International

Standard

ISO/IEC123415
Information technology — Data Firsbedition
Formalt Description Language 2024-04

(DFDL

) v1.0 Specification

Reference number
ISO/IEC 23415:2024(en)

© ISO/IEC 2024

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

/!\ COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2024

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on
the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below
or ISO’s member body in the country of the requester.

ISO copyright office

CP 401 o Ch. de Blandonnet 8

CH-1214 Vernier, Geneva

Phone: +41 22 749 01 11

Email: copyright@iso.org

Website: www.iso.org
Published in Switzerland

© ISO/IEC 2024 - All rights reserved
ii

https://www.iso.org
https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

Contents
N 11 (o T 0T 4o o 1 9
1.1 WhHY iS DFDL NEEAEAT ...ttt e e e e et e e e e e e e e et e e e e e e s eesaabaaeeaeeeeseansnraneeeas 10
L A o T L 1= D I | S STPRRSTRSI 10
1.21 SIMPIE EXAMPIE ...ttt et e e e e e e ab b e e e e bt e e e e ennre e e e aeee 10
G T VA o T L 0 I R T To) RS USPRRSURSI 13
R S TTo] o =Y o V=Y =1 o o e O S 13
2 Overview of the SPECIfICALIONc.ciii i e a e e e e e e e e e e e e aaanaees 15
3 Notational and Definitional CONVENLIONSooi i e e e e e e e 16
31 Glossary and Terminology 16
B.2 FailUre Ty PES et e e et e e e e e e e e e e e e e e e nnnneeeae e e e e s n @B PR e 16
4 | The DFDL Information Set (INfOSet)oviiiiiiii e e e 17
A1 "NO VAIUE ...t e e e s e e nnre e e SE Ty e e e 18
4.2 Information HEMS ... A e e e e e 18
421 Document Information Hemccccovviiiiiiiiiiiiieeeeeeeee e S T 18
4.2.2 Element Information HemS..........ccceiiiiiiii et e e 18
1.3 DFDL Information HemM OFAEr ... e e ee e e e e e e snenneeee e s 19
1.4 DFDL Augmented INTOSELcoiiiiiiiiiiiic e T e e e e eesirre e e e e e e e snrnneees b e 19
5| DFDL Schema Component Model ... S e e 20
5.1 DFDL SimMPIE TYPES ..cce ittt ecrreeee e e e se e iapeaa s e e e s e s ee e e e e e e s snssrneeaaeesssnnnnnneees s enesnnnnens 20
6.2 DFDL Subset of XML SChEMA.......ccuuiiiiiiiiiieciic i ettt e e e s snee e e sneee e s e 21
6.3 XSD Facets, min/maxOccurs, default, and fixed ... 0. b 22
5.3.1 MiINOCCUrS, MaXOCCUIScoveeeeeeeeieeeeeeeeeeeee e e eeseseereeeeehereeeenees 23
5.3.2 MinLength, MaxLengthooo i e e 23
5.3.3 MaxInclusive, MaxExclusive, MinExclusive, MinInclusive, TotalDigits, FractionDigits....{........... 23
5.3.4 Pattern ... O e 23
5.3.5 ENUMEration ValUES ... ettt e e ettt e e e e e e e st e ee e e e e e snnnneneeeeeeseshennaneeeens 23
5.3.6 D= =1 SO OUPSPPURSPRN ESSTRRI 23
LR I A o Yo O PSSP SORUPRRSOUPPIS! SUPRRP 24
6.4 Compatibility with Other Annotation Language Schemascccccoveveiiiiicciecee e e 24
6 | DFDL SYntaX BasiICSs il e ieieee ettt ettt ettt ee e st e e e s sabe e e e s anbeeeesannneeesanneeessenneedhenieeeenns 25
0 I \F- T 01T 0T Tt o USSP RSURRRURUN FEP 25
5.2 The DFDL Annotation EIemMents ... eeeeee e e 25
5.3 DFDL Properi@Seeiiiiiiiiiie ittt st e e s e e s e e e e e nnnee e e e nnne e e s e e 26
6.3.1 DFDRENSTING LILEralSeeieieeiiie ettt e 28
6.3.2 DFEDL EXPreSSIONScciiiieiiiiiieeee ettt e e e e e e et e e e e e e e s e snneeeeeaaeeeaaannnnneeeeeeeespannneeeaeas 32
6.3.3 . DFDL Regular EXPreSSIONSccoiiiiiiiiiiiieeiiieee e sieiee e sttt et eesttee e s seeeeessnneeeesnseeessnaeaesnneeeas 32
6.34 Enumerations in DFDL ...t e e e eneee e e e e e b 32
7 | Syntax of DFDL Annotation EIEmMeNtS...........cooiiiiiiiiiiiii e e 33
——ComponentFormat Anmotations e 33
711 Property BindiNg SYNTAXueiiiiiiiii ettt 34
71.2 Empty String as a Representation Property Value ..o 35
7.2 dfdl:defineFormat - Reusable Data Format Definitions. ... 36
7.2.1 Using/Referencing a Named Format Definition: The dfdl:ref Property.........ccccooviiiiiiien. 36
7.2.2 Inheritance for dfdl:definEFOrMat............oii i 36
7.3 The dfdl:defineEscapeScheme Defining Annotation Element.............coocii i, 37
7.3.1 Using/Referencing a Named escapeScheme Definitioncccceoviiiiiiiiiiiiiiec e 37
7.4 The dfdl:escapeScheme Annotation Element........ ... 37

© ISO/IEC 2024 - All rights reserved

3

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

7.5 The dfdl:assert Statement Annotation Element..............ccoiiiiii e 38
7.51 Properties for dfdl:iasSerto 38
7.6 The dfdl:discriminator Statement Annotation Element............ccccoooiiiiiiiie e 40
7.61 Properties for dfdl:diSCrimINAtorc.uiii i 40
7.7 DFDL Variable ANNOTAtIONSciiiiiiiiiiiieie et e e e e e et e e e e e e e s ntn e e e e e e e s e senneneeeeaeeeaaannes 43
7.71 dfdl:defineVariable Annotation EIEMENT...........c.ooiiiiiiii e 43
7.7.2 The dfdl:newVariablelnstance Statement Annotation Element...............cccooiiiiiiiie 44
7.7.3 The dfdl:setVariable Statement Annotation Element.............ccccoi i 45

8 Property Scoping and DFDL Schema CheCKingooiiiiiiiiiiiiiii e 47
8.1 Prnpprfy Qr‘nping 47
8.1.1 Property SCOPING RUIESc..oiiiiie ey LS A7
8.1.2] Providing Defaults for DFDL Propertiesccueueiiieieiiiiiee e e g0 e A7
8.1.3] Combining DFDL Representation Properties from a dfdl:defineFormat...................... ey A48
8.1.4] Combining DFDL Properties from Referencescccoocveeiiiiiiiiiicinin e e A48
8.2 [DIFDL Schema ChecKing........cccviiiiiiiiiieee et e e S e e 51
8.21 Schema Component Constraint: Unique Particle Attribution............ccc.occoe. 8 b 51
8.2.2] Optional Checks and Warningscooiiueiiiiiiiieiiiee e s he B e e e e eneee e e e 51

9 DFDU Processing INtrodUCHION..........coociiiiiiiee et e e e e T e e e e e e e e e ae e e e e e e e snennees 53
9.1 Rarser OVEIVIEWooi ettt e amnneneeeaeeeeaannes 53
9.1.1 Points of UNCErtaintycooouiiiiiiiiiiie e et 53
9.1.2 ProCeSSING EITOFoeiiiiiiiiiieee ey g ettt et et e e ns 54
9.1.3 =T oT0) =T = o] [Nl o SRR 54
9.2 [)FDL Data Syntax GramIMarcccueeeiiiiieeiiiiieeeeieeee s S e e e suteeeessnteeeesssteeeesssteeeesanteeeesanteeaesaseneesans 64
9.21 I T T o] (= E1=T] = o] o 1 R 56
9.2.2 EMpty Representation......... ..o e 56
9.2.3 Normal Representationo e 57
9.2.4] ADbSent RepreSentation. ... et 657
9.2.5] Zero-length Representation ke e 57
9.2.6 YT o o T R TRR 57
9.2.7 Examples of Missing and Empty Representation ..o 58
9.2.8 RoUNd THP AMDIGUITIES 1ottt ettt et e e e e e aneeee s 58

(S TRC TN = F= 1571 oo [0 2N [o] 1 o I e PP 58
9.3.1 Known-to-exist and KNown-Not-to-eXisteeiiiiiii e 59
9.3.2| Establishing RERFESENTAtIONcooiiiiiiiiiii e 60
9.3.3 Resolving ROINS Of UNCEMAINTYeiiiiiiiiiie e 61
9.4 Blement DefalllSottt e e et e e e e e e e e e e e e e e e e nnaneeaaaeean 62
9.4.1 D= {1 1o o RS 62
9.4.2 Element Defaults WHhen Parsingc.ooueo et 62
9.4.3| ~Element Defaults When UNpParsing...........ceoo e 64
9.5 BvatmatiomOrderforStatementAnnotatons——————————————————— 5
9.51 Asserts and Discriminators with testKind 'expression’ ... 66
9.5.2 Discriminators with testKind "@XpreSSioN".............eiiiiiii e 66
9.5.3 Elements and SetVariable 66
9.5.4 Controlling the Order of Statement Evaluationccccoiiiii e 66

LS 2 T 4= 11 o =Y (o o TP 66
9.7 Unparser Infoset Augmentation AlGOrthmooii i 67
10 Overview: Representation Properties and their Format Semanticsccccceeeii i, 68

© ISO/IEC 2024 - All rights reserved

4

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

11 Properties Common to both Content and Framingcooocuiiiiiii i 69
11.1 Unicode Byte Order Mark (BOM)..........uoiiiiiiiiiie ettt e e ee e 71
11.2 Character Encoding and DeCOING EITOISeiiiiiiiiiiiieiiee ettt e e e e e e snnraaee s 71

11.2.1 Property dfdl:encodingEmOrPOlICYcoouiiiiiiiee e 72
11.2.2 Unicode UTF-16 Decoding/Encoding NON-EITOIScoccuiiiiiiiiiiiiiee e 73
11.2.3 Preserving Data Containing Decoding ErrOrs..........oouiiiiiiiiiiiiiee e 73
11.3 Byte Order and Bit OFAer ...ttt e e et e e e e anbeee e 73
L o (o B o1y (@ [T gl = 11]][Y PSPPSR 73
11.4.1 Example Using Right-to-Left Display for 'leastSignificantBitFirst'.............cccccooiiiiii 74
114 2 dfdl:bitOrder and Grammar Rpginnc ___________ 74

1% IR =T 011 T U PURRPUURPPPRPPRRE = E 75

12,1 AlIGNEA Data.......ooiiieiiiie e en e e e e 75
12,11 IMPIiCit AIGNMENT......oeiiiiiieieee e e e e Oy e rraeee e b e e e 76
12.1.2 Mandatory Alignment for Textual Datacccccooiieiiiiiniineec e 76
12.1.3 Mandatory Alignment for Packed Decimal Data............ccccoeevvneenncee L0, 77
12.1.4 Example: AlignmentFill ...t A 77

12.2 Properties for Specifying Delimiters.........ccccoiiiiiiie AW e 78

12.3 Properties for Specifying LENGNSooviiiiiiiiee e T e s b e 81
12.3.1 dfdl:lengthKind 'eXpliCit'............cceeiriiiiiee S e 82
12.3.2 dfdlilengthKind 'delimited’ccooviiiiiiieieeeeeeccceeion e b e 82
12.3.3 dfdl:lengthKind IMPICIt..........ooiii B N e 83
12.3.4 dfdl:lengthKind "PrefiXxed'..... ..o 8 e 84
12.3.5 dfdl:lengthKind "Pattern’oo i A e 87
12.3.6 dfdl:lengthKind 'endOfParent’o sl e 87
12.3.7 Elements of Specified Lengthad e 89

T SIMPIE TYPES. oo e e e e e e e meneee e e e 92
13.1 Properties Common to All SIMPIE TYPES ...ceeiiuiiiiiiiiiiee et 92
13.2 Properties Common to All Simple Types with Text representationcccccoceviviiininniie b, 93

13.2.1 The dfdl:escapeScheme RrOPErtiesc.coui i 94
13.3 Properties for Bidirectional support for All Simple Types with Text representation..............l........... 97
13.4 Properties SPeCifiC t0-SHNG........ooiiiiiiieiiie e s e enee e e e e e s pe e 97
13.5 Properties Specificto-Number with Text or Binary Representation.............ccccoveeveeeiiiiciiiicccc b 99
13.6 Properties Specific'to Number with Text Representationccccoveeiiii b, 99

13.6.1 The dfdktextNumberPattern Property ... 106

13.6.2 Converting logical numbers to/from text representation..............ccoceeiiiiiinencin b 110
13.7 Properties Specific to Number with Binary Representation..............cccocoiiiiiiiiiiiecc e 112

13.7.1.<_Converting Logical Numbers to/from Binary Representationccccoocveiiiiieniniic b 113
13.8 «Properties Specific to Float/Double with Binary Representationcccccooviiiiiiineeicie b 118
13:9\ Properties Specific to Boolean with Text Representation..............cccccoiviiiiiiiiccieee e e 118
+3-+6—PropertiesSpecifictoBooteanwith Bimary Representator . .--e. 119
13.11 Properties Specific to Calendar with Text or Binary Representation............cccccooiiiiiiiiiiiee. 120

13.11.1 The dfdl:calendarPattern Property ... 122

13.11.2 The dfdl:calendarCheckPoliCy Propertyc.coooiiiiiiiiiiiiiie e 125
13.12 Properties Specific to Calendar with Text Representationccccoooiiciii e 125
13.13 Properties Specific to Calendar with Binary Representationcccocccccveiiiie e 126
13.14 Properties Specific to Opaque Types (XS:heXBIiNary)cceeii i 127
13.15 Nil ValIUE PrOCESSINGuveiiiieiiieiiiiieie ettt e e ettt e e e e e e st e e e e e e e s e saaa e aeeeaeessasssssaeeeaeeesannnrnneeeaens 127
13.16 Properties for Nillable EIemeEnts..... ... e e 127

© ISO/IEC 2024 - All rights reserved

5

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

L ST [0 1T o Tt Y €1 o 1H] o SO PPPPRN 131
1 30 B =l 4T 042 1Yo [1T Lo =Y R 131
14.2 Sequence Groups With SEPAratorscccuiiiiiiie e e e e e e e e e e e snrareees 132
14.2.1 Separators and SUPPIESSION.ceeiiieiiiiiiiieiee e e e e e ettt e e e e e e eee e e e e e e e seiabareeeeeeeeesisbeaeeeaeeeaaanes 133
14.2.2 Parsing Sequence Groups With Separators. ... 134
14.2.3 Unparsing Sequence Groups With SEParatorscccovceiiiiiiiiie i 136
14.3 Unordered SEQUENCE GrOUPSuuiiiiaaiiiiieiiieaaae e e aaeeereeae e e s e e aaeeeeeeaeeeaaanneeeeaaaeeeaaannnseeeeaaeeeaannnnees 138
14.3.1 Restrictions for Unordered SEQUENCEScocuiiiiiiiiiii et e e sneaee e 138
14.3.2 Parsing an Unordered SEQUENCE.cccoiuiiiiiiiiiee ittt e et e e e s anbe e e e s anbeeeeens 138
14.3.3 llnpnrqing an Unaordered qunpnr‘p 140
14.4 RIoating EIEMENTS.... ... et e e e e e e et e e e e e e e e e e ee e e e e e e e nnee e 140
T4.5 HIAAEN GrOUPSeeiiieiiiiii ettt e sttt e e s bt e e s nbteeesannbeeesannteeeeenneeeeeenseq@hihadees 141
ST O g ToT 1o =Y €10 U] o LTS PUPRRUPR - 143
151 ReSOIVING CROICES ...ttt e e b e e e b e e e A e e e e ennees 144
15.1. Resolving Choices via Speculation............cocceeviiiiieiiiineieeeseee e S 144
15.1.2 Resolving Choices via Direct DispatChcccoceiiiiiiniiiiiinieeeeeest e, 145
15.1.8 UNparsing ChOICEScccoiuuiiiiiiiiee et seee e et saa A et e e e snbe e e e e snbeeeeeans 145
16 Propgrties for Array Elements and Optional Elements...........cccvveviveiiiciiieee e ot 146
16.1 The dfdl:occursCountKind property ... S e 146
16.1.1 dfdl:occursCountKind 'fiXed'..........coioiiiiiiiiiiiiiiiiee e e e 146
16.1.2 dfdl:occursCountKind "IMPHCIL..........c.oiiiiiiiiie e m N ettt e e e e e sree e e e snraeee e 147
16.1.8 dfdl:occursCountKind "'Parsed’............oooi i A ettt et e e e e ee e 147
16.1.4 dfdl:occursCountKind "€XPreSSIiON'cccueieeiiiiieee e T sttt stte e et ee e e s e e s st eeeesnraeeeens 147
16.1.% dfdl:occursCountKind 'StopValue' ... 8 e 17
16.2 D)efault ValuEs fOr AITAYSccooiiiieiie et 8ttt e e e e e et e e e e e e e e et e e e e e e e saannnbeeeeaeeeesnnnsnneees 148
16.3 Arrays With DFDL EXPreSSiONS........cooiiieiei e e 148
16.4 HoINtS Of UNCEIAINTYoiiiiiiiii e ettt st st e e st e e st e e e e bt e e e nnre e e e ennes 148
16.5 Arrays and SEQUENCESc.ueereiiueeereres ittt st e e et e e s e ste e e s e nnteeesenneeeeeenseeeeeennees 148
16.6 Horward Progress ReqUIrEmMENt ... i et 148
16.7 Rarsing Occurrences with Non-Normal Representationccccceeveiiiiiiiieeie e, 149
L I T oF= LR N 1 =) T PRSP PPR 149
17 CalcUlated Value Properties ... £ o ettt e et e e e e e e e e e e e e e s et beeeaaeeeesnnrsseeeaaeeaaaanes 160
17.1 BXample: 2d NeSIEA AQYo ittt et e e e e e e et e e e e e e e e e s nbabeeeaaae e e e nnenneeas 1p1
17.2 Bxample: Three-Byte Date ... 161
18 DFDU EXPreSSion LANGUAGEueeeiiieiiiiiieieee e e e ettt ea e e e e e sttt e e ae e e e s aasseeeeeeaeeaaaneaeeeeaeaeeeaannrseeeeeaeeaaannes 1p4
18.1 Bxpression Language Data MOEl ... 1p4
RS T Y - T = 1oL RS EPR 165
18.2. Rewinding of Variable Memory State..........ccooiiiiiiiii e 165
18.2.2 ~ Variable Memory State TranSitioNSuuiiiiiiiii e 165
18.3 GereratSyntax—————— +56
18.4 DFDL EXPreSSION SYNTAXeeiiiiiiiiiiiiiieie ittt sttt e s e e aab e e e s b e e e s abre e e e bee e e e eanes 157
18.5 Constructors, Functions and OPEratorsoeeiiiiiiiiiiiiie e e e e e e e e e senanrees 158
18.5.1 Constructor Functions for XML Schema Built-in TYPesccoocuiiiiiiiiiiiiiie e 158
18.5.2 Standard XPath FUNCHONSuuiiiiiiiiiieiie ettt e e e e e s e e e e e e s e snteaeeeeeeeeennnes 159
T18.5.3 DFDL FUNCHONS ...ttt ettt e e e oottt e e e e e e e nbe e e e e e e e e e annnbeaeeeaeeeaaannns 162
18.5.4 DFDL Constructor FUNCHONS.eoiiiiiiiiiiiie et e e e e e e e e s snneeae e e e e e e e ennnes 164
18.5.5 MisCellaneous FUNCHONSccuiiiiiiiiiie ettt et e e e st e e s snteeeeesneaeeeeans 165

18.6 Unparsing and Circular Expression DeadloCk ErrOrs...... ... 166

© ISO/IEC 2024 - All rights reserved

6

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

19 DFDL ReguIar EXPreSSIONS.uuiiiiiiiiiiieieiee ettt e et e e e e e e st e e e e e e e s e sanraaeeeaaeeeenannrees
20 External Control of the DFDL ProCeSSOr.........oooviiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee et
21 BuUilt-in SPECIfiCAtIONSccciiiiiiiii e e e aaaas
22 CONTOMMEANCEttt e et et e e e e e e e e et eeeeeeeeeeeaaabeeeeeeeeeaasbareeeaaeeeesannrsreeeaaas
23 OptioNal DFDL FEAUIESeiiiiiiiii ettt e e e st e e s e e e e nee e e e ennee
24 SecUrity CONSIAEIAtIONSeeiieiiiiie ettt e et s e e e e e st e e e e steeeeaansaeeeaannteeesanneeeeeanneeeeeannes
25 Authors and ContribDULOrSoooiiiiiiii e
26 Intellectual Property State@mMeENnt.........ccceeiiiiiiie e
27 DUSCIAIMET ...ttt
2 Eull (‘npyrighf Notice

A I = 1=14 =) o (o7 =T S UPRPUSPRPS -3
30 Appendix A: Escape Scheme UsSe Cases........cocuuiiiiiiiiiiiiiiie e g
30.1 Escape Character Same as dfdl:escapeEscapeCharacterccccvveveeveeivivcen S,
3B0.2 Escape Character Different from dfdl:escapeEscapeCharacter............cccccoo . el
30.2.1 Example 1 - Separator ;' ...t e T
30.2.2 Example 2 - Separator 'SEP'.......ccccueiiiiiiiieiiiie et e
30.3 Escape Block with Different Start and End Characterscooooeie e AN,
30.4 Escape Block with Same Start and End Characters...........cccco. .o
31 Appendix B: Rationale for Single-Assignment Variables &%,
32 Appendix C: Processing of DFDL String literalscocooiiiciieion e
3B2.1 Interpreting @ DFDL String Literalccueiiiiiiiiiii i et
B2.2 Recognizing @ DFDL String LIteral............oooiiiiii e e
3B2.3 Recognizing DFDL String Literal Part.................. 80 e
33 Appendix D: DFDL Standard ENCOAINGS......o.oooi sl e e e e
G Tt I U1 oo 1T SRRSO
B3.2 CONVENTIONS ... e
B3.3 Specification TEMPIAte........cooo i e e rnreee e
33.4 Encoding X-DFDL-US-ASCII-7-BIT-PACKEDceotiiiiiie et
K ot N N = 1o - e e PPRRRRII
33.4.2 Translation table e
K 2R S T T To | { o SRR
K B0 3 o o041 o | et SRR
K R S = Y (X @ o [T PP ROURR
K B T =T 1 4] 1 [N USSP
3347 EXAIMPIE 2 ..t e e e e e e e e e e e nnare e e e e e e e e
33.5 Encoding X-DFDL-US-ASCII-6-BIT-PACKEDccotiiiiiee et
K TR TRt R = 10 1T SRR
33.5,2 Translation TabIeoo i e e e a e e e
I NS TC T VLV To | { o OSSR

Lo Ko Y =20, |

Al 4
IJI.J. T LU L L= L e L L T T T PP

33.5.5 BYIEOIAEN ... e bbb
33.5.8 EXAMPIE T i e e e e e e nreae e nnee
33.6 References for APPENndiX Do e e
34 Appendix E: GIOSSary Of TEIMSoooiiiiiiiiiiii et e e e e
35 Appendix F: Specific Errors ClassSifiedoooiiiiiiiiiiiiiieeceeee e
36 Appendix G: Property PreCeAENCE.oooiiiiiiiiiii e e
TG Tt B = = | o [TSR
36.1.1 dfdl:element (simple) and dfdl:SIMPIETYPEcoooiiiiiiiii e

© ISO/IEC 2024 - All rights reserved

7

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

36.1.2 dfdl:element (COMPIEX).....oooi ittt e ettt e e et e e e ennre e e e ennteeeeennees 205
36.1.3 dfdl:sequence and dfdl:group (when reference is to a SeqUeNCe).........ccoooveiieeieiiiiicieeee.n, 206
36.1.4 dfdl:choice and dfdl:group (when reference is to a choiCe)ccccceeviiiiiiiiiiii i 207
BTG 02 O [oo Y= 11 o T I PP 208
36.2.1 dfdl:element (simple) and dfdl:SIMPIETYPEcooiiiiiiiii e 208
36.2.2 dfdl:element (COMPIEX)........ei ittt sa e b e et e e smbe e e sneeesaneeens 212
36.2.3 dfdl:sequence and dfdl:group (when reference is a SeqUENCE)cccveviiiiiiiiiiiieiiiiiieeee, 213
36.2.4 dfdl:choice and dfdl:group (when reference is @ choiCe)cooviieiiiiiiii i 213

© ISO/IEC 2024 - All rights reserved

8

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

1 Introduction

Data interchange is critically important for most computing. Grid computing, Cloud computing, and all forms of
distributed computing require distributed software and hardware resources to work together. Inevitably, these
resources read and write data in a variety of formats. General tools for data interchange are essential to
solving such problems. Scalable and High-Performance Computing (HPC) applications require high-
performance data handling, so data interchange standards must enable efficient representation of data. Data
Format Description Language (DFDL) enables powerful data interchange and very high-performance data
handling.

One can envisage three dominant kinds of data in the future, as follows:
1. Textual data defined by a format specific schema such as XML[XML] or JSON[JSON].

2 Binary data-in-standard-formats-

3. Data with DFDL descriptors.

Tgxtual XML and JSON data are the most successful data interchange standards to date. All-such data are by
inition new, meaning created in the Internet era. Because of the large overhead that textual'tagging
imposes, there is often a need to compress and decompress XML and JSON data. However, there i$ a high

t for compression and decompression that is unacceptable to some applications. Standardized binary data
fofmats are also relatively new and are suitable for larger data because of the reduced costs of encading and
more compact size. Examples of standard binary formats are data described by'modern versions of ASN.1"
[ABN1], XDR [XDRY], Thrift [Thrift], Avro [AVRO], and Google Protocol Buffers\[GPB]. These techniqyes lack
the¢ self-describing nature of XML or JSON data. Scientific formats, such as(NetCDF[NetCDF] and HDF[HDF]
arg¢ used by some communities to provide self-describing binary data. There are also standardized bjinary-
encoded XML data formats such as EXI [EXI].

It is an important observation that both XML format and standardized binary formats are prescriptive|in that
they specify or prescribe a representation of the data. To use themyapplications must be written to conform to
their encodings and mechanisms of expression.

DEDL suggests an entirely different scheme. The approachnis descriptive in that one chooses an appropriate
data representation for an application based on its needs’and one then describes the format using DFDL so
that multiple programs can directly interchange the described data. DFDL descriptions can be provided by the
creator of the format or developed as needed by third parties intending to use the format. That is, DRDL is not
rmat for data; it is a way of describing any data’format?. DFDL is intended for data commonly found in
scjentific and numeric computations, as well as tecord-oriented representations found in commercial data
prpcessing.

DEDL can be used to describe legacy data files, to simplify transfer of data across domains without flequiring
glebal standard formats, or to allow third-party tools to easily access multiple formats. DFDL can als¢ be a
erful tool for supporting backward compatibility as formats evolve.

DEDL is designed to provide flexibility and permit implementations that achieve very high levels of
performance. DFDL descriptions are separable and native applications do not need to use DFDL libraries to
parse their data formats..DFDL parsers can also be highly efficient. The DFDL language is designed|to permit
implementations that use-lazy evaluation of formats and to support seekable, random access to datd. The
following goals can be‘achieved by DFDL implementations:

e Density~Fewest bytes to represent information (without resorting to compression). Fastest ppssible
I/O.
e Optimized I/0. Applications can write data aligned to byte, word, or even page boundaries apd to use
memory mapped /O to ensure access to data with the smallest number of machine cycles for
common use cases without sacrificing general access.

DEDLcan describe the same types of abstract data that other binary or textual data formats can describe and,
furthermore, it can describe almost any possible representation scheme for those data. It is the intent of DFDL
to support canonical data descriptions that correspond closely to the original in-memory representation of the
data, and to provide sufficient information to write as well as to read the given format.

T ASN.1 with any of the prescribed encoding rules: Basic Encoding Rules (BER), Distinguished Encoding Rules (DER),
Canonical Encoding Rules (CER) [ASN1CER] or Packed Encoding Rules (PER) [ASN1PER]

2 Additional examples of descriptive approaches: ASN1 Encoding Control Notation (also known as ITU-T X.692)
[ASN1ECN], BFD: Binary Format Description (BFD) Language [BED]. The largest set of examples of descriptive
approaches are all the various proprietary ad-hoc format description languages found almost universally in every
commercial database, analytical, or enterprise software system that must take in data.

© ISO/IEC 2024 - All rights reserved

9

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

1.1 Why is DFDL Needed?

In an era when there are so many standard data formats available the question arises of why DFDL is
needed. Ultimately, it is because data formats are rarely a primary consideration when programs are initially
created.

Programs are very often written speculatively, that is, without any advance understanding of how important
they will become. Given this situation, little effort is expended on data formats since it remains easier to
program the I/O in the most straightforward way possible with the programming tools in use. Even something
as simple as using an XML-based data format is often harder than just using the native 1/O libraries of a
programming language.

In time, however, if a software program becomes important either because many people are using it, or it has
become important for business or organizational needs, it is often too late to go back and change the data
formats. FHor example, there may be real or perceived business costs to delaying the deployment of a progrgm
for a rewrite just to change the data formats, particularly if such rewriting will reduce the performance oftthe
program gnd increase the costs of deployment.

Indeed, the need for data format standardization for interchange with other software may not be clear at the
point whefe a program first becomes important. Eventually, however, the need for data interchange with the
program Hecomes apparent.

There are| of course, efforts to smoothly integrate standardized data-format handling into/programming
languageq. However, the above phenomena are not going away any time soon and there,is a critical role for
DFDL singe it allows after-the-fact description of evolving data formats.

1.2 What is DFDL?

DFDL is allanguage for describing data formats. A DFDL description enables {parsing, that is, it allows data fo
be read frpm its native format and presented as a data structure called the XDFDL Information Set or DFDL
Infoset. This information set describes the common characteristics of parsed data that are required of all

DFDL implementations and it is fully defined in Section 4. DFDL implementations MAY provide API access tp
the Infosef as well as conversion of the Infoset into concrete representations such as XML text, binary XML
[EXI], or JSON [JSON]. DFDL also enables unparsing?®, that is, allows data to be taken from an instance of a
DFDL infarmation set and written out to its native format.

DFDL achieves this by leveraging W3C XML Schema Definition Language (XSD) 1.0. [XSD]

An XML stchema is written for the logical model of the data. The schema is augmented with special DFDL
annotatiorjs and the annotated schema is called a DEDL Schema. The annotations are used to describe the,
native repfesentation of the data.

This apprgach of extending XSD with format,annotations has been extensively used in commercial systems
that preddte DFDL. The contribution of DFDL-for data parsing is creation of a standard for these annotations
that is opgn, comprehensive, and vendorineutral. For unparsing DFDL does more to advance the state of th
art by proyiding some capabilities to automatically compute fields that depend on the length or presence of

other datd. Prior-generation data format technologies left this difficult task up to application logic to compute

1.2.1 Simple Example

W

Consider {he following XMLcdata:

<w>5</w>
<x>78393)2</x>
<y>8.6E-P00</y>
<z>-7.1EB</z>

The logicgl médel for this data can be described by the following fragment of an XML schema document tha
simply prdvides a description of the name and type of each element:

="

<xs:complexType name="examplel">
<xs:sequence>
<xs:element name="w" type="xs:int"/>
<xs:element name="x" type="xs:int"/>
<xs:element name="y" type="xs:double"/>
<xs:element name="z" type="xs:float"/>
</xs:sequence>

3 DFDL uses the term ‘unparsing’ for symmetry with parsing. This is roughly equivalent to the terms ‘marshalling’ or
‘serialization’, but those terms both connote a sequencing order that DFDL does not impose for all formats, so DFDL
usesits own distinct term.

© ISO/IEC 2024 - All rights reserved

10

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

</xs:complexType>

Now, suppose the same data is represented in a non-XML format. A binary representation of the data can be
visualized like this (shown as hexadecimal):

0000 0005 0077 9e8c
169a 54dd Oalb 4a3f
ce29 46f6

To describe the same information in DFDL, the original XML schema document that described the data model
is annotated (on the type definition) as follows:

<xs:complexType>
<xs:sequence>
:element name="w" type=" ~int"
<xs:annotation>
<xs:appinfo source="http://www.ogf.org/dfdl/">
<dfdl:element representation="binary"
binaryNumberRep="binary"
byteOrder="bigEndian"
lengthKind="implicit"/>
</xs:appinfo>
</xs:annotation>
</xs:element>
<xs:element name="x" type="xs:int ">
<xs:annotation>
<xs:appinfo source="http://www.ogf.org/dfdl/">
<dfdl:element representation="binary"
binaryNumberRep="binary"
byteOrder="bigEndian"
lengthKind="implicit"/>
</xs:appinfo>
</xs:annotation>
</xs:element>
<xs:element name="y" type="xs:double">
<xs:annotation>
<xs:appinfo source="http://www, ogf.org/dfdl/">
<dfdl:element representation="binary"
binaryFloatRep=“ieee"
byteOrder="bigEndian"
lengthKind="implicit"/>
</xs:appinfo>
</xs:annotation>
</xs:element>
<xs:element name="z \type="xs:float" >
<xs:annotation>
<xs:appinfo_source="http://www.ogf.org/dfdl/">
<dfdl:element representation="binary"
byteOrder="bigEndian"
lengthKind="implicit"
binaryFloatRep="ieee" />
</xs :appinfo>
</=s(annotation>
</xswelement>
</Xsisequence>
</xs.:complexType>

D

TInin crnnla NMEN] Annatatinn Avinernconc that tha Aata A rarncantind 1n A hinae g roaat and that thd b te
is-simple-DFDL-annetation-expresses-thatthe-data-are-represented-ira-birary-format-and-that-the by

order is big endian. This is all that a DFDL parser needs to read the data.
In the above, there is a standard XML schema annotation structure:

<xs:annotation>
<xs:appinfo source="http://www.ogf.org/dfdl/">

</xs:appinfo>
</xs:annotation>

This encapsulates DFDL annotation elements. The source attribute on the xs:appinfo element indicates that
the annotation is specifically a DFDL annotation.

