boolean as output. These data structures can be considered.as compressdgd.

NOTE 2 In computer science, the satisfiability modulo theories (SMT) problem is a decision problem for logicgl formulas
with respect to combinations of background theories expressed in classical first-order logicwith equality.
N
a

DTE 3 In computer science, the boolean satisfiability problem (sometimes called propositional satisfiability pfoblem and
Rbreviated as SATISFIABILITY or SAT) is the problem of determining if there exists\an interpretation that satisfies a given
olean formula. Therefore a SAT solver is a software application that solves this\problem.

b

NOTE 4 HAZOP stands for HAZar and OPerability study and is a structured)and systematic examination offa complex
planned or existing process or operation in order to identify and evaluate‘problems that may represent risks td personnel
o1l equipment. The intention of performing an HAZOP is to review the design to pick up design and engineering fissues that
mpy otherwise not have been found. The technique is based on breaking the overall complex design of the prdcess into a
number of simpler sections called 'nodes' which are then individually: reviewed. It is carried out by a suitably experienced
mlti-disciplinary team (HAZOP) during a series of meetings.

© ISO/IEC 2020 - All rights reserved 17

https://standardsiso.com/api/?name=1f54662bcdcbf165815ab0fc2078e3af

ISO/IEC 23643:2020(E)

Table 2 — Capabilities of software security verification tools by category

Capability list of software security verification tools

Tool category Capability Remarks
Vulnerability analysis Network tools Port scanner, network mapping, network
tools analysis

OSINT shodan, etc

Common enumerators Brute-forcers, dns vulnerability scanner, etc.

Code review

Disassembler

Decompiler

Code analysis

Configuration analysis 0S, app

Hardening check Verification of usage of Stactk‘cookie, ASLR

Control Flow Protection, FlowGuard, etc.

Known vulnerability check

Emulation

Symbolic execution

Common vulnerability scanner SQL injeetion, buffer overflow, XSS

Performance analysis

Monitoring Information leakage monitor, Monitoring
capabilities from safety verification tools

Log analysis

Fuzzing

Security modeling tools |Security related features of seftware |Code editors, compilers, linkers, assem-
development tools blers, disassemblers, debuggers, testing,
CASE tools, version control

Informal walktrough

Formal inspection of binary and
source code

Threat mgdeling tools Attack tregs E.g. https://github.com/cmu-sei/AASPE
Attack impact

Attack-surface

Eault trees

Misuse cases

STRIDE

DREAD See NOTE 1

System modeling E.g. UML

Other modeling technigque https://www.owasp.org/

NOTE 1 DREAD is part of a system for risk-assessing computer security threats previously used at Microsoft that provides
a mnemonic for risk rating security threats using five categories. The categories are: Damage — how bad would an attack
be? Reproducibility — how easy is it to reproduce the attack? Exploitability — how much work is it to launch the attack?
Affected users — how many people will be impacted? Discoverability — how easy is it to discover the threat?

NOTE 2 HAZOP stands for HAZard and OPerability study and is a structured and systematic examination of a complex
planned or existing process or operation in order to identify and evaluate problems that may represent risks to personnel
or equipment. The intention of performing an HAZOP is to review the design to pick up design and engineering issues that
may otherwise not have been found. The technique is based on breaking the overall complex design of the process into a
number of simpler sections called 'nodes' which are then individually reviewed. It is carried out by a suitably experienced
multi-disciplinary team (HAZOP) during a series of meetings.

NOTE 3 This table provides examples of suitable products available commercially. This information is given for the
convenience of users of this document and does not constitute an endorsement by ISO or IEC of these products.

