
Software and systems engineering —
Capabilities of software safety and
security verification tools
Ingénierie du logiciel et des systèmes — Capacités des outils de
vérification de la sûreté et de la sécurité des logiciels

INTERNATIONAL
STANDARD

ISO/IEC
23643

Reference number
ISO/IEC 23643:2020(E)

First edition
2020-06

© ISO/IEC 2020

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
64

3:2
02

0

https://standardsiso.com/api/?name=1f54662bcdcbf165815ab0fc2078e3af

﻿

ISO/IEC 23643:2020(E)
﻿

ii� © ISO/IEC 2020 – All rights reserved

COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2020
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting
on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address
below or ISO’s member body in the country of the requester.

ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Email: copyright@iso.org
Website: www.iso.org

Published in Switzerland

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
64

3:2
02

0

https://standardsiso.com/api/?name=1f54662bcdcbf165815ab0fc2078e3af

﻿

ISO/IEC 23643:2020(E)
﻿

Foreword...iv
Introduction...v
1	 Scope.. 1
2	 Normative references... 1
3	 Terms and definitions.. 1
4	 Abbreviated terms... 6
5	 Models for software safety and security verification tools... 7
6	 Use cases of software safety and security verification tools.. 9

6.1	 General.. 9
6.2	 Verification for low criticality software... 10
6.3	 Verification for medium criticality software... 10
6.4	 Verification for high criticality software... 11

7	 Entity relationship chart of software safety and security verification..12
8	 Categories, capabilities of and requirements for software safety and security

verification tools...13
8.1	 General... 13
8.2	 Categories of software safety verification tools...13

8.2.1	 General... 13
8.2.2	 Specification and refinement tools..13
8.2.3	 Model checking tools..13
8.2.4	 Program analysis tools..14
8.2.5	 Proof tools... 14
8.2.6	 Monitoring tools...14
8.2.7	 Programming rules checkers.. 14

8.3	 Categories of software security verification tools..15
8.3.1	 General... 15
8.3.2	 Vulnerability analysis tools... 15
8.3.3	 Security modeling tools... 15
8.3.4	 Threat modeling tools...15

8.4	 Capabilities of software safety and security verification tools..15
8.5	 Common requirements for safety and security verification tools..19
8.6	 Requirements for specification and refinement tools...20
8.7	 Requirements for model checking tools... 20
8.8	 Requirements for program analysis tools... 21
8.9	 Requirements for proof tools... 21
8.10	 Requirements for monitoring tools.. 22
8.11	 Requirements for programming rules checking tools..22
8.12	 Requirements for vulnerability analysis tools... 22
8.13	 Requirements for security modeling tools... 23
8.14	 Requirements for threat modeling tools.. 23

Annex A (informative) Evaluation assurance levels of ISO/IEC 15408 common criteria............................24
Annex B (informative) How to use this document with ISO/IEC 20741...28
Bibliography..29

© ISO/IEC 2020 – All rights reserved� iii

Contents� Page

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
64

3:2
02

0

https://standardsiso.com/api/?name=1f54662bcdcbf165815ab0fc2078e3af

﻿

ISO/IEC 23643:2020(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that
are members of ISO or IEC participate in the development of International Standards through
technical committees established by the respective organization to deal with particular fields of
technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other
international organizations, governmental and non-governmental, in liaison with ISO and IEC, also
take part in the work.

The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for
the different types of document should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www​.iso​.org/​directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject
of patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent
rights. Details of any patent rights identified during the development of the document will be in the
Introduction and/or on the ISO list of patent declarations received (see www​.iso​.org/​patents) or the IEC
list of patent declarations received (see http://​patents​.iec​.ch).

Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and
expressions related to conformity assessment, as well as information about ISO's adherence to the
World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see www​.iso​.org/​
iso/​foreword​.html.

This document was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology,
Subcommittee SC 7, Software and systems engineering.

Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www​.iso​.org/​members​.html.

﻿

iv� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
64

3:2
02

0

https://www.iso.org/directives-and-policies.html
https://www.iso.org/iso-standards-and-patents.html
http://patents.iec.ch/
https://www.iso.org/foreword-supplementary-information.html
https://www.iso.org/foreword-supplementary-information.html
https://www.iso.org/members.html
https://standardsiso.com/api/?name=1f54662bcdcbf165815ab0fc2078e3af

﻿

ISO/IEC 23643:2020(E)

Introduction

Since a few decades, the importance of software safety and security verification tools has increased for
several reasons: 1) rapidly increasing complexity of software applications and systems, 2) increasing
number of safety-critical systems through growing integration between software applications and
systems (e.g. in critical infrastructures), 3) the rapid increase of the number of cyber threats, and 4)
the urgent needs of safety in high and medium critical software-driven systems (e.g. transportation,
energy production, Internet of Things (IoT), and general purpose Operating Systems and middleware).
Additionally, the number of products and system development cases, where the origin of all software
components to be used is not exactly known, even for open-source applications, is increasing and thus
making safety and security verification and validation (V&V) essential.

This document restricts its point of view to software and excludes computing and any other hardware
from the context. In these other domains, other V&V methods and tools are used.

It is important to realize that verification of safety and security of software does not necessarily verify
the system safety and system security of a system using the software as a component. However, if a
system consists of software components which are not verified, the safety and security of the system
cannot be guaranteed at any level.

“Continuous everything”, including continuous software development and thus versioning delivery,
requires continuous software safety and security verification. At every new version, V&V needs to be
redone. The popular “agile development processes” permit shorter development iterations and more
frequent product delivery, and consequently this requires more frequent verification than traditional
development approaches. Verification is needed during software development as well as during
software maintenance, whenever safety or security of software can be endangered.

Validation answers the question “are we building the right product?”

Verification answers the question “are we building the product right?”

Software validation checks if the software product satisfies the intended use, such as defined in
requirements and specifications. In other words (ISO/IEC 17029): “purpose of validation is to find out,
whether a declared information (claim) is plausible”. Software verification checks if the specifications
and requirements are met either by running the software (testing) or by reviewing its artefacts
(specification, model, or pseudo code). The latter can consist of animating or analyzing statically one of
its artefacts. ISO/IEC 17029 defines that the “purpose of verification is to find out, whether a declared
information (claim) is truthful”. This document does not concern testing but animating and analyzing
the artefacts, because “testing tools” is already well covered by and is the subject of ISO/IEC 30130.

This document is prepared as one of the series of single tool capabilities which are used with
ISO/IEC 20741.

This document defines capabilities of and requirements for software safety and security verification tools.

This document is independent of the target application domains, as the languages, methods and
associated tools are of general purpose, and can fit into different kinds of problems (e.g. functional
specification languages can be used for any functional program).

﻿

© ISO/IEC 2020 – All rights reserved� v

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
64

3:2
02

0

https://standardsiso.com/api/?name=1f54662bcdcbf165815ab0fc2078e3af

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
64

3:2
02

0

https://standardsiso.com/api/?name=1f54662bcdcbf165815ab0fc2078e3af

﻿

Software and systems engineering — Capabilities of
software safety and security verification tools

1	 Scope

This document specifies requirements for the vendors and gives guidelines for both the users and the
developers of software safety and security verification tools. The users of such tools include, but are
not limited to, bodies performing verification and software developers who need to be aware and pay
attention to safety and/or security of software. This document guides the verification tool vendors to
provide as high-quality products as possible and helps the users to understand the capabilities and
characteristics of verification tools.