© ISO/IEC 2024 - All rights reserved

11

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

Inside the xs:appinfo there is a single DFDL format annotation:

<dfdl:element representation="binary"
byteOrder="bigEndian"
lengthKind="implicit"
binaryFloatRep="ieee" />

Within the above annotation element, each attribute is a DFDL property, and each property-value pair is called
a property binding. In the above the attribute 'representation’ is a DFDL property name. Here the dfdl:element
is a DFDL format annotation and the properties in it are generally called DFDL representation properties.
Consider if the same data are represented in a text format:

5,7839372,8.6E-200,-7.1E8

Once again, the same data model can be annotated, this time with properties that provide the character
encoding,[the field separator (comma) and the decimal separator (period):

<xs:copplexType>
<xs:pequence>
<x§:annotation>
Kxs :appinfo source="http://www.ogf.org/dfdl/">
<dfdl:sequence encoding="UTF-8" separator=",6" />
K/xs:appinfo>
</ks:annotation>
<xp:element name="w" type="xs:int">
Kxs:annotation>
<xs:appinfo source="http://www.ogf.org/dfdl/">
<dfdl:element representation="text"
encoding="UTF-8"
textNumberRep ="standard"
textNumberPattern="####0"
textStandardDecimalSeparator="."
lengthKind="delimited" />
</xs:appinfo>
K/xs:annotation>
</ks:element>
<xp:element name="x" type="xs:int">
Kxs:annotation>
<xs:appinfo source="http://www.ogf .0rg/dfdl/">
<dfdl:element representation="text"
encoding="UTF-8"
textNumberRep =!standard"
textNumberPattern="#######0"
textStandardDecimalSeparator="."
lengthKind="delimited" />
</xs:appinfo>
K/xs:annotation>
</ks:element>
<xp:element name="y" &ype="xs:double">
Kxs:annotation>
<xs:appinfo~source="http://www.ogf.org/dfdl/">
<dfdl:element representation="text"
encoding="UTF-8"
textNumberRep ="standard"
textNumberPattern="0.0E+000"
textStandardDecimalSeparator="."
lengthKind="delimited" />

</xs:appinfo>
</xs:annotation>
</xs:element>
<xs:element name="z" type="xs:float">
<xs:annotation>
<xs:appinfo source="http://www.ogf.org/dfdl/">
<dfdl:element representation="text"
encoding="UTF-8"
textNumberRep ="standard"
textNumberPattern="0.0EQ"
textStandardDecimalSeparator="."
lengthKind="delimited" />

</xs:appinfo>

© ISO/IEC 2024 - All rights reserved

12

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

| </xs:annotation>
</xs:element>
</xs:sequence>
| </xs:complexType>

Many properties are repeatedly expressed in the example for the sake of simplicity. Later sections of this
specification define the mechanisms DFDL provides to avoid this repetition.

1.3 What DFDL is not

DFDL maps data from a native textual or binary representation to an instance of an information set. This can
be thought of as a data transformation. However, DFDL is not intended to be a general transformation
language and DFDL does not intend to provide a mechanism to map data to arbitrary XML models. There are
specific limitations on the data models that DFDL can work to:

1. DFDL uses a subset of XML Schema; in particular, XML attributes cannot be used in the dajf model.

2. The order of the data in the data model must correspond to the order and structure of thel.data being
described.

3. Recursive definitions are not supported.

Pqint (2) deserves some elaboration. The XML schema used must be suitable for destribing the physical data
fofmat. There must be a correspondence between the XML schema's constructs andthe physical dgta
stjuctures. For example, generally the elements in the XML schema must match theé order of the physical
data. DFDL does allow for certain physically unordered formats as well.

THe key concept here is that when using DFDL, one does not get to design‘an XML schema to one's
preéference and then populate it from data. That would involve two steps:irst describing the data format and

second describing a transformation for mapping it to the structure of the" XML schema. DFDL is only [about the
fofmat part of this problem. There are other languages, such as XSLT [XSLT], which are for transformation. In
DFDL,one describes only the format of the data, and the format-constrains the nature of the XML sclhema one
muist use in its description.
DFDL is also not intended for describing generic formats like XML or JSON (for which schema-awarg¢ parsers
exyst), nor for prescriptive formats like Google Protocol Buffers [GPB] where the format is never expgsed and
access is via software libraries.

1.4 Scope of version 1.0
THe goals of version 1.0 are as follows:
1. Leverage XML technology and concepts
2. Support very efficient parsers/formatters
3. Avoid features that require unnecessary data copying
4. Support round-tripping,¢hat is, read and write data in a described format from the same des¢ription
5. Keep simple cases simple
6. Simple descriptions.should be "human readable” to the same degree that XSD is.
general features of'version 1.0 are as follows:
a) Text and-binary data parsing and unparsing
b) Validate-the data when parsing and unparsing using XSD validation.
c) Defaulted input and output for missing representations
d)__‘Reference — use of the value of a previously read element in subsequent expressions
€). ' Choice — capability to select among format variations

f) _Hidden groups of elements — A description of an intermediate representation the correspording
Infoset items of which are not exposed in the final Infoset.

g) Basic arithmetic in DFDL expressions.
h) Out-of-type value handling (e.g., The string value 'NIL' to indicate nil for an integer)
i) Speculative parsing to resolve uncertainty.
j) Very general parsing capability: Lookahead/Push-back
Version 1.0 of DFDL is a language capable of expressing a wide range of binary and text-based data formats.

DFDL can describe binary data as found in the data structures of COBOL, C, PL1, Fortran, etc., as well as
standard binary data in formats like ISO8583 [ISO8583]. DFDL can describe repeating sub-arrays where the
length of an array is stored in another location of the structure.

The

© ISO/IEC 2024 - All rights reserved

13

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

DFDL can describe a wide variety of textual data formats such as HL7, X12, CSV, and SWIFT MT
[DEDLSchemas]. Textual data formats often use syntax delimiters, such as initiators, separators and
terminators to delimit fields.

DFDL has certain composition properties. l.e., two formats can be nested or concatenated and the
combination results in a working format.

The following topics have been deferred to future versions of the standard:

e Extensibility: There are real examples of proprietary data format description languages that were used
as the base of experience from which standard DFDL was derived. However, there are no examples
of extensible format description languages. Therefore, while extensibility is desirable in DFDL, there is
not yet a base of experience with extensibility from which to derive a standard.

¢ Rich Layering: Some formats require data to be described in multiple passes. Combining these into
ole DFDL schema requires very rich layering funciionality. In these Tayers one element’s value
becomes the representation of another element. DFDL V1.0 allows description of only a limited kind| of
layering.

© ISO/IEC 2024 - All rights reserved

14

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

2 Overview of the Specification
The sections of the specification are

Section 3, Notational and Definitional Conventions - provides definitions used throughout the
specification. Note that terminology is defined at point of first use, but there is a complete Glossary in
Appendix E: Glossary of Terms.

Section 4, The DFDL Information Set (Infoset) - describes the abstract data structure produced by
parsing data using a DFDL processor, and which is consumed by a DFDL processor when unparsing
data. DFDL contains an expression language, and it is this data structure that the expression
language operates on.

Section 5, DFDL Schema Component Model describes the components that makes up a DFDL
schema, and the subset of XML Schema that is used to express them.

TH
DF

Sections 6, DEDL Syntax Basics and 7, Syntax of DFDL Annotation Elements - describesith
syntactic structure of DFDL annotations and introduces the purposes of the various annotatipns.
Section 8, Property Scoping and DFDL Schema Checking describes the way DFDL annotatipns that
provide format properties are combined across the parts of the DFDL schema, andralso desg¢ribes
static checking that is done on the DFDL schema.
Section 9, DEDL Processing Introduction covers processing, including the corejalgorithms fgr parsing
and unparsing data, as well as validation. It introduces the DFDL Data Syntax’Grammar, whjch
captures the structure of data that can be described with DFDL, and which-is referenced throughout
the rest of the specification.
Section 10, Overview: Representation Properties and their Format Semantics provides an oyerview
of, and Sections 11 to 17 describe in detail, all the DFDL properties. The properties are organized as
follows:
o Common to both Content and Framing (see Section 11)
o Common Framing, Position, and Length (see Section 12)
o Simple Type Content (see Section 13) - This.is\the largest section as it covers propgrties for
all the various simple types, starting with properties that apply to all simple types, thén
properties for all types with textual representation, and then proceeding through the types,
covering textual and binary format preperties for each type.
o Sequence Groups (see Section 14
o Choice Groups (see Section 15:)
o Array (i.e., recurring) elements and optional elements (see Section 16)
o Calculated Values (see Section 17)
Section 18, DFDL Expression Language covers the XPath-derived expression language that is
embedded in DFDL and is uged for computing the values of many properties dynamically, as well as
for calculated value elements;“and assertion checking.
Section 19, DEDL RegularExpressions, covers the regular expression language used when|parsing
to isolate elements within the data stream, as well as to check assertions.

[

e remaining sections andappendices supply additional details of particular importance to implementors of
DL, or they provide detail and reference material and are referenced from other parts of the specification.

© ISO/IEC 2024 - All rights reserved

15

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

3 Notational and Definitional Conventions

Examples of DFDL schemas provided herein are for illustration purposes only and for clarity they often do not
include all the necessary DFDL properties that would be needed for a complete functional DFDL schema.

3.1 Glossary and Terminology

This specification provides definitions of the terms it uses at the point of first use. However, as this
specification will not generally be read linearly, but out of order, a complete glossary is provided in Appendix
E: Glossary of Terms.

The capitalized key words MUST, MUST NOT, SHALL, SHALL NOT, SHOULD, SHOULD NOT, MAY,
REQUIRED, OPTIONAL, and RECOMMENDED in this document are to be interpreted as described in
[REC2119]. Such usage in capital letters is generally about DFDL implementations and their common or
distinguistiing characterisfics.

specificatipn may state "The representation must be followed by a terminating delimiter?, but what is intended

meanings|(introduced in Section 5.3.1,MinOccurs, MaxOccurs) having to de with the way element
declaratiops are annotated in the DFDL language. The data corresponding to such an element declaration is
also said fo be either required or optional, and the DFDL element declaration is said to be for a required
element, gr an optional element.

3.2 Faijlure Types

Where thg phrase "MUST be consistent with" is used, it is assumed that a conforming DFDL implementatior
MUST chgck for the consistency and issue appropriate diagnostic messages when an inconsistency is found.

There are|several kinds of failures that can occur when.@2"DFDL processor is handling data and/or a DFDL
schema. These are:

e Schema Definition Error or SDE for short-- these indicate the DFDL schema is not meaningful. Thd

arne generally fatal errors that prevent-orstop processing of data.

e Processing Error - These are errors-that occur when parsing or unparsing.

o At parse time, Processing.Errors can cause the parser to search (such as via backtracking)
for alternative ways to parse the data as are allowed by the DFDL schema. In that sense
parse-time Processing Errors guide the parsing, and when the parser finds an alternative way
to parse the data, a prior parse error is said to have been suppressed. A parse error that is
not suppressed MUST terminate parsing with a diagnostic message.

o Atunparsettime, Processing Errors are generally fatal. They MUST cause unparsing to stop
with a diagnostic message.

e Validation Error - These are errors when optional validation checking is available and enabled.
Validation. Errors MUST not stop, nor influence, parsing or unparsing behavior. Validation Errors are
effectively:warnings indicating lack of conformance of the parser output, or the unparser input, with
the XNILY Schema facet constraints, or the XSD maxOccurs and XSD minOccurs values.

e Recoyerable Error - In addition to using XML Schema validation, DFDL also provides the ability to
add Recoverable Error assertions 10 a DFDL schema. These cause diagnostic messages 1o be
created but MUST not stop, nor influence, parsing or unparsing behavior.

N4

y

© ISO/IEC 2024 - All rights reserved

16

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

4

ISO/IEC 23415:2024(en)

The DFDL Information Set (Infoset)

This section defines an abstract data set called the DFDL Information Set (Infoset). Its purpose is to define
what is provided:

e to an invoking application by a DFDL parser when parsing DFDL-described data using a DFDL

Schema;
e to a DFDL unparser by an invoking application when generating DFDL-described data using
Schema

a DFDL

The DFDL Infoset contains enough information so that a DFDL schema can be defined that enables unparsing
the Infoset and reparsing the resultant data stream to produce the same Infoset.

There is no requirement for DFDL-described data to be valid in order to have a DFDL information set.

Fi

Th
us
TH
ing
DF
N¢
gr
DF
DF
A

fo
inf

DrdiInfomationItem
schema: String
Document iocument root Element
drdiVersion: String 0.1 1 | namespace: String *
name: String
glrIrI;d(: ggg:g:: children{ordered
valid: Boolean
unionMemberschema: String
parent]
SimpleElement ‘ ComplexElement t

dataType: 5tring
dataValue

jure 1 DFDL Infoset Object Model

e DFDL information set is presented’above in Figure 1 DFDL Infoset Object Model as an object m
ng a Unified Modeling Language (UML) class diagram [UML].

e structure of the informatign‘set follows the Composite design pattern [Composite]. In case of
onsistency or ambiguity, the following discussion takes precedence.

‘DL describes the format of the physical representation for data whose structure conforms to this r
te that this model allows hierarchically nested data but does not allow representation of arbitrary ¢
hphs of data objects.

FDL information-sets may be created by methods (not described in this specification) other than p3g
FDL-described data.

DFDL information set consists of a number of information items; or just items for short. The infor
any well-formed DFDL-described data contains at least a document information item and one ele

inf
in

odel

nodel.
onnected

rsing

mation set
ment
ta: each

square brackets, [thus]. The types of information item are listed in Section 4.2 Information Items.

are shown

The DFDL Information Set does not require or favor a specific implementation interface paradigm. This
specification presents the information set as a modified tree for the sake of clarity and simplicity, but there is
no requirement that the DFDL Information Set be made available through a tree structure; other types of
interfaces, including (but not limited to) event-based and query-based interfaces, are also capable of providing
information conforming to the DFDL Information Set.

The terms "information set" and "information item" are similar in meaning to the generic terms "tree" and
"node", as they are used in computing. However, the former terms are used in this specification to reduce

po

ssible confusion with other specific data models.

© ISO/IEC 2024 - All rights reserved

17

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

The DFDL Information Set is similar in purpose to the XML Information Set [XMLInfoset], however, it is not
identical, nor a perfect subset, as there are important differences such as that the DFDL Infoset does not have
‘text’ nodes that are a primary feature of the XML Infoset, as well as that the contents of strings is much less
restricted in the DFDL Infoset.

The DFDL Information Set does not have any specific support for comments. When a data format allows for
textual data mixed with a comment syntax, then both that data and the content of the comments correspond to
DFDL Information Items.

41 "No Value"

In the discussion of Information ltems and their members below, some members may sometimes have the
value no value, and it is said that such a member has no value. This value is distinct from all other values. In
particular jtis distinct from the empty string, the empty set, and the empty list, each of which simply has no
members.| The concept of no-value is also orthogonal to how nillable elements are represented in the Infosel,
which usep a separate [nilled] boolean flag, not a distinguished value.

4.2 Infprmation Items

An information set contains two different types of information items, as explained in the following_sections.
Every information item has members. For ease of reference, each member is given a name,indicated [thus].

421 Dopcument Information Item
There is ejxactly one document information item in the information set, and all otherinformation items are
accessiblg through the [root] member of the document information item.

There is np specific DFDL schema component that corresponds to this item. It is\a-Concrete artifact describing
the informition set.

The document information item has the following members:

e [rpot] The element information item corresponding to the root‘element declaration of the DFDL
S¢hema.

dIVersion] String. The version of the DFDL specificationto which this information set conforms.
For DFDL V1.0 this is 'dfdl-1.0'

¢ [schema] String. This member is reserved for future use.

4.2.2 Element Information Items

There is ah element information item for each value\parsed from the non-hidden DFDL-described data. THis
corresponds to an occurrence of a non-hidden element declaration of simple type in the DFDL Schema and |is
known as ja simple element information item.

There is ap element information item for each explicitly declared structure in the DFDL-described data. Thjs
corresponds to an occurrence of an element declaration of complex type in the DFDL Schema and is known
as a complex element information itern.

In this infgrmation set, as in an XML document, an array is just a set of adjacent elements with the same
name and|namespace.

The [root]j[member of the document information item corresponds to the root element declaration of a DFDL

is|thie-order implied by the DFDL Schema. 'Ordered set' is not formally defined here, but two

element at ordinal position 'index' starting from 1. In a simple element information item this member
has no value. In a document information item this member contains exactly one element information
item. If the [nilled] member is true, then this member has no value.

o [dataType] String. The name of the XML Schema 1.0 built-in simple type to which the value
corresponds. DFDL supports a subset of these types listed in Section 5.1 DFDL Simple Types.

e [dataValue] member has no value, and for a complex element the [children] member has no value. If
this member is true, then the Infoset item is said to be nil or nilled.

e [document] The document information item representing the DFDL information set that contains this
element. This element is empty except in the root element of an information set.

e [name] String. The local part of the element name.

© ISO/IEC 2024 - All rights reserved

18

http://dataformat.org/dfdl-1.0
https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

[namespace] String. The namespace, if any, of the element. If the element does not belong to a
namespace, the value is the empty string.

[nilled] Boolean. True if the nillable item is nil. False if the nillable item is not nil. If the element is not
nillable this member has no value. If this member is true then for a simple element the

[parent] The complex element information item which contains this information item in its [children]
member. In the root element of an information set this member is empty.

[schema] String. A reference to a schema component associated with this information item, if any. If
not empty, the value MUST be an absolute or relative Schema Component Designator [SCD].
[unionMemberSchema]* String. For simple element information items, this member contains an SCD
reference to the member of the union that matched the value of the element. Empty if validation is not

valid. Empty if validation is not enabled.

On unparsing, any non-empty values for the [valid] or [unionMemberSchema] members arelignorgd

Hgwever, in the augmented Infoset which is built during the unparse operation [valid] wilkhave a val
[uhionMemberSchema] may have a value.

4.3 DFDL Information Item Order

On parsing and unparsing information items are presented in the order they arédefined in the DFDL] Schema.

4.4 DFDL Augmented Infoset

When unparsing, one begins with the DFDL schema and conceptually with the logical Infoset. This Infoset can

bg sparsely populated because the DFDL Schema can describe default values and computations to

be done

to [obtain the values of some elements. As unparsing progresses, and fills in these defaultable and cglculated
elements, these new item values augment the Infoset, that is, make it bigger. The resulting Infoset ig called

th¢ augmented Infoset. The details of this augmentation process are described in Section 9.7 Unpar
Infoset Augmentation Algorithm.

Ber

4 Also, to support PSVI [PSVI] construction.

5 The purpose of this member is to support construction of a W3C standard Post Schema Validation Infoset (PSVI) [PSVI]

from a DFDL Infoset.

© ISO/IEC 2024 - All rights reserved

19

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

5 DFDL Schema Component Model

When using DFDL, the format of data is described by means of a DFDL Schema.
The DFDL Schema Component Model is shown in conceptual UML in Figure 2.

The shaded boxes have direct corresponding XML Schema syntax and therefore appear in DFDL schema.
The unshaded boxes are conceptual classes often used in discussion of DFDL schemas. For example, the
ModelGroup class is a generalization of Sequence and Choice classes which are the concrete classes
corresponding to xs:sequence and xs:choice constructs of the schema. The class Term is a further
generalization encompassing not only ModelGroup, but GroupReference, ElementReference, and
ElementDeclaration.

—>

-
TCTTIT

0.1

0.1

Sequence ComplexType

Choice

&__1 Schema SimpleType
\V4

X 0.

ModelGroup

base
0.1 : 0.1

;

ModelGroup...

TypeReference [

0.* 0.
0.* \VA

GroupReference

TypeDefinition

ElementReference

0.*
0.* \V4

ElermentDeclaration [@p——— ElementType

Figure 2 I

Each obje|
The DFDL
XSD prov

ADFDL S
XML Schg
carry the i

0.1

DFDL Schema UML diagram

ct defined by a class.in the above UML is called a DFDL Schema component.

Schema Modél is expressed using a subset of the XML Schema Description Language (XSD).
des a standardized schema language suitable for expressing the DFDL Schema Model.

chema istan' XML schema containing only a restricted subset of the constructs available in full W3
ma Description Language. Within this XML schema, special DFDL annotations are distributed tha
hforation about the data's format or representation.

ADFDL §

chema is a valid XML schema. However, the converse is not true in general since the DFDL

C

Schema Model does not include many concepts that appear in XML schema.

5.1 DF

DL Simple Types

The DFDL simple types are shown in Figure 3. The graph shows all the types defined by XML Schema
version 1.0, and the subset of these types supported by DFDL are shown as shaded.

© ISO/IEC 2024 - All rights reserved

20

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

anySimpleType

{ ! i]]]] i y
@ Name | [NOTATION | I (vasesasinary | (anyur |

v

normalizedString @
!

v !
nonPositivelnteger nonNegativelnteger
! v v

{Ianguage } {Name } {NMTOKEN } [negativelnteger } { positivelnteger}
I I
[NCName | [NMTOKENS |

v

unsignedLong

unsignedint

[D%EF} {ENTI.TY }

(1DREFS | [ENTITIES |

unsignedShort

unsignedByte

! i ! ! §

’ ! ! v
{gYear} {gYearMonth } {gMonth HgMonthDay } {gDay } {duration }

Figure 3 DFDL simple types as a subset of XML Schema types

THese types are defined as they are in XML Schema, with the exceptions of:

e String — In DFDL a string can contain any character codes.None are reserved (Including the
character with character code U+0000, which is not permitted in XML documents.)

THe simple types are placed into logical type groupings as shown in this table:

Yogical Type Group Types
Number xs:double, xs:float, xs;decimal, xs:integer, xs:nonNegativelnteger, xs:long,
xs:int, xs:short, xs:byte, xs:unsignedLong, xs:unsignedint, xs:unsignegShort,
and xs:unsignedByte
String xs:string
CGalendar xs:dateTime, xs:date, xs:time
Opaque xs:hexBinary
Boolean xsiboolean
Tdble 1: Logical type groupings
Ngte that DFDL does 06t have specific types corresponding to time intervals, nor are there special numeric
types for geo-coordirates, currency, or complex numbers. These concepts must be described in DFDDL using
th¢ available types.
5.2 DFDL Subset of XML Schema
THe DFDLsubset of XSD is a general model for hierarchically nested data. It avoids the XSD featurgs used to
dgscribe'the peculiarities of XML as a syntactic textual representation of data and avoids features that are
simpty not needed by DFDL.
The following lists detail the similarities and differences between general XSD and this subset.
DFDL Schemas consist of:
e Standard XSD namespace management
e Standard XSD import and management for multiple file schemas
e Local element declarations with dimensionality via XSD maxOccurs and XSD minOccurs.
e Global element declarations
e Complex type definitions with empty or element-only content models.
o DFDL appinfo annotations describing the data format
e These simple types: string, float, double, decimal, integer, long, int, short, byte, nonNegativelnteger,

unsignedLong, unsignedInt, unsignedShort, unsignedByte, boolean, date, time, dateTime, hexBinary

© ISO/IEC 2024 - All rights reserved

21

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

Note: xs:

ISO/IEC 23415:2024(en)

These facets: minLength, maxLength, mininclusive, maxinclusive, minExclusive, maxExclusive,
totalDigits, fractionDigits, enumeration, pattern (for xs:string type only)

Fixed values

Default values

'sequence' model groups (without XSD minOccurs and XSD maxOccurs or with both XSD
minOccurs="1" and XSD maxOccurs="1")

‘choice' model groups (without XSD minOccurs and XSD maxOccurs or with both XSD minOccurs="1"

and XSD maxOccurs="1")

Simple type derivations derived by restriction from the allowed built-in types
Reusable Groups: named model group definitions can only contain one model group
Element references with dimensionality via XSD maxOccurs and XSD minOccurs.

mmancionalibyv

Gredp-refereneces-witheut-dimensionality

Nijllable attribute is "true" (that is, nillable="true" in the element declaration.)

Appinfo annotations for sources other than DFDL are permitted and ignored

Unions; the memberTypes must be derived from the same simple type. DFDL annotations.arenot
permitted on union members.6

XML Entities

The xs:schema “elementFormDefault” attribute

The xs:element “form” attribute

nNegativelnteger is treated as an unsigned xs:integer.

The followling constructs from XML Schema are not used as part of the DFDL Schema Model of DFDL v1.0
schemas; |however, they are all reserved’ for future use since the data model may be extended to use them
future vergions of DFDL:

Aftribute declarations (local or global)

Aftribute references

Aftribute group definitions

Cpmplex type derivations where the base type is not xs:anyType.

Copmplex types having mixed content models or simple~¢entent models

List simple types

Upion simple types where the member types aremot derived from the same simple type.
These atomic simple types: normalizedString, teken, Name, NCName, QName, language,
pgsitivelnteger, nonPositivelnteger, negativelnteger, gYear, gYearMonth, gMonth, gMonthDay, gD4
, IDREF, IDREFS, ENTITIES, ENTITY;\NMTOKEN, NMTOKENS, NOTATION, anyURI,
base64Binary

XED maxOccurs and XSD minOccurs-on model groups (except if both are '1")

X$ED minOccurs = ‘0’ on branches, of xs:choice model groups

Identity Constraints

Suibstitution Groups

xg:all groups

xg:any element wildcards

Redefine - This version of DFDL does not support xs:redefine. DFDL schemas must not contain
xg:redefine directly/or indirectly in schemas they import or include.

whitespace facet

Recursivelydefined types and elements (defined by way of type, group, or element references)

5.3 XSD Facets, min/maxOccurs, default, and fixed

XSD ele

nt.declarations and references can carry several properties that express constraints on the

described data. These constraints are mainly used for validation. These properties include:

the facets

minOccurs, maxOccurs
default

fixed

6 The purpose of unions is to allow multiple constraints via facets such as multiple independent range restrictions on
numbers. This enhances the ability to do rich validation of data.

7 By reserved it is intended that conforming DFDL v1.0 implementations MUST NOT assign semantics to them.

© ISO/IEC 2024 - All rights reserved

22

in

y1

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

The facets and the types they are applicable to are:

¢ minLength maxLength (for types xs:string, and xs:hexBinary)

e pattern

e enumeration (all types except xs:boolean)

¢ maxinclusive, maxExclusive, minExclusive, mininclusive (for Number and Calendar types in Section
5.1)

e totalDigits (for type xs:decimal and all supported integer types descending from xs:decimal in Section
5.1)

e fractionDigits (for type xs:decimal)

The facets (but not XSD maxOccurs nor XSD minOccurs) are also checked by the dfdl:checkConstraints
DFDL expression language function.

THe following sections describe these in more detail.
5.3.1 MinOccurs, MaxOccurs

X$D minOccurs and XSD maxOccurs are used in these definitions:
e An element declaration or reference where XSD minOccurs is greater than zero.is'said to bg a
required element.
¢ An element declaration or reference where XSD minOccurs is equal to zero is'said to be an pptional
element.
e Arequired element or optional element where XSD maxOccurs is greater than 1 is also said|to be an
array element.
When validating, XSD minOccurs and XSD maxOccurs are used to determine the minimum and maximum
valid number of occurrences of an element.

THe XSD minOccurs and XSD maxOccurs values are interpreted’in conjunction with the DFDL
dfdl:occursCountKind property. See Section 16, Properties for Afrray Elements and Optional Elements, for
more details.

5.8.2 MinLength, MaxLength

THese facets are used:

¢ When dfdl:lengthKind is "implicit" and type:js xs:string or xs:hexBinary. In that case the length is given
by the value of the XSD maxLength facet: In this case the XSD minLength facet is required to be
equal to the XSD maxLength facet (Schema Definition Error otherwise).

e For validation of variable length string elements.
5.83.3 MaxInclusive, MaxExclusive, MinExclusive, Mininclusive, TotalDigits, FractionDigits

e Used for validation only

THe format of numbers is not derived from these facets. Rather DFDL properties are used to specify|the
fofmat.

5.3.4 Pattern

e Allowed only-on elements of type xs:string or types derived from it in Section 5.1.
e Used forvalidation only

It is importantte-avoid confusion of the pattern facet with other uses of regular expressions that are needed in
DEDL (for éxample, to determine the length of an element by regular expression matching).

Ngte: intXSD, pattern is about the lexical representation of the data, and since all is text there, everything has
a lexical representation. In DFDL only strings are guaranteed to have a lexical and logical value that|is
identical

5.3.5 Enumeration Values

Enumerations are used to provide a list of valid values in XSD.
e Used for validation only

Note: in DFDL XSD enumerations are not used as a means to define symbolic constants. These may be
captured using dfdl:defineVariable constructs so they can be referenced from expressions.

5.3.6 Default

The XSD default property is used both when parsing and unparsing, to provide the default value of an element
when the situation warrants it. See 9.4 Element Defaults.

Note that the XSD fixed and XSD default properties are mutually exclusive on an element declaration.

© ISO/IEC 2024 - All rights reserved

23

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

53.7 Fi

ISO/IEC 23415:2024(en)

xed

The XSD fixed property is used in the same ways as the XSD default property but in addition:
e To constrain the logical value of an element when validating.
Note that the XSD fixed and XSD default properties are mutually exclusive on an element declaration.

54 Co
ADFDL S

mpatibility with Other Annotation Language Schemas
chema only applies DFDL annotations on a subset of the XML Schema constructs. Hence,one

normally thinks that a DFDL schema cannot contain any of the constructs outside of the DFDL subset. For
example, the DFDL subset of XML Schema does not use attributes, hence, a DFDL schema normally would
not contain attribute declarations.

There is a
purely for
data, but
schema.

Hence, th
DFDL sch
annotatior]
they may
A DFDL p
schema fi
annotatior
Hence, th
schema if
namespaqd

a schema language extension of non-DFDL xs:annotation elements to be used in the rest of the

ts use in validating annotations within the schema |tself Such an XML schema is descrlblng not

b complete set of files making up a schema by way of xs:include/xs:import may includera’ mixture g
emas that use only the DFDL subset of XSD, as well as other XML Schemas that deseribe just

s. These annotation schemas are unrestricted by the DFDL subset of XML Schema:+or example
nclude elements containing xs:attribute declarations.

Ffocessor needs a way to tell these schema files apart so that it can enforcethe/DFDL subset in
es that are describing data formats and ignore the XML schema files that(are for unknown
languages that are to be ignored by the DFDL processor.

s rule: a DFDL implementation MUST ignore any schema file included or imported by a DFDL
the top level xs:schema element of that included/imported schema does not have an XML
e binding for the DFDL namespace.

© ISO/IEC 2024 - All rights reserved

24

=

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

6 DFDL Syntax Basics

Using DFDL, a data format is described by placing special annotations at various positions within an XML
schema. A DFDL processor requires these annotations, along with the structural information of the enclosing
XML schema, to make sense of the physical data model.

6.1 Namespaces

The xs:appinfo source URI http://www.ogf.org/dfdl/ is used to distinguish DFDL annotations from other
annotations.

The element and attribute names in the DFDL syntax are in a namespace defined by the URI
http://www.ogf.org/dfdl/dfdl-1.0/8. All symbols in this namespace are reserved. DFDL implementations MUST
NOT provide extensions to the DFDL standard using names in this namespace. Within this specification, the
ngmespace prefix for DFDL is "dfdl" referring to the namespace hitp://www.ogf.org/dfdl7dfdl-1.07/.

Atfributes on DFDL annotations that are not in the DFDL namespace or in no namespace are ighored by a
DEDL processor.

A DFDL Schema document contains XML schema annotation elements that define and assigh names to parts
of the format specification. These names are defined using the target namespace of the'schema doqument
where they reside and are referenced using QNames in the usual manner. A DFDL schema documgnt can
in¢lude or import another schema document, and namespaces work in the usual manher for XML schema
dgcuments. The schema as a whole includes all additional schema documents<{eferenced through import and
in¢lude. Generally, in this specification, when referring to the DFDL Schema-this is intended to mean the
schema as a whole. When referring to a specific document, the term DFDL-Schema document is usgd.

6. The DFDL Annotation Elements

DEDL annotations must be positioned specifically where DFDL apnotations are allowed within an XML
schema document. These positions are known as annotation pojnts. When an annotation is positiongd at an
annotation point, it binds some additional information to the schema component that encloses it. The
description of a data format is achieved by correctly placing.annotations on the structural components of the
schema.

DEDL specifies a collection of annotations for different\purposes. They are organized into three diffefent
annotation types: Format Annotations, Statement Aanotations, and Defining Annotations

At[any single annotation point of the schema there can be only one format annotation, but there can|be
several statement annotations. There are rul€s about which of these are allowed to co-exist which are
described in sections about those specific @annotation types.

THe resolved set of annotations for an‘annotation point is a combined set of annotations taken from:
1. asimple type definition and the base simple type it references.

2. an element declaration.and the type definition from (1) it references.

3. an element reference(and the global element declaration from (2) it references.

4. a group reference and the global group definition it references

Annotation Annotation Element Description
Type
Hormat dfdl:choice Defines the physical data format properties of an xs:choice
Annotation group. See Section 7.1.
dfdl:element Defines the physical data format properties of an xs:element

and xs:element reference. See Section 7.1.

dfdl:format Defines the physical data format properties for multiple DFDL
schema constructs. Used on an xs:schema and as a child of a
dfdl:defineFormat annotation. This includes aspects such as
the encodings, separators, and many more. See Section 7.1.

dfdl:group Defines the physical data format properties of an xs:group
reference. See Section 7.1.

dfdl:property Used in the syntax of format annotations. See Section 7.1.1.2.

8 Note that the trailing slash is required.

© ISO/IEC 2024 - All rights reserved

25

http://www.ogf.org/dfdl/dfdl-1.0/
https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

dfdl:sequence

Defines the physical data format properties of an xs:sequence
group. See Section 7.1.

dfdl:simpleType

Defines the physical data format properties of an
xs:simpleType. See Section 7.1.

dfdl:escapeScheme

Defines the scheme by which quotation marks and escape
characters can be specified. This is for use with delimited text
formats. See Section 7 4.

Statement dfdl:assert Defines a test to be used to ensure the data are well formed.
Annotation Assert is used only when parsing data. See Section 7.5
dfek:diseriminator Defines-atestto-be-tused-whenreselving-choice-branches-ang
optional element occurrences. A dfdl:discriminator is used.only
when parsing data. See Section 7.6
dfdl:newVariablelnstance | Creates a new instance of a variable. See Section 74%.2
dfdl:setVariable Sets the value of a variable whose declaration isin scope Se¢
Section 7.7.3
Defining dfdl:defineEscapeScheme | Defines a named, reusable escapeScheme-See Section 7.3
Annotatipn

dfdl:defineFormat

Defines a reusable data format by callecting together other
annotations and associating them with a name that can be
referenced from elsewhere. See<Section 7.2

dfdl:defineVariable

Defines a variable that can-bée referenced elsewhere. This can
be used to communicate-a\parameter from one part of
processing to anotherpart. See Section 7.7

Table 2 - DFDL Annotation Elements

DFDL defining annotation elements may only appear at fop-level, that is, as annotation children of the
element. The order of their appearance does notimatter, nor does their position relative to other

xs:schem

children of the xs:schema.
6.3 DFPDL Properties

A DFDL property is a specific DFDL construct that-tells the DFDL processor some characteristic about the

data format.

Propertieq carried on the component format annotations (See Section 7.1) are called format properties. A
format prgperty that is used to describe.a\physical characteristic of a component is called a representation

property.

Propertie§ on DFDL annotations may’have values of one or more of the following types

e Emnumeration

The property valueds-an XSD xs:token the value of which is one of the allowed values listed in the
property description.

Example:ithe dfdl:lengthKind property, which has values taken from “delimited”, “fixed”, “explicit],
“implicit”,y'prefixed”, “pattern”, and “endOfParent”. For example:

|lengthKind='delimited'

e DFDBL string literal (Section 6.3.1):

Tl anranavvalila ranrasante 2 caariance-of litaral hvtas or charactarswhich ranrecent datawhich
e-prop ety atte+epresets—a-56qHeRce-oHHear B yteS-o-crata6te s WHHEHRTFe preSeRt-aata-Wrien

appears in the data stream. The value type is a restriction of the XSD xs:token that further disallows
the space character. DFDL entities must be used to express whitespace in a DFDL String Literal.