18 © ISO/IEC 2020 - All rights reserved

https://www.owasp.org/
https://standardsiso.com/api/?name=1f54662bcdcbf165815ab0fc2078e3af

ISO/IEC 23643:

Table 2 (continued)

2020(E)

Capability list of software security verification tools

Tool category Capability Remarks

bi

Common security capa- |Parsers Based on language grammars

lities Semantic analyzers Based on language semantics

language

Code generation Binary, byte-code, high-level programming

E.g. HAZOP (See NOTE 2), DELPH],

Risks analvsis toals

SWOT

and FMEA

a
bd
A

pl
o]

ny

Cd

DTE 1 DREAD is part of a system for risk-assessing computer security threats previously used at Microsoft th
mnemonic for risk rating security threats using five categories. The categories are: Damage — how hadwoul
? Reproducibility — how easy is it to reproduce the attack? Exploitability — how much work is it-t6 Jdunch
fected users — how many people will be impacted? Discoverability — how easy is it to discover the threat?

DTE 2 HAZOP stands for HAZard and OPerability study and is a structured and systemati¢ €xamination off
hnned or existing process or operation in order to identify and evaluate problems that may nepresent risks tq
equipment. The intention of performing an HAZOP is to review the design to pick up design and engineering
ny otherwise not have been found. The technique is based on breaking the overall coniplex design of the prg
mber of simpler sections called 'nodes' which are then individually reviewed. It is-earried out by a suitably e
llti-disciplinary team (HAZOP) during a series of meetings.

DTE 3 This table provides examples of suitable products available commiercially. This information is giy
nvenience of users of this document and does not constitute an endorsement.by ISO or IEC of these products.

t provides
l an attack
he attack?

a complex
personnel
ssues that
cess into a
kperienced

en for the

Se
co
cr
of
SO

A
by

T}
to
th

T}

veral, probably the most commonly known, software verification tools address the softwe];'e source

de, written in C, C++ and Java, which are common progtamming languages within safety an
tical dynamic industrial applications. However, as theshumber of verification tool categorie

security
b and lists

their capabilities show, there are many tools addressing other components of software than just the

urce code (e.g. documentation or object code).

boftware safety and security verification toglnay have capabilities from more than one tool
t it shall have capabilities from at least one tool category.

5 Common requirements forsafety and security verification tools

e requirements for safety and security verification tools may be either common to all tools, ¢
a certain tool category. Thissubclause provides a list of common requirements and 8.6 to
e category specific requirerhents for each category.

e following requirements are common to all tools:

The vendorcof-a safety and security verification tool shall provide information about
applicability-in terms of safety and security analysis. It shall explain which activities of a dey
life-cycle\are covered by the tool and which safety and/or security properties are handled

The,vendor of a safety and security verification tool shall provide information about
dpplicability in terms of verification use cases. This allows the user of the tool to check

category,

r specific
8.14 give

the tools

elopment
.

the tools
f the tool

is adequate to the problem at hand, i.e. to 1) the specific application to be analyzed, 2) t

e desired

safety and security properties, and 3) the environment (e.g. industrial setting and constraints) in

which the tool will be put into practice. See NOTE.

The vendor of a safety and security verification tool shall provide information about the category

and capabilities of the tool, as defined in the Tables 1 and 2.

The vendor of a safety and security verification tool shall provide the tools requirements in terms
of execution platform, i.e. computer, operating system and required middleware and libraries.

The vendor of a safety and security verification tool shall provide information allowing to compare

its detection capabilities with other tools from the same category.

© ISO/IEC 2020 - All rights reserved

19

https://standardsiso.com/api/?name=1f54662bcdcbf165815ab0fc2078e3af

ISO/IEC 23643:2020(E)

NOTE The term industrial setting denotes the industrial environment in which the tool is put to work, such
as 1) CASE tool used in house, 2) the in-house development (including validation) process, 3) computing platforms
used (e.g. ARM/x86, cross-compilers, OS kind and version), etc.

8.6 Requirements for specification and refinement tools

A safety and security verification tool that works by evaluating specifications and refinements of
software is always based on one formal specification language. Therefor the vendor of the tool shall
provide:

— a spefificatiom tanguage Teference manuar (RivtJ;

— agrammar (e.g. BNF) for describing the syntax of the language;

— semalntics describing the meaning of each construct of the language;
— aspegification type-checker, compliant with the RM.