This document introduces use cases for software safety and security verification tools and entity
relationship model related to them. This document also introduces tool categories for software safety
and security verification tools and gives category specific guidance and requirements for the tool
vendors and developers.

2	 Normative references

There are no normative references in this document.

3	 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

—	 ISO Online browsing platform: available at https://​www​.iso​.org/​obp

—	 IEC Electropedia: available at http://​www​.electropedia​.org/​

3.1
application domain
well-defined set of applications

3.2
capability
quality of being able to perform a given activity

[SOURCE: ISO 19439:2006, 3.5]

3.3
certificate
attestation document issued by an independent third-party certification body

[SOURCE: ISO 22222:2005, 3.2]

3.4
defect
fault, or deviation from the intended level of performance of a system or software (3.19)

INTERNATIONAL STANDARD� ISO/IEC 23643:2020(E)

© ISO/IEC 2020 – All rights reserved� 1

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
64

3:2
02

0

https://www.iso.org/obp/ui
http://www.electropedia.org/
https://standardsiso.com/api/?name=1f54662bcdcbf165815ab0fc2078e3af

﻿

ISO/IEC 23643:2020(E)

3.5
dynamic program analysis
process of evaluating a software (3.19) system or component based on its behaviour during execution

Note 1 to entry: The definition means that the software shall actually be compiled and run on a certain number of
input data test cases. The physical response from the system is then examined and compared to expected results.
Dynamic program analysis can be done manually or using an automated process. The results are examined either
manually (e.g. with small input test data) or automatically using oracles.

3.6
entity
data concept that may have attributes and relationships to other entities

[SOURCE: ISO/TR 25100:2012, 2.1.3, modified — Note 1 to entry has been removed.]

3.7
evaluator
competent person engaged in the verification (3.33) or validation (3.32) of a system or software (3.19)

3.8
false negative
true defect (3.4) that has not been observed

Note 1 to entry: The term is used for analysis tools producing defect information during the analysis of an
application. In the presence of false negatives, the tool is said to be incomplete with respect to the real set of
defects in the software (3.19) under analysis. False negatives can be due to several reasons such as 1) the use of
heuristics for detecting defects, 2) too restrictive analysis data.

3.9
false positive
observed defect (3.4) which does not correspond to a true defect

Note 1 to entry: The term is used for analysis tools producing defect information during the analysis of an
application. False positives appear during the analysis because of several possible reasons, such as lack of
precision of the analysis rules.

3.10
formal verification
activity proving or disproving the correctness of intended applications with respect to a formal
specification or a property, using formal methods of mathematics

3.11
malfunction
behaviour of a system or component that deviates from the specifications

3.12
protection
process to secure content

[SOURCE: ISO/IEC 15444-8:2007, 3.24]

3.13
risk
effect of uncertainty on objectives

Note 1 to entry: ISO 22538-4 defines risk as “probability of loss or injury from a hazard”.

[SOURCE: ISO 31000:2018, 3.1, modified — Notes 1, 2 and 3 to entry have been removed; a new Note 1
to entry has been added.]

3.14
safety
freedom from unacceptable risk (3.13)

﻿

2� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
64

3:2
02

0

https://standardsiso.com/api/?name=1f54662bcdcbf165815ab0fc2078e3af

﻿

ISO/IEC 23643:2020(E)

3.15
safety-critical system
system whose failure or malfunction (3.11) may result in one (or more) of the following outcomes:

—	 death or serious injury to people

—	 loss or severe damage to equipment/property

—	 environmental harm

EXAMPLE	 Examples of safety-critical systems are critical infra-structures, medical equipment,
transportation, and nuclear power plants. Safety-critical systems are also sometimes called life-critical systems.

3.16
security
resistance to intentional, unauthorized act(s) designed to cause harm or damage to a system

3.17
security level
combination of a hierarchical security (3.16) classification and a security category that represents the
sensitivity of an object or the security clearance of an individual

Note 1 to entry: The minimum security level is an indication of the minimum protection (3.12) required.

3.18
semi-formal verification
method that is based on a description given in semi-formal notation

3.19
software
all or part of the programs, procedures, rules, and associated documentation of an information
processing system

[SOURCE: ISO/IEC 19770-3:2016, 3.1.26, modified — Note 1 to entry has been removed.]

3.20
software item
identifiable part of a software (3.19) product, consisting of source code, object code, control code,
control data, or a collection of these

Note 1 to entry: Software item is a generic term that designates well-identified parts of software source code,
object code or data. A software item belongs to a syntactic category of the programming language in which the
software is written. Examples are classes, variables, functions and types. A software item is an identifiable part
of a software product.

3.21
software safety
ability of software (3.19) to be free from unacceptable risk (3.13)

Note 1 to entry: It is the ability of software to resist failure and malfunctions (3.11) that can lead to death or
serious injury to people, loss or severe damage to property, or severe environmental harm.

Note 2 to entry: Software quality, including software safety, is achieved using software engineering. Software
engineering for safety-critical systems (3.15) emphasizes the following directions:

—	 process engineering and management;

—	 selecting the appropriate tools and environment for the system; the principle of using the best tools fit to the
purpose prevails as in most engineering disciplines;

—	 adherence to requirements.

﻿

© ISO/IEC 2020 – All rights reserved� 3

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
64

3:2
02

0

https://standardsiso.com/api/?name=1f54662bcdcbf165815ab0fc2078e3af

﻿

ISO/IEC 23643:2020(E)

3.22
software security
ability of software (3.19) to protect its assets from a malicious attacker

Note 1 to entry: According to software product quality model in ISO/IEC 25010, software security applies to
software assets and is decomposed into the following set of properties: confidentiality, integrity, availability,
authentication, authorization and non-repudiation.

3.23
software unit
smallest independent piece of software (3.19), which can be independently translated, and which can be
tested with the relevant data on whether it performs to specification

3.24
static program analysis
sub-field of formal methods concerned by analyzing the properties of a software (3.19) code without
executing this code in the target (binary) format

3.25
system safety
ability of a system to be free from unacceptable risk (3.13)

Note 1 to entry: A system is defined as a set or group of interacting, interrelated or interdependent elements
or parts, that are organized and integrated to form a collective unity or a unified whole, to achieve a common
objective. In a broader view the definition of a system consists in the hardware, software (3.19), human systems
integration, procedures and training. Therefore, system safety is part of the systems engineering process and
should systematically address all of these domains and areas in engineering and operations in a concerted
fashion to prevent, eliminate and control hazards.

Note 2 to entry: A system safety concept helps the system designer(s) to model, analyze, gain awareness about,
understand and eliminate the hazards, and apply controls to achieve an acceptable level of safety (3.14). The
systems-based approach to safety requires the application of scientific, technical and managerial skills to hazard
identification, hazard analysis, and elimination, control, or management of hazards throughout the life-cycle
of a system, program, project or an activity or a product. Hazop is one of several techniques available for the
identification of hazards.

3.26
target of verification
TOV
software (3.19), or a set of software items (3.20) or units (3.23), to be verified (e.g. in terms of safety
(3.14) and security (3.16))

Note 1 to entry: Target of evaluation (TOE) is a commonly used term in systems security techniques. TOE is
defined as a set of software, firmware and/or hardware possibly accompanied by guidance.

3.27
target software
final product of a software (3.19) development process, containing at least the binary code able to run
on the target computer

Note 1 to entry: Target software may consist of several files, including binary and source files, libraries,
installation and compilation script files, documentation and data files. The target software often relies on
underlying layers of software, that are not part of the target software, but that are necessary to be executed on
the target platform, for instance libraries.