Example: the dfdl:terminator property, which expresses characters or bytes to be found in the
data stream to mark the termination of an element or model group instance. An example

terminator might be:

|terminator:'%NL;'

This uses DFDL's string-literal character class entity syntax (see Section 6.3.1.3) to express that
the element or model group is terminated by a line ending in the data stream.

© ISO/IEC 2024 - All rights reserved

26

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

DFEDL expression (Section 6.3.2)

The property is an xs:string the value of which is a DFDL expression that returns a value derived from
other property values and/or from the DFDL Infoset. Leading and trailing whitespace is trimmed for

DFDL expressions.

Example: the dfdl:occursCount property takes an expression which commonly looks in the Infoset

via an expression, to obtain the count from another element. An example dfdl:occursCou
property might be:

nt

|occursCount=‘{ ../hdr/count }'

DEDL regular expression (Section 6.3.3)
The property is an xs:string the value of which is a regular expression that can be used as a
calculate the length of an element by applying that pattern to the sequence of literal bytes or

Sq

me properties accept a list or uniop'eftypes

pattern to

characters which appear in the data stream. Note that leading and trailing whitespace is not trimmed

and is part of the regular expression value.

Example: the dfdl:lengthPattern property takes a regular expression which is used to scan the

data stream for matching data. An example might be:

|lengthPattern="\w{l,5};"

This scans the data stream for from 1 to 5 word-characters followed by alsemi-colon chg

Logical Value.
The property value is a string that describes a logical value. The type of the logical value is ¢

racter.

ne of the

XML schema simple types. The string must conform to the XML sechema lexical representatipn for the

type.
Example: the dfdl:nilValue property can be used to proyideJa logical value that if it match

es the

element's logical value is used to indicate the data is-nilled. For example for an element jof type

xs:int:

|nilValue='O'

QName
The property value is an XML Qualified Name'as specified in "Namespaces in XML"
[XMLNamespaces]

Example: The dfdl:escapeSchemeRef-property refers to a named escape scheme definition via its

qualified name. For example:

|escapeSchemeRef:'ex:backslashScheme'

List of DFDL String Literals-orLogical Values

The property value is a«whitespace separated list of the specified type. When parsing, if morg than
one string literal in the list matches the portion of the data stream being evaluated then the Ipngest
matching value in thellist must be used. When unparsing, the first value in the list must be used.

String literals cohtaining whitespace or string literals representing the empty string must use
class entitiesin-their syntax.
ExamplerThe dfdl:separator property below indicates that the items of a sequence are {
either-by a comma or a tab character.

character

eparated

|separator:', SHT; '

Union of types and expressions.
The property value is a union of DFDL expression and exactly one of the other types. The e
must resolve to a value of the other type.

pression

Example: Below are two examples of the dfdl:length property. One uses an expression that

resolves to an unsigned integer, the other a literal unsigned integer.

length='{ xs:unsignedInt(../hdr/len) }'

length="'14"

Union of types.

The property value is a union of two or more types. The type is often dependent on the value of

another property.

© ISO/IEC 2024 - All rights reserved

27

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

For example, dfdl:nilValue can be a List of DFDL String Literals or a List of Logical Values
depending on dfdl:nilKind. Another example is the dfdl:alignment property which can have as its
value an unsigned integer or the distinguished enum value 'implicit'.

6.3.1 DFDL String Literals

DFDL String Literals represent a sequence of literal bytes or characters which appear in the data stream. This

presents t

he following challenges:

o the literal characters in the data stream might not be in the same character set encoding as the DFDL
schema

e it may be necessary to specify a literal character which is not valid in an XML document

e it may be necessary to specify one or more raw byte values

ADFDL s
e a
e a
e O
e a
ADFDL s

Details on
Processin
Empty St
sequence
usually in
properties

ring literal can describe any of the following types of literal data in any combination:
s5ingle literal character in any encoding

string of literal characters in any encoding

e or more characters from a set of related characters (e.g. end-of-line characters)
iteral byte value

ring literal is therefore able to describe any arbitrary sequence of bytes and characters.

how a string literal is matched against the data stream for parsing are given.in/Appendix C:
g of DFDL String literals.

ring: The special DFDL entity %ES; is provided for describing an empty’string or an empty byte
The %ES; entity is the only way to do this. A DFDL string literal with\value " (the empty string) is
alid. There are a few properties that explicitly allow an empty DEDL "String Literal, and these
assign a property-specific meaning to the empty string value.

Whitespajce: When whitespace must be used as part of a property value, the DFDL string literal must use

entities (s
string liter

6.3.1.1

A literal st
begins all

ich as %WSP;) to represent the whitespace. (This allows.a property to represent lists of DFDL
bls by using literal spaces to separate list elements.)

Character strings in DFDL String Literals

ring in a DFDL Schema is written in the character set encoding specified by the XML directive that
XML documents:

<?xml ve

Fsion="1.0" encoding="UTF-8" 2>

In this exa
string liter
However,

set encod
in EBCDI(

the Unicodle character code for.éomma which is U+002C. However, when the schema indicates that an item|i

," (comm
be 'ebcdic

mple, the DFDL schema is written in\UTF-8, so any literal strings contained in it, and particularly

these strings are being used to\describe features of text data that are commonly in other characte
ngs. For example,a DFDL.schema may describe EBCDIC data that is comma separated. A comm
L has a single-byte code unit of 0x6B in the data, the numeric value of which does not correspond

h) separated and specifies this using a string literal along with specifying the 'encoding' property to
-cp-us' then this-means that the data are separated by EBCDIC commas regardless of what

bls found in its representation property bindings in the format annotations, are expressed in UTF-§.

character et encoding.s used to write the DFDL Schema.
<?xml vefsion="1.0¥ "encoding="UTF-8">
<xs:schepa ... %
<dfdl: ff6rmat encoding="ebcdic-cp-us" separator=","/>
</xs:schema
When a DFDL processor uses the separator expressed in this manner, the string literal "," is translated into

the character set encoding of the data it is separating as specified by the dfdl:encoding representation
property. Hence, in this case the processor would be searching the data for a character with codepoint 0x6B
(the EBCDIC comma), not a UTF-8 or Unicode (0x2C) comma which is what exists in the DFDL schema

document

6.3.1.2 DFDL Character Entities, Character Class Entities, and Byte Values in String Literals

DFDL character entities specify a single Unicode character and provide a convenient way to specify code
points that appear in the data stream but would be difficult to specify in XML strings. For example, DFDL

character

entities can express common non-printable characters or code points, such as 0x00, that are not

© ISO/IEC 2024 - All rights reserved

28

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

valid in XML documents. DFDL entities are based on XML entities, which can also be used in a DFDL
schema. Examples:

separator="%HT; "'
terminator="%WSP*;//"
fillByte="'%#x00;"
textStringPadCharacter="'%#x7F; "'

In some cases, regular XML character entities may be used instead. For example, the above '%#x7F;' could
be expressed as '' but this is not always the case. There is no way in XSD to express the character
code O (i.e., the ASCII NUL code point), even as an XML character entity; hence, one must often use DFDL
character entities like '%#x00;' above, or their named equivalents. The DFDL string literal syntax allows the
author to always use DFDL character entity syntax instead of jumping back and forth between XSD character

entities and DEDI| character entities

THe following grammar gives the syntax of DFDL String Literals generally, including the various kinds of

entities.

JfdlStringLiteral = (DfdlStringLiteralPart)+ | Dfdl1ESEntity

OJfdlStringLiteralPart ::= LiteralString | DfdlCharEntity | DfdMXCharClasp |
ByteValue

IiteralString ::= A string of literal characters

gJfdlCharEntity ::= DfdlEntity | DecimalCodePoistt\’|
HexadecimalCodePoint

fJfdlCharClass ::= '%' DfdlCharClassName '\

HyteValue = 'SH#r' [0-%a-fA-F]{249;"

OJfdlEntity ::= '%' DfdlEntityName{';'

JecimalCodePoint = "S#' O[0-9]1+ '@

HexadecimalCodePoint ti= 'SEx' [0-9a¥FA-F]1+ ;!

JfdlEntityName ::= 'NUL'|'SOH''|'STX'|'ETX'"]
'"EOT' |[NENQ' | '"ACK' | 'BEL"' |
"BSK(IHT' | 'LF'|'VT'|'FF'|
"GR'|'SO'|'SI'|'DLE" |
“"\DC1'|'DC2'|'DC3'|'DC4" |
'NAK' | 'SYN' | '"ETB' | 'CAN" |
"EM'|'SUB'|'ESC'|'FS']|
"GS'|'RS'|'US'|'SP'|
'DEL' | '"NBSP'| 'NEL' | 'LS"

OJfdlCharClassName ::= DfdINLEntity | DfdlWSPEntity | DfdlWSPStarEntlity |
Dfd1WSPPlusEntity

OJfdINLEntity ::= 'NL'

Jfd1WSRENtity ::= 'WSP'

JfdlwWSPStarkEntity 1= 'WSPp*'

D SP P ars et - ISP

DfdlESEntity ::= 'ES'

Table 3 DFDL Character Entity, Character Class Entity, and Byte Value Entity Syntax

Using %% inserts a single literal "%" into the string literal. This "%" is subject to character set encoding
translation as is any other character.

A HexadecimalCodePoint provides a hexadecimal representation of the character's code point in ISO/IEC
10646.

A DecimalCodePoint provides a decimal representation of the character's code point in ISO/IEC 10646.
A DfdIEntityName is one of the mnemonics given in the following tables.

© ISO/IEC 2024 - All rights reserved

29

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

Mnemonic Meaning Unicode Character Code
NUL null U+0000
SOH start of heading U+0001
STX start of text uU+0002
ETX end of text U+0003
EOT end of transmission U+0004
ENQ enquiry U+0005
AICK acknowledge U+0006
BEL bell U+0007

BS backspace U+0008
HT horizontal tab uU+0009
UF line feed U+000A
T vertical tab U+000B
FF form feed Us+000C
¢RrR carriage return u+000D
S0 shift out U+000E
B shift in U+000F
DLE data link escape u+0010
DC1 device control 1 U+0011
DC2 device control 2 u+0012
DC3 device control 3 U+0013
DC4 device control 4 u+0014
NAK negative acknowledge U+0015
SN synchronous idle U+0016
E[TB end of transmission block u+0017
CAN cancel uU+0018
gM end of medium uU+0019
SyB substitute U+001A
EBC escape U+001B
kS file separator U+001C
&GS group separator u+001D
RS record separator U+001E
us unit separator U+001F
SP space U+0020
DEL delete U+007F
NBSP no break space U+00A0
NEL Next line U+0085
LS Line separator U+2028

Table 4 DFDL Entities

© ISO/IEC 2024 - All rights reserved

30

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

6.3.1.3 DFDL Character Class Entities in DFDL String Literals

The following DFDL character classes are provided to specify one or more characters from a set of related
characters.

Mnemonic | Meaning Unicode Character
Code(s)
NL Newline U+000A LF
On parse any one of the single characters CR, LF, NEL or LS or U+000D CR
the character combination CRLF. U+000D U+000A CRLF
On unparse the value of the dfdl:outputNewLine property is U+0085 NEL
output, which must specify one of the single characters %CR;, Llan008 |
Y%LEF;, Y%NEL;, or %LS; or the character combination % CR;%LF;.
WSP Single whitespace U+0009-U+0000
On parse any whitespace character (Control characters)
On unparse a space (U+0020) is output U+0020-SPACE
U#0085 NEL

U+00AO NBSP

U+1680 OGHAM SPACE
MARK

U+180E MONGOLIAN
VOWEL SEPARATOR

U+2000-U+200A
(different sorts of spaces)

U+2028 LSP
U+2029 PSP

U+202F NARRQW
NBSP

U+205F MEDIUN
MATHEMATICAL
SPACE

U+3000 IDEOGRAPHIC
SPACE

WSP* Optional Whitespaces Same as WSP
On parse whitespace characters are ignored.
On unparse nothing is output

WSP+ Whitespaces Same as WSP

On parse one or more whitespace characters are ignored. It is a
Processing Error if no whitespace character is found.

©n unparse a space (U+0020) is output.
ES Empty String

Used in whitespace separated lists when empty string is one of
the values.

=

Table 5 DFDL Character Class Entities

6.3.1.4 DFDL Byte Value Entities in DFDL String Literals

DFDL byte-value entities provide a way to specify a single byte as it appears in the data stream without any
character set encoding translation. To specify a string of byte values, a sequence of two or more byte-value
entities must be used. The syntax is in Table 3 DFDL Character Entity, Character Class Entity, and Byte Value
Entity Syntax above. Example:

S#rFF;

In this notation the "r" can be thought of as short for "raw", as byte value entities are said to denote "raw
bytes".

© ISO/IEC 2024 - All rights reserved

31

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

6.3.2 DFDL Expressions

Some DFDL properties allow DFDL expressions (see Section 18 DFDL Expression Language) to be used so
that the property can be set dynamically at processing-time.

The general syntax of expressions is "{" expression "}"
The rules for recognizing DFDL expressions are
¢ Discard any leading and trailing whitespace.
Must start with a '{" in the first position and end with '}’ in the last position.
{" in any position other than the first is treated as a literal.
'} in any position other than the last position is treated as a literal.

o '{{ aosS thc ﬂlat bhdldbtclb dal'c tl catcd ao thU “tma: |{| dl Id IIUt as t: 1T atdl-t Uf d DFDL CAPICDD;UI 1.
DFDL expressions reference other items in the Infoset or augmented Infoset using absolute or relative paths.

DFDL expressions that are used to provide the value of DFDL properties in the dfdl:format annotation)on the
top level Xs:schema declaration must not contain relative paths.

6.3.3 DFDL Regular Expressions

Some properties expect a regular expression to be specified. The DFDL Regular Expression language is
defined in[Section 19, DFDL Regular Expressions.

6.3.4 Enpumerations in DFDL

Some DFDL properties accept an enumerated list of valid values. It is a Schema Definition Error if a value

other than one of the enumerated values is specified. The case of the specifiedvalue must match the
enumeratipn. An enumeration is of type string unless otherwise stated.

© ISO/IEC 2024 - All rights reserved

32

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

7 Syntax of DFDL Annotation Elements

This section describes the syntax of each of the DFDL annotation elements along with discussion of their
basic meanings.

The DFDL annotation elements are listed in Table 2 - DFDL Annotation Elements

7.1 Component Format Annotations

A data format can be 'used' or put into effect for a part of the schema by use of the component format
annotation elements.

There are specific annotations for each type of schema component that supports only the representation
properties applicable to that component. The table below gives the specific annotation for each schema
component.

Schema component DFDL annotation
xs:choice dfdl:choice
xs:element dfdl:element
xs:element reference dfdl:element
xs:group reference dfdl:group
xs:schema dfdl:format
xs:sequence dfdl:sequence
xs:simpleType dfdl:simpleType

Tgble 6 DFDL Component Format Annotations

Bglow are a few examples followed by sections which describe each kind of annotation element in detail. Here
is gn example of DFDL component format annotation, specifically use of dfdl:element on an xs:element
declaration:

<Xs:schema ...>

xs:element name="root">
<xs:annotation>
<xs:appinfo source="http://wyw.ogf.org/dfdl/">

<dfdl:element ref="aBaseConfig"
representation="text"
encoding="UTF-8"/>

</xs:appinfo>
</xs:annotation>

/xs:element>

</Ixs:schema>

Ngte that in theabove, the DFDL annotation lives inside this surrounding context of xs:annotation arld
xstappinfo efements. This is just the standard XSD way of doing annotations. The source attribute is|an
identifier that’separates different families of appinfo annotations.

Bglowa dfdl:format annotation is used inside a dfdl:defineFormat annotation to define a named reusable set of
fonlmat properties that can be referenced from another format annotation.

<xs:schema ...>

<xs:annotation>
<xs:appinfo source="http://www.ogf.org/dfdl/">
<dfdl:defineFormat name="baseFormat">
<dfdl:format byteOrder="bigEndian" encoding="ascii"/>
</dfdl:defineFormat>

</xs:appinfo>
</xs:annotation>

© ISO/IEC 2024 - All rights reserved

33

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

|</Xs:schema>

A dfdl:format annotation at the top level of a schema, that is as an annotation child element on the xs:schema,
provides a set of default properties for the lexically enclosed schema document. (See 8.1.2 Providing Defaults
for DFDL properties.)

<xs:schema ...>

<xs:annotation>
<xs:appinfo source="http://www.ogf.org/dfdl/">

<dfdl:format
representation="binary"
byteOrder="bigEndian"

STTCOTTITIg= " aSTIT

</xstappinfo>
</xs:ahnotation>

</xs:schema>

7.1.1 Property Binding Syntax

A property binding is the syntax in a DFDL schema that gives a value to a property. Upto.this point, the
examples|in this document have all used a specific syntax for property bindings called attribute form.
However, the format properties may be specified in any one of three forms:

1. Aftribute form
2. Element form
3. Short form
A DFDL property may be specified using any of the forms with the following exceptions:
e The dfdl:ref property may be specified in attribute or shortfosm
o The dfdl:escapeSchemeRef property may be specified.i’attribute or short form
e The dfdl:hiddenGroupRef property may be specified in attribute or short form
e The dfdl:prefixLengthType property may be specified in attribute or short form
e Short form must not be used on the xs:schema element.

It is a Schema Definition Error if the same property_is specified in more than one form. That is, there is no
priority ordering where one form takes precedent-over another.

7.1.1.1 Property Binding Syntax: Attribute Form
Within the|format annotation elementsare bindings for properties of the form:

| PropertyName="Value"

For example:

<xs:anpotation>
<xs:pppinfo sourdes"http://www.ogf.org/dfdl/">
<dfdl:format ‘emeoding="utf-8" separator="S$NL;"/>
</xstappinfo>
</xs:ahnotatign

This is thq attribute form of property binding.

7.1.1.2 Property Binding-SyntaxxElementfForm
The representation properties can sometimes have complex syntax, so an element form for individual property
bindings is provided to ease syntactic expression difficulties. The annotation element is dfdl:property and it
has one attribute 'name' which provides the name of the property.

For example:

<xs:annotation>
<xs:appinfo source="http://www.ogf.org/dfdl/">
<dfdl:format>
<dfdl:property name='encoding'>utf-8</dfdl:property>
<dfdl:property name='separator'>%NL;</dfdl:property>
</dfdl:format>

© ISO/IEC 2024 - All rights reserved

34

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

</xs:appinfo>
</xs:annotation>

Element form is mostly used for properties that themselves contain the quotation mark characters and escape
characters so that the property value can be expressed without concerns about confusion with the XSD syntax
use of these same characters. XML's CDATA encapsulation can be used to allow malformed XML and
mismatched quotes to be easily used as representation property values.

Here is an example where a delimiter has a syntax that overlaps with what XML comments look like. Use of
XML's CDATA bracketing makes this less clumsy to express than using XML escape characters:

<dfdl:property name='initiator'><[CDATA[<!--]]></dfdl:property>

7.1.1.3 Property Binding Syntax: Short Form

Td save textual clutter, short-form syntax for format annotations is also allowed on xs:element, xs:seguence,
xsfchoice, xs:group (for group references only), and xs:simpleType schema elements. The xs:s¢hema
element cannot carry short-form annotations; attribute form must be used instead. Attributes which are in the
namespace 'http://www.ogf.org/dfdl/dfdl-1.0/' and whose local name matches one of the DEBL repregentation
properties are assumed to be equivalent to specific DFDL attribute form annotations.

Fgr example, the two forms below are equivalent in that they describe the same data\format. The firgt is the
shprt form of the second:

<xs:element name="eleml">
xs:complexType>
<xs:sequence dfdl:separator="SHT;" >

</xs:sequence>
/xs:complexType>
</lks:element>

<xs:element name="elem2">
xs:complexType>
<xs:sequence>
<xs:annotation><xs:appinfo source="https//www.ogf.org/dfdl/">
<dfdl:sequence separator="SHT;" />
</xs:appinfo></xs:annotation>

</xs:sequence>
/xs:complexType>
</kks:element>

Another example:

<¥s:sequence dfdl:separatorsV,">

xs:element name="eleml™ ‘type="xs:int" maxOccurs="unbounded"
dfdl:representation="text"
dfdl:textNumberRep="standard"
dfdl:initiator="1["
dfdl:terminator="1"/>

xs:element name="elem2" type="xs:int" maxOccurs="unbounded">
<xs:anndpation><xs:appinfo source="http://www.ogf.org/dfdl/">
<dfdljelement representation="text"
textNumberRep="standard"
initiator="1["
terminator="]1"/>

cappninfo s.-annotation
-t

</xs:element>
</xs:sequence>

The above show use of short-form property binding syntax for annotating elements and sequences.
7.1.2 Empty String as a Representation Property Value
DFDL provides no mechanism to un-set a property. Setting a representation property's value to the empty

string doesn't remove the value for that property but sets it to the empty string value. This may not be a valid
value for certain properties.

For example, in non-delimited text data formats, it is sensible for the separator to be defined to be the empty
string. This turns off use of separator delimiters. For many other string-valued properties, it is a Schema

© ISO/IEC 2024 - All rights reserved

35

http://www.ogf.org/dfdl/dfdl-1.0/
https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

Definition Error to assign them the empty string value. For example, the character set encoding property
(dfdl:encoding) cannot be set to the empty string.

7.2 dfdl:defineFormat - Reusable Data Format Definitions

To avoid error-prone redundant expression of properties in DFDL schemas, a collection of DFDL properties
can be given a name so that they are reusable by way of a format reference.

One or more dfdl:defineFormat annotation elements can appear within the annotation children of the
xs:schema element.

Each dfdl:defineFormat has a required name attribute.
The construct creates a named data format definition. The value of the name attribute is of XML type

NCName.

unique withirmthe Tamespace-

The format name becomes a member of the schema's target namespace. These names must be

If multiple [format definitions have the same 'name' attribute, in the same namespace, then it is a Schema
Definition Error.
Here is anl example of a format definition:
<xs:schepa ...>
<xs:anphotation>
<xs:pppinfo source="http://www.ogf.org/dfdl/">
<dfdl:defineFormat name="baseFormat" >
dfdl:format representation="text"
encoding="ascii" />
</fifdl:defineFormat>
</xstappinfo>
</xs:ahnotation>
</xs:schema>
A dfdl:defineFormat serves only to supply a named definition for a fortmat for reuse from other places. It doe$
not causelany use of the representation properties it contains to déscribe any actual data.

7.2.1 Using/Referencing a Named Format Definition: The dfdl:ref Property

A named,
using the

reusable, dfdl:defineFormat definition is used by-referring to its name from a format annotation
jfdl:ref property. For example, here this annotation reuses the format named 'baseFormat":

<dfdl:el

bment ref="baseFormat" encoding="ebCdic-cp-us" />

The beha
dfdl:define
however,
dfdl:encog

7.2.2 Inheritance for dfdl:defineFormat

A dfdl:defi
of the dfdl
definition

in any inh
An examp

ior of this dfdl:element definition is as if‘all representation properties defined by the named
Format definition for 'baseFormat' were instead written directly on this dfdl:element annotation;
hese are superseded by any representation properties that are defined here such as the

ing property in the example above.

heFormat declaration gan.inherit from another named format definition by use of the dfdl:ref proper
format annotation. This allows a single-inheritance hierarchy that reuses definitions. When one
bxtends another incthis way, any property definitions contained in its direct elements override those

—

y

<xs:sche
<xs:an
<xXs:

<d

prited definitions

le format thatinherits from a named format definition is:
a ...

hotatdion>

hppdnfo source="http://www.ogf.org/dfdl/">

FdlsdefineFormat name="myConfig" >

A=kl

= - Al FTRI 1
CTror. Tormac represencac o orrar

ref="baseFormat" />

</dfdl:defineFormat>

</xs

:appinfo>

</xs:annotation>

</xs:schema>

Conceptually, the dfdl:ref inheritance chains can be flattened and removed by copying all inherited property
bindings and then superseding those for which there is a local binding. Throughout this document the
discussion assumes inheritance is fully flattened. That is, all dfdl:ref inheritance is first removed by flattening
before any other examination of properties occurs.

It is a Schema Definition Error if use of the dfdl:ref property results in a circular path.

© ISO/IEC 2024 - All rights reserved

36

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

7.3 The dfdl:defineEscapeScheme Defining Annotation Element

One or more dfdl:defineEscapeScheme annotation elements can appear within the annotation children of the
xs:schema. The dfdl:defineEscapeScheme elements may only appear as annotation children of the
xs:schema.

The order of their appearance does not matter, nor does their position relative to other annotation or non-
annotation children of the xs:schema.

Each dfdl:defineEscapeScheme has a required name attribute and a required dfdl:escapeScheme child
element.

The construct creates a named escape scheme definition. The value of the name attribute is of XML type
NCName. The name becomes a member of the schema's target namespace. These names must be unique
within the nhamespace among escape schemes

If rlnultiple dfdl:.defineEscapeScheme definitions have the same 'name’ attribute, in the same namesgace, then
it is a Schema Definition Error.

Egch dfdl:defineEscapeScheme annotation element contains a dfdl:escapeScheme annotation’elemgent as
detailed below.

Hgre is an example of an escapeScheme definition:

<¥s:schema ...>
xs:annotation>
<xs:appinfo source="http://www.ogf.org/dfdl/">
<dfdl:defineEscapeScheme name="myEscapeScheme">
<dfdl:escapeScheme escapeKind="escapeCharacter"
escapeCharacter="'/"' />

</dfdl:defineEscapeScheme>
</xs:appinfo>

/xs:annotation>

</Ixs:schema>

A gfdl:defineEscapeScheme serves only to supply a named definition for a dfdl:escapeScheme for r¢use from
other places. It does not cause any use of the representation properties it contains to describe any actual
data.

7.3.1 Using/Referencing a Named escapeScheme Definition

A hamed, reusable, escape scheme is used by referring to its name from a dfdl:escapeSchemeRef property
onl an element. For example:

<xs:element name="foo" type="xs:string" >

xs:annotation><xs:appinfo\source="http://www.ogf.org/dfdl/">

<dfdl:element represéntation="text"
escapgeSChemeRef="myEscapeScheme" />

/xs:appinfo></xs:annotation>

</lks:element>

7.4 The dfdl:escapeScheme Annotation Element

THe dfdl:escapéScheme annotation is used within a dfdl:defineEscapeScheme annotation to group the
properties of-an escape scheme and allows a common set of properties to be defined that can be repised.

Arl escape-scheme defines the properties that describe the text escaping rules in force when data sych as text
delimiters are present in the data. There are two variants on such schemes,

«_) The use of a single escape character to cause the next character to be interpreted literally. The
escape character itself is escaped by the escape-escape character.

e The use of a pair of escape strings to cause the enclosed group of characters to be interpreted
literally. The ending escape string is escaped by the escape-escape character.

On parsing, the escape scheme is applied after pad characters are trimmed and on unparsing before pad

characters are added.

DFDL does not perform any substitutions for ampersand notations like <.

The properties of dfdl:escapeScheme are defined in Section 13.2.1_The dfdl:escapeScheme Properties.

© ISO/IEC 2024 - All rights reserved

37

http://www.ogf.org/dfdl/%E2%80%9D
https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

7.5 The dfdl:assert Statement Annotation Element

The dfdl:assert statement annotation element is used to assert truths about a DFDL model that are used when
parsing to ensure that the data are well-formed. They are not used when unparsing.

There is a critical distinction between dfdl:assert checks and XSD validation checks.

The dfdl:assert checks guide parsing and the creation of the DFDL Infoset by causing Processing Errors on
failure. Conversely XSD validation inspects the values within the Infoset. Validation failures never affect
whether the parser is able to produce a DFDL Infoset.

The dfdl:assert checks are performed even when validation is off.
Examples of dfdl:assert elements are below:

<dfdl:assert message="Value is not zero." test="{ ../x eq 0}" />
<dfdl:aspert message="Precondition violation." >
../x le 0 and ../y ne "-->" and ../y ne "<!-" }

</dfdl:afsert>

<dfdl:asfert message="Postcondition violation." testKind='expression'>
{.]/x ne """}
</dfdl:apsert>

7.5.1 Properties for dfdl:assert

A dfdl:assprt annotation contains a test expression or a test pattern. The dfdl:assert)is said to be successful
the test eXpression evaluates to true or the test pattern returns a non-zero length match, and unsuccessful if
the test efpression evaluates to false or the test pattern returns a zero length‘match. An unsuccessful
dfdl:asserf causes either a Processing Error or a Recoverable Error to be-issued, as specified by the
failureTypg property of the dfdl:assert.

The testKind property specifies whether an expression or pattern is used by the dfdl:assert. The expression pr
pattern cah be expressed as an attribute or as a value.

—

<dfdl:aspert test="{test expression}" />

<dfdl:aspert>
{test pxpression}
</dfdl:afsert>

It is a Schpma Definition Error if a test expressionlor test pattern is specified in more than one form.
It is a Schema Definition Error if both a test expression and a test pattern are specified.
A dfdl:asskrt can appear as an annotation on these schema components:

e an xs:element declaration (logal‘or global)

e an xs:element reference

e an xs:group reference

e ai xs:sequence

e an xs:choice

e an xs:simpleType definition (local or global)

If the resojved set ‘ef.statement annotations for a schema component contains multiple dfdl:assert statement
then thosg withtestKind 'pattern' are executed before those with testKind 'expression' (the default). However
within each group the order of execution among them is not specified.

i

|f ftl- Ivad-cat-aof-o o for o cobhama RREAOBReREt R HAR aafil aondibha faillieaT) o £
one ol the-fresorvea-Ssetotr-assertstor-a-senema COMTPUTTCT OIS O SUC U e SSTOT, arnu— e TanmuT o Ty PpCOT Ui

assert is ‘processingError’, then no further asserts in the set are executed.

Property Description
Name

testKind Enum (optional)
Valid values are 'expression', 'pattern’
Default value is 'expression’

Specifies whether a DFDL expression or DFDL regular expression pattern is used in the
dfdl:assert.

© ISO/IEC 2024 - All rights reserved

38

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

Annotation: dfdl:assert

test DFDL Expression
Applies when testKind is 'expression’
A DFDL expression that evaluates to true or false. If the expression evaluates to true then
parsing continues. If the expression evaluates to false then a Processing Error is raised.
Any element referred to by the expression must have already been processed or must be a
descendent of this element.
If a Processing Error occurs during the evaluation of the test expression then the dfdl:assert
also fails.
Itis a Schema Definition Error if testKind is 'expression' or not specified, and an expression
is not supplied by either the value of the dfdl:assert element or the value of the test attribute.
Annotation: dfdl:assert

testPattern | DFDL Regular Expression
Applies when testKind is 'pattern’
A DFDL regular expression that is applied against the data stream starting at the dafa
position corresponding to the beginning of the representation. Conseduently, the framing
(including any initiator) is visible to the pattern.at the start of the’component on whicl the
dfdl:assert is positioned.
If the pattern matching of the regular expression reads data that cannot be decoded|into
characters of the current encoding, then the behavior is controlled by the
dfdl:encodingErrorPolicy property. See Section 11.2.10 Property dfdl:encodingErrorfPolicy for
details.
If the length of the match is zero then the dfdl:agsert evaluates to false and a Procegsing
Error is raised.
If the length of the match is non-zero then the dfdl:assert evaluates to true.
If a Processing Error occurs during theevaluation of the test regular expression ther) the
dfdl:assert also fails.
It is a Schema Definition Error if testKind is 'pattern’, and a pattern is not supplied by either
the value of the dfdl:assert element or the value of the testPattern property.
It is a Schema Definition-Error if there is no value for the dfdl:encoding property in sqope.
It is a Schema Definition:Error if dfdl:leadingSkip is other than 0.
It is a Schema Definition Error if the dfdl:alignment is not 1 or 'implicit'
Annotation: dfdkassert

message String or DEDL"Expression
Defines text to be used as a diagnostic code or for use in an error message, when the assert
is unsucecessful.
The DFDL Expression must return type xs:string. Any element referred to by the megsage
expression must have already been processed or must be a descendent of this elenment.
There is special treatment for errors that occur while evaluating the message expregsion.
See below for details.
Annotation: dfdl:assert

failareType | Enum (optional)

Valid values are 'processingError', 'recoverableError'.

Default value is 'processingError'.

Specifies the type of failure that occurs when the dfdl:assert is unsuccessful.
When 'processingError', a Processing Error is raised.

When 'recoverableError', a Recoverable Error is raised.

If an error occurs while evaluating the test expression, a Processing Error occurs, not a
Recoverable Error.

Recoverable Errors do not cause backtracking like Processing Errors.
Annotation: dfdl:assert

© ISO/IEC 2024 - All rights reserved

39

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

Table 7 dfdl:assert properties

Example of a dfdl:assert with a message expression:

<dfdl:assert message="{ fn:concat ('unknown case ', ../datal) }">
{ if (...predl...) then ...exprl...
else if (...pred2...) then ...expr2...

else fn:false ()

}
</dfdl:assert>

The message specified by the message property is issued only if the dfdl:assert is unsuccessful, that is, the
test expression evaluates to false or the test pattern returns a zero-length match. If so, and the message
property is an expression, the message expression is evaluated at that time.

If a Proce$sing Error or Schema Definition Error occurs while evaluafing the message expression, a
Recoverable Error is issued to record this error (containing implementation-dependent content), then
processing of the assert continues as if there were no problem and in a manner consistent with the
failureTypg property, but using an implementation-dependent substitute message.

7.6 The dfdl:discriminator Statement Annotation Element
DFDL disg¢riminator statement annotations are used during parsing to:

1. resolve points of uncertainty (choices, optional elements, array repetition) that,cannot be resolved hHy
speculative parsing. See Section 9.1 Parser Overview.

2. remove ambiguity during speculative parsing

3. improve diagnostic behavior when a DFDL parser encounters malformed-data.

Discriminators are not used during unparsing.

A DFDL djscriminator may contain a test expression that evaluates to true-or false. The discriminator is said|to
be successful if the test evaluates to true and unsuccessful (or fails) if the\test evaluates to false. A
discrimingtor may alternatively contain a test regular expression pattern and the discriminator is successful if
the test pattern matches with non-zero length and is unsuccessful(or fails) if there is no match or a zero-
length majch.

A discrimipator determines the existence or non-existence of a-schema component in the data stream. If the
discrimingtor is successful, then the component is said tobe known to exist, and any subsequent errors do not
cause badktracking at the nearest point of uncertainty..Details of the behavior of a DFDL parser and the role
of discriminators are given in Section 9.3 Parsing Algorithm.

Discrimingtors can also be used to force a resolution earlier during the parsing of a model group so that
subsequeft parsing errors are treated as Processing Errors of a known schema component rather than a
failure to find that schema component. This may greatly improve the efficiency of DFDL parsing in some
implementations, as well as improving the.diagnostic information provided by a DFDL parser when given
malformed data.

Examples|of dfdl:discriminator annotation are below :

<dfdl:dipcriminator>
{ ../rgcType eq 0 }
</dfdl:discriminator>

<dfdl:dipcriminatoxr Stest="{ ../recType eq 0}" />

When theldiscriminator's expression evaluates to "false", then it causes a Processing Error, and the
discrimingtor issaid to fail.

7.6.1 Properties for dfdl:discriminator

Within a dfdl:discriminator, the TestKind property specifies whether an expression or pattern Is used by the
dfdl:discriminator. The expression or pattern can be expressed as an attribute or as a value.