The vendor of a specification tool shall provide information about the tools speeification langualge
expressifity and applicability. An example of such requirement is a functional specifications tqol
precising|the order (e.g. predicates, first or higher) and nature of the logics underlying the specificatipn
languagefe.g. CTL (Computation Tree Logic), LTL (Linear Temporal Logic) ox'separation logic.

If the specification tool permits to use predefined libraries (i.e. mathematical functions), then the
vendor off the tool shall provide the specifications of each supported library. These specifications shpll
be provided completely in the form of files associated to the tool, in a readable format, and shall pe
introducqd in the RM (e.g. structure of the specifications and legation in terms of predefined files).

If the spefification tool allows specification refinements,then the vendor of the tool shall provide rules
for writirjg and checking refinements.

If the specification language of a specification toolds*bound to a specific programming language, then
the vendqr of the tool shall provide the references-to the programming language, including its langualge
RM. The yendor of a specification tool shall previde the programming language coverage and indic3te
what syntactical parts of the later are supported and unsupported.

8.7 Requirements for model checking tools
Model ch¢cking tools operate on the source code as being the model or on another representation.

When a mjodel checking tool'aperates on the source code as being the model, the vendor of the tool shpll
provide the following techmnical elements:

— amodel checkingtool user manual (UM);

— arefgrence to'the specification language used to express properties, if necessary;

— benchmarks, defining in which applications the tool has been used and the performance observed

1 o 1.] 4 £l 1 Litas)
dnalysts—tme ot anaiactare-or e ratrcS-ootatieay,;

— if the analysis tool supports a specific programming language, then the references to the
programming language, including its language RM;

— the programming language coverage, indicating what parts of it are supported and unsupported.

When a model checking tool operates on another representation, the vendor of the tool shall provide
the following technical elements:

— the model representation language (e.g. timed automata) with syntax and semantics;

— amethodology for building models in the model representation language;

20 © ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=1f54662bcdcbf165815ab0fc2078e3af

ISO/IEC 23643:2020(E)

detailed traces when the model checking tool fails to verify some property;

— a methodology to check the conformance between models and the underlying programming

language, if necessary.

8.8 Requirements for program analysis tools

The vendor of a safety and security verification tool that belongs to the category of program analysis
tools, shall provide information about the programming language(s) addressed by the tool as well as
the type of the verification technique underlying it (e.g. Hoare logics, abstract interpretation).

TH

If

p
to
th

Fu
an
th
ha
m
pr
sh

If
p1|

.p Requirements for proof tools

e vendor of the tool shall provide the following technical elements:
an analysis tool UM;
areference to the specification language used to express properties, if necessary;
a program analysis tool;

benchmarks, defining which applications the tool has been used and’the performance
(analysis time, number and nature of the faults obtained);

target computing platform different from the analysis platform.

h program analysis tool supports a specific programming language, then the vendor of the

bl is an abstract interpreter, and is therefore tightly bound to a specific programming langy
e references to the latter shall be provided.

rthermore, the vendor of a program analysis;tool shall provide the programming language
d indicate which syntactical parts of the-language are supported and which are unsupp
e unsupported syntactical parts, thesprogram analysis tool’s manual should include gu
w these parts could be handled. If the-program analysis tool permits to use predefined libr
hthematical functions) of the assocgiated programming language, then the vendor of the
ovide the method used to analyze each library supported. The built-ins of a program ang
all be fully described in the UM.

p program analysis toal yequires the use of proof tools, then the references to these tool
ovided.

the categ@ry contains tools proving mathematically formal specifications, the vendors of
all provide’adequate information about:

the mode: automated or manual tool (e.g. proof assistant);

observed

capability to differentiate the target and host platforms, e.g. te,allow analyzing a code running for a

tool shall

ovide the references to the programming language,.including its language RM. For instance, if the

age, then

coverage
rted. For
dance on
pries (e.g.
tool shall
lysis tool

5 shall be

the tools

the Kind ol reasoning used: inference based, SAl solver, resolution based, etc.;

the logic/language used for expressing predicates: first order logic, higher order logic, t
typed, etc.;

yped/un-

the use of strategies and tactics to guide proofs; language for defining new tactics and strategies;

the list of possible results of a proof, e.g. true, false, fail, unknown, etc.;
the possibility to obtain a counter-example in the case of a failing proof;

benchmarks, defining for which applications the proof tool has been used and the per
observed (execution time, result obtained).