3.28
target system
complete computing platform capable of running the target software (3.27)

Note 1 to entry: A target system consists of hardware resources and software (3.19) resources installed on the
hardware.

﻿

4� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
64

3:2
02

0

https://standardsiso.com/api/?name=1f54662bcdcbf165815ab0fc2078e3af

﻿

ISO/IEC 23643:2020(E)

3.29
toolbox
set of tools completing each other in terms of capabilities, to cover a larger area of their intended use

3.30
trust
degree to which a user or other stakeholder has confidence that a product or system will behave as
intended

[SOURCE: ISO/IEC 25010:2011, 4.1.3.2]

3.31
use case
specification of a sequence of actions, including variants, that a system (or other entity (3.6)) can
perform, interacting with actors of the system

[SOURCE: ISO 15745-1:2003, 3.35, modified — The domain "<class>" at the beginning and "[UML]" at
the end of the definition has been removed.]

3.32
validation
confirmation, through the provision of objective evidence, that the requirements for a specific intended
use or application have been fulfilled

EXAMPLE	 Safety (3.14) validation has been defined as an assurance, based on examination and tests, that
the safety goals are sufficient and have been achieved (ISO 26262-1).

[SOURCE: ISO/IEC 25000:2014, 4.41, modified — Note 1 to entry have been removed; EXAMPLE has
been added.]

3.33
verification
confirmation, through the provision of objective evidence, that specified requirements have been
fulfilled

[SOURCE: ISO/IEC 25000:2014, 4.43, modified — Note 1 to entry have been removed.]

3.34
verification method
method for producing objective evidence that specified requirements of a system have been fulfilled

3.35
verification tool
instrument that can be used during verification (3.33) to collect information about the target of
verification (3.26), to perform interpretation of information or to automate part of the verification

3.36
vulnerability
potential flaw or weakness in software (3.19) design or implementation that could be exercised
(accidentally triggered or intentionally exploited) and result in harm to the system

Note 1 to entry: The CVE classification (see Reference [25]) defines the de-facto standard classes of the known
software vulnerabilities.

Note 2 to entry: A vulnerability is exploitable if it can be activated in practice.

﻿

© ISO/IEC 2020 – All rights reserved� 5

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
64

3:2
02

0

https://standardsiso.com/api/?name=1f54662bcdcbf165815ab0fc2078e3af

﻿

ISO/IEC 23643:2020(E)

4	 Abbreviated terms

AASPE automated assurance of security policy enforcement tool

ACSL ANSI/ISO C specification language

ARM advanced RISC machine

BDD binary decision diagram

BNF Backus–Naur form

CASE computer-aided software engineering tool

CC common criteria

CSPN Certification de Sécurité de Premier Niveau

CTL computation tree logic

dns domain name server, domain name system

DREAD damage, reproducibility, exploitability, affected users, and discoverability risk assess-
ment model

EAL evaluation assurance level

FMEA failure mode and effects analysis

HAZOP hazard and operability analysis

LTL linear temporal logic

OSINT open-source intelligence

RM reference manual

SAT satisfiability

SCL Safety Culture Ladder

SDLC software development life-cycle

SMT satisfiability modulo theory

SQL structured query language

STRIDE spoofing, tampering, repudiation, information disclosure, denial of service and elevation of
privilege

SWOT strengths, weaknesses, opportunities and threats

UML unified modeling language

VDM-SL Vienna development method - specification language

V&V verification and validation

XSS cross-site scripting

﻿

6� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
64

3:2
02

0

https://standardsiso.com/api/?name=1f54662bcdcbf165815ab0fc2078e3af

﻿

ISO/IEC 23643:2020(E)

5	 Models for software safety and security verification tools

The model for software safety and security verification is needed to define capabilities of and
requirements for tools by their input, processes and output. The model consists of the following
elements:

a)	 a set of use cases for concretizing the use of software safety and security verification tools,

b)	 a set of entities that represents identifiable information which appears in software safety and
security verification activities, and

c)	 a categorization for software safety and security verification tools.

Figure 1 — Overall structure of models of software safety and security verification

Software safety and security verification activities, including use of tools, are needed whenever any
person (or a thing) develops safety and/or security critical software. Any change to the software can
also require new verification activities (e.g. a whole new verification process). Other typical uses for
software safety and security verification tools are related to software quality evaluation and software
certification cases. The use of such tools may be part of system or application security verification
process, as defined in ISO/IEC 27034 (all parts).

As safety and security issues are becoming increasingly important within software intensive industry
and software intensive systems, a lot of new terms and concepts emerge more and more frequently.
Terms like cyber security, systems of systems, and Internet of Things were never heard of some years
ago, and today they are supposed to be recognized and understood by anyone using or developing
software and systems. Unfortunately, there is still a lot of space for loose communication and
misunderstanding. Commonly accepted and mutually understood terminology between the developers
and users of safety and security verification tools is needed. The most often needed terms and entities
are defined in Clause 3 and discussed in Clause 7.

Clause 6 introduces the use cases of software safety and security verification through some usage
scenarios. They describe the way how software developers or evaluators are intended to use verification
and validation tools to ensure that the end-product becomes of the adequate quality in terms of safety
and security. The target level of safety and security is often defined during the requirements stage of
each development case.

Both safety and security of software are equally essential. However, there are no single tools that can
manage both of such areas of requirements perfectly. That is why the users need to use several tools,
representing several tool categories, when they want to convince themselves and other stakeholders
to trust the overall safety and security of the target software. Clause 8 introduces the verification tool
categories, each specified by capabilities of the tools in the category, and specifies requirements for
software safety and security verification tools.

﻿

© ISO/IEC 2020 – All rights reserved� 7

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
64

3:2
02

0

https://standardsiso.com/api/?name=1f54662bcdcbf165815ab0fc2078e3af

﻿

ISO/IEC 23643:2020(E)

Software industry recognizes several different software development life-cycle (SDLC) models and
development approaches, known for example as V-shaped, linear, prototypical or agile. In safety and
security critical cases, the work often follows a standard SDLC where the activities of the development
process are represented and well-identified with the same names and same order. Software cannot be
tested before being programmed. Verification cannot be done and verification tools cannot be used if
there are no specified requirements. To highlight the verification opportunities during a standard SDLC,
Figure 2 introduces a case of V-shaped life-cycle for developing safety and security critical software.

Figure 2 — A simplified view of safety and security critical software development life-cycle

Each box in Figure 2 represents an activity and grey arrows represent the flow of artefacts between
the activities. For each activity the text in the box indicates some exemplary tools needed to perform
verification and/or validation tasks. The horizontal arrows in Figure 2 represent the links between
pairs of activities when V&V activities occur. For each V&V activity on the right side the arrows show
the correspondence to a development activity on the left side against which outcomes verification and
validation are performed. The related verification actions are actually performed immediately after
provision of development outcomes on the left side, before moving to the next development activity, and
the validation actions only after the implementation and preceding V&V activities. In more details, the
following correspondences occur:

—	 conformance of unitary V&V to the detailed specifications and to the design;

—	 conformance of software integration V&V to the specifications;

—	 conformance of system integration to the requirements and global specifications.

For each activity, Figure 2 indicates its main outcome (also sometimes called main artefact or by-
product) as a small black box. Different techniques, methods and tools can be used to provide
understandable form for artefacts (e.g. UML, ACSL).