<dfdl:discriminator test="{test expression}" />

<dfdl:discriminator>
{ test expression }
</dfdl:discriminator>

It is a Schema Definition Error if the test expression or test pattern is specified in more than one form.
It is a Schema Definition Error if both a test expression and a test pattern are specified.
A dfdl:discriminator can be an annotation on these schema components:

© ISO/IEC 2024 - All rights reserved

40

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

e an xs:element declaration (local or global)
e an xs:element reference

e an Xxs:group reference

® an Xs:sequence

e an xs:choice

e an xs:simpleType definition (local or global)

The resolved set of statement annotations for a schema component can contain only a single
dfdl:discriminator or one or more dfdl:assert annotations, but not both. To clarify: dfdl:assert annotations and
dfdl:discriminator annotations are exclusive of each other. It is a Schema Definition Error otherwise.

Broperty——Description
Name
testKind Enum

Valid values are 'expression’, 'pattern’
Default value is 'expression'

Specifies whether a DFDL expression or DFDL regular expression is used in the
dfdl:discriminator .

Annotation: dfdl:discriminator

Appliesswhen testKind is 'pattern’

position corresponding to the beginning of the representation. Consequently, the fra
(including any initiator) is visible to the pattern.at the start of the component on whic
dfdl:discriminator is positioned.

If the pattern matching of the regular expression reads data that cannot be decoded
characters of the current encoding, then the behavior is controlled by the

A DEDL regular expression that is applied against the data stream starting at the da;F

test DFDL Expression
Applies when testKind is 'expression’
A DFDL expression that evaluates to true or false.df-the expression evaluates to trug then
the discriminator succeeds, and parsing continués, If the expression evaluates to false then
the discriminator fails, and a Processing Error iS.raised.
If a Processing Error occurs during the evaluation of the test expression then the
discriminator also fails.
Any element referred to by the expression must have already been processed or is §
descendent of this element.
The expression must have beenevaluated by the time this element and its descendants
have been processed or when,a Processing Error occurs when processing this element or its
descendants.
Itis a Schema Definition*Error if testKind is 'expression' or not specified, and an expression
is not supplied by either the value of the dfdl:discriminator element or the value of the test
attribute.
Annotation: dfdldiscriminator

testPattern | DFDL Regular Expression

ing
the

into

dfdl:encodingErrorPolicy property. See Section 11.2.1 Property dfdl:encodingErrorH

Policy for

details.

If the length of the match is zero then the dfdl:discriminator evaluates to false and a
Processing Error is raised.

If the length of the match is non-zero then the dfdl:discriminator evaluates to true.

It is a Schema Definition Error if testKind is 'pattern’, and a pattern is not supplied by
the value of the dfdl:discriminator element or the value of the testPattern property.

Itis a Schema Definition Error if dfdl:leadingSkip is other than 0.
It is a Schema Definition Error if the dfdl:alignment is not 1 or 'implicit'

either

It is a Schema Definition Error if there is no value for the dfdl:encoding property in scope.

© ISO/IEC 2024 - All rights reserved

41

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

Annotation: dfdl:discriminator

message String or DFDL Expression

Defines text to be used as a diagnostic code or for use in an error message, when the
discriminator is unsuccessful.

The DFDL Expression must return type xs:string. Any element referred to by the message
expression must have already been processed or must be a descendent of this element.
There is special treatment for errors that occur while evaluating the message expression.
See below for details.

Annotation: dfdl:discriminator

Table 8 d

The messhge specified by the message property is issued only if the discriminator is unsuccessful, that s At
test exprepsion evaluates to false or the test pattern returns a zero-length match. If so, and the message
property i3 an expression, the message expression is evaluated at that time.

If a Proce
Recovera

Esing Error or Schema Definition Error occurs while evaluating the message expression,a
ble Error is issued to record this error (containing implementation-dependent content),’then

e

processing of the discriminator continues as if there were no problem, but in the case of failute using an
implementation-dependent substitute message.
Examples|of dfdl:discriminator annotations:
<Xs: sequ bnce>
<xs:chpice>
<xs:glement name='branchSimple' >

<x

</
</xs

<xs:
<x

</
<x

</

</xs

<xs:
<x

</

<x

</
</xs
</xs:c

E:annotation>

xs:appinfo source="http://www.ogf.org/dfdl/">
<dfdl:discriminator test='{. eq "a"}' />
/xs:appinfo>

ks:annotation>

element>

blement name='branchComplex' >
5 :annotation>
xs:appinfo source="http://www.ogf.org/dfdl/">
<dfdl:discriminator test='{./identifier eq "b"}' />
/xs:appinfo>
ks:annotation>
E:complexType >
<xs:sequence>
<xs:element name='ideatifier' />
</xs:sequence>
ks:complexType>
element>

Element name="BranchNestedComplex' >

5 :annotatiof>

ks:appinfoysource="http://www.ogf.org/dfdl/">
<dfdlgd?scriminator test='{./Header/identifier eq "c"}'/>
/xsappinfo>

ks anfotation>

E {complexType >

—secren
<xs:element name='Header' />
<xs:complexType >
<xs:sequence>
<xs:element name='identifier' />

</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
xs:complexType>
relement>
hoice>

© ISO/IEC 2024 - All rights reserved

42

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

|</xs:sequence>

7.7 DFDL Variable Annotations

DFDL Variables provide a means for communication and parameterization within a DFDL schema. Use of

variables increases the modularity of a schema by enabling some parts of a schema to be paramete
that they are reusable.

There are 3 DFDL annotation elements associated with DFDL variables:

o dfdl:defineVariable - defines a variable and creates a global instance of it.
e dfdl:newVariablelnstance - creates a scoped instance of a variable.
o dfdl:setVariable - assigns the value of a variable instance, which can be global or scoped.

Variables are defined at the top-level of a schema and have a specific simple type.

rized so

A fistinction is made between the variable as defined, and an instance of the variable where a value
stored.

THe dfdl:defineVariable annotation defines the name, type, and optionally default value for the varial
like defining a class of variables, instances of which actually store values. The dfdl:defineVariable alj
introduces a single unique global instance of the variable. Additional instances may be allocated in g
faghion using dfdl:newVariablelnstance which causes new instances to come into existence upon en
scppe of a model group, and these instances go away on exit from the same.

DEDL variables only vary in the sense that different instances of the same variable can have differen
A single instance of a variable only ever takes on a single value. Each varigble instance is a single-
asisignment location for a value®. Once a variable instance's value has been fead, it can never be as|
adain. If it has not yet been assigned, and its default value has not been read, then a variable instan
aspigned once using dfdl:setVariable.

V4driables are used by referencing them in DFDL expressions by{refixing their QNames with '$'".

can be

le. Itis

50
stack-like
try to the

t values.

signed
Ce can be

More information about variables and how they work operationally is in Section 18.2 Variables. The femaining

sub-sections of this section focus only on the variable-related DFDL annotations and their syntax.
7.1.1 dfdl:defineVariable Annotation Element

A global variable is introduced using dfdl:defineVariable:

<dfdl:defineVariable
name = NCName
type? = OName

defaultvValue? = logical valué_or dfdl expression
external? = 'false' | 'trdel)>
!-— Contains: logical value or dfdl expression (default value) -->

</[dfdl:defineVariable>

THe name of a newly defined yariable is placed into the target namespace of the schema containing
annotation. Variable namescare’distinct from format and escape scheme names and so cannot confl
thém. A variable can hayve any type from the DFDL subset of XML schema simple types. If no type i
specified, the type is xs:string.

THe defaultValue is‘eptional. This is a literal value or an expression which evaluates to a constant, a
be specified as anattribute or as the element value. If specified, the default value must match the ty,
variable (otherwise it is a Schema Definition Error). If the defaultValue is given by an expression that
expressiondnust not contain any relative path (otherwise it is a Schema Definition Error).

Ngte that the syntax supports both a defaultValue attribute and the default value being specified by t
elgment value. Only one or the other may be present (otherwise it is a Schema Definition Error). To

the
ct with

D
hd it can

be of the

he
set the

degfadlt value to "" (empty string), the defaultValue attribute syntax must be used, or the expression {

"} must

be used as the element value.

Note also that the value of the name attribute is an NCName (non-colon name - that is, may not have a
prefix). The name of a variable is defined in the target namespace of the schema containing the definition. If

multiple dfdl:defineVariable definitions have the same 'name’ attribute in the same namespace then i
Schema Definition Error.

tisa

9 The rationale for single-assignment variables is to keep DFDL schemas declarative by preventing variables from being

used as algorithmic accumulators. See the Appendix B: Rationale for Single-Assignment Variables.

© ISO/IEC 2024 - All rights reserved

43

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

A default instance of the variable is automatically created (with global scope) at the start of a DFDL parse or
unparse. Additional instances of a variable can be created with the scope of other schema components. See
Section 7.7.2_The dfdl:newVariableInstance Statement Annotation Element.

The external property is optional. If not specified it takes the default value 'false’. If true, the value may be
provided by the DFDL processor and this external value is used as the global default value overriding any
defaultValue specified on the dfdl:defineVariable annotation. The mechanism by which the processor provides
this value is implementation-defined.

A variable instance gets its value either from the default value provided in the dfdl:defineVariable definition,
from an external binding of the variable if the definition has the external attribute, from a dfdl:setVariable
statement (See Section 7.7.3, The dfdl:setVariable Statement Annotation Element), or from the default value
of a dfdl:newVariablelnstance statement (See Section 7.7.2_The dfdl:newVariablelnstance Statement
Annotatiop-Eementy

There is np required order between dfdl:defineVariable and other schema level defining annotations or a
dfdl:format annotation that may refer to the variable.

A default\falue expression MUST be evaluated before processing of the data stream begins.

A defaultfalue expression can refer to other variables but not to the Infoset (so no path locatioris).When a
defaultValue expression references other variables, the referenced variables each must either’have a
defaultValue or be external. It is a Schema Definition Error otherwise.

If a defaultValue expression references another variable then the single-assignment natare of variables
prevents the referenced variable's value from ever changing, that is, it is consideredto.be a read of the
variable's value, and once read, a variable's value cannot be changed.

If a defaulfValue expression references another variable and this causes a circular reference, it is a Schema
Definition Error.

Itis a Schpma Definition Error if the type of the variable is a user-defined.simple type restriction.

7.7.1.1 Examples

<dfdl:dgefineVariable name="EDIFACT DS" type="xs:string"
defaultvalue="," />

<dfdl:defineVariable name="codepage" type="xs:gkring"
external="true">utf-8</dfidl:defineVariable>

7.7.1.2 Predefined Variables

The followling variables are predefined, and theirnames are in the DFDL namespace
(http://wwyv.ogf.org/dfdl/dfdl-1.0/)

Name Type Default value | External
dfdl:encqding xs:string | 'UTF-8' true
dfdl:bytePrder xs:string~[~'bigEndian’ true
dfdl:binafyFloatRep | xs:string | 'ieee' true
dfdl:outpptNewLine {.Xs:string | '%LF;' true

Table 9 Pre-defined‘variables

These vanjables‘are expected to be commonly set externally so are predefined for convenience. Below the
DFDL engoding property is being set to the value of a DFDL expression (between "{" and "}"), and that
expression just returns the value of the dfdl:encoding variable which is being referenced as $dfdl:encoding
below.

<xs:element name="title" type="xs:string">
<xs:annotation>
<xs:appinfo source="http://www.ogf.org/dfdl/">
<dfdl:element encoding="{$dfdl:encoding}" />
</xs:appinfo>
</xs:annotation>
</xs:element>

7.7.2 The dfdl:newVariablelnstance Statement Annotation Element

Scoped instances of defined variables are created using dfdl:newVariablelnstance:

© ISO/IEC 2024 - All rights reserved

44

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

<dfdl:newVariableInstance

ref = QName
defaultValue? = logical value or dfdl expression >
<!-- Contains: logical value or dfdl expression (value) -->

</dfdl:newVariableInstance>

All instances share the same name, type, and default value if provided, but they have distinct storage for
separate values using a stack-like mechanism where a new instance is introduced for a model group. These
new instances are associated with a schema component using dfdl:newVariableInstance. These instances
have the lifetime of the schema component. While that schema component is being parsed/unparsed, the new
variable instance is used and other scoped variable instances for the same variable are not available.

Since an initial global instance is created when the variable is defined, the use of dfdl:newVariablelnstance is
optional.

THe dfdl:newVariableInstance annotation can be used on a group reference, sequence or choice.only. It is a
Sdghema Definition Error otherwise.

THe lifetime of the instance of a variable is the dynamic scope of the schema component and its confent
model and so is inherited by any contained constructs or construct references.

THe ref property is a QName. That is, it may be qualified with a namespace prefix.

An optional defaultValue for the instance may be specified. It can be specified as an attribute or as the
elgment value. The expression must not contain forward references to elements which have not yet peen
processed nor to the current component. If specified the default value must match the type of the vatiable as
specified by dfdl:defineVariable. If the instance is not assigned a new default.value then it inherits the¢ default
value specified by dfdl:defineVariable or externally provided by the DFDL\processor. If a default valug is not
specified (and has not been specified by dfdl:defineVariable) then thewalue of this instance is undefined until
explicitly set (using dfdl:setVariable).

If & default value is specified this initial value of the instance is.created when the instance is created | The
vaJue overrides any (global) default value which was specified.by dfdl:defineVariable or which was pfovided
externally to the DFDL processor. A variable instance withta.valid value (specified or default) can be
referenced anywhere within the scope of the element ongwhich the instance was created.

Ngte that the syntax supports both a defaultValue attribute and the default value being specified by the
annotation element value. Only one or the other may'be present. (Schema definition error otherwise))

T set the default value to "" (empty string), the-defaultValue attribute syntax must be used, or the expression
{"I' } must be used as the element value.

THe resolved set of annotations for a component may contain multiple dfdl:newVariablelnstance statements.
THey must all be for unique variables:-itis a Schema Definition Error otherwise. The order of executipn is
specified in Section 9.5 Evaluation Order for Statement Annotations.

THere is no short form syntax for.creating variable instances.

7.71.21 Examples

<dfdl:newVariableImstance ref="EDIFACT DS" defaultValue=",6"/>

<dfdl:newVariabdednstance ref="lengthUnitBits">
{ if (../Mdw/fmtCode eq "bits") then 1 else 8 }
</ldfdl:newVaslableInstance>

7.71.3 Thedfdl:setVariable Statement Annotation Element

Vgriable\instances get their values either by default, by external definition, or by subsequent assignment using
th13 dfdl:setVariable statement annotation.

<dfdl:setVariable
ref = QName
value? = logical value or dfdl expression >
<!-- Contains: logical value or dfdl expression (value) -->
</dfdl:setVariable>

The dfdl:setVariable annotation can be used on a simple type, group reference, sequence or choice. It may be
used on an element or element reference only if the element is of simple type. It is a Schema Definition Error if
dfdl:setVariable appears on an element of complex type, or an element reference to an element of complex

type.
The ref property is a QName. That is, it may be qualified with a namespace prefix.

© ISO/IEC 2024 - All rights reserved

45

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

The syntax supports both a value attribute and the 'value' being specified by the element value. Only one or
the other may be present (otherwise it is a Schema Definition Error). To set the value to " (empty string), the
value attribute syntax must be used, or the expression { " } must be used as the element value.

The value must match the type of the variable as specified by dfdl:defineVariable.

A dfdl:setVariable value expression may refer to the value of this element using a relative path value ".". Use
of relative path expressions is recommended wherever possible as this allows the behavior of the parser to be
more effectively scoped. However, this practice is not enforced and there may be situations in which use of an
absolute path is in fact necessary.

The expression must not contain forward references to elements which have not yet been processed.

In normal processing, the value of an instance can only be set once using dfdl:setVariable. Attempting to set
the value of the variable instance for a second time is a Schema Definition Error. In addition, if a reference to
the variable's value has already occurred and returned a default or an externally supplied value, then no
assignment (even a first one) can occur. An exception to this behavior occurs whenever the DFDL procésso,
backtrack$ because it is processing multiple branches of a choice or as a result of speculative parsing.:n th
case the ariable state is also rewound. See Section 9 DFDL Processing Introduction.

A dfdl:setYariable overrides any default value specified on either dfdl:defineVariable or
dfdl:newVhriablelnstance, or externally.

The resolyed set of annotations for an annotation point may contain multiple dfdl:setVariable statements. They
must all bg for unique variables (different name and/or namespace) and it is a Schema‘BDefinition Error
otherwise| The order of execution is specified in Section 9.5 Evaluation Order for Statement Annotations.

There is np short form syntax for variable assignment.

[B

7.7.3.1 Examples

<xs:elemgnt name="ds" type="xs:string">
<xs:apnotation>< xs:appinfo source="http://www.ogf.org/idfdl/">
<dfdl:setVariable ref="EDI:EDIFACT DS" value="{.}" %>
<dfdl:setVariable ref="delimiter"> {.} </dfdl:setVariable>
</xs:pppinfo></xs:annotation>
</xs:elepent>

In the abolve example, the element named "ds" contains the'string to be used as the EDI.EDIFACT_DS
delimiter gt other places in the data, so the above definés the value of the EDI:EDIFACT_DS variable to take
on the vallie of this element. The variable delimiter (io)the default namespace) is also being assigned the
same valye using other syntax.

© ISO/IEC 2024 - All rights reserved

46

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

8 Property Scoping and DFDL Schema Checking
8.1 Property Scoping
8.1.1 Property Scoping Rules

This section describes the rules that govern the scope over which DFDL representation properties apply

The scope of the representational properties on each of the component format annotations is given in Table
10 DFDL annotation scoping

Annotation Point | Property Scope

Schema dfdl:format representation properties apply /exically as default properties over all
eclaration components in the schema

Hlement dfdl:element properties apply locally

declaration

Hlement reference | dfdl:element properties apply locally

Simple type dfdl:simpleType properties apply locally

definition

Sequence dfdl:sequence properties apply locally

Choice dfdl:choice properties apply locally

Group reference dfdl:group properties apply locally

Tdble 10 DFDL annotation scoping

Nate: This table lists DFDL annotations on schema components) BFDL annotations can also be pladed on
other DFDL annotations, such as a dfdl:format within a dfdl:.defineFormat, to provide a named reusable format
definition. In this case the annotation applies only where the.named format is referenced.

DEDL representation properties explicitly defined on annotations, other than a dfdl:format on an xs:sghema
declaration, apply locally to that component only. The explicitly defined properties are the combinatign of any
defined locally on the annotation and any defined on‘the dfdl:defineFormat annotation referenced by|a local
dfdl:ref property. When a property is defined bottlocally and on the dfdl:defineFormat, the locally defined
property takes precedence.

THe dfdl:format annotation on the top level-xs:schema declaration provides defaults for the DFDL
representation properties at every DEBL*annotatable component contained in the schema document. They do
nat apply to any components in any included or imported schema document (these may have their own
defaults).

8.1.2 Providing Defaults for\DFDL properties

A gfdl:format annotation on the top level xs:schema declaration may provide defaults for some or allthe DFDL
representation properties-at every annotation point within the schema document. The default properfies may
bg specified in attribute-or element form. (Short form is not allowed on the xs:schema element.)
THe dfdl:ref propetty is not a representation property so no default can be set.

THe dfdl:escapeSchemeRef property provides a default reference to a dfdl:defineEscapeScheme, th
properties of dfdl:escapeScheme are not defaulted individually.

DEDL representation properties defined explicitly on a component apply only to that component and|override
the default value of that property provided by a default format specified by an xs:schema dfdl:format
annotation.

The example below demonstrates the overriding of the encoding property. The value 'ASCI1' is the default
value for the title element, but then it is overridden by the locally defined ut £-8 value for the encoding
property, which takes precedence.

()

<xs:schema>
<xs:annotation>
<xs:appinfo source="http://www.ogf.org/dfdl/">
<dfdl:format encoding="ASCII" />
</xs:appinfo>
</xs:annotation>

© ISO/IEC 2024 - All rights reserved

47

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

<xs:element name="book">
<xs:complexType>
<xs:sequence>
<xs:element name="title" type="xs:string">

<xs:annotation>
<xs:appinfo source="http://www.ogf.org/dfdl/">
<dfdl:element encoding="utf-8" />
</xs:appinfo>
</xs:annotation>

</xs:element>
<xs:element name="pages" type="xs:int"/>
</xs:sequence>

</xs:

</xs:e

complexType>

cment

</xs:schgma>

8.1.3 Cpmbining DFDL Representation Properties from a dfdl:defineFormat

The DFDL

DFDL repfesentation properties defined locally on a construct as if they had been defined locally, If the sam

property is
The comb

xs:schema.

representation properties contained in a referenced dfdl:defineFormat are combined withyany

defined locally in and in the referenced dfdl:defineFormat then the local property takes preceden
ned set of explicit DFDL properties has precedence over any defaults set by a dfdl:format on the

D

re.

<xs:sche

a>

<xs:anpotation>
<xs:pppinfo source="http://www.ogf.org/dfdl/">
<dfdl:defineFormat name='myFormat'>

dfdl:format encoding="ASCII" />

</ffdl:defineFormat>

</xs

appinfo>

</xs:ahnotation>

<xs:elgment name="book">
<xs:fomplexType>

<xg

:sequence>

xs:element name="title" type="xs:string,>

<xs:annotation>
<xs:appinfo source="http://www.0gf.org/dfdl/">

<dfdl:element ref='myFormat' éncoding="UTF-8" />

</xs:appinfo>

</xs:annotation>

/xs:element>

xs:element name="pages"_ type="xs:int"/>

</ks:sequence>

</xs

complexType>

</xs:element>
</xs:schema>

The example above demonstrates the overriding of an encoding property. The 'ASCII' format encoding from
the 'myFofmat' is overridden by the UTF-8 format encoding, which as a locally defined property takes

preceden

e.

8.1.4 Cpmbining. DFDL Properties from References

The DFDY properties from the following types of reference are combined using the rules below:
e AnXsielement and its referenced xs:simpleType restriction
e Anxs:element reference and its referenced global xs:element
¢ An xs:group reference and an xs:sequence or xs:choice in its referenced global xs:group
e An xs:simpleType restriction and its base xs:simpleType restriction

Rules

1. Create (a) an empty working set of "explicit" properties, and (b) an empty working set of "default"
properties.

2. Move to the innermost schema component in the chain of references.

3. Assembile its applicable "explicit" properties from its local dfdl:ref (if present) and its local properties (if
present), the latter overriding the former (that is, local wins over referenced).

© ISO/IEC 2024 - All rights reserved

48

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

4. Combine these with the current working set of "explicit" properties. It is a Schema Definition Error if

the same property appears twice. The result is a new working set of "explicit" properties.

5. Obtain applicable "default" properties from a dfdl:format annotation on the xs:schema that contains
the component (if such annotation is present). Combine these with the current working set of "default"
properties, the latter overriding the former (that is, inner wins). Result is a new working set of "default”

properties.

6. Move to the schema component that references the current component and repeat starting at step 3.

If there is no referencing component, carry out step 5 and then go to step 7.

7. Combine the resultant sets of properties. The "explicit" properties take priority, "defaults" only used
when no "explicit" property is present. It is a Schema Definition Error if a required property is in neither

the "explicit" nor the "default" working sets.

THe "Applicable" properties are all the DFDL properties that apply to that schema component. Forex
th¢ DFDL properties that apply to a particular xs:simpleType (as defined by Section 13).

ample, all

<x

</

</

s:simpleType name="newType'">

xs:annotation>
<xs:appinfo source="http://www.ogf.org/dfdl/">

<dfdl:simpleType alignment="16"/>

</xs:appinfo>

/xs:annotation>

xs:restriction base="xs:integer">
<xs:maxInclusive value="10"/>

/xs:restriction>

xs:simpleType>

s:element name="testElementl" type="newType">
xs:annotation>
<xs:appinfo source="http://www.ogf.org/dfdl/">
<dfdl:element representation="binary"/>
</xs:appinfo>
/xs:annotation>
xs:element>

TH

e locally defined dfdl:alignment property with value '16' from the xs:simpleType 'newType' is comb

the locally defined dfdl:representation property with value 'binary' and applied to element 'testElemer

ined with
t1',

<x

</

s:simpleType name="otherNewType">
xs:annotation>
<xs:appinfo source="http://wwwlogf.org/dfdl/">
<dfdl:simpleType alignment="64"/>
</xs:appinfo>
/xs:annotation>
xs:restriction base="fHhewType">
<xs:maxInclusive value="5"/>
/xs:restriction>
xs:simpleType>

s:simpleTypehante="newType">
xXs:annotatlon>
<xs:appinfo source="http://www.ogf.org/dfdl/">
<dfdl:simpleType representation='binary'/>
</xsS\appinfo>
/%6 :\énnotation>
Ks:restriction base="xs:int">

I ITonclucisz Mallaa="10m"

</

</xs:restriction>
xs:simpleType>

The locally defined dfdl:representation property with value 'binary' is combined with the locally defined
dfdl:alignment property with value '64' from the xs:simpleType restriction 'otherNewType'.

<x

s:sequence>
<xs:element ref="testElementl">
<xs:annotation>
<xs:appinfo source="http://www.ogf.org/dfdl/">
<dfdl:element binaryNumberRep ="binary"/>
</xs:appinfo>
</xs:annotation>

© ISO/IEC 2024 - All rights reserved

49

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

</xs:element>
</xs:sequence>

<xs:element name="testElementl" type="newType">
<xs:annotation>
<xs:appinfo source="http://www.ogf.org/dfdl/">
<dfdl:element representation="binary"/>
</xs:appinfo>
</xs:annotation>
</xs:element>

<xs:simpleType name="newType">
<xs:annotation>
<xs;:pp1'nw':r\ mnrr*c\:"‘hi-fp- oot Qrg dfdl /"
<dfdl:simpleType alignment="16"/>
</xstappinfo>
</xs:ahnotation>
<xs:reptriction base="xs:int">
<xs:maxInclusive value="10"/>
</xs:re¢striction>
</xs:simpleType>

The locally defined dfdl:alignment property with value '16' from the xs:simpleType 'newFype' is combined with
the locally|defined dfdl:representation property with value 'binary' and locally defined dfdi:zbinaryNumberRep
with a valde of 'binary’

<!-- SCHEMAl -->
<xs:schema targetNamespace="" xmlns:tnsl="http://tnsl">

<xs:anpotation>
<xs:pppinfo source="http://www.ogf.org/dfdl/">
<dfdl:format encoding="ASCII" byteOrder="littleEndian"
initiator="" terminator=""
sequenceKind="ordered" />
</xstappinfo>
</xs:ahnotation>

<xsd:ipport namespace="http://tns2" schemalkocation="SCHEMA2.xsd"/>

<xs:elgment name="book">
<xs:fomplexType>
<xp:group ref="tns2:ggrpl" dfdl:separator=","></xs:group>
</xsfcomplexType>
</xs:element>

</xs:schgma>

<!-- SCHEMAZ2 -->
<xs:schema targetNamespace="" xmlns:tns2="http://tns2">

<xs:anpotation>
<xs:pppinfo{sdurce="http://www.ogf.org/dfdl/">
<dfdl:format encoding="UTF-8" byteOrder="littleEndian"
initiator=""
sequenceKind="ordered" />

</xskapbinfo
</xs:annotation>

<xs:group name="ggrpl" >
<xs:sequence dfdl:separatorPosition="infix" >
<xs:element name="customer" type="xs:string"
dfdl:length="8" dfdl:lengthKind="explicit" />
</xs:sequence>
</xs:group>
</xs:schema>

The DFDL properties applied to the xs:sequence in xs:group "ggrp1" in SCHEMA2 when referenced from the
group reference in SCHEMA1 are

© ISO/IEC 2024 - All rights reserved

50

http://tns2/
https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

dfdl:separator "," from the group reference in SCHEMA1

dfdl:separatorPosition "infix" from the group declaration in SCHEMA2

dfdl:encoding "UTF-8", dfdl:initiator " from the default dfdl:format annotation in SCHEMA2
dfdl:terminator "™ from the default dfdl:format annotation in SCHEMA1

8.2 DFDL Schema Checking

When the DFDL schema itself contains an error, it implies that the DFDL processor cannot process data
because the DFDL schema is not meaningful. All conforming DFDL processors MUST detect all Schema
Definition Errors and MUST issue appropriate diagnostic messages. The behavior of a DFDL processor after
a Schema Definition Error is detected is out of scope for this specification. There is no centralized listing of the
Schema Definition Errors; they are defined throughout this specification.

When a Schema Definition Error can be detected statically, that is given only the schema, it is desirgble,
though not required by the DFDL 1.0 specification, that diagnostic messages SHOULD be issued) before any
dgta are processed. However, because some representation properties may obtain their values.fron the data,
nat all Schema Definition Errors can be detected without reference to data so some Schenga Definitipn Error
diagnostics MAY of necessity be issued once data is being processed.
THe expression language included within DFDL is strongly, statically type checkable~This means that type
chiecking of expressions MAY be performed statically, that is, without processing data; and implementations
are encouraged to perform this checking statically so that Static Type Errors (Schema Definition Errgrs having
to [do with type inconsistencies) can be detected before processing data.

8.2.1 Schema Component Constraint: Unique Particle Attribution

PoON-~

THe term patrticle is used in XSD to refer to a schema component that.€an have dimension (XSD minOccurs

and/or XSD maxOccurs) expressed on it. In DFDL only local element declarations and element references are
particles.
A PFDL processor MUST implement the Schema Component Constraint: Unique Particle Attribution|defined
in XML Schema Part 1: Structures [XSDLV1] that applies to.the DFDL schema subset.

Two elements overlap if

e They are both element declaration particles whose declarations have the same name and target
namespace.

A schema violates the unique attribution constraint if it contains two particles which overlap and whigh either
e are both in the particles of a choice group.
or

¢ either describes adjacent information items in an xs:sequence and the first has XSD minOcdurs less
than XSD maxOccurs.

8.2.2 Optional Checks and Warnings

e A DFDL processer, that only implements a DFDL parser does not have to perform Schema DQefinition
Error checkingfor-properties that are solely used when unparsing, though it is RECOMMENDPED that
it does so for_portability reasons.

e A DFDL processor that does not implement some optional DFDL language features does najt have to
check properties or annotations needed by those optional language features but MUST issug a
warning that an unrecognized property or annotation has been encountered.

e ADFDL processor MUST NOT check global element declarations nor type or group definitions as
they may legitimately be incomplete due to properties intended to be supplied based on scoping rules
and the context at the point of use. There are two exceptions to this, which MUST be checkegd:

+—Glebal-simple-type-definitions-that-aro-referenced-by-the-dfdiprefixengthFype-property
2. Global element declarations that are the document root.

Some situations suggest likely errors, but a DFDL processor cannot be certain. In these situations, a DFDL
processor MAY issue warnings to assist a DFDL schema author in identifying likely errors. An important case
of this is when the DFDL processor encounters a schema component and annotation where there are
explicitly properties that are not relevant to the component as defined. Depending on the specifics of the
component and property the DFDL processor MUST take certain actions. If the:
e Property is not applicable to the component's DFDL annotation.
o Schema Definition Error. Example is dfdl:lengthKind on xs:sequence.

However, for these situations, the DFDL processor MAY take certain actions:

© ISO/IEC 2024 - All rights reserved

51

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

e Property is not applicable because of simple type.

o Warning (optional). Example is dfdl:calendarPatternKind on xs:string.
e Property is not applicable because of another DFDL property setting.

o Warning (optional). Example is dfdl:binaryNumberRep when dfdl:representation is text.
e Invalid value for a property that is unused or ignored.

o Warning (optional). Example is dfdl:lengthKind is not ‘explicit’ but dfdl:length is an expression
and that expression contains invalid syntax.

© ISO/IEC 2024 - All rights reserved

52

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

9 DFDL Processing Introduction
A DFDL Parser is an application or code library that takes as input:

e A DFDL annotated XML schema

e A data stream
It uses the DFDL schema description to interpret the data stream and realize the DFDL Information Set. If
successful the data stream is said to be well-formed for the data format described by the DFDL Schema. The
information set can then be written out (for example it could be realized as an XML or JSON text string) or it
can be accessed by an application through an API (for example, a DOM-like tree could be created in memory
for access by applications).
Symmetrically, there is a notion of a DFDL Unparser. The unparser works from an instance of the DFDL

Information Set, a
representation formats.

different bodies of software. Conforming DFDL processors MAY implement only a parser, because the
unparser is an optional feature of DFDL.

Parser Overview

THe DFDL logical parser is a recursive-descent parser'® having guided, but petentially unbounded Idok ahead.
A PFDL parser reads a specification (the DFDL schema) and it recursively. walks down and up the sghema as
it processes the data. This is done in a manner consistent with the scoping.of properties and variablgs
described in Section 8 Property Scoping and DFDL Schema Checking

Prpperty Scoping
Prpperty Scoping RulesThe unbounded look ahead means that’there are situations where the parsef MUST

speculatively attempt to parse data where the occurrence ofa.Processing Error causes the parser tq suppress
the error, back out and make another attempt.

plementations of DFDL MAY provide control mechanisms for limiting the speculative search behayior of
DEDL parsers. The nature of these mechanisms is beyond the scope of the DFDL specification which defines
thg behavior of conforming parsers only on data that does not cause an implementation to reach sugh a
trol-mechanism limit. Any such control mechanisms MUST be documented by the implementatiop and are

THe logical parser recursively descends the-DFDL schema beginning with the global element that is the
dgcument root. This is specified for the.processor in an implementation-defined manner, see Section 20
ExXternal Control of the DFDL Processor. Depending on the kind of schema construct that is encountered and

thg data stream. These parsing-operations typically recognize and consume data from the stream and
copstruct values in the logical;model. For values of complex types and for arrays, these logical modsl values

arg¢ equivalent to that’of the speculative recursive-descent logical parser described in this specification.
plementationsyMUST distinguish the various kinds of errors (Schema Definition Error, Processing [Error,

et¢.) no matterwwhat time they are detected. Some implementations MAY not detect certain Schema|Definition
Erfors untildata are being parsed; however, they MUST still distinguish Schema Definition Errors frgm
bcessing Errors.

.17\ Points of Uncertainty

offt-oft Hy-ocedrs-when-therets-more-than-one-schemacomponern rat-might-be-appted based on
parsing up to the current point in the data stream.

Any one of the following constructs is a point of uncertainty:

e An xs:choice

10 A "top-down" parser built from a set of mutually-recursive procedures or a non-recursive equivalent where each such
procedure usually implements one of the productions of the grammar. Thus, the structure of the resulting program closely
mirrors that of the grammar it recognizes. See [RDP].

© ISO/IEC 2024 - All rights reserved

53

http://dictionary.reference.com/browse/parser
http://dictionary.reference.com/browse/mutually-recursive
http://dictionary.reference.com/browse/productions
http://dictionary.reference.com/browse/grammar
https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

e All xs:elements in an unordered xs:sequence (dfdl:sequenceKind'! is 'unordered')

e All xs:elements in an xs:sequence containing one or more dfdl:floating'? xs:elements
Any one of the following constructs is a potential point of uncertainty:

e An optional® xs:element

e An array xs:element.
Examples of potential points of uncertainty are in Section 9.3.3 Resolving Points of Uncertainty.
9.1.2 Processing Error

If a DFDL schema contains no Schema Definition Errors, then there is the additional possibility of a
Processing Error when processing data usmg a DFDL schema A Processmg Error occurs when parsmg if the
data does na
relative to[the schema. A Processing Error occurs when unparsmg when the incoming Infoset does not
conform t¢ the logical structure described by the schema.