© ISO/IEC 2020 - All rights reserved

formance

21

https://standardsiso.com/api/?name=1f54662bcdcbf165815ab0fc2078e3af

ISO/IEC 23643:2020(E)

8.10 Requirements for monitoring tools

The vendor of a software safety and security verification tool that belongs to the category of monitoring
tools shall describe:

the nature of the supported programming language (e.g. C/C++);

the type of monitored properties;

the specification language to express the desired properties, if necessary;

the 1

thredding and assembly code);

the cppability to provide the user with a counter-example when a property is not satisfiéd“and t
counfer-example format (e.g. format of an execution trace);

exec

with

Ition time and memory consumption rates for comparing the execution of a4 program with
ut monitoring;

whether monitored properties are state-based or trace-based;

the ijvasiveness of the tool in terms of execution environment disturbanee (e.g. control flow chan
mempry layout modification and program object structure modification).

8.11 Requirements for programming rules checking tools

A programming rules checker works at the syntactic and/or semantic level of some programmi
language]| The vendor of a programming rules checker shall\provide information about:

the target programming language for which rules-are checked;

the ryiles enforced or a reference to a programming rules standard;

the target programming language standayds and variants considered;

thet

pol’s results shall refer to the programming language RM whenever possible, so that in the ca

of nop-compliance users can understand precisely its cause;

ease

bf configuration of the tool (e.g. select a sub-set of rules for checking);

natufe and structure of ppovided statistics;

if po

dsible, integration with code analysers.

8.12 Requirements for vulnerability analysis tools

The vendpr of avulnerability analysis tool shall provide information about:

22

mitations in terms of programming language constructs that are supported (e.g. multi-

he

AT

€,

supp OTted amatysis techmque;

type of the vulnerability analysis (information gathering, static program analysis, dynamic program
analysis);

attack surfaces discovered and scanned, and the types of vulnerabilities that can potentially be
discovered (preferably, referencing prerequisites for successful identification as well);

what kind of security requirements the tool can check against, and with what level of confidence;

inventory of the vulnerabilities found during the analysis.

© ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=1f54662bcdcbf165815ab0fc2078e3af

ISO/IEC 23643:2020(E)

8.13 Requirements for security modeling tools

The security modeling process starts with defining the scope by specifying what is covered and what
is not covered in the verification. After specifying the verified systems and applications the security
modeling generally requires collecting data from various sources.

The vendor of a security modeling tool shall provide information about:

supported modeling techniques;

inventory of the supplied modeling properties thatare supported, such as assets, security

bjectives

T}

or security requirements;
exporting model format(s);
specification of the model format, as this output shall be used in further verification activ

support verifying the model against completeness or minimum requirements (e.g. the
verify whether every asset is covered with at least one security objective, or whether ever
objective is protected with at least one security requirement).

.14 Requirements for threat modeling tools

e vendors of threat modeling tools shall provide informatiofivabout:
supported threat analysis and modeling techniques;
inventory of the collected threats;

properties of collected threats, including the“description of the threat, reference to thg
asset and relation to the security objectivesor to other security elements.

ities;

tool shall
U security

e affected

© ISO/IEC 2020 - All rights reserved

23

https://standardsiso.com/api/?name=1f54662bcdcbf165815ab0fc2078e3af

ISO/IEC

23643:2020(E)

Annex A
(informative)

Evaluation assurance levels of ISO/IEC 15408 common criteria

Al Ge

The evaluy
obtained
approach
evaluatio

heral

ation assurance levels (EALs) provide an increasing scale that balances the level of assuran
with the cost and feasibility of acquiring that degree of assurance. The ISO/IEC 154
identifies the separate concepts of assurance in a target of evaluation (TOE) atthe end of t
h, and of maintenance of that assurance during the operational use of the TOE.