﻿

8� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
64

3:2
02

0

https://standardsiso.com/api/?name=1f54662bcdcbf165815ab0fc2078e3af

﻿

ISO/IEC 23643:2020(E)

6	 Use cases of software safety and security verification tools

6.1	 General

By definition the use cases specify a sequence of actions that a system can perform, when interacting
with its users (i.e. the actors of the system). In this document, the use cases are defined at a level where
the users interact with one or more software safety and security verification tools. Selection of the
tools to be used can be made following the processes of ISO/IEC 20741, which introduces the generic
process for evaluating and selecting any software engineering tools (see Annex B).

In this document the detailed variations for using specific tools are ignored because the purpose of
introducing use cases here is not to give specifications for building the tools but to help the readers to
understand the environment where the tools are used. For that purpose, the use cases are not presented
in any standard format, but rather as usage scenarios, although the term “use case” is still used.

Actors of software verification are as follows:

—	 Developers perform the development and verification tasks given in the life-cycle. They produce all
intermediate products to be verified. They also perform the validation of the intermediate products
and testing, sometimes together with the client.

—	 Evaluators are verifying and validating the software against some safety or security standard.
They are independent from the developers’ tasks, but may belong to the same (1st party) or an
independent third-party organization.

—	 Certification bodies examine the verification results already done, perform further verifications
if needed and deliver, if acceptable, a certificate to the software verified. Certification bodies are
always third-party organizations (ISO/IEC 17000).

Figure 3 introduces the overview of verification use cases and the actors related to them. Purpose of
the verification and the criticality of the TOV are the main differentiators of the use cases. The higher
the criticality of the TOV is in terms of safety and security, the more demanding the verification process
is, and the more expertise is required from the evaluator(s).

Figure 3 — Use cases of software safety and security verification tools

Formality of the verification varies by the criticality of the TOV. In some cases it is good enough to
run an informal or a semi-formal verification whereas in the most critical cases, a formal verification
is required. For the lowest criticality level, when the purpose of verification is not to achieve a
certificate, an independent evaluator is not needed at all. All verification use cases aiming to certify a
TOV shall specify the target safety and/or security level within an applicable standard (e.g. evaluation
assurance levels EAL1 to EAL7 of common criteria for information technology security evaluation in

﻿

© ISO/IEC 2020 – All rights reserved� 9

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
64

3:2
02

0

https://standardsiso.com/api/?name=1f54662bcdcbf165815ab0fc2078e3af

﻿

ISO/IEC 23643:2020(E)

ISO/IEC 15408 (all parts) or DO-178 B/C). The definitions of evaluation assurance levels of Common
Criteria are in Annex A.

6.2 to 6.4 introduce the lists of actions of the verification use cases.

6.2	 Verification for low criticality software

For low-criticality software, requirements can be handled through informal methods and developers
often perform their own testing. If the goal of the verification is certification there are additional
actions for reaching a minimum level of safety and security. These additional actions are the optional
items e), f), g), h) and k) below.

The scenario may include the following actions:

a)	 informal specification and design;

b)	 implementation;

c)	 verification by testing;

d)	 integration;

e)	 selection of an evaluation and certification scheme capable of assessing low criticality software
(e.g. CSPN, SCL or CC) — third-party verification;

f)	 selection of the desired minimum certification level — third-party verification;

g)	 evaluation of the TOV to a defined level of safety or security — third-party verification;

h)	 certification by some certification body to obtain approval — third-party verification;

i)	 deployment/acceptance;

j)	 update/maintenance;

k)	 re-evaluation — third-party verification.

6.3	 Verification for medium criticality software

Medium criticality developments do not need verification to their full extent, but a rigorous approach
with intermediate products (artefacts) is used. The intermediate products may use different languages,
which may require annual translations between activities. For each activity it is best to use only one
language. If the goal of the verification is certification there are additional steps for reaching a minimum
level of safety and security. These additional actions are the optional items c), k), m), n) and q) below.

The scenario may include the following actions:

a)	 qualification of tools (e.g. compilers);

b)	 requirements definition using preferably a semi-formal specification language;

c)	 selection of the certification level and definition of the TOV — third-party verification;

d)	 detailed specifications using preferably a formal specification language;

e)	 detailed design, using a semi-formal design language (e.g. UML);

f)	 implementation;

g)	 unit testing to give an intuitive understanding of the TOV made so far; the generation of the
corresponding test cases can use the specifications to delimit them; testing consists of e.g. in
coverage and boundary testing;

﻿

10� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
64

3:2
02

0

https://standardsiso.com/api/?name=1f54662bcdcbf165815ab0fc2078e3af

﻿

ISO/IEC 23643:2020(E)

h)	 verification of the components of the TOV, to check the satisfiability of the specifications, e.g. using
the later as assertions;

i)	 integration of the components;

j)	 integration testing;

k)	 verification and validation of the integrated software — third-party verification;

l)	 system integration;

m)	 evaluation of the TOV to a defined level of safety or security — third-party verification;

n)	 certification to obtain approval — third-party verification;

o)	 deployment/acceptance;

p)	 update/maintenance;

q)	 re-evaluation — third-party verification.

6.4	 Verification for high criticality software

Any software provider organization developing high criticality components (e.g. embedded software)
can be willing to verify the safety and security of their products first without certification and start the
official third-party evaluation later.

This use case deals with the production of high criticality software. The scenario may include the
following actions:

a)	 qualification of tools (e.g. compilers);

b)	 requirements definition using preferably a semi-formal specification language;

c)	 selection of the certification level and definition of the TOV — third-party verification;

d)	 detailed specifications using a formal specification language (e.g. VDM-SL, B, Z, or ACSL);

e)	 specifications refinement (optional) or formal design with a formal compliance check;

f)	 implementation;

g)	 unit testing to give an intuitive understanding of the TOV made so far;

h)	 completing unit testing by static program analysis — third-party verification;

i)	 verification of the components of the TOV, to extract low-level (e.g. run-time) faults and high-level
behavioural faults; the later checks the satisfiability of the specifications by the code; the formal
specifications produced above are used for compliance verification, using e.g. Hoare Logic and
formal proofs are done;

j)	 formal verification of the components — third-party verification;

k)	 integration of the components;

l)	 integration testing;

m)	 verification and validation of the integrated TOV;

n)	 system integration;

o)	 system testing on the target system;

p)	 evaluation of the TOV to a defined level of safety or security — third-party verification;

﻿

© ISO/IEC 2020 – All rights reserved� 11

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
64

3:2
02

0

https://standardsiso.com/api/?name=1f54662bcdcbf165815ab0fc2078e3af

﻿

ISO/IEC 23643:2020(E)

q)	 deployment/acceptance;

r)	 update/maintenance;

s)	 re-evaluation — third-party verification.

7	 Entity relationship chart of software safety and security verification

It is important to use common and well-defined terms with software safety and security verification
tools, services, and methods, that might be evaluated, compared and selected by any third-party
representatives. The nature of and the relationships among the most important entities can be
understood in similar ways by all the actors of a verification activity.

The entities involved in the area of interest of this document are organized in the diagram in Figure 4.

Figure 4 — Entity relationship chart of software safety and security verification

The most important entities in the world of software safety and security verification tools are “software”,
“verification” and “verification tool”. In every instance of verification, the target of verification means
software, which consists of one or more software units and/or software items. The software may be
part of a system or several systems, but it is not relevant from the software verification point of view.