Processinpg Errors interact with the schema'’s points of uncertainty. When a DFDL parser encounters a
Processing Error, then that error is said to be suppressed by a point of uncertainty if there is another schema
componert that can be selected by the parsing algorithm. The details of the DFDL parsing algorithm are
described|in Section 9.3.

Processing Errors MUST be able to be suppressed by a point of uncertainty. See Section 9.3.3.

Note that pinlike Processing Errors, Schema Definition Errors cannot be suppressed by.p0ints of uncertainty
when parging data. That is, a Schema Definition Error is fatal. It does not trigger search or backtracking to find
alternativg ways to parse the data.

9.1.3 Recoverable Error

This errorfjtype is used with the dfdl:assert annotation when parsing to permit the checking of physical forma
constraints without terminating a parse. For example, some formats have redundancy by having known
lengths, a well as delimiters. A Recoverable Error can be issued, using an assert to check a physical length
constraintfwhen property lengthKind is 'delimited'.

Recoverable Errors are independent of validation, and when resolving points of uncertainty, Recoverable
Errors arelignored.

9.2 DFPL Data Syntax Grammar

Data in a format describable via a DFDL schema obgéys the grammar given here. A given DFDL schema is
read by the DFDL processor to provide specific meaning to the terminals and decisions in this grammar.

The bits of the data are divided into two broad categories:
1. Content
2. Ffaming
The contept is the bits of data that are‘interpreted to compute a logical value.

Framing ig the term used to describé the delimiters, length fields, and other parts of the data stream which afe
present and may be necessaryo determine the length or position of the content of DFDL Infoset items.

Note that sometimes the framing is not strictly necessary for parsing, but adds useful redundancy to the dats
format, allpwing corrupt/data to be more robustly detected, and sometimes the framing adds human
readability to the data‘\format.

In the grammar tables below, the terminal symbols are shown in bold italic font.

Productjons

Document = SimpleElement | ComplexElement

SimpleElement = SimpleLiteralNilElementRep | SimpleEmptyElementRep |
SimpleNormalRep
SimpleEnclosedElement = SimpleElement | AbsentElementRep

" For dfdl:sequenceKind, see Section 14 Sequence Groups.
12 For dfdl:floating elements, see Section 14.4 Floating Elements.
13 For optional and array elements, see Section 16 Properties for Array Elements and Optional Elements.

© ISO/IEC 2024 - All rights reserved

54

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

ComplexElement = ComplexLiteralNilElementRep | ComplexNormalRep |
ComplexEmptyElementRep
ComplexEnclosedElement = ComplexElement | AbsentElementRep

EnclosedElement = SimpleEnclosedElement | ComplexEnclosedElement

AbsentElementRep = Absent

(ds)

impleEmptyElementRep = EmptyElementLeftFraming EmptyElementRightFraming
omplexEmptyElementRep = EmptyElementLeftFraming EmptyElementRightFraming

Q

m

mptyElementLeftFraming = LeadingAlignment EmptyElementinitiator PrefixLength
mptyElementRightFraming = EmptyElementTerminator TrailingAlignment

m

(ds)

impleLiteralNilElementRep = NilElementLeftFraming [NilLiteralCharacters |
NilElementLiteralContent] NilElementRightFraming

GomplexLiteralNilElementRep = NilElementLeftFraming NilLiteralValue

NilElementRightFraming

4

ilIElementLeftFraming = LeadingAlignment NilElementlnitiator PrefixLength
iIElementRightFraming = NilElementTerminator TrailingAlignment

4

NilElementLiteralContent = LeftPadding NilLitéralValue RightPadOrFill

impleNormalRep = LeftFraming Prefixtength SimpleContent RightFraming
omplexNormalRep = LeftFraming PrefixLength ComplexContent RightFraming

(ds)

o

—

eftFraming = LeadingAlignment Initiator
ightFraming = Terminator TrailingAlignment

wal

Ee

refixLength = SimipleContent | PrefixPrefixLength SimpleContent
refixPrefixLength/= SimpleContent

e

impleContent = LeftPadding [SimpleLogicalValue] RightPadOrFill
implekogicalValue = SimpleNormalValue | NilLogicalValue

(n_(n

Comptex€ontent=ComptexVatueEfermenttnused

ComplexValue = Sequence | Choice

Sequence = LeftFraming SequenceContent RightFraming
SequenceContent = [PrefixSeparator EnclosedContent [Separator EnclosedContent J*
PostfixSeparator |

Choice = LeftFraming ChoiceContent RightFraming
ChoiceContent = [EnclosedContent] ChoiceUnused

© ISO/IEC 2024 - All rights reserved

55

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

EnclosedContent = [EnclosedElement | Array | Sequence | Choice]
Array = [EnclosedElement [Separator EnclosedElement |* [Separator StopValue]]

StopValue = SimpleElement

LeadingAlignment = LeadingSkip AlignmentFill
TrailingAlignment = TrailingSkip
RightPadqOrFill = RightPadding | RightFill | RightPadding RightFill

Table 11 DFDL Grammar Productions

XML Schgma and DFDL properties are used to control constraints on the terminals of the above,grammar, gs
well as repetition (the ™" operator), and alternatives (the "|" operator). For a given set of XMk Schema and
DFDL properties, and prior data, any terminal may be allowed to be length zero, to contain specific data, or {o
contain a yariety of different admissible data.
Some definitions are needed to cover the range of representations that are possibleTin\the data stream for an
occurrence of an element. The representations are:

N{l Representation

Empty Representation

Normal Representation

Absent Representation

These additional concepts are also defined:

o Zgro- Length Representation

dfdl: emptyVaIueDeI|m|terPoI|cy15 and the occurrence's S|mpIeContent or ComplexContent region in the data
must be of length zero. (If non-conformant it is not a Processing Error and the representation is not empty).

LeadingAlignment, TrailingAlignment, PrefixLength regions may be present.

The empty representation is special in DFDL because when parsing it is used to determine when default
values are created in the Infoset. The empty representation can require initiators or terminators be present to
enable data formats which explicitly distinguish occurrences with empty string/hexBinary values from
occurrences that are missing or are absent. See Section 9.4 Element Defaults below about default values.

14 For dfdl:nilValueDelimiterPolicy, see Section 13.16_Properties for Nillable Elements.
15 For dfdl:emptyValueDelimiterPolicy, see Section 12.2 Properties for Specifying Delimiters.

© ISO/IEC 2024 - All rights reserved

56

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

Hence, the empty representation might not be zero-length. it may require specific non-zero-length syntax in
the data stream.

The empty representation is not possible for fixed-length elements with a non-zero length.

9.2.3 Normal Representation

An element occurrence has a normal representation if the occurrence does not have the nil representation or
the empty representation and it conforms to the grammar for SimpleNormalRep or ComplexNormalRep.

Note that it is possible for the normal representation to be of zero length, but this can only happen when zero-
length is not the nil nor empty representation, and the simple type is xs:string or xs:hexBinary. For all other
simple types, the normal representation cannot be zero length.

9.24 Absent Representation

Often.,it is possible to know the location where an element or group's representation would be in the fata
based on the delimiters of an enclosing group. (An example: if there are adjacent delimiters of ah)englosing
sequence.) When this location in the data, which is of zero length, cannot be a nil, empty, or normal
representation, then it is said to have absent representation, or "the representation is abseft!

re formally, an element occurrence has an absent representation if the occurrence does not havela nil or
pty or normal representation, and it conforms to the grammar for AbsentElementRep. Specifically, the
urrence's representation in the data stream must be of length zero. Consequently;’the Initiator, Terminator,
dingAlignment, TrailingAlignment, PrefixLength regions must not be present,

an example of an absent representation: during unparsing, if an optionalelement does not have an item in
theé Infoset then nothing is output. However, if a separator of an enclosingstructure is subsequently putput as
thé immediate next thing, then a subsequent parse of the element mayireturn a representation of lerjgth zero.
If fhis happens, and this zero-length representation does not conform to any of the nil representation|, the
empty representation, or the normal representation, then it is the.absent representation, and it behayes as if
th¢ element occurrence is 'missing’. (The term 'missing’ is definedvbelow.)

9.2.5 Zero-length Representation

>roo=

THe term zero-length representation is used to describe the situations where any of the above represgentations
tutn out to be of length zero due to specific combinatiens of data type and format properties:

e The nil representation can be a zero-length-representation if dfdl:nilValue is ‘%ES;’ or ‘%WSP*;
appearing on its own as a literal nil value-and there is no framing or framing is suppressed by
dfdl:nilValueDelimiterPolicy.

e The empty representation can be_a zero-length representation if there is no framing or framing is
suppressed by dfdl:emptyValueDelimiterPolicy.

e The normal representation canibe a zero-length representation if the type is xs:string or xs:hexBinary
and there is no framing.

o The absent representation always has a zero-length representation.

If the nil representation may bgzero-length, then the absent representation cannot occur because z¢ro-length
is |nterpreted as nil representation.

If the nil representation‘may not be zero length, but the empty representation is zero-length, then thg absent
representation cannaboccur because zero-length is interpreted as the empty representation.

If fhe nil and emptyrepresentations cannot be zero-length, but the normal representation may be zero length
theén the absentrepresentation cannot occur because zero length is interpreted as a normal representation.

If the nil representation may not be zero-length, the empty representation may not be zero-length, and the

ngrmal fepresentation may not be zero-length, then a zero-length representation is the absent repregentation,
or|"is-absent".
9.2 i

When parsing, an element occurrence is missing if it does not have nil, empty, or normal representations, or it
has the absent representation.

When parsing, the term missing really covers two situations. First, it subsumes absent representation.
Secondly it applies when an element does not have a representation at all in the data stream, that is, when
there are insufficient constructs in the data stream to determine the location of the representation of the
element; hence, none of the concepts above apply. This is made clearer in the examples below. If an element
occurrence is missing when parsing, no item is ever added to the Infoset.

When unparsing, an element occurrence is missing if there is no item in the Infoset. For a required element
occurrence, it is this condition that can trigger the creation of a default value in the augmented Infoset. See

ing

© ISO/IEC 2024 - All rights reserved

57

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

Section 9.4 Element Defaults below about default values. For an optional element occurrence, no item is ever
added to the augmented Infoset nor any representation ever output in the data stream.

9.2.7 Examples of Missing and Empty Representation

The following examples illustrate missing and empty representation.

<xs:sequence dfdl:separator="," dfdl:terminator="@"
dfdl:separatorSuppressionPolicy="trailingEmpty" ...>

<xs:element name="A" type="xs:string"
dfdl:lengthKind="delimited" />

<xs:element name="B" type="xs:string" minOccurs="0"
dfdl:lengthKind="delimited"/>

<xs:element name="C" type="xs:string" minOccurs="0"
dfdl:lengthKind="delimited"/>

</xs:segpence>

In data stream 'aaa, @' element B has the empty representation, and element C does not have a
representation so is missing.

<xs:sequence dfdl:separator=","
dfdl:separatorSuppressionPolicy="trailingEmpty"...>
<gs:element name="A" type="xs:string"
dfdl:lengthKind="delimited" dfdl:initiator="A:"
dfdl:emptyValueDelimiterPolicy=initiator"/>
<jfs:element name="B" type="xs:string" minOccurs="0"
dfdl:lengthKind="delimited" dfdl:initiator="B:"
dfdl:emptyValueDelimiterPolicy="initiator"/>
<gs:element name="C" type="xs:string" minOccurs="0"
dfdl:lengthKind="delimited" dfdl:initiators"C:»
dfdl:emptyValueDelimiterPolicy=initiator"/™
</xs:seqpence>

In data stream 'A:aaaa, C:cccc' element B does not have a representation at all, so is missing.

[

In data stream 'A:aaaa, B:, C:cccc' element B has the empty representation. The format definition require
element B to have its initiator in order to indicate the empty representation.

In the data stream 'A:aaaa, , C:cccc' element B has the.absent representation, because the processor is

able to tel| where element B would appear, but the syntaxthere does not contain the needed initiator delimit
hence, it does not satisfy any of nil, empty, or normalrepresentation. Since the processor knows its location
and the data stream there (between the two separators) is zero-length, it is the absent representation, and sp
is missing
9.2.8 Rpund Trip Ambiguities

The overlapping nature of the possible representations: normal, empty, nil, and absent, creates a number of}
ambiguitigs where taking an Infoset, Unparsing it, and reparsing it results in a second Infoset that is not the
same as the original. However, taking the second Infoset, unparsing it, and reparsing it, results in a third
Infoset which is the same as the\second.

When ungarsing, if a string Infoset item happens to contain a string that matches either one of the
dfdl:nilValpe list values orthe’default value, it is not given any special treatment. The string's characters are
output, or fif the value is(the’empty string, zero length content is output. (In both cases along with an initiator pr
terminator if applicable?) This creates an ambiguity where one can unparse an Infoset item which has membier
[nilled] trye, but whien reparsed produces an Infoset item which has member [nilled] false.
These ampiguities are natural and unavoidable. For example, if the dfdl:nilValue is the 3-character string "nil",
then encopntering the characters "nil" in the data stream results in an Infoset item with [nilled] true. If a
processorlufparsed-a-stringrfesetitemwith-ceontents-of-the-3-characters—rilthis-is-eutput-as-thelette
"nil", which on parse does not produce a string with the characters "nil", but rather an Infoset item with no data
value and member [nilled] true.

To avoid this issue, one can use validation, along with a pattern that prevents the string from matching any of
the nil values.

9%
o1

9.3 Parsing Algorithm

A DFDL parser proceeds by determining the existence of occurrences of schema components. It does this by
examining the data and the schema, to:

a) Establish representation
b) Resolve points of uncertainty

© ISO/IEC 2024 - All rights reserved

58

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

These two activities are defined below. They are mutually recursive in the expected way as a DFDL schema is
a recursive nest of schema components.

The parsing algorithm described here has many aspects which depend on the definitions of numerous DFDL
properties. The properties are defined in sections 10 and beyond.

Establishing the representation of an occurrence of a schema component and resolving points of uncertainty
involve the concepts of known-to-exist and known-not-to-exist.

9.3.1 Known-to-exist and Known-not-to-exist

9.3.1.1 Known-to-exist

An occurrence of a schema component is said to be known-to-exist when any of these positive determinations
hold:

1. There is a dfdl:discriminator'® applying to the component and its expression evaluates to true or
regular expression pattern matches.

2. The component is a direct child of an xs:sequence or xs:choice with dfdl:initiatedConitent'” 'es' and a
dfdl:initiator defined for the component is found.

3. The component is a direct child of an xs:choice with dfdl:choiceDispatchKey'® and'the result|of the
dfdl:choiceDispatchKey expression matches one of the dfdl:choiceBranchKey property valugs of the
child.

If pone of those hold because they are not applicable then the occurrence is stilkknown-to-exist if ALL of the
following hold, and no Processing Error occurs during their determination:

1. When there are dfdl:assert'® statements with failureType 'processingError' on the component, all their
expressions evaluate to true or their regular expression patterns match.

2. It has nil, empty, or normal representation.

3. When it has normal representation the content of the representation is convertible to the elefent type
without error.

Nate that Validation Errors or Recoverable Errors do not prevent determination that a component is known-to-
exjst.

9.3.1.2 Processing Error After Determining Known-to-exist

Ngte that it is possible for an occurrence of a schema component to be known-to-exist due to a positfive
digcrimination, but then subsequently a Proc€ssing Error occurs when evaluating a statement annotation such
as|a dfdl:assert or a dfdl:setVariable, or a\Processing Error occurs when determining the representation, orin
thg case of normal representation and-simple type, when converting that representation's content intp a value
of the type. This Processing Error does not change the fact that the schema component was determined to be
knpwn-to-exist. This is important in the discussion in Section 9.3.3, Resolving Points of Uncertainty helow.

9.3.1.3 Known-not-to-exist
Ar occurrence of a schema component is known-not-to-exist when any of these negative determinafions
halds:

1. There is a-dfdl:discriminator applying to the component and its expression evaluates to false or
regularexpression pattern fails to match, or a Processing Error occurs while processing the
dfdl:diseriminator.

2. Thecomponent is a direct child of an xs:sequence or xs:choice with dfdl:initiatedContent 'yeg' and an
initiator defined for the component is not found.

3.. “The component is a direct child of an xs:choice with dfdl:choiceDispatchKey and the result of the
choiceDispatchkey-expressiondoe A -cheoiceBranchkeypropery values

4. The component is an element of complex type, the model group of which is a sequence group, and
the sequence group is known not to exist.

16 DFDL discriminators are described in Section: 7.6 The dfdl:discriminator Statement Annotation Element.

7 For dfdl:initiator and dfdl:initiatedContent, see Section 12.2 Properties for Specifying Delimiters.

18 For dfdl:choiceDispatchKey and dfdl:choiceBranchKey, see Section 15.1.2 Resolving Choices via Direct Dispatch.
9 DFDL asserts are described in Section 7.5 The dfdl:assert Statement Annotation Element.

© ISO/IEC 2024 - All rights reserved

59

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

If none of those hold because they are not applicable, then a schema component is known-not-to-exist when
any of the following hold:
1. The occurrence is missing
2. There is a dfdl:assert with failureType 'processingError' on the component and its expression
evaluates to false or its regular expression pattern fails to match, or a Processing Error occurs while
processing the dfdl:assert.

3. A Processing Error occurs when parsing the component. Processing Errors include, but are not
limited to, inability to identify any of nil, empty, normal or absent representations, or failure to convert
a value to the built-in logical type.
Note that Validation Errors or Recoverable Errors do not cause a component to be known-not-to-exist.
Note: based aon the above when processing a sequence for which a separator is defined, the presence of a
match in the data for the separator is not sufficient to cause the parser to determine that an associated
componerjt is known-to-exist. See Section 14.2 Sequence Groups with Separators for details.

9.3.2 Establishing Representation

Unless an|element occurrence is known-not-to-exist, the parsing algorithm establishes if it has the\nil, empty
normal, orf absent representation.

The first sfep is to see if the SimpleContent or ComplexContent region is of length zero as-a first
approximgtion. This is dfdl:lengthKind dependent.

e e)plicit => length is zero (either fixed or from expression evaluation)

o prefixed => length given by the prefix is zero

plicit (simple) => length is zero?°

e implicit (complex) => not possible.

e de¢limited => length is zero (in scope delimiter is immediately_encountered)

3

e pattern => pattern returns zero length match
o endOfParent => already positioned at parent's end so lefAgth is zero

9.3.2.1 Pimple element

If the resujt is length zero as described above, the representation is then established by checking, in order,
for:

nif representation (if %ES; or %WSP*; on\its own is a literal nil value).
empty representation.
ngrmal representation (xs:string or'xs:hexBinary only)
4. absent representation (if none-of:the prior representations apply).
If the resujt is not length zero, the répresentation is then established by checking, in order, for:
1. ni| representation (as a literal nil value)
2. ni| representation (as‘a-ogical nil value)
3. ngrmal representation

ol

9.3.2.2 Lomplex-element

If the result is length zero as described above, the representation is then established by checking for:
e ni| representation (if %ES; is a literal nil value).?'

To establish-any other representations requires that the parser descends into the complex type for the

element, and returns successfully (that is, no unsuppressed Processing Error occurs). If the result is zero bits
consumed, the representation is then established by checking, in order, for:

1. empty representation.
2. absent representation (if none of the prior representations apply).

20 This is a corner case that only happens when type is xs:string or xs:hexBinary and the maxLength facet is 0. Such an
element can only be of length 0.

21 |t is a Schema Definition Error if a complex element has XSD nillable ‘true’ and dfdl:lengthKind ‘implicit’.

© ISO/IEC 2024 - All rights reserved

60

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

Otherwise the element has normal representation.

Note: The DFDL parser SHALL NOT recursively parse the schema components inside a complex element
when it has already established that the element occurrence is missing?2.

9.3.3 Resolving Points of Uncertainty

A point of uncertainty occurs when there is more than one schema component that might be applied at the
current point in the data stream. Points of uncertainty can be nested.

The parser resolves these points of uncertainty by way of a set of construct-specific rules given below along
with determining whether schema components are known-to-exist or known-not-to-exist. For some of these

constructs, whether there is an actual point of uncertainty depends on the representation of the constructs in
the data.

It is a Processing Error if none of the choice branches are known-to-exist. Direct-dispatch choiCe, resplution

dfdl:choiceBranchKey property values of one of the choice branches. It is a Processing Error if none|of the

Arl element in an unordered xs:sequence is always a point of uncertainty. It is resolved by parsing far the child
components of the sequence in schema definition order at each point in the data ‘stream where a conponent

can exist until the required number of occurrences of each child component is:knewn-to-exist or the sequence
is ferminated by delimiters or specified length.

Ar| element in a sequence with one or more floating elements is always a point of uncertainty. It is resolved by
parsing for the expected element at that point in the data stream. If the-expected element is known-rjot-to-exist
then an occurrence of each floating element is parsed in schema définition order.

When parsing an array or optional element, points of uncertainty,enly occur for certain values of
dfgil:occursCountKind?3, as follows:

dfdl:occursCountKind | Details of Point of Uncertainty

fixed No point of uncertainty (XSD*maxOccurs occurrences expected).

implicit A point of uncertainty gxists after XSD minOccurs occurrences are found and
until XSD maxOccurs-occurrences are found.

parsed A point of uncertainty exists for all occurrences

aexpression No point of.ungertainty (dfdl:occursCount?* values are expected)

stopValue No point ‘ofluncertainty (The stop value must always be present, even when XSD

minOccurs is 0).

Tgble 12: Points of Uncertainty and dfdl:occursCountKind

Ar optional element point ef uncertainty is resolved by parsing the element until it is either known-to{exist or
known-not-to-exist. Whether an optional element is an actual point of uncertainty depends on property
dfgl:occursCountKindyas described above.

Fdr an array element, the point of uncertainty is resolved for each occurrence separately by parsing fhe
oceurrence untikit is either known-to-exist or known-not-to-exist.

9.8.3.1 «_Nested Points of Uncertainty

A pointof uncertalnty can be resolved because a schema component has been determined to be knpwn-to-

] J pleting the
parsmg of that schema component this causes the next enclosmg schema component surroundlng this point
of uncertainty to be determined to be known-not-to exist.

For example, when parsing an element occurrence for an array with a variable number of occurrences, a
positive discrimination tells the parser that the currently-being-parsed occurrence is known-to-exist. If a

22 The rationale for this is that otherwise this could give rise to misleading error messages where the parser reported that
required child elements were missing required occurrences. (This is consistent with XML Schema validation, where if a
required element is missing, it gets reported as such, and there is nothing reported about its children).

23 Property dfdl:occursCountKind is defined in Section 16.1.
24 Property dfdl:occursCount is defined in Section 16.

© ISO/IEC 2024 - All rights reserved

61

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

subsequent Processing Error occurs while completing the parsing of this occurrence, then the entire array is
then known-not-to-exist.

Another example is a choice. If a discriminator resolves the choice point of uncertainty to the first of the
choice's alternatives, a subsequent Processing Error causes the entire choice construct to be determined to
be known-not-to-exist.

This causes the next enclosing point of uncertainty to try the next possible alternative, or if there isn't one,
causes an unsuppressed Processing Error.

The behavior of a DFDL processor on an unsuppressed Processing Error is not specified, but it is allowable
for implementations to abort further parsing. Any other behavior is implementation-defined.

A discriminator always resolves the nearest enclosing point of uncertainty that is unresolved. If more than one
discriminator is evaluated, the first resolves the nearest enclosing point of uncertainty, the second the next
nearest enclosing point of uncertainty, and so on.

9.4 Elgment Defaults

A DFDL pfocessor can create element defaults in the Infoset for both simple and complex elements., This
happens quite differently for parsing and unparsing as is explained in this section.

9.4.1 Definitions

9.4.1.1 Pefault Value

A simple glement has a default value if any of these are true:
1. The XSD default property exists. The default value is the XSD default property's value.
2. The XSD fixed?® property exists. The default value is the XSD fixed property's value.

3. The element has XSD nillable is 'true' and dfdl:useNilForDefault®8 js 'yes'. The corresponding Infoset
itgm has the [nilled] member true, and the [dataValue] memberbas no value.

9.4.1.2 Required/Optional Occurrence

An occurrgnce of an element with an index less than or equal to@XSD minOccurs is said to be a required
occurrence.

An occurrgnce of an element with an index greater than XSD minOccurs is said to be an optional occurrence
9.4.2 Element Defaults When Parsing

If empty rgpresentation is established when parsing,‘the possibility of applying an element default arises.
Essentially, if a required occurrence of an element'has empty representation, then an element default is
applied if present, though there are a couple(ofivariations on this rule. Remember that in order to have
established empty representation, the occurrence must be compliant with the dfdl:emptyValueDelimiterPolic
for the element, and for a complex element the parser must have descended into the type and returned with
no unsuppressed Processing Error,

The rules for applying element defaults are not dependent on dfdl:occursCountKind. However, if a required
occurrence does not produce anjitem in the Infoset after the rules have been applied, then whether it is a
Processing Error or a Validation Error (if validation is enabled) does depend on dfdl:occursCountKind (see
Section 16.1 dfdl:occursCountKind property).

The sectigns below indicate when an item is added to the Infoset, and whether it has a default or other value.
If there is ho Processing Error then regardless of whether an item is added to the Infoset or not, any side-
effects dug to dfdl:discriminator statements evaluating to true, or dfdl:setVariable statements, are retained.
Assuming|the‘empty representation has been established, there are three cases to consider:

e Simple element (not type xs:string or xs:hexBinary)
e Simple element (type xs:string or xs:hexBinary)
e Complex element

Each is described in a section below.

17

<

25 For the XSD fixed property see Section 5.3.7.
26 For dfdl:useNilForDefault see Section 13.16.

© ISO/IEC 2024 - All rights reserved

62

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

9.4.2.1 Simple element (not xs:string and not xs:hexBinary)
Required occurrence: If the element has a default value then an item is added to the Infoset using the default
value, otherwise nothing is added to the Infoset.

Optional occurrence: Nothing is added to the Infoset.

9.4.2.2 Simple element (xs:string or xs:hexBinary)

Required occurrence: If the element has a default value then an item is added to the Infoset using the default
value, otherwise an item is added to the Infoset using empty string (type xs:string) or empty hexBinary (type
xs:hexBinary) as the value.

Optional occurrence: if dfdl:emptyValueDelimiterPolicy is applicable and is not 'none'?”, then an item is added
to the Infoset using empty string (type xs:string) or empty hexBinary (type xs:hexBinary) as the value,
otherwise nothing is added to the Infoset.

Ngte: To prevent unwanted empty strings or empty hexBinary values from being added to the Infaset, use
X$D minLength >'0' and a dfdl:assert that uses the dfdl:checkConstraints()?® function, to raige a Prdcessing
Error.

9.4.2.3 Complex element
Regquired occurrence: An item is added to the Infoset.

Optional occurrence: if dfdl:emptyValueDelimiterPolicy is applicable and is not\henhe'?®, then an item|is added
to the Infoset, otherwise nothing is added to the Infoset.

Fgr both required and optional occurrences, the parser, by recursive deseent, may create the Infosef item and
a single child Infoset item. This can occur when:

1. the first child element of the complex type is a required simiple element, then an empty string (type
xs:string), empty hexBinary (type xs:hexBinary), or defaultvalue is alsoadded to the Infoset.

2. the first child element of the complex type is a required complex element, then an item is adgled to the
Infoset (which may itself have a child via (1))

9.4.24 Example: Complex Optional Empty Element Not Added to Infoset

Bglow is an example where an optional complex element with empty representation has nothing added to the
infoset. consider the following:

<gs:sequence dfdl:separator="|"> <!=g“sequence SO0 -->
...prior schema components ...
xs:element name="E1" minOccurs="0"
dfdl:lengthKind="delimited!
dfdl:occursCountKind="implicit">
<xs:complexType>
<xs:sequence dfdl:separator=";"> <!-- sequence S1 -->
<xs:element name="E2" type="xs:string" dfdl:lengthKind="delimited"/>
. other optipnal content ...
</xs:sequencé>
</xs:complexlype>
/xs:element®

</Iks:sequence>

Inthe abave there is a sequence SO with a separator that contains among other content an optional,| non-
nillable, ‘non-initiated, non-terminated element E1 of complex type. The content of the E1 type is a sequence
S1 with'a different separator and the first child is a required, non-initiated, non-terminated element ER of type

o =l } L6 allol el (R U P | U e VDAL DL [P HOURG-Y W |
XS.DLIIIIH. TS UTULICTIgUIMImUu UrouuT T diliu 2 15 UTTHTTITCU .

Now consider a data stream '...||..."' which has two adjacent SO separators, and where the parser has
successfully parsed the schema components prior to E1 within SO, which is what the "..." prior to the two
separators represents. That prior parse is delimited by the first SO "|" separator, and E1's representation
begins immediately after that first SO separator.

27 |If other than ‘none’, either an initiator, terminator or both must have been found in the data stream.
28 For dfdl:checkConstraints function see Section 18.5.3
2 |f other than ‘none’, either an initiator, terminator or both must have been found in the data stream.

© ISO/IEC 2024 - All rights reserved

63

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

The representation of E1 has zero length because of these two adjacent SO separators. On processing E1,
the parser establishes a point of uncertainty with the data stream positioned after the first SO separator. The
parserthen descends into E1's complex type to process E2. It scans for in-scope delimiters and immediately
encounters the second SO separator. E2 has the empty representation, so E1 is added to the Infoset along
with a value of empty string for E2. All other content of S1 is missing, so the parser returns from the descent
into E1 with this temporary Infoset (illustrated as XML):

<E1l>

<E2></E2>

</E1>

Upon this successful parse of E1, it is therefore known-to-exist. However, because the position in the data has
not changed, E1 therefore has the empty representation. Because E1 is empty and optional (it has XSD

minOccur:

‘JnvgndHﬁWanﬁyVQMnnnHmHnﬂNMﬁyHnnennfgppw,Hiennfaﬂdndfnfhn|nﬁmnt9nﬂfhn

temporary

9425
This exan

Infoset item for E1 containing E2 is discarded.

Fxample: Complex Optional Empty Element with Delimiters
ple is similar, but the E1 element has a few additional DFDL properties highlighted in_beld below:

<xs:sequ
...pri
<xs:el
dfdl
dfdl
dfdl
dfdl
dfdl
<xXs:

<x

</
</xs
</xs:e

</xs:seq

ence dfdl:separator="|"> <!-- sequence S0 -->

br schema components ...

pment name="E1" minOccurs="0"

initiator=" ("

terminator=")"

emptyValueDelimiterPolicy="both"

lengthKind="delimited"

occursCountKind="implicit">

ComplexType>

£ : sequence dfdl:separator=";"> <!-- sequence S1 -—->

xs:element name="E2" type="xs:string" dfdl:lengthKind="delimited"/>
. other optional content ...

kS : sequence>

complexType>

| ement>

hence>

This chan

are present in the data stream.

Consider

representation of E1 does not match the empty representation, because the initiator and terminator are not
the dfdl:emptyValueDelimiterRolicy requires. It also does not have the normal representation, again

present as

jes the definition of element E1 to have an-empty representation only if the initiator and terminator

nas the same data stream '. . . | | . . .\Where there are two adjacent SO separators. In this case the

as the initlator and terminator are not present. E1's representation is absent. Hence, nothing is added to the
infoset.
However, |if the data stream "...|()|)“is encountered, there are two SO separators, but between them there are
the initiatgr and terminator of glement E1. This satisfies the requirements for the empty representation, but if is
not zero lgngth. The recursive parse of E1's complex type constructs these elements (illustrated as XML):
<E1l>

<E2></E2>
</E1>
These elements-for E1 with E2 child would be added to the infoset.

9.4.3 E1ement Defaults When Unparsing
If an element s missing from the Infoset when unparsing, the possibIlity of applying an element default arises.

Essentially if a required occurrence of an element is missing, then an element default is applied if present, and
the resulting item is added to the augmented Infoset (See Section 9.7)

The rules for applying element defaults are not dependent on dfdl:occursCountKind. However if a required
occurrence does not produce an item in the augmented Infoset after the rules have been applied then whether

it is a Processing Error or a Validation Error (if enabled) is dependent on dfdl:occursCountKind (see Section

16.1 dfdl:occursCountKind property).

There are

two cases to consider.

© ISO/IEC 2024 - All rights reserved

64

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

9.4.3.1 Simple element

Required occurrence: If an element has a default value then an item is added to the augmented Infoset using
the default value, otherwise nothing is added.

Optional occurrence: Nothing is added to the augmented Infoset.

9.4.3.2 Complex element

Required occurrence: An item is added to the augmented Infoset as specified below.

Optional occurrence: Nothing is added to the augmented Infoset.

For a required occurrence, the unparser descends into the complex type:

For a sequence, each child element is examined in schema order and the rules for simple and complex
ments-applied-(recursive i C ibed above.

e branch.

no choice
h no

essing of
th¢ schema component itself (parsing or unparsing via its format annotations) is as defined in the ordered lists
below.

Fdr elements and element references:

1. dfdl:discriminator or dfdl:assert(s) with testKind 'pattern’(parsing only)

2. dfdl:element following property scoping rules, whichincludes establishing representation as described
in Section 9.3.2 and conversion to the element type for simple types

3. dfdl:setVariable(s) - in lexical order, innermost séhema component first

4. dfdl:discriminator or dfdl:assert(s) with testKind-expression' (parsing only)

FQgr sequences, choices and group references:

1. dfdl:discriminator or dfdl:assert(s) with testKind 'pattern' (parsing only)

2. dfdl:newVariablelnstance(s) - in lexical order, innermost schema component first
3. dfdl:setVariable(s) - in lexical order, innermost schema component first
4

dfdl:sequence or dfdl:choice'opr dfdl:group following property scoping rules and evaluating arly
property expressions (cotresponds to ComplexContent grammar region)

5. dfdl:discriminator or dfdl:assert(s) with testKind 'expression' (parsing only)

THe dfdl:setVariable annotations at any one annotation point of the schema are always executed in Iexical
orger. However, dfdl:setVariable annotations can also be found in different annotation points that arg
combined into the resolved set of annotations for one schema component. In this case, the order of §xecution
of the dfdl:setVariablestatements from any one annotation point remains lexical. The order of execution of the
dfdl:setVariable-annotations different annotation points follows the principle of innermost first, meaning that a
schema component that references another schema component has its dfdl:setVariable statements gxecuted
after those ©f the referenced schema component. For example, if an element reference and an elemgent
declaration both have dfdl:setVariable statements, then those on the element declaration execute bgfore
thgse/onithe element reference. Similarly, dfdl:setVariable statements on a base simple type executé before
th@se of a simple type derived from it. The dfdl:setVariable statements on a simple type execute befgre those
on an element having that simple type (whether that type is by reference, or when the simple typeis lexically
nested within the element declaration). The dfdl:setVariable statements on the sequence or choice within a
global group definition execute before those on a group reference.

The dfdl:newVariablelnstance annotations at any one annotation point of the schema are always executed in
lexical order. However, dfdl:newVariablelnstance annotations can also be found in different annotation points
that are combined into the resolved set of annotations for one schema component. In this case, the order of
execution of the dfdl:newVariablelnstance statements from any one annotation point remains lexical. The
order of execution of the dfdl:newVariablelnstance annotations different annotation points follows the principle
of innermost first, meaning that a schema component that contains or references another schema component
has its dfdl:newVariablelnstance statements executed after those of the contained or referenced schema
component. For example, if a group reference and the sequence or choice group of a group definition both

© ISO/IEC 2024 - All rights reserved

65

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

have dfdl:newVariablelnstance statements, then those on the global group definition execute before those on
the group reference.