A.2 Ev

EAL1 is
are not

the contention that due care has been exercised with respect to the¢protection of personal or simi
information.

EAL1 reduires only a limited security target. It is sufficient torsimply state the security functioy

require
security

EAL1 pro
againsta
an EAL1

and for mj
manner ¢

EAL1 prg

that security target using a functienal and interface specification and guidance documentation,

understa

The analy
testing (fi

EAL1 als¢ provides assurance through unique identification of the TOE and of the relevant evaluati

documen

This EAL

luation assurance level 1 (EAL1) — Functionally tested

plicable where some confidence in correct operation is required, but the threats to secur
iewed as serious. It will be of value where independent assutance is required to suppq

nts (SFR) that the TOE must meet, rather than deriving them from threats, organizatio
olicies and assumptions through security objectives.

vides an evaluation of the TOE as made available to the customer, including independent testi
specification, and an examination of the guidance documentation provided. It is intended tH
bvaluation could be successfully conducted without assistance from the developer of the T

pnsistent with its documentation.
vides a basic level of assurance by a limited security target and an analysis of the SFRs

nd the security behaviour:

sis is supported bya-search for potential vulnerabilities in the public domain and independd
inctional and penetration) of the TOE security functionality.

[S.

proyides a meaningful increase in assurance over unevaluated IT.

ce
D8
he

ty
rt
ar

al
al

ng
at
DE

inimal outlay. An evaluation at this 1ével should provide evidence that the TOE functions i a

in
to

nt

A.3 Evaluation assurance level 2 (EAL2) — Structurally tested

EALZ2 requires the co-operation of the developer in terms of the delivery of design information and test
results, but should not demand more effort on the part of the developer than is consistent with good
commercial practice. As such it should not require a substantially increased investment of cost or time.

EAL2 is therefore applicable in those circumstances where developers or users require a low to
moderate level of independently assured security in the absence of ready availability of the complete
development record. Such a situation may arise when securing legacy systems, or where access to the
developer may be limited.

24

© ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=1f54662bcdcbf165815ab0fc2078e3af

	Foreword
	Introduction
	1 Scope
	2 Normative references
	3 Terms and definitions
	4 Abbreviated terms
	5 Models for software safety and security verification tools
	6 Use cases of software safety and security verification tools
	6.1 General
	6.2 Verification for low criticality software
	6.3 Verification for medium criticality software
	6.4 Verification for high criticality software

	7 Entity relationship chart of software safety and security verification
	8 Categories, capabilities of and requirements for software safety and security verification tools
	8.1 General
	8.2 Categories of software safety verification tools
	8.2.1 General
	8.2.2 Specification and refinement tools
	8.2.3 Model checking tools
	8.2.4 Program analysis tools
	8.2.5 Proof tools
	8.2.6 Monitoring tools
	8.2.7 Programming rules checkers

	8.3 Categories of software security verification tools
	8.3.1 General
	8.3.2 Vulnerability analysis tools
	8.3.3 Security modeling tools
	8.3.4 Threat modeling tools

	8.4 Capabilities of software safety and security verification tools
	8.5 Common requirements for safety and security verification tools
	8.6 Requirements for specification and refinement tools
	8.7 Requirements for model checking tools
	8.8 Requirements for program analysis tools
	8.9 Requirements for proof tools
	8.10 Requirements for monitoring tools
	8.11 Requirements for programming rules checking tools
	8.12 Requirements for vulnerability analysis tools
	8.13 Requirements for security modeling tools
	8.14 Requirements for threat modeling tools

	Annex A (informative) Evaluation assurance levels of ISO/IEC 15408 common criteria
	Annex B (informative) How to use this document with ISO/IEC 20741
	Bibliography