A person called evaluator is running the verification, where he or she uses one or more verification
tools. The tools are usually based on one or more verification methods (e.g. dynamic or static program
analysis or formal verification). Tools based on same methods often represent the same tool category,
having similar capabilities for identifying potential vulnerabilities of the software (i.e. TOV). Several
tools with different capabilities that mostly complete each other, may together constitute a toolbox.
Selection of an applicable toolbox or set of applicable tools can be made based on the known required
safety and/or security levels of the TOV.

The target of verification (software) may be certified by the evaluator representing a certification body,
if the verification proves the software free of vulnerabilities at the target safety and security levels.
The required expertise of the evaluator may be higher, if the purpose of verification is to achieve a
certificate.

﻿

12� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
64

3:2
02

0

https://standardsiso.com/api/?name=1f54662bcdcbf165815ab0fc2078e3af

﻿

ISO/IEC 23643:2020(E)

8	 Categories, capabilities of and requirements for software safety and security
verification tools

8.1	 General

As software, by definition, consists of all or part of the programs, procedures, rules, and associated
documentation of an information processing system, it may be complicated to verify. Because of the
complexity of software, there are many kinds of verification tools. In this document the types of
software safety and security verification tools are divided into several categories, specified by the
capabilities of the tools included in the category. The capabilities enable the tools to analyze and
verify some software code or artefacts. Verification activities are human guided, but very often tool
assisted, and the level of automation varies category by category, and tool by tool within the category.
Verification capabilities allow performing various kinds of verification activities in various tasks of a
software development process. Figure 5 introduces the categories of software safety verification tools,
and Figure 6 the categories of software security verification tools.

8.2	 Categories of software safety verification tools

8.2.1	 General

Figure 5 — Categories of software safety verification tools

8.2.2 to 8.2.7 define the categories of software safety verification tools introduced in Figure 5.

8.2.2	 Specification and refinement tools

This safety verification tool category encompasses all tools implementing formal specification, i.e.
mathematical based specification techniques and languages. They are used to describe a software
system, to analyze its behaviour, and to aid in its design by verifying properties of interest by means of
rigorous and effective reasoning. These specifications are formal in the sense that they have a syntax, a
formal semantics and they can be used to infer useful information.

With a specification it is possible to use the formal verification techniques below to demonstrate that
a system design and/or implementation is correct with respect to its specification. Another approach
is to refine a specification step by step in a correct manner to transform it into a design, which is then
transformed into an implementation that is correct by construction.

8.2.3	 Model checking tools

Model checking aims mainly at automatically verifying properties of finite-state systems. This safety
verification tool category contains all tools that enable to check automatically or not some specification
on a given model (e.g. an automaton) that represents the behaviour of a system. The specification

﻿

© ISO/IEC 2020 – All rights reserved� 13

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
64

3:2
02

0

https://standardsiso.com/api/?name=1f54662bcdcbf165815ab0fc2078e3af

﻿

ISO/IEC 23643:2020(E)

can contain safety and liveness properties. The model can be extracted from the source code of the
application (e.g. the control flow graph) or can be produced independently (e.g. a Petri Net).

8.2.4	 Program analysis tools

In the context of this document, dealing with software safety and security verification tools, the
safety verification tool category of program analysis tools encompasses tools that can discover faults
and vulnerabilities during the programming phases of the development life-cycle. This category can
therefore also be called “static program analysis tools”. With this definition, this category can be
considered as a generic category that also encompasses some of the other categories listed here, but we
distinguish between the static program analysis techniques that apply directly to the source code and
the techniques that apply to some other representation of the code and its artefacts, keeping only the
former tools for this category.

Due to the various underlying techniques, some of them being computationally undecidable, program
analysis tools cannot always terminate with the right answer (yes or no) and may return false negatives,
false positives or no answer (because they never terminate).

8.2.5	 Proof tools

This safety verification tool category contains all tools aimed at proving mathematically some formal
specification by means of some computer program called theorem prover. This category decomposes
into two main sub-categories:

—	 automatic theorem provers, and

—	 proof assistants also called interactive theorem provers.

8.2.6	 Monitoring tools

This safety verification tool category groups all tools that check at runtime the specification of a
software application. A specification may deal with computing resources consumption, safety or
security properties. Most of these properties are stated using a specification language or a subpart
thereof that can be executed or evaluated.

Contrary to the program analysis tools category, monitoring tools may not be exhaustive as they
verify some specification on a limited number of executions only. Due to their dynamic nature, the
performance of these tools is important.

8.2.7	 Programming rules checkers

Programming rules checkers enforce syntax and semantic rules further to those given in the
programming language reference manual. For instance, they provide warnings and force the
programmers to respect a uniform style, notation, i.e. a set of conventions. Programming rules are
sometimes associated to a community of programmers (e.g. in a given project) or associated to a given
application domain (e.g. automobile software industry uses the MISRA C/C++ rules).

﻿

14� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
64

3:2
02

0

https://standardsiso.com/api/?name=1f54662bcdcbf165815ab0fc2078e3af

﻿

ISO/IEC 23643:2020(E)

8.3	 Categories of software security verification tools

8.3.1	 General

Figure 6 — Categories of software security verification tools

8.3.2 to 8.3.4 define the categories of software security verification tools introduced in Figure 6.

8.3.2	 Vulnerability analysis tools

This category contains security verification tools that are capable to discover the attack surface or to
find vulnerabilities in TOV. Vulnerability analysis is different from software testing, since vulnerability
analysis tries to find a way in which the software should not work. Therefore, negative specifications
should be evaluated during a vulnerability analysis (e.g. “only the valid password should be accepted,
nothing else”). Because of the nature of vulnerability analysis, the tools in this category generally will
not provide evidence of the software being free from a specific type of vulnerabilities but can provide a
list of vulnerabilities found.

8.3.3	 Security modeling tools

The tools in this security verification tool category help to perform security modeling, such as defining
vulnerable assets, security objectives, and security requirements. The results of these modeling
tools will be the basis of further verification activities. They aid defining the exact objectives and
requirements, which the verification process should confirm.

8.3.4	 Threat modeling tools

This category of security verification tools contains all tools supporting threat modeling and analysis
techniques, such as attack trees, attack impact, attack surface, fault trees, misuse cases, attacker
profiling, and the STRIDE threat classification model. The aim of threat analysis phase is to model how
a system should not work. This analysis can use the results of the security modeling tools and as a
result specify the threats to be verified during the further steps of verification.

NOTE	 STRIDE is a model for identifying computer security threats. It provides a mnemonic for security
threats in six categories. The threats are: Spoofing of user identity, Tampering, Repudiation, Information
disclosure (privacy breach or data leak), Denial of service (D.o.S), and Elevation of privilege. STRIDE was initially
created as part of the process of threat modeling used to help reason and find threats to a system.

8.4	 Capabilities of software safety and security verification tools

This document specifies the potential capabilities for safety and security verification tools of each
category. Table 1 introduces the typical capabilities of software safety verification tools of each related
category, and Table 2 the typical capabilities of software security verification tools by their categories.

﻿

© ISO/IEC 2020 – All rights reserved� 15

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
64

3:2
02

0

https://standardsiso.com/api/?name=1f54662bcdcbf165815ab0fc2078e3af

﻿

ISO/IEC 23643:2020(E)

The vendor of a software safety and security verification tool shall specify the category and capabilities
of the tool, so that the users know what they get when acquiring such a tool or a toolbox including
several tools.