9.5.1 Asserts and Discriminators with testKind 'expression’

Implementations are free to optimize by recognizing and executing discriminators or asserts with testKind
'expression' earlier so long as the resulting behavior is consistent with what results from the description above.
9.5.2 Discriminators with testKind 'expression’

When parsing, an attempt to evaluate a discriminator MUST be made even if preceding statements or the
parse of the schema component ended in a Processing Error.

This is because a discriminator's expression can evaluate to true thereby resolving a point of uncertainty even
if the complete parsing of the construct ultimately caused a Processing Error.

Such discfiminator evaluation has access to the DFDL Infoset of the attempted parse as it existed immediaté
before detecting the parse failure. Attempts to reference parts of the DFDL Infoset that do not exist are
Processinp Errors.

9.5.3 Elements and setVariable

124

y

The resolyed set of dfdl:setVariable statements for an element are executed after the parsingof'the element.
This contrpsts with the resolved set of dfdl:setVariable statements for a group which are executed before th
parsing of|the group. (Note that dfdl:setVariable for an element is only allowed on elements)of simple type p
Section 7.7.3.)

For elements, this implies that these variables are set after the evaluation of expressions corresponding to any
computed|DFDL properties for that element, and so the variables may not be referenced from expressions
that comppte these DFDL properties.

That is, if fn expression is used to provide the value of a property (such as.dfdl:terminator or dfdl:byteOrder],
the evalugtion of that property expression occurs before any dfdl:setVariable annotation from the resolved sgt
of annotafjons for that element are executed; hence, the expression.providing the value of the property may
not reference the variable. Schema authors can insert sequencesde_provide more precise control over wher
variables are set.

9.5.4 Copntrolling the Order of Statement Evaluation

(U

Schema guthors can insert xs:sequence constructs to control the timing of evaluation of statements more
precisely. [For example:

<xs:sequ¢nce dfdl:separator=",">

<xs:element ref="a" .../>
<xs:sgquence>

<xsfsequence>
<ks:annotation><xs:appinfo,source="http://www.ogf.org/dfdl/" >
<dfdl:assert test="4test expression}" />
<fxs:appinfo></xs:annotdtion>

</xp:sequence>

<xspelement ref="b"*)./>
</xs:pequence>

</xs:segpence>

In the abope, the assert test expression is evaluated after parsing element 'a’', and before parsing element "h".
The use of two nested interior sequences surrounding element 'b' in this manner ensures that the outermost
sequencels separator usage is not disrupted.

9.6 Validation
Logical validation checks are constraints expressed in XSD, and they apply to the logical values of the Infoset.

Hence, parsing MUST successfully construct the Infoset before validation checks can be performed. This
implies that DFDL Validation Errors cannot affect the parsing of data.

DFDL processors MAY provide both validating and non-validating behaviors on either or both of parse and
unparse. (A DFDL implementation could support validate on parse, but not support it on unparse and still be
considered conforming.)

Validation on unparsing takes place on the augmented Infoset that is created by the unparser as a side-effect
of creating the output data stream. Validation errors do not affect unparser behavior.

When resolving points of uncertainty (during parsing), Validation Errors are ignored.

© ISO/IEC 2024 - All rights reserved

66

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

The way a Validation Error is presented to the execution context of a DFDL processor is not specified by the
DFDL specification. The validity of an element is recorded in the DFDL Infoset, see Section 4 The DFDL
Information Set (Infoset).

The following DFDL schema constructs are allowed in DFDL and are checked if applicable when validating:
1. XSD pattern facet
2. XSD minLength, maxLength
3. XSD minlinclusive, minExclusive, maxInclusive, maxExclusive
4. XSD enumeration
5. XSD maxOccurs

Note that validation is distinct from the checking of DFDL assert or discriminator predicates. Both DFDL
asfFerts and discriminators are essential to parsing and are evaluated Irrespective of whether vanaation is
enabled or disabled.

THere is also a function dfdl:checkConstraints available in the DFDL Expression language. This-can pe used
to fexplicitly include checking of the XSD constructs as part of parsing a specific element. Such’checking is
part of parsing and does not create Validation Errors. See Section 18.5.3 DFDL Functions'for detailg.

9.7 Unparser Infoset Augmentation Algorithm

Ad unparsing progresses and fills in these defaultable and calculated elements these new item valugs
augment the Infoset, that is, make it bigger.

THe unparsing algorithm fills in default values for required elements that are-not present, and compuges
cajculated elements by use of the dfdl:outputValueCalc property (see Section 17 Calculated Value
Prpperties).

When unparsing, an element declaration and the Infoset are considéered as follows. An implementation MAY
use any technique consistent with this algorithm:

a) If the element declaration has a dfdl:outputValueCalc property, then the expression which|is the
dfdl:outputValueCalc property value is evaluated, and the resulting value becomes the value of the
element item in the augmented Infoset. Any, pre-existing value for the Infoset item is superseded by
this new value.

References to other augmented Infosetitems from within the dfdl:outputValueCalc expresgion
MUST obtain their values from the augmented Infoset directly (when the value is already present)
or by recursively using these methods (a) and (b) as needed.

b) If the element declaration hasno-corresponding value in the augmented Infoset, and the g¢lement
declaration is for a required occurrence, and it has a default value specified, then an elemgnt item
having the default value is created in the augmented Infoset.

c) If any Infoset item's value is requested recursively as a part of (a) above and (a) does notfapply,
and the corresponding'value is not present, and (b) does not apply then it is a Processing|Error.

Gipen this augmented Infoset; then if the element declaration has a corresponding Infoset item then that item

is converted to its representation according to its DFDL properties. If the element declaration is for a[required
oceurrence, and theré.s/no value in the augmented Infoset then it is a Processing Error.

© ISO/IEC 2024 - All rights reserved

67

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

10 Overview: Representation Properties and their Format Semantics

The next sections specify the set of DFDL v1.0 properties that may be used in DFDL annotations in DFDL
Schemas to describe data formats.

It is a Schema Definition Error when a DFDL schema does not contain a definition for a representation
property that is needed to interpret the data. For example, a DFDL schema containing any textual data must
provide a definition of the character set encoding property (dfdl:encoding) for that textual data, and if it is not
part of the format properties context for that data, then it is a Schema Definition Error.

Furthermore, no default values are provided for representation properties as built-in definitions by any DFDL
processor. This requires DFDL schemas to be explicit about the representation properties of the data they
describe and avoids any possibility of DFDL schemas that are meaningful for some DFDL processors but not
others.

The propgrties are organized as follows:

e Cpmmon to both Content and Framing (see 11)
Cpmmon Framing, Position, and Length (see 12)
Simple Type Content (see 13)

e Sequence Groups (see 14)
C
A

hoice Groups (see 15)

o ray elements and optional elements (see 16)

e Calculated Values (see 17)

Where pr@perties are specific to a physical representation, the property name thay choose to reflect this.
Where pr@perties are related to a specific logical type grouping (defined below), the property name may
choose tofreflect this.

A limited qumber of properties can take a DFDL expression which mustireturn a value of the proper type for
the propeifty. Those properties that take an expression explicitly stateih the description. Other properties do
not take ah expression.

The propgrty description defines which schema component that the property may be specified on. In addition
most DFDIL properties may be specified on a dfdl:format annotation.

© ISO/IEC 2024 - All rights reserved

68

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

11 Properties Common to both Content and Framing

Property Name Description

byteOrder Enum or DFDL Expression
Valid values 'bigEndian’, 'littleEndian’.

This property can be computed by way of an expression which returns the string
'‘bigEndian' or 'littleEndian’. The expression must not contain forward references to
elements which have not yet been processed.

Note that there is, intentionally, no such thing as 'native' endian®.
This property applies to all Number, Calendar (date and time), and Boolean types

withrepresentation-binary—Speeificalty—thatis-birary-integersbinary-booteans, all
packed decimals, binary floats, binary seconds and binary milliseconds.
This property is never used to establish the byte order for text /strings,\as’each

character set encoding involving multiple bytes of data per code unit specifigs its
byte order.

Annotation: dfdl:element, dfdl:simpleType

bitOrder Enum
Valid values 'mostSignificantBitFirst', 'leastSignificantBitFirst'".

The bits of a byte each have a place value or significance of 2", for n from O fo 7.
Hence, the byte value 255 = 27 + 26 + 25 + 24 + 234/22 + 21 + 20, A bit can aljvays be
unambiguously identified as the 2"-bit.

The bit order is the correspondence of a bit's numeric significance to the bit position
(1 to 8) within the byte.

Value 'mostSignificantBitFirst' means:
e The 27 bit is first, i.e., has bit'position 1.
¢ In general, the 2" bit has position 8 - n.

e The least significant bits of byte N are considered to be adjacent to the most
significant bits of\byte N+1.

Value 'leastSignificantBitFirst' means:
e The 2° bitis first, i.e., has bit position 1.
¢ In general, the 2" bit has position n + 1.

e The.most significant bits of byte N are considered to be adjacent to the least
significant bits of byte N+1.

This property applies to all content and framing since it determines which bits of a
byte occupy what bit positions. Content and framing are defined in terms of fegions
of the data stream, and these regions are defined in terms of the starting bit position
and ending bit position; hence, dfdl:bitOrder is relevant to determining the specific
bits of any grammar region (see Section 9.2 DFDL Data Syntax Grammar) when the
region's starting bit position or ending bit position are not on a byte boundary.

The bit order can only change on byte boundaries, and alignment of up to 7 pits is
skipped (parsing) or inserted (unparsing) to ensure byte-alignment whenever the bit
order changes.

Annotation: dfdl:element, dfdl:simpleType, dfdl:sequence, dfdl:choice, dfdl:gfoup

encoding Enum or DFDL Expression
Values are one of:

30 The concept of native-endian is avoided in DFDL since a DFDL schema containing such a property binding would not
contain a complete description of data, but rather an incomplete one which would behave differently based on
characteristics of the machine and implementation where the DFDL processor is executed. In DFDL this same behavior is
achieved through the use of explicit parameterization using DFDL variables to set dfdl:byteOrder. See Section 7.7.1.2
Predefined Variables.

© ISO/IEC 2024 - All rights reserved

69

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

IANA charset name®'

CCSID*

DFDL standard encoding name

Implementation-specific encoding name

This property can be computed by way of an expression which returns an
appropriate string value. The expression must not contain forward references to
elements which have not yet been processed.

Note that there is, deliberately, no concept of 'native' encoding®.

Conforming DFDL v1.0 processors MUST accept at least 'UTF-8', 'UTF-16', 'UTF-
16BE', 'UTF-16LE’, 'ASCII', and 'ISO-8859-1" as encoding names.

The encoding name "UTF-16" is equivalent to "UTF-16BE" and for processors that

implement UTF-32, the encoding name "UTF-32" is equivalent to "UTF-32BE".

Unlike most other properties with Enum values, encoding names are case-
insensitive, so for example 'utf-8', 'Utf-8', and 'UTF-8' are equivalent.

The encoding name 'UTF-8' is interpreted strictly and does not include variants such
as CESU-8.

DFDL standard encoding names are defined in Section 33 AppendixB: DFDL
Standard Encodings. When supported, a conforming DFDL impiementation MUST
implement them in a uniform manner so that they are portable'across all DFDL
implementations that implement them.

Additional implementation-defined encoding names MAY-\be provided only for
character set encodings for which there is no IANA name standard nor CCSID
standard nor DFDL standard encoding. These implémentation-defined encodings
MUST have "X-" as a prefix to their name, as they.are subject to being superseded
by IANA or DFDL standard encoding hames;

Annotation: dfdl:element, dfdl:simpleTypejdfdl:sequence, dfdl:choice, dfdl:group

utf1eWid

th

Enum
Valid values are 'fixed', 'variable'.

Applies only when encoding is 'UTF-16', 'UTF-16BE', UTF16-LE' or their CCSID
equivalents.

Specifies whether the encoding 'UTF-16' is treated as a fixed or variable width
encoding. 'UTF-16' cafrcontain characters which require two codepoints (called a
surrogate pair) to represent. When utf16Width is 'fixed'’, these surrogate code points
are treated as separate characters. When utf16Width is 'variable', then surrogate
pairs are conyerted into a single character on parsing, and such a character is split
into two charaeters on unparsing.

When utf16Width is 'variable', then on parsing an un-paired surrogate codepoint
causes-a decode error, which can be controlled via dfdl:encodingErrorPolicy
deseribed below.

Annotation: dfdl:element, dfdl:simpleType, dfdl:sequence, dfdl:choice, dfdl:group

ignoreC3

se

Enum
Valid values are 'yes', 'no'.

Whether mixed case data is accepted when matching delimiters and data values on
input.

This affects the behavior of matching for these properties: dfdl:initiator,
dfdl:terminator, dfdl:separator, dfdl:nilValue, dfdl:textStandardExponentRep,

3T]ANA is the Internet Assigned Names Authority. See [IANA]
82 CCSID stands for Coded Character Set ID, a decimal number syntax for a coded character set specifier. [CCSID]

33 The concept of native character encoding is avoided in DFDL since a DFDL schema containing such a property binding
would not contain a complete description of data, but rather an incomplete one which would behave differently based on
characteristics of the operating environment where the DFDL processor executes. In DFDL this same behavior is achieved
through the use of explicit parameterization using DFDL variables to set dfdl:encoding. See Section 7.7.1.2 Predefined

Variables.

© ISO/IEC 2024 - All rights reserved

70

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

dfdl:textStandardInfinityRep, dfdl:textStandardNaNRep, dfdl:textStandardZeroRep,
dfdl:textBooleanTrueRep, and dfdl:textBooleanFalseRep.

Property ignoreCase plays no part when comparing an element value with an XSD
enum facet, matching an element value to an XSD pattern facet, or comparing an
element value with the XSD fixed property. It is therefore not used by validation
(when validation is enabled), nor by the dfdl:checkConstraints function.

On unparsing always use the delimiters or value as specified.
Annotation: dfdl:element, dfdl:simpleType, dfdl:sequence, dfdl:choice, dfdl:group

encodingErrorPolicy | Enum
Valid values are 'error' or 'replace’'.
This property applies whenever didl.encoding is applicable.

This property provides control of how decoding and encoding errors are‘hanfled
when converting the data to text, or text to data. This includes converting when
scanning for delimiters, matching regular expression length or test{patterns,
matching textual data type representation patterns against the data, and of qourse
isolating the text content that becomes the value of an element(parsing) or
constructing the content from the value (unparsing).

When parsing, an error can occur when decoding charaeters from their encaded
form into the DFDL Infoset character set (ISO10646)..This can occur due to jnvalid
byte sequences, or not enough bytes found to make-up the full encoding of 3
character.

If 'replace’, then the Unicode replacement character (U+FFFD) is substituted for the
offending errors, one replacement charagter for any incorrect fragment of an
encoding.

If 'error' then a Processing Error occurs.

When unparsing, the errors that gan occur when encoding characters from
Unicode/ISO 10646 into the spécified encoding include when no mapping is |provided
by the encoding character sét specification and when there is not enough space to

output the entire encoding’of the character (e.g., need 2 bytes for a 2-byte character
codepoint, but only 1 byte remains in the available length.)

If 'replace' then encoding-specific replacement/substitution character is outpyt. It is a
Processing Error-if-ho such character is defined, and it is a Processing Error|if there

is any error when attempting to output the replacement (such as not enough{room for
the representation of the entire encoding of the replacement character).

If ‘error'sthen a Processing Error occurs.
See Section 11.2 Character Encoding and Decoding Errors for further details.
Annotation: dfdl:element, dfdl:simpleType, dfdl:sequence, dfdl:choice, dfdl:grtoup

Tgble 13 Properties-=Common to both Content and Framing

11.1 Unicode-Byte Order Mark (BOM)

DEDL does/mnot provide any special treatment of Unicode Byte-Order Marks. They are treated as a Unicode
ZWNBS eharacter.

11.2”Character Encoding and Decoding Errors

1. The data is broken - invalid bit/byte sequences are found which do not match the definition of a
character for the encoding.

2. Not enough data is found to make up the entire encoding of a character. That is, a fragment of a valid
encoding is found.

When unparsing, these are the errors that can occur when encoding characters from Unicode/ISO 10646 into
the specified encoding.

1. No mapping provided by the encoding specification.

2. Not enough room to output the entire encoding of the character (e.g., need 3 bytes for a character
encoding that uses 3-bytes for that character, but only 1 byte remains in the available length.

© ISO/IEC 2024 - All rights reserved

71

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

The subsections below describe how these errors are handled.
11.2.1 Property dfdl:encodingErrorPolicy

The property dfdl:encodingErrorPolicy has two possible values: 'error' and 'replace’.

11.2.1.1 dfdl:encodingErrorPolicy ‘error’

If 'error', then any error when decoding characters while parsing causes a Processing Error. For unparsing,
any error when encoding characters causes a Processing Error.

When parsing, it does not matter if this happens when scanning for delimiters, matching a regular expression,
matching a literal nil value, or constructing the value of a textual element.

There is one except|on When dde IengthUnlts is ‘bytes the not enough data decodlng error is |gnored and
the data npe
room' encpding error is |gnored and the left-over bytes are fllled with the dfdl fillByte.

Detection jof character set decoding errors is often implementation-dependent because DFDL
Implementations are free to optimize processing speed by skipping character decoding or encoding.whenever
possible. For example: when character set encodings are fixed-width, it is possible to determine lengths in
bytes or b|ts from the length in characters by multiplying the length value by the character widthy'without
having to flecode any characters.

When parsing, character decoding errors MUST be detected when

a) the decoding results in a character being placed into the DFDL Infoset
b) the decoding is necessary to identify a delimiter
c) the decoding is necessary to determine a match or non-match of a regularexpression in a dfdl:asseft
orl dfdl:discriminator with testKind="pattern’.
When ungarsing, character encoding errors MUST be detected when
d) an unmapped character appears in the Infoset value of an element.
In all othef cases, character set decoding and encoding errors MAY ‘ot be detected.

Implementations MAY pre-decode a limited number of characters for efficiency; however, such
implementation-dependent pre-decoding can cause parse errors to be detected in some implementations of
DFDL thaf are not detected by others.

Schema guthors are advised not to rely on decoding errors for backtracking to control the behavior of the
parser.

11.2.1.2 dfdl:encodingErrorPolicy 'replace’for'parsing

If 'replace]then any error when decoding characters results in the insertion of the Unicode Replacement
Character|(U+FFFD) as the replacementifor-that error.

It does nof matter if this error and replagement happens when scanning for delimiters, matching a regular
expressiof, matching a literal nil value, or constructing the value of a textual element.

There is ope exception. When dfdlllengthUnits is 'bytes', the 'not enough data' decoding error is ignored, no
replacemgnt character is created. The data making up the fragment character is skipped over. (It is filled wit
the dfdl:fillByte when unparsing.)

Note that the "." wildcard“in'regular expressions matches the Unicode Replacement Character, so ".*" and " {+"
regular expressions.can-potentially cause very large matches (up to the entire data stream) to occur when
data contgins errors\and dfdl:encodingErrorPolicy 'replace’. DFDL Schema authors are advised that bounde
length negated regular expressions can help in this case. E.g., "[MuFFFDJ]{0,50}" says to match any charact
(excludind the*‘Unicode Replacement Character), but only up to length 50.

It is also \ Arfh nnhnn {hrrl' {ha | |n|r\nr~|g Dan|nr\aman{ f‘hnrnnfar cah-appear |n nlrrl'o as-an nrrhnor\l r\h’:r’:r\l'ar
g SO-<Eepra& HappeatH oS t Hy-eraaetet

and this cannot be distinguished from the insertion of the Unicode Replacement Character due to a decodlng
error. This is likely to happen for data that is (a) initially parsed by a DFDL parser with
dfdl:encodingErrorPolicy 'replace’, and (b) which contains some decoding errors, but (c) is nevertheless
successfully parsed, (d) is written back out to a file or other data repository, and (e) is parsed again. The
written data has replaced data errors with the Unicode Replacement Character, and so if the data is parsed
again, it no longer produces errors, but instead contains the Unicode Replacement Character as a regular
character in the data.

If dfdl:lengthUnits is 'characters’, then a Unicode Replacement Character counts as contributing a single
character to the length.

=]

WL

© ISO/IEC 2024 - All rights reserved

72

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

If the data contains more than one adjacent decode error, then the specific number of Unicode Replacement
Characters that are inserted as the replacement of these errors is implementation- dependent. That is, some
implementations MAY view, for example, three consecutive erroneous bytes as three separate decode errors,
others MAY view them as a single or two decode errors. All implementations MUST, however, insert some
number of Unicode Replacement Characters, and then continue to decode characters following the erroneous
data.

The trimming of pad characters always happens after Unicode Replacement Characters have been inserted
into the data.

11.2.1.3 dfdl:encodingErrorPolicy 'replace' for unparsing

For unparsing, each encoding has a replacement/substitution character specified by the ICU. This character is
fttted-for-the i - vailable

bred. The

left-over bytes are filled with the dfdl:fillByte (they are skipped when parsing.)

THe definitions of these substitution characters can be conveniently found for many encodings in the
Caonverter Explorer (http://demo.icu-project.org/icu-bin/convexp).

CuU

Ar encoding error is a Processing Error if the encoding does not provide a substitution/replacement character
definition. (This would be rare but can occur if a DFDL implementation allows many encodings beyond the
minimum set.)

11.2.2 Unicode UTF-16 Decoding/Encoding Non-Errors
THe following specific situations involving encodings UTF-16, UTF-16LE, and UTF-16BE when dfdl:ytf16Width
"fixed", and they do not cause a decoding or encoding error.
e unpaired surrogate codepoint

e out-of-order surrogate codepoint pair

e surrogate codepoint pair is encountered

Injall these cases the code-point(s) becomes a character code in the DFDL Information Item for the $tring.
11[.2.3 Preserving Data Containing Decoding Errors

THere can be situations where data wants to be-preserved exactly even if it contains errors.

It is suggested that if a DFDL schema authorwants to preserve information containing data where the
encodings have these kinds of errors, thatthey model such data as xs:hexBinary, or as xs:string but{using an
encoding such as is0-8859-1 which preserves all bytes.

11.3 Byte Order and Bit Order

Byjte order and bit order are séparate concepts. However, of the possible combinations, only the follpwing are
allpwed:

1. ‘bigEndian’ with ‘mostSignificantBitFirst’

2. littleEndian-with ‘mostSignificantBitFirst’

3. ‘littleEndian) with ‘leastSignificantBitFirst’ 34

Other combinations MUST produce Schema Definition Errors.

11.4 dfdk:bitOrder Example

Cansider a structure of 4 logical elements. The total length is 16 bits.

Adstme the lengths here are measured in bits (dfdl:lengthUnits®® is 'bits'), and that these are binary |ntegers
(dfdl:representation is 'binary', dfdl:binaryNumberRep?® is 'binary'):

<element name="A" type="xs:int" dfdl:length="3"/> <!-- having value 3 -->
<element name="B" type="xs:int" dfdl:length="7"/> <!-- having value 9 -->
<element name="C" type="xs:int" dfdl:length="4"/> <!-- having value 5 -->
<element name="D" type="xs:int" dfdl:length="2"/> <!-- having value 1 -->

34 Used by data format MIL-STD-2045
35 For dfdl:lengthUnits, see Section 12.3 Properties for Specifying Lengths.
36 For dfdl:binaryNumberRep, see Section 13.7 Properties Specific to Number with Binary Representation.

© ISO/IEC 2024 - All rights reserved

73

http://demo.icu-project.org/icu-bin/convexp
https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

The abov

ISO/IEC 23415:2024(en)

e are colorized to highlight the corresponding bits in the data below.

In a format where dfdl:bitOrder is 'mostSignificantBitFirst":

01100010 01010101
AAABBBBB BBCCCCDD

Significance M L M L
Bit Position 12345678 12345678
Byte Position ----1--- ---- 2---

As presented here, the bits corresponding to each element appear left to right, and all bits for an individual
element are adjacent. Within the bits of an individual element the most significant bit is on the left, least
significant on the right, consistent with the way the bytes themselves are presented.

In contrast, in a format where dfdl:bitOrder is 'leastSignificantBitFirst':

Signific

Bit Posi
Byte Pos

01001011 01010100
BBBBBAAA DDCCCCBB

bnce M L M 1,
fion 87654321 87654321
ition - ——-1--- ———-) -

In the abope presentation note how the bits of the element 'B' do not appear adjacent to each’oether. The mo
significanf bits of byte N are adjacent to the least significant bits of byte N+1.

11.41 E

When working exclusively with data having dfdl:bitOrder 'leastSignificantBitFirst', it iS'useful to present data
with bytes|Right to Left. That is, with the bytes starting at byte 1 on the right and.increasing to the left.

xample Using Right-to-Left Display for 'leastSignificantBitFirst'

Signific
Bit Posi
Byte Pos

01010100 01001011
DDCCCCBB BBBBBAAA

bnce M L M 1,
fion 87654321 87654321
ition ———=-2-—-—— ———— 1-——

With this neorientation, the bits of the element 'B' are once again displayed adjacently. Within the bits of an

individual
the bytes
Often the

this Right{o-Left presentation style.
11.4.2 didl:bitOrder and Grammar Regions

When any] grammar region appears before (to'the'left of) or after (to the right of) another grammar region in
the grammar rules of Section 9.2, and the boundary between the two falls within a byte rather than on a byte
boundary,

In generall, the notion of before means accupying lower-numbered bit positions, and the bit positions are
numbered according to dfdl:bitOrder. Hence, when dfdl:bitOrder is 'mostSignificantBitFirst', grammar regiong
that are bgfore, occupy more-significant bits, and when dfdl:bitOrder is 'leastSignificantBitFirst', grammar

regions th

element the most significant bit is on the left, least sigtificant on the right, consistent with the way
hemselves are presented.

specification documents for data formats using deast-significant-bit-first bit order describe data usin

then the dfdl:bitOrder determines-which bits are occupied by the regions.

bt are before occupy-fess-significant bits.

g

© ISO/IEC 2024 - All rights reserved

74

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

12 Framing

Several properties are common across the various framing styles or are used to distinguish them. Generally,
these have to do with position and length for text, bit fields, or opaque data.

12.1 Aligned Data

Alignment properties control the leading alignment and trailing alignment regions. That is, the
LeadingAlignment and TrailingAlignment regions of the data syntax grammar (in Section 9.2).

When the alignment properties are applied to an array element, the properties are applied to each occurrence
of the element; that is, not only to the first occurrence.

The following properties are used to define alignment rules.

—Description
ame

Alignment Non-negative Integer or 'implicit’
A non-negative number that gives the alignment required for the beginning of the fitem. If
alignment is needed then the size of the AlignmentFill grammar regien is non-zero if the
item must be aligned to a boundary.

'implicit' specifies that the natural alignment for the representation type is used. Sge the
table of implicit alignments Table 15 Implicit Alignment in bits{for simple elements| The
'implicit’ alignment of a complex element is the alignment of\its model group. The [implicit'
alignment of a model group is always 1. If alignment is“implicit' then dfdl:alignmentUnits is
ignored.

For textual data, minimum alignment is mandated by the character-set encoding, and this
property must be 'implicit' or set to a multiple of the character-set's mandatory alignment.
See Section 12.1.2.

Annotation: dfdl:element, dfdl:simpleType)dfdl:sequence, dfdl:choice, dfdl:group

gdlignmentUnits | Enum

Valid values are 'bits' or 'bytes'
Scales the alignment so alignment can be specified in either units of bits or units pf bytes.
Only used when dfdl:alignment not 'implicit'

Annotation: dfdl:element, dfdl:simpleType, dfdl:sequence, dfdl:choice, dfdl:group

fillByte DFDL String Literal

A single byte spécified as a DFDL byte value entity or a single character. If a chafacter is
specified, it must be a single-byte character in the applicable encoding.

Used oncunparsing to fill empty space such as between two aligned elements.

Used(toyfill these regions specified in the grammar: RightFill, ElementUnused,
ChoiceUnused, LeadingSkip, AlignmentFill, and TrailingSkip.

Annotation: dfdl:element, dfdl:simpleType, dfdl:sequence, dfdl:choice, dfdl:group

¢adingSkip Non-negative Integer

A non-negative number of bytes or bits, depending on dfdl:alignmentUnits, to skig before
alignment is applied. Gives the size of the grammar region having the same namg.

Annotation: dfdl:element, dfdl:simpleType, dfdl:sequence, dfdl:choice, dfdl:group

t alhngSi\lp ?‘;UI =1 |cgativc illtcycl
A non-negative number of bytes or bits, depending on dfdl:alignmentUnits, to skip after
the element, but before considering the alignment of the next element. Gives the size of
the grammar region having the same name.

If dfdl:trailingSkip is specified when dfdl:lengthKind is 'delimited’ then a dfdl:terminator
must be specified.

Annotation: dfdl:element, dfdl:simpleType, dfdl:sequence, dfdl:choice, dfdl:group

Table 14 Aligned Data Properties

© ISO/IEC 2024 - All rights reserved

75

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

There are two properties which control the data alignment by controlling the length of the AlignmentFill
region

e alignment - an integer 1 or greater

e alignmentUnits - bits or bytes
An element's representation is aligned to N units if P is the first position in the representation and P mod N =
1. When parsing, the position of the first unit of the data stream is 1.
For example, if dfdl:alignment is 4, and dfdl:alignmentUnits is 'bytes’, then the element's representation must
begin at 1 or 1 plus a multiple of 4 bytes. Thatis, 1,5, 9, 13, 17 and so on.
The length of the AlignmentFill region is measured in bits. If alignmentUnits is 'bytes' then the processor
multiplies the allgnment value by 8 to get the bit ahgnment If the posmon in the data stream of the start of the

12.1.1 Implicit Alignment

When dfdl:alignment is 'implicit' the following alignment values are applied for each logical type:
Type Alignment
text binary
String E.ncodtng Specitic (usually 8 Not applicable
s i oxospons:Seo | 55
Double 64
Decimal|Integer, Packed binary: 8
nonNegdtivelnteger decimals: 8
Long, UrsignedLong binary: 64
Int, Unsigpnedlnt binary: 32
Short, UsignedShort binary: 16
Byte, UnpignedByte binary: 8
DateTime binarySeconds: 32,
binaryMilliseconds:64
Date binarySeconds: 32,
binaryMilliseconds:64
Time binarySeconds: 32,
binaryMilliseconds:64
Boolean 32
HexBinafy Not applicable 8
Table 15 Implicit:Alignment in bits
r\;(:te Thetabove table specifies the impIicit alignment in bits, but this does not imply that dfdl:alignmentUnitg
'bits' can f ' f f

and have their own rules for when they are appllcable

12.1.2 Mandatory Alignment for Textual Data

Textual Data — This term is used to describe data of type xs:string, data with dfdl:representation "text", as well
as data being matched to delimiters (parsing) or output as delimiters (unparsing), and data being matched to

regular expressions (parsing only - as in a dfdl:assert with testKind 'pattern’, or an element with
dfdl:lengthKind 'pattern’).

Textual data has mandatory alignment that is character-set-encoding dependent. That is, these mandates
come from the character set encoding specified by the dfdl:encoding property.

© ISO/IEC 2024 - All rights reserved

76

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

When processing textual data, it is a Schema Definition Error if the dfdl:alignment and dfdl:alignmentUnits
properties are used to specify alignment that is not a multiple of the encoding-specified mandatory alignment.

If the data is not aligned to the proper boundary for the encoding when textual data is processed, then bits are
skipped (parsing) or filled from dfdl:fillByte (unparsing) to achieve the mandatory alignment.

All required character set encodings in DFDL have 8-bit/1-byte alignment.
DFDL standard encodings specify their alignment. See Section 33 Appendix D: DFDL Standard Encodings.

Some implementations MAY include additional implementation-defined encodings which have other
alignments.

Note the 16-bit and 32-bit Unicode character set encodings UTF-16, UTF-16BE, UTF-16LE, UTF-32, UTF-
32BE, UTF-32LE, all have 8-bit/1-byte alignment.

124-3—Mandatory-Alignment-forPacked-Deeimal-Data

Pd4cked decimal data is data with dfdl:binaryNumberRep®’ values of 'packed', 'ibm4690Packed' 6t 'bed'. This
representation stores a decimal digit in a 4 bit nibble. These nibbles must have a multiple of 43bit alignment. It
is B Schema Definition Error otherwise.

124.1.4 Example: AlignmentFill

When dfdl:alignmentUnits is 'bits’, and the dfdl:alignment is not a multiple of 8, then the dfdl:bitOrder|property
affects the alignment by controlling which bits are skipped as part of the grammar. AlignmentFill regjon.

In [general, the AlignmentFill region is before the regions it is aligning, and within a byte, the meaning of
'before' is interpreted with respect to the dfdl:bitOrder.

When dfdl:bitOrder is 'mostSignificantBitFirst', then bits with more significarice are before bits with legs
significance, so the AlignmentFill region occupies the most significantbits of the byte.

When dfdl:bitOrder is 'leastSignificantBitFirst', then bits with less significance are before bits with more
significance, so the AlignmentFill region occupies the least signifiCant bits of the byte.

Cansider a structure of 2 logical elements. Assume the lengthiand alignment units are bits.
(dydl:lengthUnits="bits', dfdl:alignmentUnits='bits'), and that'the data is binary with twos-complement pinary
integers (dfdl:representation="binary', dfdl:binaryNumberRep="binary'), and assume the data is at the
beginning of the data stream.

<gllement name="A" type="xs:int" dfdl:lenghh="2" dfdl:alignment='8"/>
<!I-- having value 1 -->
<gllement name="B" type="xs:int" dfdl{length="4" dfdl:alignment='4"'/>
<!I-- having value 5 -->

THe above are colorized to highlight the:corresponding bits in the data below. The total length due td the
alipnment region appearing before element 'B' is 8 bits.

Inja format where dfdl:bitOrder is'mostSignificantBitFirst' the data can be visualized as:

01000101
AAxxBBBB
Sijgnificance M L
Bijt Position 123435%J8

Inthe above, the AlignmentFill region is marked with 'x' characters and contains all 0 bit values.
Infa format wheredfdl:bitOrder is 'leastSignificantBitFirst' the presentation is different:

01010001
BBBBxxAA
Sijgnif\¢cance M L
BiltgPosition 87654321

In The above the AlignmentFill region stll appears before element B', and In this case that IS In [ess
significant bits of the byte than the bits of content of element 'B', and these bits are displayed to the right of the
bits of element 'B'.

37 For dfdl:binaryNumberRep, see Section 13.7 Properties Specific to Number with Binary Representation.

© ISO/IEC 2024 - All rights reserved

77

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

12.2 Properties for Specifying Delimiters

The following properties apply to all objects that use text delimiters to delimit, that is, to initiate and/or
terminate data. Delimiters can apply to binary data; however, they are most often called 'text' delimiters
because the concept is much more commonly used for textual data formats.

When parsing, there can be multiple delimiter candidates to be matched against the data stream. The
matching is performed in a longest-match preferred manner. That is, each of the delimiter candidates is
matched against the data, taking the longest match possible for that candidate. Then across all the delimiter
candidates, the one with the longest match is the one that is selected as having been found. Once a matching
delimiter is found, no other matches are subsequently attempted (i.e., there is no backtracking to try shorter
matches.) Additional details on the matching of DFDL String Literals are given in Appendix C: Processing of
DFDL String literals.