Table 1 — Capabilities of software safety verification tools by category

Capability list of software safety verification tools
Tool category Capability Remarks
Specification and refine-
ment tools

Abstract data-types
Predicates calculus
Algebraic specifications
Temporal logics Relates to model checking
Functional specifications

Model checking tools Symbolic model checking E.g. BDD, see NOTE 1
Bounded model checking
Explicit-state model checking
Partial order reductions
Abstractions

Program analysis tools Hoare logics E.g. Frama-C
Abstract interpretation E.g. Frama-C
Tableau calculus
Control and data flow graphs analysis
Compilers

Proof tools Deductive proofs
Unification
Satisfiability modulo theories See NOTE 2
Satisfiability solvers See NOTE 3
Proof assistants E.g. Coq

Monitoring tools Off-line monitoring Results are exploited after execution
Online monitoring Results are exploited during execution.

This category sub-divides into the next two
categories

In-line monitoring Monitors are built into the code
Out-line monitoring Monitors are separated from the code
Memory debuggers Used frequently during debugging
Assertions checkers Mostly known
Temporal runtime verifiers Verify temporal properties

NOTE 1	 Binary decision diagrams (BDD) are data structures for representing boolean functions, that is, functions that
take booleans as inputs and produce a boolean as output. These data structures can be considered as compressed.

NOTE 2	 In computer science, the satisfiability modulo theories (SMT) problem is a decision problem for logical formulas
with respect to combinations of background theories expressed in classical first-order logic with equality.

NOTE 3	 In computer science, the boolean satisfiability problem (sometimes called propositional satisfiability problem and
abbreviated as SATISFIABILITY or SAT) is the problem of determining if there exists an interpretation that satisfies a given
boolean formula. Therefore a SAT solver is a software application that solves this problem.

NOTE 4	 HAZOP stands for HAZar and OPerability study and is a structured and systematic examination of a complex
planned or existing process or operation in order to identify and evaluate problems that may represent risks to personnel
or equipment. The intention of performing an HAZOP is to review the design to pick up design and engineering issues that
may otherwise not have been found. The technique is based on breaking the overall complex design of the process into a
number of simpler sections called 'nodes' which are then individually reviewed. It is carried out by a suitably experienced
multi-disciplinary team (HAZOP) during a series of meetings.

﻿

16� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
64

3:2
02

0

https://standardsiso.com/api/?name=1f54662bcdcbf165815ab0fc2078e3af

﻿

ISO/IEC 23643:2020(E)

Capability list of software safety verification tools
Tool category Capability Remarks
Programming rules
checkers

Syntactic programming rules
Semantic programming rules

Style checkers

Common safety capabil-
ities

Parsers Based on language grammars
Semantic analysis Based on language semantics
Code generation binary, byte-code, high-level programming

language

Risks analysis E.g. HAZOP (See NOTE 4), DELPHI, SWOT
and FMEA

NOTE 1	 Binary decision diagrams (BDD) are data structures for representing boolean functions, that is, functions that
take booleans as inputs and produce a boolean as output. These data structures can be considered as compressed.

NOTE 2	 In computer science, the satisfiability modulo theories (SMT) problem is a decision problem for logical formulas
with respect to combinations of background theories expressed in classical first-order logic with equality.

NOTE 3	 In computer science, the boolean satisfiability problem (sometimes called propositional satisfiability problem and
abbreviated as SATISFIABILITY or SAT) is the problem of determining if there exists an interpretation that satisfies a given
boolean formula. Therefore a SAT solver is a software application that solves this problem.

NOTE 4	 HAZOP stands for HAZar and OPerability study and is a structured and systematic examination of a complex
planned or existing process or operation in order to identify and evaluate problems that may represent risks to personnel
or equipment. The intention of performing an HAZOP is to review the design to pick up design and engineering issues that
may otherwise not have been found. The technique is based on breaking the overall complex design of the process into a
number of simpler sections called 'nodes' which are then individually reviewed. It is carried out by a suitably experienced
multi-disciplinary team (HAZOP) during a series of meetings.

﻿

Table 1 (continued)

© ISO/IEC 2020 – All rights reserved� 17

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
64

3:2
02

0

https://standardsiso.com/api/?name=1f54662bcdcbf165815ab0fc2078e3af

﻿

ISO/IEC 23643:2020(E)

Table 2 — Capabilities of software security verification tools by category

Capability list of software security verification tools
Tool category Capability Remarks
Vulnerability analysis
tools

Network tools Port scanner, network mapping, network
analysis

OSINT shodan, etc
Common enumerators Brute-forcers, dns vulnerability scanner, etc.
Code review
Disassembler
Decompiler
Code analysis
Configuration analysis OS, app
Hardening check Verification of usage of Stack cookie, ASLR,

Control Flow Protection, FlowGuard, etc.
Known vulnerability check
Emulation
Symbolic execution
Common vulnerability scanner SQL injection, buffer overflow, XSS
Performance analysis
Monitoring Information leakage monitor, Monitoring

capabilities from safety verification tools
Log analysis
Fuzzing

Security modeling tools Security related features of software
development tools

Code editors, compilers, linkers, assem-
blers, disassemblers, debuggers, testing,
CASE tools, version control

Informal walktrough
Formal inspection of binary and
source code

Threat modeling tools Attack trees E.g. https://​github​.com/​cmu​-sei/​AASPE
Attack impact
Attack surface
Fault trees
Misuse cases
STRIDE
DREAD See NOTE 1
System modeling E.g. UML
Other modeling technique https://​www​.owasp​.org/​

NOTE 1	 DREAD is part of a system for risk-assessing computer security threats previously used at Microsoft that provides
a mnemonic for risk rating security threats using five categories. The categories are: Damage — how bad would an attack
be? Reproducibility — how easy is it to reproduce the attack? Exploitability — how much work is it to launch the attack?
Affected users — how many people will be impacted? Discoverability — how easy is it to discover the threat?

NOTE 2	 HAZOP stands for HAZard and OPerability study and is a structured and systematic examination of a complex
planned or existing process or operation in order to identify and evaluate problems that may represent risks to personnel
or equipment. The intention of performing an HAZOP is to review the design to pick up design and engineering issues that
may otherwise not have been found. The technique is based on breaking the overall complex design of the process into a
number of simpler sections called 'nodes' which are then individually reviewed. It is carried out by a suitably experienced
multi-disciplinary team (HAZOP) during a series of meetings.

NOTE 3	 This table provides examples of suitable products available commercially. This information is given for the
convenience of users of this document and does not constitute an endorsement by ISO or IEC of these products.

﻿

18� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
64

3:2
02

0

https://www.owasp.org/
https://standardsiso.com/api/?name=1f54662bcdcbf165815ab0fc2078e3af

﻿

ISO/IEC 23643:2020(E)

Capability list of software security verification tools
Tool category Capability Remarks
Common security capa-
bilities

Parsers Based on language grammars
Semantic analyzers Based on language semantics
Code generation Binary, byte-code, high-level programming

language

Risks analysis tools E.g. HAZOP (See NOTE 2), DELPHI, SWOT
and FMEA

NOTE 1	 DREAD is part of a system for risk-assessing computer security threats previously used at Microsoft that provides
a mnemonic for risk rating security threats using five categories. The categories are: Damage — how bad would an attack
be? Reproducibility — how easy is it to reproduce the attack? Exploitability — how much work is it to launch the attack?
Affected users — how many people will be impacted? Discoverability — how easy is it to discover the threat?

NOTE 2	 HAZOP stands for HAZard and OPerability study and is a structured and systematic examination of a complex
planned or existing process or operation in order to identify and evaluate problems that may represent risks to personnel
or equipment. The intention of performing an HAZOP is to review the design to pick up design and engineering issues that
may otherwise not have been found. The technique is based on breaking the overall complex design of the process into a
number of simpler sections called 'nodes' which are then individually reviewed. It is carried out by a suitably experienced
multi-disciplinary team (HAZOP) during a series of meetings.

NOTE 3	 This table provides examples of suitable products available commercially. This information is given for the
convenience of users of this document and does not constitute an endorsement by ISO or IEC of these products.

Several, probably the most commonly known, software verification tools address the software source
code, written in C, C++ and Java, which are common programming languages within safety and security
critical dynamic industrial applications. However, as the number of verification tool categories and lists
of their capabilities show, there are many tools addressing other components of software than just the
source code (e.g. documentation or object code).

A software safety and security verification tool may have capabilities from more than one tool category,
but it shall have capabilities from at least one tool category.

8.5	 Common requirements for safety and security verification tools

The requirements for safety and security verification tools may be either common to all tools, or specific
to a certain tool category. This subclause provides a list of common requirements and 8.6 to 8.14 give
the category specific requirements for each category.

The following requirements are common to all tools:

—	 The vendor of a safety and security verification tool shall provide information about the tools
applicability in terms of safety and security analysis. It shall explain which activities of a development
life-cycle are covered by the tool and which safety and/or security properties are handled.

—	 The vendor of a safety and security verification tool shall provide information about the tools
applicability in terms of verification use cases. This allows the user of the tool to check if the tool
is adequate to the problem at hand, i.e. to 1) the specific application to be analyzed, 2) the desired
safety and security properties, and 3) the environment (e.g. industrial setting and constraints) in
which the tool will be put into practice. See NOTE.

—	 The vendor of a safety and security verification tool shall provide information about the category
and capabilities of the tool, as defined in the Tables 1 and 2.

—	 The vendor of a safety and security verification tool shall provide the tools requirements in terms
of execution platform, i.e. computer, operating system and required middleware and libraries.

—	 The vendor of a safety and security verification tool shall provide information allowing to compare
its detection capabilities with other tools from the same category.

﻿

Table 2 (continued)

© ISO/IEC 2020 – All rights reserved� 19

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
64

3:2
02

0

https://standardsiso.com/api/?name=1f54662bcdcbf165815ab0fc2078e3af

﻿

ISO/IEC 23643:2020(E)

NOTE	 The term industrial setting denotes the industrial environment in which the tool is put to work, such
as 1) CASE tool used in house, 2) the in-house development (including validation) process, 3) computing platforms
used (e.g. ARM/x86, cross-compilers, OS kind and version), etc.

8.6	 Requirements for specification and refinement tools

A safety and security verification tool that works by evaluating specifications and refinements of
software is always based on one formal specification language. Therefor the vendor of the tool shall
provide:

—	 a specification language reference manual (RM);

—	 a grammar (e.g. BNF) for describing the syntax of the language;

—	 semantics describing the meaning of each construct of the language;

—	 a specification type-checker, compliant with the RM.

The vendor of a specification tool shall provide information about the tools specification language
expressivity and applicability. An example of such requirement is a functional specifications tool
precising the order (e.g. predicates, first or higher) and nature of the logics underlying the specification
language, e.g. CTL (Computation Tree Logic), LTL (Linear Temporal Logic) or separation logic.

If the specification tool permits to use predefined libraries (i.e. mathematical functions), then the
vendor of the tool shall provide the specifications of each supported library. These specifications shall
be provided completely in the form of files associated to the tool, in a readable format, and shall be
introduced in the RM (e.g. structure of the specifications and location in terms of predefined files).

If the specification tool allows specification refinements, then the vendor of the tool shall provide rules
for writing and checking refinements.

If the specification language of a specification tool is bound to a specific programming language, then
the vendor of the tool shall provide the references to the programming language, including its language
RM. The vendor of a specification tool shall provide the programming language coverage and indicate
what syntactical parts of the later are supported and unsupported.

8.7	 Requirements for model checking tools

Model checking tools operate on the source code as being the model or on another representation.

When a model checking tool operates on the source code as being the model, the vendor of the tool shall
provide the following technical elements:

—	 a model checking tool user manual (UM);

—	 a reference to the specification language used to express properties, if necessary;

—	 benchmarks, defining in which applications the tool has been used and the performance observed
(analysis time, number and nature of the faults obtained);

—	 if the analysis tool supports a specific programming language, then the references to the
programming language, including its language RM;

—	 the programming language coverage, indicating what parts of it are supported and unsupported.

When a model checking tool operates on another representation, the vendor of the tool shall provide
the following technical elements:

—	 the model representation language (e.g. timed automata) with syntax and semantics;

—	 a methodology for building models in the model representation language;

﻿

20� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
64

3:2
02

0

https://standardsiso.com/api/?name=1f54662bcdcbf165815ab0fc2078e3af

﻿

ISO/IEC 23643:2020(E)

—	 detailed traces when the model checking tool fails to verify some property;

—	 a methodology to check the conformance between models and the underlying programming
language, if necessary.

8.8	 Requirements for program analysis tools

The vendor of a safety and security verification tool that belongs to the category of program analysis
tools, shall provide information about the programming language(s) addressed by the tool as well as
the type of the verification technique underlying it (e.g. Hoare logics, abstract interpretation).

The vendor of the tool shall provide the following technical elements:

—	 an analysis tool UM;

—	 a reference to the specification language used to express properties, if necessary;

—	 a program analysis tool;

—	 benchmarks, defining which applications the tool has been used and the performance observed
(analysis time, number and nature of the faults obtained);

—	 capability to differentiate the target and host platforms, e.g. to allow analyzing a code running for a
target computing platform different from the analysis platform.

If a program analysis tool supports a specific programming language, then the vendor of the tool shall
provide the references to the programming language, including its language RM. For instance, if the
tool is an abstract interpreter, and is therefore tightly bound to a specific programming language, then
the references to the latter shall be provided.

Furthermore, the vendor of a program analysis tool shall provide the programming language coverage
and indicate which syntactical parts of the language are supported and which are unsupported. For
the unsupported syntactical parts, the program analysis tool’s manual should include guidance on
how these parts could be handled. If the program analysis tool permits to use predefined libraries (e.g.
mathematical functions) of the associated programming language, then the vendor of the tool shall
provide the method used to analyze each library supported. The built-ins of a program analysis tool
shall be fully described in the UM.

If a program analysis tool requires the use of proof tools, then the references to these tools shall be
provided.

8.9	 Requirements for proof tools

As the category contains tools proving mathematically formal specifications, the vendors of the tools
shall provide adequate information about:

—	 the mode: automated or manual tool (e.g. proof assistant);

—	 the kind of reasoning used: inference based, SAT solver, resolution based, etc.;

—	 the logic/language used for expressing predicates: first order logic, higher order logic, typed/un-
typed, etc.;

—	 the use of strategies and tactics to guide proofs; language for defining new tactics and strategies;

—	 the list of possible results of a proof, e.g. true, false, fail, unknown, etc.;

—	 the possibility to obtain a counter-example in the case of a failing proof;

—	 benchmarks, defining for which applications the proof tool has been used and the performance
observed (execution time, result obtained).