Property Name Description

initiator List of DFDL String Literals or DFDL Expression

Specifies an ordered whitespace separated list of alterhative
DFDL String Literals one of which marks the beginning of the
element or group of elements.

This property can be computed by way of an,expression which
returns a string containing a whitespace separated list of DFDL
String Literals. The expression must not contain forward
references to elements which have net'yet been processed. It is
not permitted for an expression to return an empty string or a
string containing only whitespace;That is a Schema Definition
Error.

Each string literal in the listywhether apparent in the schema, o
returned as the value of\an expression, is restricted to allow onl
certain kinds of DFDL!SHring Literal syntax:

e DFDL character entities are allowed.

e DFDL Byte Value entities (%#rXX;) are allowed.

o DFDECharacter Classes NL, WSP, WSP+, WSP*, and
ES.are allowed.

¢ If'the ES entity or the WSP* entity appear alone as one
of the string literals in the list, then dfdl:initiatedContent
must be "no". This restriction ensures that when
dfdl:initiatedContent is 'yes' that the initiator cannot
match zero-length data.

If the above rules are not followed it is a Schema Definition
Error.

The Initiator region contains one of the initiator strings defined
by dfdl:initiator.

When parsing, once a matching initiator is found, no other
matches are subsequently attempted (i.e., there is no
backtracking).

When an initiator is specified, it is a Processing Error if the
component is required and one of the values is not found.

If dfdl:initiator is " (the empty string), that is the way a DFDL
Schema expresses a format which does not use initators.
Hence, the Initiator region is of length zero.

On unparsing the first initiator in the list is automatically inserted
into the Initiator region.

If dfdl:ignoreCase is 'yes' then the case of the string is ignored
by the parser.

Annotation: dfdl:element, dfdl:simpleType, dfdl:sequence,
dfdl:choice, dfdl:group

© ISO/IEC 2024 - All rights reserved

78

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

terminator List of DFDL String Literals or DFDL Expression

Specifies an ordered whitespace separated list of alternative text
strings that one of which marks the end of an element or group
of elements. The strings MUST be searched for in the longest
first order.

This property can be computed by way of an expression which
returns a string of whitespace separated list of values. The
expression must not contain forward references to elements
which have not yet been processed.

This property can be used to determine the length of an element
as described in Section 12.3.2 dfdl:lengthKind 'delimited'.

Each string literal in the list, whether apparent in the schiema, or
returned as the value of an expression, is restricted.to-allow only
certain kinds of DFDL String Literal syntax:

e DFDL character entities are allowed.
e DFDL Byte Value entities (%#rXX;). ar¢ allowed.

e DFDL Character Classes NL, WSP, WSP+, WSP*, and ES
are allowed.

¢ Neither the ES entity nor the"WSP* entity may appear on
their own as one of the string literals in the list when|the
parser is determining the‘length of a component by $canning
for delimiters.

If the above rules are not followed it is a Schema Definitlon
Error.

The Terminataorgrammar region contains one of the terminator
strings defined by dfdl:terminator.

If dfdl:terminator is " (the empty string), that is the way a DFDL
schema-expresses a format which does not use terminators.

Hence) the Terminator region is of length zero. It is not
permitted for an expression to return an empty string, that is a
Schema Definition Error.

When parsing, once a matching terminator is found, no ¢ther
matches are subsequently attempted (i.e., there is no
backtracking).

When a terminator is expected it is a Processing Error if|no
matching terminator is found. However, if
dfdl:documentFinalTerminatorCanBeMissing is specified then it
is not an error if the last terminator in the data stream is [not

found.

On unparsing the first terminator in the list is automaticajly
inserted in the Terminator region.

If dfdl:ignoreCase is 'yes' then the case of the string is ignored
by the parser.

Annotation: dfdl:element, dfdl:simpleType, dfdl:sequenc
dfdl:choice, dfdl:group

D

emptyValueDelimiterPolicy Enum
Valid values are 'none', 'initiator', 'terminator' or 'both’

Indicates that when an element in the data stream is empty,
which of initiator, terminator, both, or neither must be present.

Ignored if both dfdl:initiator and dfdl:terminator are " (empty
string).

'initiator' indicates that, on parsing, if the content region (which
can be either the SimpleContent region or the ComplexContent
region defined in Section 9.2) is empty then the dfdl:initiator

© ISO/IEC 2024 - All rights reserved

79

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

must be present. It also indicates that on unparsing when the
content region is empty that the dfdl:initiator is output.

'terminator' indicates that, on parsing, if the content region is
empty then the dfdl:terminator must be present. It also indicates
that on unparsing when the content region is empty the
dfdl:terminator is output.

'both' indicates that, on parsing, if the content region is empty
both the dfdl:initiator and dfdl:terminator must be present. On
unparsing when the content region is empty the dfdl:initiator
followed by the dfdl:terminator is output.

'none’ indicates that if the content region is empty neither the

afdrinitiator or drdl.terminator must be present. On unparsing
when the content region is empty nothing is output.

It is a Schema Definition Error if dfdl:emptyValueDelimiterPolicy,
set to 'none’ or 'terminator’ when the parent group has
dfdl:initiatedContent 'yes'.

This property plays an important role in establishing empty
representation. See 9.2.2 Empty Representation'for details.

This property is ignored if the element is fixgd-length and length
is not zero (as no empty representationris\possible).

The value of dfdl:emptyValueDelimiterPolicy MUST only be

checked if there is a dfdl:initiator or.dfdl:terminator in scope. If
so, and dfdl:emptyValueDelimiterPolicy is not set, it is a Schema
Definition Error.

If dfdl:initiator is not "" and dfdl:terminator is "" and
dfdl:emptyValueDelimiterPolicy is 'terminator' it is a Schema
Definition Error.

If dfdl:terminatoris.not " and dfdl:initiator is " and
dfdl:emptyValueDelimiterPolicy is 'initiator' it is a Schema
Definition Error.

It is not a~Schema Definition Error if
dfdl:emptyValueDelimiterPolicy is 'both' and one or both of
dfdliinitiator and dfdl:terminator is "". This is to accommodate th¢
common use of setting 'both' as a schema-wide setting.

It is a Schema Definition Error if dfdl:emptyValueDelimiterPolicy|
is in effect and is set to 'none’ or 'terminator' when the parent
xs:sequence has dfdl:initiatedContent 'yes'.

Annotation: dfdl:element, dfdl:simpleType

D

documer

tFinalTerminatorCanBeMissing

Enum
Valid values are 'yes', 'no'

When the dfdl:documentFinalTerminatorCanBeMissing property
is true, then when an element is the last element in the data
stream, then on parsing, it is not an error if the terminator is not
found, and the terminator is considered to be logically present
for the purposes of establishing representation, per Section

J.0.L.

For example, if the data are in a file, and the format specifies
lines terminated by the newline character (typically LF or CRLF),
then if the last line is missing its newline, then this would
normally be an error, but if
dfdl:documentFinalTerminatorCanBeMissing is true, then this is
not a Processing Error.

On unparsing the terminator is always written out regardless of
the state of this property.

Annotation: dfdl:format (but applies to elements only)

© ISO/IEC 2024 - All rights reserved

80

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

outputNewLine

DFDL String Literal or DFDL Expression

Specifies the character or characters that are used to re
the %NL; character class entity during unparse.

place

(The %NL; entity is defined in Section 6.3.1.3 DFDL Character

Class Entities in DFDL String Literals.)

It is a Schema Definition Error if any of the characters are not in
the set of characters allowed by the DFDL entity %NL; Only

individual characters or the %CR;%LF; combination are

allowed.

It is a Schema Definition Error if the DFDL entity %NL; is

specified

Thlo plupci"ly wari bc \.;unlputcd by vvay Uf arl CAVICDD;UI
returns a DFDL string literal. The expression must netie«
forward references to elements which have not yet been
processed.

Annotation: dfdl:element, dfdl:simpleType, dfdl:sequenc
dfdl:choice, dfdl:group

which
bntain

D

[0)

mptyElementParsePolicy

Enum
Valid values are "treatAsAbsent" ordtreatAsEmpty".

This property describes the behavior of the DFDL proce
occurrences of elements of any type that have the empt
representation.

When 'treatAsEmpty' if an occurrence of an element has
empty representation.when parsed, the behaviour is as
Section 9 for an ecéurrence with empty representation.

Consequently, default values or empty strings may be a
the Infoset.

When 'treatAsAbsent' if an occurrence of an element ha
empty.representation when parsed, the behaviour is as
Section 9 for an absent occurrence. Consequently, defa
values or empty strings are never added to the Infoset.

Annotation: dfdl:element, dfdl:simpleType

ssor for
y

the
stated in

dded to

5 the
stated in
Uit

Tgble 16 Properties for Specifying/Delimiters

(simple and complex).

12.3 Properties for Specifying Lengths
THese properties are used to determine the content length of an element and apply to elements of a

| types

Name

Rroperty Description

¢ngthKind Endm

Controls how the content length of the component is determined.
Valid values are: 'explicit', 'delimited', 'prefixed’, 'implicit', 'pattern’, 'endOfParent'

A full description of each enumeration is given in the subsections of this section beg
with Section 12.3.1.

nning

separator.

‘explicit' means the length of the element is given by the dfdl:length property.
'delimited' means the element length is determined by scanning for a terminator or

'prefixed’ means the length of the element is given by an immediately preceding
PrefixLength data region the format of which is specified using dfdl:prefixLengthType.

'implicit means the length is to be determined in terms of the type of the element and its
schema-specified properties if any.

'pattern' means the length of the element is given by scanning for a regular expression
specified using the dfdl:lengthPattern property.

© ISO/IEC 2024 - All rights reserved

81

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

'endOfParent’ means that the length extends to the end of the containing (parent) construct.
Annotation: dfdl:element, dfdl:simpleType

lengthUnits | Enum

Valid values 'bytes', 'characters’, and 'bits’.

Specifies the units to be used whenever a length is being used to extract or write data.
Applicable when dfdl:lengthKind is 'explicit', 'implicit' (for xs:string and xs:hexBinary) or
"prefixed'.

Usage is restricted as follows:

e 'characters' may only be used for complex elements and simple elements with text
representation.

o 'bits' may only be used for xs:boolean, xs:byte, xs:short, xs:int, xs:long,
xs:unsignedByte, xs:unsignedShort, xs:unsignedint, and xs:unsignedLong simple
types with binary representation, and for calendar (date and time) simple types-with
binary packed representation.

e 'bytes' must be used for type xs:hexBinary and for types xs:float and xs:double with
binary representation. 'bytes' may be used for any other type.

Annotation: dfdl:element, dfdl:simpleType

Table 17

12.3.1 didl:lengthKind ‘explicit’

Properties for Specifying Length

When dfdllengthKind is 'explicit' the length of the item is given by the dfdl:length property.
When the|value of the dfdl:length property is a constant, it is used both wheh parsing and unparsing.
When ungarsing an element with dfdl:lengthKind 'explicit' and where dfdl:leéngth is an expression, then the
data in thg Infoset is treated as fixed-length and the dfdl:length property, whether literal constant or
expressiol, is evaluated to provide the length to use.
When parging and dfdl:lengthKind is 'explicit', delimiter scanningsis turned off and in-scope delimiters are no
looked for|within or between elements.
Property Description
Name
length Non-negative Integer or DFDL Expression.
Only used when lengthKind s "explicit'.
Specifies the length of this element in units that are specified by the dfdl:lengthUnits
property.
This property can be cemputed by way of an expression which returns a non-negative
integer. The expression must not contain forward references to elements which have not yet
been processed.
Annotation:(dfdl:element, dfdl:simpleType
Table 18 The dfdl:length-Property
When dfdllengthKind'explicit’, the method of extracting data is described in Section: 12.3.7 Elements of
Specified Length

dl:lengthKind 'delimited’

stream for the delimiter.
The data stream is scanned for any of

the element's terminator (if specified)
an enclosing construct's separator or terminator
the end of an enclosing element designated by its known length

e the end of the data stream
dfdl:lengthKind 'delimited' may be specified for
e elements of simple type with text representation

© ISO/IEC 2024 - All rights reserved

82

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

e elements of number or calendar (date and time) simple type with dfdl:representation 'binary' that have
a packed decimal representation

e elements of type xs:hexBinary

¢ elements of complex type.

The rules for resolving ambiguity between delimiters are:
1. When two delimiters have a common prefix, the longest delimiter is tried first.
2. When two delimiters have the same length, but on different schema components, the innermost (most
deeply nested) delimiter is tried first.

3. When the separator and terminator on a group have the same value, then at a point in the data where
either the separator or terminator could be found, the separator is tried first. (Speculative execution
may try the terminator subsequently).

4. |If the length of the delimiters cannot be determined because character class entities of vatiaple length
are being used then the delimiters MUST each be matched against the data, and the longest
matching delimiter is taken as the match for the delimiter.

5. Ties (same matched length) are broken by giving a separator priority over a terminator of a gequence,
or by choosing the innermost, or first in schema order.
When unparsing a simple element with text representation, the length in the data stream is the length of the
content region, padded to a minimum length if dfdl:textPadKind is ‘padChar’. For Xsistring elements this length
is the XSD minLength facet value, for the other types it is dfdl:textOutputMinLength property value.
When unparsing a simple element with binary representation, then for hexBinary the length is the number of
bytes in the Infoset value padded to the XSD minLength facet value using. dfdl:fillByte, and for the other types
the length is the minimum number of bytes to represent the value anda@any sign.

When unparsing a complex element, the length is that of the CompléxContent region.

124.3.2.1 Non-Delimited Elements within Delimited Constructs

When a simple or complex element has a specified length;‘dfdl:lengthKind 'pattern’, or dfdl:lengthKind
endOfParent' then delimiter scanning is suspended forthé duration of the processing of that element.

THis allows formats to be parsed which are delimited but have nested elements which contain non-character
data so long as that nested data can be isolated from the delimited data context surrounding it.

ust be
must be

alendar
Delimiter

v byte)
2]

schema-

comg alic =Ya SC > contained
children, that is the ComplexValue region, and the ElementUnused region is of size 0. However, note that
alignment regions inside the contained children within the ComplexValue region may be of different lengths
depending on the ComplexValue's starting position alignment.

For simple elements the length is fixed and is given in Table 19 Length in Bits for SimpleTypes when
dfdl:lengthKind is 'implicit' .

Type Length
text binary
String The XSD maxLength facet Not applicable
gives length in characters,

© ISO/IEC 2024 - All rights reserved

83

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

but this is also the length in
bytes. (See note below:
character set encoding must
be single-byte.) Multiply by 8
to get number of bits.

Float Not allowed 32 bits

Double Not allowed 64 bits

Decimal, Integer, Not allowed packed decimal: Not | binary: Not allowed

nonNegativelnteger allowed

Long, Unsigned| ong Not allowed binary: 64 bits

Int, Unsignedint Not allowed binary: 32 bits

Short, thsignedShort Not allowed binary: 16 bits

Byte, UnpignedByte Not allowed binary: 8 bits

DateTime Not allowed binarySeconds: 32 bits,
binaryMilliseconds: 64
bits.

Date Not allowed binarySeconds: Not
allowed,
binaryMilliseconds: Not
allowed

Time Not allowed binarySeconds: Not
allowed,
binaryMilliseconds: Not
allowed

Boolean Length of longest of 32 bits

dfdl:textBooleanTrueRep and
dfdl:textBooleanFalseRep
values

HexBinafy Not applicable The XSD maxLength facet gives the length in

bytes. Multiply by 8 to convert to number of bits.
Table 19 Length in Bits for SimpleTypes when dfdl:lengthKind is "implicit’
¢ 'Not Allowed' means that there’is no implicit length for the combination of simple type and
representation, and it is @ Schema Definition Error if dfdl:lengthKind 'implicit' is specified.
¢ p3gcked decimal means-dfdl:binaryNumberRep is 'packed’, 'bcd’, or 'ibm4690Packed'
e bipary means dfdl:binaryNumberRep is 'binary’'
e biparySecondsmeans dfdl:binaryCalendarRep is 'binarySeconds'
e biparyMilliseconds means dfdl:binaryCalendarRep is 'binaryMilliseconds'.
When dfdllengthKind'is 'implicit', the method of extracting data is described in Section 12.3.7 Elements of
Specified Length,
Itis a Sch ema Def|n|t|on Error |f type is xs: strlng and dfdl: IengthKlnd is |mpI|C|t' and dfdl: IengthUnltS is 'bytec‘
and encodi s S A 2
validation agamst the XSD maxLength facet isin characters but parsmg and unparsmg usmg the XSD

maxLength facet is in bytes.
12.3.4 dfdl:lengthKind 'prefixed'

When dfdl:

lengthKind is 'prefixed' the length of the element is given by the integer value of the PrefixLength

region specified using dfdl:prefixLengthType. The property dfdl:prefixincludesPrefixLength also can be used to

adjust the

When dfdl:

length appropriately.
lengthKind is 'prefixed' the method of extracting data is described in Section 12.3.7 Elements of

Specified Length

© ISO/IEC 2024 - All rights reserved

84

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

When dfdl:lengthKind is 'prefixed’, delimiter scanning is turned off and in-scope delimiters are not looked for
within or between elements.

Property Name Description

prefixincludesPrefixLength | Enum
Valid values are 'yes', 'no'

Specifies whether the length given by a prefix includes the length of the prefix
as well as the length of the content region which can be either the
SimpleContent region or the ComplexContent region defined in Section 9.2
DFDL Data Syntax Grammar.

Used only when dfdl:lengthKind 'prefixed'.
Annotation: dfdl:element, dfdl:simpleType

prefixLengthType QName
Name of a simple type derived from xs:integer or any subtype. of it.

This type, with its DFDL annotations specifies the representation of the length
prefix, which is in the PrefixLength region.

It is a Schema Definition Error if the xs:simpleType(or any base type thereof
specifies any of:
o dfdlilengthKind 'delimited’, 'endOfParent’, or 'pattern’
o dfdl:lengthKind 'explicit' where length’is an expression
o dfdl:outputValueCalc
o dfdlinitiator or dfdl:terminator-other than empty string
o dfdl:alignment other than{1’
o dfdl:leadingSkip or dfdk:trailingSkip other than '0'.
o dfdl:assert, dfdl:diseriminator, or dfdl:setVariable

If the xs:simpleType is constrained by facets (mininclusive, maxinclusjve,
minExclusive, maxExclusive) these constraints are always checked, both
when parsing and\unparsing. It is a Processing Error if the value of the
xs:simpleTypeldoes not conform to the facet constraints. It is a Procegsing
Error if thewvalue of the xs:simpleType is less than zero.

Annotation? dfdl:element, dfdl:simpleType

Tdble 20 Properties for dfdl:lengthKind 'prefixed'

THe representation of the element is in two parts.

1. The 'prefix length*is an integer which specifies the length of the element's content. The repregsentation
of the length prefix’is described by a simple type which is identified using the dfdl:prefixLengthType
property.

2. The contént of the element.

When parsingi-the length of the element's content is obtained by parsing the simple type specified b
dfdl:prefixLengthType to obtain an integer value. Note that all required properties must be present on the
specified Simple type or defaulted because there is no element declaration to supply any missing required
properties.
If fhedfdl:prefixincludesPrefixLength property is 'ves' then the length of the element's content is the yalue of
the prefix length minus the length of the content of the prefix length.

If the prefix type is dfdl:lengthKind 'implicit' or 'explicit' then the dfdl:lengthUnits properties of both the prefix
type and the element must be the same.

The DFDL properties that specify the format of the prefix come from annotations directly on the
dfdl:prefixLengthType's type definition, and from the default format annotation for the schema document
containing the definition of that type. If the using-element resides in a separate schema, the simple type does
not pick up values from the element's schema's default dfdl:format annotation.

When unparsing, the length of the element's content region can be determined first as described below. Then
the value of the prefix length MUST be adjusted based on the value of the dfdl:prefixincludesPrefixLength
property.

© ISO/IEC 2024 - All rights reserved

85

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

Then the prefix length can be written to the data stream using the properties on the dfdl:prefixLengthType, and
finally the element's content can be written to the data stream.

Consider this example:

<xs:element name="myString" type="xs:string"
dfdl:lengthKind="prefixed"
dfdl:prefixIncludesPrefixlLength="no"
dfdl:prefixLengthType="packed3" />

<xs:simpleType name="packed3"
dfdl:representation="binary"
dfdl:binaryNumberRep="packed"
dfdl:lengthKind="explicit"

AE=A] | sl __non
STECT—TreRgTT

<xs:reptriction base="integer" />
</xs:simpleType>

In the abope, the string has a prefix length of type 'packed3' containing 3 packed decimal digits.

The propgrty dfdl:prefixincludesPrefixLength is an enumeration which allows the length computatien to be
varied to ipclude or exclude the length of the prefix element itself.

The prefix|length's value contains the length measured in units given by dfdl:lengthUnits.

When parsing, if the dfdl:lengthUnits are bits, then any number of bits can be in the reptesentation. Howeve
the same |s not true when unparsing. The DFDL Infoset does not store the number of bits in a number, so the
number of bits is always a multiple of 8 bits.

When ungarsing, the value of the prefix is computed automatically by obtaining:the length of the element's
content.

For a simple element with text representation, the length is computed as{for'dfdl:lengthKind 'delimited'.
For a simple element with binary representation, the length is given in the table below.
For a complex element, the length is that of the ComplexContent fegion.

Type Length

String Not applicable

Float 32

Double 64

Decimal,| Integer, Compute the minimum number of bytes to represent the value (per

NonNegativelnteger dfdl:binaryNumberRep) and sign (if applicable). Multiply by 8 for number of bits.

Long, UrsignedLong binary: 64

Int, Unsiq;nedlnt binary: 32

Short, UrhsignedShort binary: 16

Byte, UngignedByte packed decimal: as binary: 8

DateTimg Decimal binarySeconds: 32, binaryMilliseconds:64

Date binarySeconds: Not allowed, binaryMilliseconds: Not
allowed

Time b!parySeconds: Not allowed, binaryMilliseconds: Not
dliowed

Boolean 32

HexBinary Compute the number of bytes in the Infoset value padded to the value of the

XSD minLength facet (which gives minimum length in bytes) using dfdl:fillByte if
necessary. This gives the unparse length in bytes. Multiply by 8 for the number
of bits.

Table 21 Unparse Lengths (in Bits) for Binary Data with dfdl:lengthKind 'prefixed'

© ISO/IEC 2024 - All rights reserved

86

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

12.3.4.1 Nested Prefix Lengths3?

It is possible for a prefix length, as specified by dfdl:prefixLengthType, to itself have a prefix length . That is, an
element can have a prefix length, which defines a PrefixLength region (see Section 9.2 DFDL Data Syntax
Grammar), and the PrefixLength region can itself have a type which specifies a prefix length, thereby
defining a PrefixPrefixLength region.

It is a Schema Definition Error if the type associated with the PrefixPrefixLength is the same as the type
associated with the PrefixLength. It is a Schema Definition Error if a PrefixPrefixLength region has a type
which specifies a prefix length, that is, nesting of prefix lengths must not exceed a depth of 1. Itis a
Processing Error if a PrefixPrefixLength region has zero length.

12.3.5 dfdl:lengthKind ‘pattern’

THe dfdl:lengthKind 'pattern' means the length of the element is given by a regular expression)specifjed using
the dfdl:lengthPattern property. The DFDL processor scans the data stream to determine, arstring value that is
thé match to a regular expression. The pattern is only used on parsing.

When dfdl:lengthKind is 'pattern’, delimiter scanning is turned off and in-scope delimiters are not looked for
within or between elements.

Rroperty Description
Name

g¢ngthPattern | DFDL Regular Expression.
Only used when lengthKind is 'pattern’.

Specifies a regular expression that, on parsing\is executed against the data strearn to
determine the length of the element.

The data stream beginning at the starting-offset of the content region (which can bg either
the SimpleContent region or the ComplexContent region defined in Section 9.2 DFPL Data
Syntax Grammar) of the element is interpreted as a stream of characters in the en¢oding of
the element, and the regular expression contained in the dfdl:lengthPattern property is
executed against that stream ofcharacters. When the element is complex the encading
used is the dfdl:encoding of-the complex element itself.

It is a Schema Definition Error if there is no value for the dfdl:encoding property in scope.

DFDL Escape Schemes’ (per dfdl:escapeSchemeRef) are not used when executing the
regular expression!
If the pattern matching of the regular expression reads data that cannot be decoded into
characters aof'the current encoding, then the behavior is controlled by the
dfdl:encodingErrorPolicy property. See dfdl:encodingErrorPolicy in Section 11 Properties
Common,to both Content and Framing.

Annotation: dfdl:element, dfdl:simpleType

T1b|e 22 The dfdl:JengthPattern Property

On unparsing, the behavior is the same as for dfdl:lengthKind 'prefixed'.
When the:DFDL regular expression is matched against data:

oA _The data is considered to be text in the character set encoding specified by the dfdl:encoding
property, regardless of the actual representation of the element.

o The data is decoded from the specified encoding into Unicode before the actual matching takes place.

e If there is no match (i.e., the length of the data found to match the pattern is zero) it is not a
Processing Error but instead it means the length is zero.

12.3.6 dfdl:lengthKind 'endOfParent'
The dfdl:lengthKind 'endOfParent' means that the element is terminated either by the end of the data stream,

or the end of an enclosing complex element with dfdl:lengthKind ‘explicit’, ‘pattern’, ‘prefixed’ or ‘endOfParent’,
or the end of an enclosing choice with dfdl:choiceLengthKind ‘explicit’. The ‘parent’ element or choice does not

38This feature allows DFDL to describe the needed “one more level” of prefix that is needed for modeling an ASN.1 format,
but without the complexities of general recursion.

© ISO/IEC 2024 - All rights reserved

87

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

have to be the immediate enclosing component of the element, but there must be no other components
defined between the element specifying dfdl:lengthKind 'endOfParent’ and the end of the parent.

A convenient way of describing the parent is as a 'box’, being defined as a portion of the data stream that has
an established content length prior to the parsing of its children. If the parent is such a ‘box’ then the element
specifying dfdl:lengthKind ‘endOfParent’ is the last element in the ‘box’ and its content extends to the end of
the ‘box’.

A dfdl:lengthKind of 'endOfParent' can only be used on simple and complex elements in the following
locations:

e When the immediate containing model group is a sequence, on the final element in the sequence

¢ When the immediate containing model group is a choice, on any element that is a branch of the
choice

o Ajsimple type or global element declaration reterenced by one of the above.

e Alglobal element declaration that is the document root.

It is a Schema Definition Error if:

the element has a terminator.

the element has dfdl:trailingSkip not equal to 0.

the element has maxOccurs > 1.

any other model-group is defined between this element and the end of the enclosing component.

any other represented element is defined between this element and the end of.the enclosing

cqmponent.

e the parent is an element with dfdl:lengthKind 'implicit’ or 'delimited'.

e the element has text representation, does not have a single-byte charagter set encoding, and the
effective length units of the parent is not ‘characters’.

o The effective length units of the parent are:

o dfdl:lengthUnits if parent is an element with dfdl:lengthKind ‘explicit’ or ‘prefixed’;

‘characters’ if parent is an element with dfdl:lengthKind ‘pattern’;

‘bytes’ if parent is a choice with dfdl:choiceLengthKind ‘explicit’;

‘characters’ if the element is the document root;

the effective length units of the parent’s parent'if parent is an element with dfdl:lengthKind

‘endOfParent’

If the element is in a sequence then it is a Schema Definition Error if:

the dfdl:separatorPosition of the sequence is-'postfix’

the dfdl:sequenceKind of the sequence.is;not 'ordered’

the sequence has a terminator

there are floating elements in the sequence

the sequence has a non-zero dfdktrailingSkip

If the element is in a choice where dfdl:ChoiceLengthKind is 'implicit' then it is a Schema Definition Error if:
e the choice has a terminator
¢ the choice has a non-zéro dfdl:trailingSkip

A simple g¢lement must have-one of:

type xs:string

dfgl:representation 'text'

type xs:hexBinary

dfgl:representation 'binary' and a packed decimal representation

A complex efement can have dfdl:lengthKind 'endOfParent'. If so then its last child element can be any

dfdl:lengthKind including "endOfParent’.

The dfdl:lengthKind 'endOfParent' can also be used on the document root to allow the last element to

consume the data up to the end of the data stream.

The use of dfdl:lengthKind ‘endOfParent’ is distinct from the situation where the length of the last element in
the parent is known but is not sufficient to fill the parent. In the latter case the remaining data are ignored on
parsing and filled with dfdl:fillIByte on unparsing.

When parsing an element with dfdl:lengthKind ‘endOfParent’, delimiter scanning is turned off and in-scope
terminating delimiters are not looked for within the element.

When unparsing an element with dfdl:lengthKind ‘endOfParent’, if the parent is a complex element with
dfdl:lengthKind 'explicit' where dfdl:length is not an expression, or a choice with dfdl:choiceLengthKind

O O O O

© ISO/IEC 2024 - All rights reserved

88

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

‘explicit’, then the element with dfdl:lengthKind 'endOfParent' is padded or filled in the usual manner to the
required length, by completing the LeftPadding, RightPad, RightFill, ElementUnused, or ChoiceUnused
regions of the data syntax grammar (Section 9.2) as appropriate.

12.3.7 Elements of Specified Length

An element has a specified length when dfdl:lengthKind is 'explicit', 'implicit' (simple type only) or 'prefixed'.
The units that the length represents are specified by the dfdl:lengthUnits property except where noted in
Section 12.3.3.

Using specified length, it is possible for an element to have content length longer than needed to represent
just the data value. For example, a simple text element may be padded in the RightPadding region if the data
is not long enough.

ength
ments.

pression

when
il on the
etation of

0 obtain
brmation
any

vould be
by way of

eeded

If dfdl:lengthUnits is 'characters' then the length (in bits) @f the content region (i.e., SimpleContent o
CaomplexContent defined in Section 9.2 DFDL Data Syntax Grammar) depends on the encoding of the
chiracters.

¢ If the dfdl:encoding property specifies afixed-width encoding then the content length is the gharacter
width (in bits) multiplied by the length.

e If the dfdl:encoding property specifies a variable-width encoding then the length depends on|the
actual characters in the element's'value. The characters MUST be decoded one by one, adding up
their widths (in bits), while counting to the specified length value.

Fgr a simple element, dfdl:lengthUnits 'characters' may only be used for textual elements, it is a Sch
Ddfinition Error otherwise.

Sgme DFDL implementations’MAY support character set encodings where the characters are not a pnultiple of
8-bits wide. Encodings-which are 5, 6, 7, and 9 bits wide are rare, but do exist, so the overall length of the
content region may jaot:be a multiple of 8-bits wide.

4

ma

12.3.7.1 Length-of Simple Elements with Textual Representation
Tgxtual dataristdefined to mean either data of type string or data where the dfdl:representation propgrty is
"teit.

Fqgr atextual element, the dfdl:lengthUnits property can be either 'bytes' or 'characters'.

12.3.7.1.1 Text Length Specified in Bytes

If a textual element has dfdl:lengthUnits of 'bytes’, and the dfdl:encoding is not SBCS, then it is possible for a
partial character encoding to appear after the code units of the characters. In this case, the following rules
apply:
¢ When parsing, as many characters as possible are extracted from the bytes of the simple content
region. Any left-over bytes are skipped. (They are considered part of the grammar RightFill region).

e When unparsing, if the simple content region is larger than the encoded length of the element (as
padded when dfdl:textPadKind is not 'none') then the remaining bytes, which are insufficient to hold
another character code, are filled with dfdl:fillByte (Again, this is the grammar RightFill region.)

© ISO/IEC 2024 - All rights reserved

89

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

Itis a Schema Definition Error if type is xs:string and dfdl:textPadKind is not 'none' and dfdl:lengthUnits is
'bytes' and dfdl:encoding is not an SBCS encoding and the XSD minLength facet is not zero. This prevents a
scenario where validation against the XSD minLength facet is in characters, but padding would be performed
in bytes.

12.3.7.2 Length of Simple Elements with Binary Representation

This section discusses the dfdl:lengthKind 'explicit' and 'prefixed' specified lengths for the different binary
representations. When dfdl:lengthKind is 'implicit', see Section 12.3.3 dfdl:lengthKind 'implicit'.

The dfdl:lengthUnits can be 'bytes' or 'bits' unless otherwise stated. It is Schema Definition Error if
dfdl:lengthUnits is 'characters'.

It is a Schema Definition Error if the specified dfdl:length for an element of dfdl:lengthKind 'explicit' is a string
literal inteer such that the length of the data exceeds the capacily of the simple type.

Itis a Progessing Error if the specified length for an element of dfdl:lengthKind 'prefixed’ or 'explicit' (with
dfdl:lengtt] an expression) is an integer such that the length of the data exceeds the capacity of the simple
type.

12.3.7.2.1| Length of Base-2 Binary Number Elements

Non-floating point numbers with binary representation and dfdl:binaryNumberRep 'binary;are’represented a
a bit strind which contains a base-2 representation.

The value|of the specified length is constrained per the table below. The lengths areexpressed in bits and afe
inclusive.

12

Type Minimum value of length | Maximum value ofdength

xs:byte 2 8

xs:short 2 16

xs:int 2 32

xs:long 2 64

xs:unsigrpedByte 1 8

xs:unsigrl\edShort 1 16

xs:unsigrl\edlnt 1 32

xs:unsigrl\edLong 1 64

xs:nonNJagativeInteger 1 Implementation-dependent (but not less than 64)
xs:integgr 2 Implementation-dependent (but not less than 64)
xs:decimal 8% Implementation-dependent (but not less than 64)

Table 23:|Allowable Specified Lengths in Bits for Base-2 Binary Number Elements

See Sectipn 13.7.1.1 Gonverting Base-2 Binary Numbers for details of the conversion to/from numeric value

2

12.3.7.2.2 Length.of Floating Point Binary Number Elements

For binary| elements of types xs:float or xs:double, a specified length must be either exactly 4 bytes or exactly
8 bytes reppectively.

The dfdl:lengthUORItS property must be DYes™- IS a Schema Definition Effor otherwise.
See Section 13.8 Properties Specific to Float/Double with Binary Representation.

12.3.7.2.3 Length of Packed Decimal Number Elements

Non-floating-point numbers with binary representation and dfdl:binaryNumberRep 'packed’, 'bed’, or
'ibm4690Packed', are represented as a bit string of 4 bit nibbles. The term packed decimal is used to describe
such numbers.

It is a Schema Definition Error if the specified length is not a multiple of 4 bits.

39 Type decimal must be a minimum of 8 bits because lengthUnits 'bits' is not allowed for xs:decimal.

© ISO/IEC 2024 - All rights reserved

90

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

The maximum specified length of a packed decimal number is implementation-defined.

See Section 13.7 Properties Specific to Number with Binary Representation for details of the conversion of the
packed decimal bit string to/from a numeric value.

12.3.7.2.4 Length of Binary Boolean Elements

The specified length of a binary element of type xs:boolean is as for type xs:unsignedint described in Section
12.3.7.2.1 Length of Base-2 Binary Number Elements.

See also Section 13.10 Properties Specific to Boolean with Binary Representation for details of how the data
is converted to/from a Boolean value.

12.3.7.2.5 Length of Base-2 Binary Calendar Elements

Cdlendars (types date, time, dateTime) with binary representation and dfdl:binaryCalendarRep
‘binarySeconds’ or ‘binaryMilliseconds’ are represented as a bit string which contains a base-2.representation.
THe specified length must be either exactly 4 bytes or exactly 8 bytes respectively.