﻿

© ISO/IEC 2020 – All rights reserved� 21

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
64

3:2
02

0

https://standardsiso.com/api/?name=1f54662bcdcbf165815ab0fc2078e3af

﻿

ISO/IEC 23643:2020(E)

8.10	 Requirements for monitoring tools

The vendor of a software safety and security verification tool that belongs to the category of monitoring
tools shall describe:

—	 the nature of the supported programming language (e.g. C/C++);

—	 the type of monitored properties;

—	 the specification language to express the desired properties, if necessary;

—	 the limitations in terms of programming language constructs that are supported (e.g. multi-
threading and assembly code);

—	 the capability to provide the user with a counter-example when a property is not satisfied and the
counter-example format (e.g. format of an execution trace);

—	 execution time and memory consumption rates for comparing the execution of a program with or
without monitoring;

—	 whether monitored properties are state-based or trace-based;

—	 the invasiveness of the tool in terms of execution environment disturbance (e.g. control flow change,
memory layout modification and program object structure modification).

8.11	 Requirements for programming rules checking tools

A programming rules checker works at the syntactic and/or semantic level of some programming
language. The vendor of a programming rules checker shall provide information about:

—	 the target programming language for which rules are checked;

—	 the rules enforced or a reference to a programming rules standard;

—	 the target programming language standards and variants considered;

—	 the tool’s results shall refer to the programming language RM whenever possible, so that in the case
of non-compliance users can understand precisely its cause;

—	 ease of configuration of the tool (e.g. select a sub-set of rules for checking);

—	 nature and structure of provided statistics;

—	 if possible, integration with code analysers.

8.12	 Requirements for vulnerability analysis tools

The vendor of a vulnerability analysis tool shall provide information about:

—	 supported analysis technique;

—	 type of the vulnerability analysis (information gathering, static program analysis, dynamic program
analysis);

—	 attack surfaces discovered and scanned, and the types of vulnerabilities that can potentially be
discovered (preferably, referencing prerequisites for successful identification as well);

—	 what kind of security requirements the tool can check against, and with what level of confidence;

—	 inventory of the vulnerabilities found during the analysis.

﻿

22� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
64

3:2
02

0

https://standardsiso.com/api/?name=1f54662bcdcbf165815ab0fc2078e3af

﻿

ISO/IEC 23643:2020(E)

8.13	 Requirements for security modeling tools

The security modeling process starts with defining the scope by specifying what is covered and what
is not covered in the verification. After specifying the verified systems and applications the security
modeling generally requires collecting data from various sources.

The vendor of a security modeling tool shall provide information about:

—	 supported modeling techniques;

—	 inventory of the supplied modeling properties that are supported, such as assets, security objectives
or security requirements;

—	 exporting model format(s);

—	 specification of the model format, as this output shall be used in further verification activities;

—	 support verifying the model against completeness or minimum requirements (e.g. the tool shall
verify whether every asset is covered with at least one security objective, or whether every security
objective is protected with at least one security requirement).

8.14	 Requirements for threat modeling tools

The vendors of threat modeling tools shall provide information about:

—	 supported threat analysis and modeling techniques;

—	 inventory of the collected threats;

—	 properties of collected threats, including the description of the threat, reference to the affected
asset and relation to the security objective or to other security elements.

﻿

© ISO/IEC 2020 – All rights reserved� 23

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
64

3:2
02

0

https://standardsiso.com/api/?name=1f54662bcdcbf165815ab0fc2078e3af

﻿

ISO/IEC 23643:2020(E)

Annex A
(informative)

Evaluation assurance levels of ISO/IEC 15408 common criteria

A.1	 General

The evaluation assurance levels (EALs) provide an increasing scale that balances the level of assurance
obtained with the cost and feasibility of acquiring that degree of assurance. The ISO/IEC 15408
approach identifies the separate concepts of assurance in a target of evaluation (TOE) at the end of the
evaluation, and of maintenance of that assurance during the operational use of the TOE.

A.2	 Evaluation assurance level 1 (EAL1) — Functionally tested

EAL1 is applicable where some confidence in correct operation is required, but the threats to security
are not viewed as serious. It will be of value where independent assurance is required to support
the contention that due care has been exercised with respect to the protection of personal or similar
information.

EAL1 requires only a limited security target. It is sufficient to simply state the security functional
requirements (SFR) that the TOE must meet, rather than deriving them from threats, organizational
security policies and assumptions through security objectives.

EAL1 provides an evaluation of the TOE as made available to the customer, including independent testing
against a specification, and an examination of the guidance documentation provided. It is intended that
an EAL1 evaluation could be successfully conducted without assistance from the developer of the TOE
and for minimal outlay. An evaluation at this level should provide evidence that the TOE functions in a
manner consistent with its documentation.

EAL1 provides a basic level of assurance by a limited security target and an analysis of the SFRs in
that security target using a functional and interface specification and guidance documentation, to
understand the security behaviour.

The analysis is supported by a search for potential vulnerabilities in the public domain and independent
testing (functional and penetration) of the TOE security functionality.

EAL1 also provides assurance through unique identification of the TOE and of the relevant evaluation
documents.

This EAL provides a meaningful increase in assurance over unevaluated IT.

A.3	 Evaluation assurance level 2 (EAL2) — Structurally tested

EAL2 requires the co-operation of the developer in terms of the delivery of design information and test
results, but should not demand more effort on the part of the developer than is consistent with good
commercial practice. As such it should not require a substantially increased investment of cost or time.

EAL2 is therefore applicable in those circumstances where developers or users require a low to
moderate level of independently assured security in the absence of ready availability of the complete
development record. Such a situation may arise when securing legacy systems, or where access to the
developer may be limited.

﻿

24� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
64

3:2
02

0

https://standardsiso.com/api/?name=1f54662bcdcbf165815ab0fc2078e3af

	Foreword
	Introduction
	1 Scope
	2 Normative references
	3 Terms and definitions
	4 Abbreviated terms
	5 Models for software safety and security verification tools
	6 Use cases of software safety and security verification tools
	6.1 General
	6.2 Verification for low criticality software
	6.3 Verification for medium criticality software
	6.4 Verification for high criticality software

	7 Entity relationship chart of software safety and security verification
	8 Categories, capabilities of and requirements for software safety and security verification tools
	8.1 General
	8.2 Categories of software safety verification tools
	8.2.1 General
	8.2.2 Specification and refinement tools
	8.2.3 Model checking tools
	8.2.4 Program analysis tools
	8.2.5 Proof tools
	8.2.6 Monitoring tools
	8.2.7 Programming rules checkers

	8.3 Categories of software security verification tools
	8.3.1 General
	8.3.2 Vulnerability analysis tools
	8.3.3 Security modeling tools
	8.3.4 Threat modeling tools

	8.4 Capabilities of software safety and security verification tools
	8.5 Common requirements for safety and security verification tools
	8.6 Requirements for specification and refinement tools
	8.7 Requirements for model checking tools
	8.8 Requirements for program analysis tools
	8.9 Requirements for proof tools
	8.10 Requirements for monitoring tools
	8.11 Requirements for programming rules checking tools
	8.12 Requirements for vulnerability analysis tools
	8.13 Requirements for security modeling tools
	8.14 Requirements for threat modeling tools

	Annex A (informative) Evaluation assurance levels of ISO/IEC 15408 common criteria
	Annex B (informative) How to use this document with ISO/IEC 20741
	Bibliography