THe dfdl:lengthUnits property must be 'bytes'. It is a Schema Definition Error otherwise.
e Section 13.13 Properties Specific to Calendar with Binary Representation for detajls‘of how the data is

Calendars (types date, time, dateTime) with binary representation and dfdl:binaryCalendarRep 'pacl]jed', 'bed’,
to

THe maximum specified length of a packed decimal calendar isrimplementation-defined (but not less|than 9

e Section 13.13 Properties Specific to Calendar with Binary Representation for details of how the data is
verted to/from the calendar type.

When unparsing a specified length elementoftype xs:hexBinary, and the simple content region is lafger than
¢ length of the element in the Infoset, then the remaining bytes are filled using the dfdl:fillByte property.

A romplex element of specifiedlength is defining a 'box' in which its child elements exist. An example of this
wauld be a fixed-length record element with a variable number of children elements. The dfdl:lengthUnits may

It is possible that the-children may not entirely fill the full length of the complex element. An example|is a

plex elementiwith a specified length of 100 characters, which contains a sequence of child elemgents that
use up less than{100 characters of data, perhaps because an optional element is not present. In this|case the
reaining unused data is called the ElementUnused region in the data syntax grammar of Section 9|2.
Arjother example is a complex element with a specified length of 100 bytes, which contains a sequence of

dfglzencoding such that the element does not use up all the bytes of data. In this case the remaining{unused

__'G"‘__ €€ €€ SEAYLY 1L, A Gata—SYy axX—gfa afr——o ecto 00O

examples, the unused area is skipped when parsing, and is filled with the dfdl:fillByte on unparsing.

Note that a poorly chosen value for dfdl:fillByte may fill the region with data that cannot be decoded in the
character set encoding, resulting in a decode error when this data is subsequently parsed again. When
dfdl:lengthUnits is 'characters' the value for dfdl:fillByte must be chosen to avoid this error.

40 This is the smallest pattern that contains all the digit-only symbols. SSS is the minimum precision that must be
supported for fractional seconds, but in can be more, hence why 'not less than 9 bytes'.

© ISO/IEC 2024 - All rights reserved

91

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

13 Simple Types

ISO/IEC 23415:2024(en)

The dfdl:representation property identifies the physical representation of the element as text or binary. For
some of the simple type and representation combinations there are additional properties that specify a further

refinement of the representation.

These properties are described in relation to the logical type groupings of the simple types into Number,
String, Calendar, Boolean, and Opaque groups, per Section 5.1 DFDL Simple Types.

13.1 Properties Common to All Simple Types

Property Description
Name

representation [Enum

examined

not examined.

Calendar: 'text’, 'binary'
Boolean: 'text’, 'binary'
Opaque: representation is assumed to be 'binary' and the dfdl:;representation property i

Valid values are dependent on logical type.
Number: 'text’, 'binary’
String: representation is assumed to be 'text' and the dfdl:representation propérty is not

Annotation: dfdl:element, dfdl:simpleType

o

Table 24 Properties Common to All Simple Types

The permitted representation properties for each logical type are shown'in Table 25: Logical Type to

Representation properties

binary

Logical type dfdl:representation | Additional representation property
String Assumed to bg text
Float, Dquble text dfdl:textNumberRep:
standard
binary dfdl:binaryFloatRep:
ieee, ibm390Hex
Decimal,| Integer, nonNegativelnteger text dfdl:textNumberRep:
standard, zoned
binary dfdl:binaryNumberRep:
packed, bcd, ibm4690Packed, binary
Long, Int, Short, Byte, UnsignedLong, text dfdl:textNumberRep:
Unsigneﬂint, Unsignedshort; standard, zoned
UnsignegiByte binary dfdl:binaryNumberRep:
packed, bcd, ibm4690Packed, binary
DateTimg, Date;-Time text
binary dfdl:binaryCalendarRep:
packed, bcd, ibm4690Packed,
binarySeconds, binaryMilliseconds
Boolean text
binary
HexBinary Assumed to be

Table 25: Logical Type to Representation properties

© ISO/IEC 2024 - All rights reserved

92

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

13.2 Properties Common to All Simple Types with Text representation

Property Name Description

textPadKind Enum
Valid values 'none’, 'padChar".
Indicates whether to pad the data value on unparsing. This controls the contents of
the LeftPadding and RightPadding regions of the data syntax grammar in Section
9.2
'none': No padding occurs. When dfdl:lengthKind is 'implicit' or 'explicit' (and
dfdl:length is not an expression) the unparsed data value must match the expected
length otherwise it is a Processing Error.
'padChar': The data value is padded using the dfdl:textStringPadCharactér;
dfdl:textNumberPadCharacter, dfdl:textBooleanPadCharacter or
dfdl:textCalendarPadCharacter depending on the type of the element, The [padding
characters populate the LeftPadding and/or RightPadding regions depending on
dfdl:textStringJustification(see Section 13.4), dfdl:textNumberJustification (gee
Section 13.6), dfdl:textBooleandJustification (see Section 13:9),)or
dfdl:textCalendarJustification (see Section 13.12), depending on the type of{the
element.
When dfdl:lengthKind is 'implicit' the data value is padded to the implicit length for
the type.
When dfdl:lengthKind is 'explicit' (and dfdl:length is not an expression) the data
value is padded to the length given by the dfdl:length property.
When dfdl:lengthKind is 'explicit' (and dfdl:length is an expression), 'delimitgd’,
'prefixed’, 'pattern’ the data value is padded to the length given by the XSD
minLength facet for type 'xs:string'.or-dfdl:textOutputMinLength property for other
types.
When dfdl:lengthKind is 'endQfParent' the data value is padded to the available
length.
Annotation: dfdl:element,-dfdl:simpleType

textTrimKind Enum

Valid values 'nong’, 'padChar’

Indicates whether to trim data on parsing. This controls the expected contents of the
LeftPadding and RightPadding regions of the data syntax grammar in Segtion 9.2.

Whep-none' no trimming takes place.

When 'padChar' the element is trimmed of the dfdl:textStringPadCharacter,
dfdl:.textNumberPadCharacter, dfdl:textBooleanPadCharacter or
dfdl:textCalendarPadCharacter depending on the type of the element. The
characters populate the LeftPadding and/or RightPadding regions depeng
dfdl:textStringJustification, dfdl:textNumberJustification, or
dfdl:textCalendarJustification, depending on the type of the element.

Annotation: dfdl:element , dfdl:simpleType

padding
ing on

textQutputMinLength

Non-negative Integer.

Only used when dfdl:textPadKind is 'padChar' and dfdl:lengthKind is 'delimifed’,

prefixed, pattern, ‘explicit (when didrlengin is an expression) or ‘endOiParent’,

and type is not xs:string

Specifies the minimum content length during unparsing for simple types that
allow the XSD minLength facet to be specified.

For dfdl:lengthKind 'delimited’, 'pattern’' and 'endOfParent' the length units ar

do not

e

always characters, for other dfdl:lengthKinds the length units are specified by the

dfdl:lengthUnits property.

If dfdl:textOutputMinLength is zero or less than the length of the representati
then no padding occurs.

Annotation: dfdl:element, dfdl:simpleType

on text

© ISO/IEC 2024 - All rights reserved

93

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

escapeSchemeRef | QName or empty String

The name of the dfdl:defineEscapeScheme annotation that provides the additional
properties used to describe the escape scheme. If the value is the empty string then
escaping is explicitly turned off.

See: Section 7.4 The dfdl:escapeScheme Annotation Element, and Section 7.3 The
dfdl:defineEscapeScheme Defining Annotation Element.

Annotation: dfdl:element, dfdl:simpleType

Table 26 Properties Common to All Simple Types with Text Representation
13.2.1 The dfdl:escapeScheme Properties

properties| of an escape scheme and allows a common set of properties to be defined that can be reused,

An escapg scheme is needed when the content of a text element contains sequences of characters that'are
the same Bs an in-scope separator or terminator. If the characters are not escaped, a parser scanfing for a
separator for terminator would erroneously find the character sequence in the content.

An escapi scheme defines the properties that describe the text escaping rules. There are two variants on

The dde:eIcapeScheme annotation Is used within a didl.defineEscapeScheme annotation to group the

such schemes:

e The use of a single escape character to cause the next character to be interpreted literally. The
egcape character itself is escaped by the escape-escape character.

e The use of a pair of escape strings to cause the enclosed group of characters to be interpreted
literally. The ending escape string is escaped by the escape-escape character.

On parsing, the escape scheme is applied after pad characters are trimmed-and on unparsing before pad
characterg are added. A pad character is not escaped by an escape character. When parsing, pad charactefs
are trimmed without reference to an escape scheme. When unparsing,‘pad characters are added without
reference [to an escape scheme.

On unparging, the application of escape scheme processing takes place before the application of the
dfdl:emptyValueDelimiterPolicy property.

Property Name Description

escapeKjnd Enum
Valid values 'escapeCharacter’, 'escapeBlock’
The type of escape.mechanism defined in the escape scheme

When 'escapeCharacter': On unparsing a single character of the data is
escaped by ‘adding a dfdl:escapeCharacter or dfdl:escapeEscapeCharacter
immediately-before it. The characters to escape are determined by property
dfdl:escapeCharacterPolicy.

On parsing any in-scope terminating delimiter encountered in the data is not
interpreted as such when it is immediately preceded by the
dfdl:escapeCharacter (when not itself preceded by the
dfdl:escapeEscapeCharacter). Occurrences of the dfdl:escapeCharacter and
dfdl:escapeEscapeCharacter are removed from the data as determined by
property dfdl:escapeCharacterPolicy, unless the dfdl:escapeCharacter is
preceded by the dfdl:escapeEscapeCharacter, or the
dfdl:escapeEscapeCharacter does not precede the dfdl:escapeCharacter,
respectively.

It is a Schema Definition Error if the dfdl.escapeCharacter or
dfdl:escapeEscapeCharacter is the same as the first character of an in-scope
dfdl:separator or dfdl:terminator.

When 'escapeBlock'": On unparsing the entire data are escaped by adding
dfdl:escapeBlockStart to the beginning and dfdl:escapeBlockEnd to the end of
the data. The data is either always escaped or escaped when needed as
specified by dfdl:generateEscapeBlock. If the data is escaped and contains the
dfdl:escapeBlockEnd then first character of each appearance of the
dfdl:escapeBlockEnd is escaped by the dfdl:escapeEscapeCharacter.

© ISO/IEC 2024 - All rights reserved

94

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

On parsing the dfdl:escapeBlockStart string must be the first characters in the
(trimmed) data in order to activate the escape scheme. The
dfdl:escapeBlockStart string is removed from the beginning of the data. Until a
matching dfdl:escapeBlockEnd string (that is, one not preceded by the
dfdl:escapeEscapeCharacter) is found in the data, any in-scope terminating
delimiter encountered in the data is not interpreted as such, and any
dfdl:escapeEscapeCharacters are removed when they precede a
dfdl:escapeBlockEnd string. The matching dfdl:escapeBlockEnd string is
removed from the data.. The matching dfdl:escapeBlockEnd does not have to
be the last character(s) in the (trimmed) data in order to de-activate the escape
scheme. A dfdl:escapeBlockStart occurring anywhere in the data other than the
first characters has no significance.

Annotation: dfdl:escapeScheme
gscapeCharacter DFDL String Literal or DFDL Expression

Specifies one character that escapes the subsequent charactér,
Used when dfdl:escapeKind is 'escapeCharacter'
It is a Schema Definition Error if dfdl:escapeCharacter is)jempty when
dfdl:escapeKind is 'escapeCharacter’
This property can be computed by way of an expression which returns a DFDL
String Literal that represents a single character. The expression must nt
contain forward references to elements whieh’have not yet been processed.
Escape and Quoting Character Restrictions: The string literal is restrictgd to
allow only certain kinds of DFDL String/Literal syntax:

e DFDL character entities are allowed

e The DFDL byte value entity (%#rXX;) is not allowed

e DFDL Character classes NL, WSP, WSP+, WSP*, and ES are |not

allowed
It is a Schema Definition, Error if the string literal contains any of the disallowed
constructs.
Escape characters contribute to the simple value region (SimpleLogical)/alue or
NilLiteralValue)ef the field
Annotation: dfdl:escapeScheme
gscapeBlockStart DFDL String Literal

The:string of characters that denotes the beginning of a sequence of chigracters
escaped by a pair of escape strings.
Used when dfdl:escapeKind is 'escapeBlock’
It is a Schema Definition Error if dfdl:escapeBlockStart is empty when
dfdl:escapeKind is 'escapeBlock’
The string literal value is restricted in the same way as described in "Estape
and Quoting Character Restrictions" in the description of the
dfdl:escapeCharacter property.
A dfdl:escapeBlockStart string contributes to the simple value region
(SimpleLogicalValue or NilLiteralValue) of the field
Anrnotation—dfdkesecapeSeheme

TopToOTHeT

escapeBlockEnd

DFDL String Literal

The string of characters that denotes the end of a sequence of characters
escaped by a pair of escape strings.

Used when dfdl:escapeKind is 'escapeBlock' .

It is a Schema Definition Error if dfdl:escapeBlockEnd is empty when
dfdl:escapeKind is 'escapeBlock’.

When parsing, it is a Processing Error if the end of the data for the element is
reached and the escapeBlockEnd is not found in the data.

© ISO/IEC 2024 - All rights reserved

95

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

The string literal value is restricted in the same way as described in "Escape
and Quoting Character Restrictions" in the description of the escapeCharacter
property.

A dfdl:escapeBlockEnd string contributes to the simple value region
(SimpleLogicalValue or NilLiteralValue) of the field

Annotation: dfdl:escapeScheme

escapeEscapeCharacter

DFDL String Literal or DFDL Expression

Specifies one character that escapes an immediately following
dfdl:escapeCharacter or first character of dfdl:escapeBlockEnd.

Used when dfdl:escapeKind is 'escapeCharacter’ or 'escapeBlock'.

T'his property can be computed by way of an expression which returns a DFDL
String Literal that represents a single character. The expression must not
contain forward references to elements which have not yet been processed:

The string literal value is restricted in the same way as described in "Escape
and Quoting Character Restrictions" in the description of the escapeCharacter
property.

If the empty string is specified then no escaping of escape characters occurs.
It is explicitly allowed for both the dfdl:escapeCharacter and the
dfdl:escapeEscapeCharacter to be the same character-in that case processing
functions as if the dfdl:escapeCharacter escapes itsélf;

Escape-escape characters contribute to the simplé.value region
(SimpleLogicalValue or NilLiteralValue) of thedfield.

Annotation: dfdl:escapeScheme

extraEscapedCharacters | List of DFDL String Literals
A whitespace separated list of single characters that must be escaped in
addition to the in-scope delimiters.lf-there are no extra characters to escape the
property must be set to "".
The string literal values are restricted in the same way as described in "Escape
and Quoting Character Restrictions" in the description of the
dfdl:escapeCharacter property.
This property only. applies on unparsing.
Extra escaped c¢haracters contribute to the simple value region
(SimpleLogicalValue or NilLiteralValue) of the field.
Annotation; dfdl:escapeScheme

generatgEscapeBlock Enum

Valid-values 'always', 'whenNeeded'

Controls when escaping is used on unparsing when dfdl:escapeKind is
‘escapeBlock’.

If 'always' then escaping is always occurs as described in dfdl:escapeKind.

If 'whenNeeded' then escaping occurs as described in dfdl:escapeKind when
the data contains any of the following:

e any in-scope terminating delimiter

s dfdlescapeBtockStartatthe startof the data
e any dfdl:extraEscapedCharacters
Annotation: dfdl:escapeScheme

escapeCharacterPolicy

Enum
Valid values are ‘all’, ‘delimiters’.

Controls when escape characters are removed during parsing, and output
during unparsing, when dfdl:escapeKind is 'escapeCharacter'.

When ‘all':

© ISO/IEC 2024 - All rights reserved

96

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

when they are in the data.

e any dfdl:extraEscapedCharacters
During parsing, occurrences of dfdl:escapeCharacter and

described in dfdl:escapeKind.
When 'delimiters":

when thev are in the data

During parsing, occurrences of dfdl:escapeCharacter and

During unparsing the following are escaped as described in dfdl:escapeKind

¢ Any in-scope terminating delimiter by escaping its first character.
o dfdl:escapeCharacter (escaped by dfdl:escapeEscapeCharacter)

dfdl:escapeEscapeCharacter are interpreted and removed from the data as

During unparsing the following are escaped as described in dfdl:escapeKind

¢ Any in-scope terminating delimiter by escaping its first charactef.
o dfdl:escapeCharacter (escaped by dfdl:escapeEscapeCharacter)

dfdl:escapeEscapeCharacter are interpreted and removed from'the data as
described in dfdl:escapeKind, except that dfdl:escapeCharacter is only removed
when it immediately precedes an in-scope terminating delimiter.
Annotation: dfdl:escapeScheme
Tdble 27 Escape Scheme Properties
13.2.1.1 Escape Scheme Example
Cansider a dfdl:escapeScheme annotation with the following prope€tties:
o dfdl:escapeBlockStart="start"
e dfdl:escapeBlockEnd="end"
e dfdl:escapeEscapeCharacter="#"
If this is used to serialize a DFDL Infoset element of type“xs:string with value “A hash is a #”, then the value is
wrapped with the dfdl:escapeBlockStart and dfdl:escapeBlockEnd, giving simple content "startA hash is a
#end". If this data is parsed, the "#end" is treated @s*an escaped escape block end and the parse fails with a
Prpcessing Error, reporting that there is no escape block end in the data.
Inthis scenario, the data is not compliant with-the escape scheme, and the DFDL unparser MUST issue a

Prpcessing Error.
Adqditional examples are in AppendixA:\Escape Scheme Use Cases.

13.3 Properties for Bidirectional support for All Simple Types with Text
representation
Biglirectional text is a feature-expected in a future revision of the DFDL standard.

Rroperty name Description

textBidi Enum
Valid value is, 'no'

This property exists in anticipation of future DFDL features that enabl
bidirectional text processing.

Annotation: dfdl:element, dfdl:simpleType (representation text)

1%

Table 28 Properties Tor Bidirectional support for All Simple Types with Text representation

13.4 Properties Specific to String

Property Name Description
textStringJustification Enum
Valid values 'left', 'right', 'center’
Unparsing:

© ISO/IEC 2024 - All rights reserved

97

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

'left'; Justifies to the left and adds padding chars to the string contents if
the string is too short, to the length determined by the dfdl:textPadKind
property.

right": Justifies to the right and adds padding chars to the string contents if
the string is too short, to the length determined by the dfdl:textPadKind
property.

‘center': Adds equal padding chars left and right of the string contents if the
string is too short, to the length determined by the dfdl:textPadKind
property. It adds one extra padding char on the left if needed.

Parsing:
'left": Trims any pad characters from the right of the string, according to

dfdl:textTrimKind property.

'right": Trims any pad characters from the left of the string, according-to
dfdl:textTrimKind property.

‘center’ Trims any pad characters from the left and right of the string,
according to dfdl:textTrimKind property.

Annotation: dfdl:element, dfdl:simpleType

textStringPadCharacter

DFDL String Literal
The value that is used when padding or trimming(string elements.
The value can be a single character or a single byte.

If a character, then it can be specified using-a-literal character or using
DFDL entities.

If a byte, then it must be specified using-a single byte value entity
otherwise it is a Schema Definition:Error

If a pad character is specified when dfdl:lengthUnits is 'bytes' then the pad
character must be a single-byte character.

If a pad byte is specified when dfdl:lengthUnits is 'characters' then
e the encoding:must be a fixed-width encoding

e padding and trimming must be applied using a sequence of N pad
bytes, where N is the width of a character in the fixed-width
encoding.

Padding Character Restrictions: The string literal is restricted to allow only
certainykinds of DFDL String Literal syntax:

o\ DFDL character entities are allowed
e The DFDL byte value entity (%#rXX;) is allowed.

e DFDL Character classes NL, WSP, WSP+, WSP*, and ES are no
allowed

Itis a Schema Definition Error if the string literal contains any of the
disallowed syntax.

Annotation: dfdl:element, dfdl:simpleType

truncate$pecifiedLengthString

Enum
Valid values are 'yes', 'no'

Used on unparsing only.

'ves' means if the logical type is xs:string and the value is longer than the
specified length, the string is truncated to this length. (See Section 12.3.7
Elements of Specified Length.) No Processing Error is raised.

This property is needed when a DFDL schema has specified lengths for
strings. The strings in an Infoset being unparsed do not necessarily fit
within those specified lengths. This property provides the means to
express whether this is an error, or the strings can be truncated to fit.

The position from which data is truncated is determined by the value of the
dfdl:textStringJustification property. If the value of the

© ISO/IEC 2024 - All rights reserved

98

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

dfdl:textStringJustification property is 'left', data is truncated from the right;
if the value of the dfdl:textStringJustification property is 'right', data is
truncated from the left. However, if the value of the
dfdl:textStringJustification property is 'center’, truncation does not occur,
and a Processing Error occurs if the value is too long.

When unparsing, Validation Errors cannot be prevented by truncation as
validation takes place on the augmented Infoset, before any truncation has
occurred.

Annotation: dfdl:element, dfdl:simpleType

Table 29 Properties Specific to String

13.5 Properties Specific to Number with Text or Binary Representation

Rroperty Name

Description

decimalSigned

Enum
Valid values are 'yes', 'no’

Indicates whether an xs:decimal element is signed.|See 13.6.2 Copverting
logical numbers to/from text representation and 18.7.1 Converting|Logical

Numbers to/from Binary to see how this affects’the presence of thie sign in
the data stream.

'yes' means that the xs:decimal element’is signed
'no’' means that the xs:decimal element is not signed
Annotation: dfdl:element, dfdl:simpleType

Tgble 30 Properties Specific to Number with Text or Binary Representation

13.6 Properties Specific to Number with Text Representation
THere are many properties for describing textual number representations. The properties deal with the

representation of the numeric value only. Other symbols adjacent to the textual representation of a qumber,
such as currency symbols, percent signs, or coordinate axis indicators, are not considered part of th¢ value

representation.

Rroperty Name

Description

textNumberRep

Enum
Valid values are 'standard’, 'zoned'

'standard' means represented as characters in the character set
encoding specified by the dfdl:encoding property.

'zoned' means represented as a zoned decimal in the character et
encoding specified by the dfdl:encoding property. In zoned
representation each decimal digit is stored in one character cdde point
(usually 1 byte), with the least-significant four bits encoding the digit
value 0 through 9. The most-significant four bits, called the "zpne"
bits, are usually set to a fixed value Typically these zone bits pre hex
F in EBCDIC encodings or 3 in ASCII encodings so that the byte
holds a character value corresponding to the digit. However, in the
first or last character code the zone bits are modified to repregent the

sign of the number. This is called overpunched sign since zoned
representation originated when computers used punched cards for
data.

Which characters are used to represent modified (‘overpunched') positive
and negative signs varies by encoding, COBOL compiler, and system.
The code points are fixed for EBCDIC systems but not for ASCII.

In EBCDIC-based encodings, code points 0xCO to 0xC9 or OxFO0 to 0xF9
represent a positive sign and digits 0 to 9 (these byte ranges correspond
typically to characters {ABCDEFGHI' or '0123456789'), and code points
0xDO0 to 0xD9 or 0xB0 to 0xB9 represent a negative sign and digits 0 to 9

© ISO/IEC 2024 - All rights reserved

99

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

(these byte ranges correspond typically to characters JJKLMNOPQR'
or '""£¥-©8Y'4%% '). On parsing both ranges are accepted. On
unparsing the range 0xCO0 to 0xC9 are produced for positive signs and
the range 0xDO0 to 0xD9 are produced for negative signs.

For ASCIlI-based encodings see the property dfdl:textZonedSignStyle.

Zoned is not supported for float and double numbers. Base 10 is
assumed, and the encoding must be for an EBCDIC or ASCII compatible
encoding. It is a Schema Definition Error if any of these requirements are
not met.

Annotation: dfdl:element, dfdl:simpleType

textNumberJdustification Enum
Valid values 'left’, 'right', 'center’
Controls how the data is padded or trimmed on parsing and unparsing.
Behavior as for dfdl:textStringJustification.
Annotation: dfdl:element, dfdl:simpleType
textNumberPadCharacter DFDL String Literal
The value that is used when padding or trimming ndmber elements.
The value can be a single character or a single byte.
If a character, then it can be specified using.aiteral character or using
DFDL entities.
If a byte, then it must be specified using a‘single byte value entity
If a pad character is specified when.dfdl:lengthUnits is 'bytes' then the
pad character must be a single-byte character.
If a pad byte is specified when dfdl:lengthUnits is 'characters' then
¢ the encoding must bé a fixed-width encoding
e padding and trimming must be applied using a sequence of N
pad bytes, where N is the width of a character in the fixed-width
encoding.
When parsing, ifthe pad character is '0' and dfdl:textTrimKind is
'padChar' then.the SimpleContent region is trimmed of the '0' characters
as defined.by’the trimming rules. If at least one '0' character is removed
and the trimmed text causes a Processing Error when parsed, a single ('
character is re-instated, and the text is parsed again. This is to handle
the.case when '0' characters are trimmed away leaving no digits. This
rute’also applies when the pad character is a DFDL character entity
equivalent to '0'. This rule does not apply when the pad character is any
other character nor when a pad byte is specified.
The string literal value is restricted in the same way as described in "Pag
Character Restrictions" in the description of the
dfdl:textStringPadCharacter property.
Annotation: dfdl:element, dfdl:simpleType
textNumberPattern String
Defines the ICU-like pattern that describes the format of the text number.

The pattermdefines where grouping Separators, decimat Separators,
implied decimal points, exponents, positive signs and negative signs
appear. It permits definition by either digits/fractions or significant digits.
Allows rounding.

When dfdl:textNumberRep is 'standard' this property only applies when
dfdl:textStandardBase is 10. When dfdl:textNumberRep is 'standard' and
dfdl:textStandardBase is not 10 the number is represented as the
minimum number of characters to represent the digits. There is no sign
or virtual decimal point.

The syntax of dfdl:textNumberPattern is described in Section 13.6.1 The
dfdl:textNumberPattern Property

© ISO/IEC 2024 - All rights reserved

100

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

Annotation: dfdl:element, dfdl:simpleType

textNumberRounding

Enum
Specifies how rounding is controlled during unparsing.
Valid values 'pattern’, 'explicit'

When dfdl:textNumberRep is 'standard' this property only applies when
dfdl:textStandardBase is 10.

If 'pattern' then rounding takes place according to the pattern. A rounding
increment may be specified in the dfdl:textNumberPattern using digits "1'
though '9', otherwise rounding is to the width of the pattern. The rounding
mode is always 'roundHalfEven'.

IT "explicit’ then the rounding increment Is specitied by the
dfdl:textNumberRoundingIncrement property, and any digitsc'1*through
'9" in the dfdl:textNumberPattern are treated as digit '0". The_rourjding

mode is specified by the dfdl:textRoundingMode property.

To disable rounding, use 'explicit' in conjunction with,'roundUnngcessary’
for the dfdl:textNumberRoundingMode. If rounding’is disabled, then any
need for rounding is treated as a Processing Error.

Annotation: dfdl:element, dfdl:simpleType

textNumberRoundingMode

Enum
Specifies how rounding occurs during.uhparsing, when
dfdl:textNumberRounding is 'explicit".

When dfdl:textNumberRep is‘standard' this property only applie$ when
dfdl:textStandardBase is 10;

To switch off rounding, use 'roundUnnecessary'.

Valid values 'roundCeiling', 'roundFloor', 'roundDown’, 'roundUp|,
‘roundHalfEven’, ‘roundHalfDown', 'roundHalfUp', 'roundUnnecessary'
The enum values have these rounding directions:
'roundCeiling' - toward positive infinity.
'roundFloor' - toward negative infinity
‘roundDown' - toward zero
'roundUp' - away from zero
'roundHalfEven' - toward nearest neighbor, except when| both
neighbors are equidistant, in which case round towards the even
neighbor.
¢ 'roundHalfDown' - toward nearest neighbor, except when both
neighbors are equidistant, in which case round down.
e 'roundHalfUp' - toward nearest neighbor, except when bpth
neighbors are equidistant, in which case round up.
¢ 'roundUnnecessary' - no rounding. If rounding is necessary it is a
Processing Error.

Annotation: dfdl:element, dfdl:simpleType

textNumberRoundinglncrement

Double
Specifies the rounding increment to use during unparsing, when

Afall-+ AN [N R P2 H

'] TP
UTUT TCOATINUTTTOCTNUUTTUTT Y TS~ TAPTICTIT

When dfdl:textNumberRep is 'standard' this property only applies when
dfdl:textStandardBase is 10.

A negative value is a Schema Definition Error.
Annotation: dfdl:element, dfdl:simpleType

textNumberCheckPolicy

Enum
Values are 'strict' and 'lax'.

Indicates how lenient to be when parsing against the
dfdl:textNumberPattern.

© ISO/IEC 2024 - All rights reserved

101

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

When dfdl:textNumberRep is 'standard' this property only applies when
dfdl:textStandardBase is 10.

If 'lax' and dfdl:textNumberRep is 'standard' then behavior is
implementation-defined, but typically includes grouping separators are
ignored, leading and trailing whitespace is ignored, leading zeros are
ignored, and quoted characters may be omitted.

If 'lax' and dfdl:textNumberRep is 'zoned' then positive punched data is
accepted when parsing an unsigned type, and unpunched data is
accepted when parsing a signed type

If 'strict’ and dfdl:textNumberRep is 'standard' then the data must follow
the pattern with the exceptions that digits 0-9, decimal separator and

exponent separator are always recognized and parsed.

If 'strict’ and dfdl:textNumberRep is 'zoned' then the data must follow jthe
pattern.

On unparsing the pattern is always followed and follow the rulés)in 13.6.
Converting logical numbers to/from text representation.

Annotation: dfdl:element, dfdl:simpleType

N

textStanglardDecimalSeparator

List of DFDL String Literals or DFDL Expression

The decimal separator is the punctuation mark which separates the
integer part of a decimal or floating point numberfrom the fractional part
It is usually a period or comma depending on\ocale of the data.

This property defines a whitespace separated list of single characters
that appear (individually) in the data asthe decimal separator.

This property is applicable, when dfdl:textNumberRep is 'standard' and
dfdl:textStandardBase is 10. It must be set if dfdl:textNumberPattern
contains a decimal separator symbol ("."), or the E or @ symbols. (it is a
Schema Definition Error othérwise.) Empty string is not an allowable

value.

This property can be @omputed by way of an expression which returns a
DFDL String Literalthat represents a single character. The expression
must not containforward references to elements which have not yet
been processed.

Text Number Character Restrictions: The string literal is restricted to
allow onlycertain kinds of DFDL String Literal syntax:

o> DFDL character entities are allowed
The DFDL byte value entity (%#rXX;) is not allowed.
e DFDL Character classes NL, WSP, WSP+, WSP*, and ES are
not allowed
It is a Schema Definition Error if the string literal contains any of the
disallowed syntax constructs.
In addition, it is a Schema Definition Error if any of the string literal
values for this property are digits 0-9.

Annotation: dfdl:element, dfdl:simpleType

textStantFardGroupingSeparator

DFDL String Literal or DFDL Expression

The grouping separator is the punctuation mark which separates the
clusters of integer digits to improve readability.

This property defines the single character that can appear in the data as
the grouping separator.

This property is applicable when dfdl:textNumberRep is 'standard' and
dfdl:textStandardBase is 10. It must be set if dfdl:textNumberPattern
contains a grouping separator symbol (it is a Schema Definition Error
otherwise.) Empty string is not an allowable value.

This property can be computed by way of an expression which returns a
DFDL String Literal that represents a single character. The expression

© ISO/IEC 2024 - All rights reserved

102

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

must not contain forward references to elements which have not yet
been processed.

The string literal value is restricted in the same way as described in "Text
Number Character Restrictions" in the description of the
dfdl:textStandardDecimalSeparator property.

See also Section 13.6.1.1 dfdl:textNumberPattern for
dfdl:textNumberRep 'standard' for additional details about grouping
separators.

Annotation: dfdl:element, dfdl:simpleType

textStandardExponentRep

DFDL String Literal or DFDL Expression

Pefimes-theactuatcharacter (a) thrat appeat imrthedataas-theexponent
indicator. If the empty string is specified then no exponent charagter is
used.

This property is applicable when dfdl:textNumberRep is.'standarg' and
dfdl:textStandardBase is 10. Empty string is an allowable value, o that
formats like NNN+M (meaning NNN x 10 with MM exponent) can be
expressed.

This property must be set even if the dfdl:textNumberPattern dogs not

contain an 'E' (exponent) character. It is a\Schema Definition Errpr if this
property is not set or in scope for any aumber with dfdl:representation

'text'.
This property can be computed by way of an expression which returns a
DFDL String Literal. The expressSion must not contain forward references
to elements which have notyet been processed.

The string literal value is‘restricted in the same way as described in "Text
Number Character Restrictions" in the description of the
dfdl:textStandardDeéimalSeparator property.

If dfdl:ignoreCase is 'yes' then the case of the string is ignored by the
parser.

Annotation:-dfdl:element, dfdl:simpleType

textStandardInfinityRep

DFDL, String Literal
Thevalue used to represent infinity.

Infinity is represented as a string with the positive or negative prefixes
and suffixes from the dfdl:textNumberPattern applied.
This property is applicable when dfdl:textNumberRep is 'standargl’,
dfdl:textStandardBase is 10 and the simple type is float or doublé.
If dfdl:ignoreCase is 'yes' then the case of the string is ignored by the
parser.

The string literal value is restricted in the same way as described in "Text
Number Character Restrictions" in the description of the
dfdl:textStandardDecimalSeparator property.

It is a Schema Definition Error if empty string found as the propefty
value.

Annotation: dfdl:element, dfdl:simpleType

D

textStandardNaNRep

DFDL String Literal

The value used to represent NaN.

NaN is represented as a string and the positive or negative prefixes and
suffixes from the dfdl:textNumberPattern are not used.

This property is applicable when dfdl:textNumberRep is 'standard’,
dfdl:textStandardBase is 10 and the simple type is float or double.

If dfdl:ignoreCase is 'yes' then the case of the string is ignored by the
parser.

© ISO/IEC 2024 - All rights reserved

103

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

The string literal value is restricted in the same way as described in "Text
Number Character Restrictions" in the description of the
dfdl:textStandardDecimalSeparator property.

It is a Schema Definition Error if empty string found as the property
value.

Annotation: dfdl:element, dfdl:simpleType

textStandardZeroRep List of DFDL String Literals
Valid values: empty string, any character string
The whitespace separated list of alternative DFDL String Literals that are
equivalent to zero, for example the characters 'zero'.
The representatfion is examined for a match 1o one of the values of this
property after padding has been trimmed away.
On unparsing the first value is used.
If dfdl:ignoreCase is 'yes' then the case of the string is ignored'by the
parser.
The empty string means that there is no special literal sfring for zero.
This property is applicable when dfdl:textNumberRep.is 'standard' and
dfdl:textStandardBase is 10.
Each string literal in the list is restricted to allow.only certain kinds of
DFDL String Literal syntax:
o DFDL character entities are allowed.
e DFDL Byte Value entities (%#rXX;) are not allowed.
o DFDL Character class entities’NL and ES are not allowed.
e DFDL Character class entities WSP, WSP+, and WSP* are
allowed.
However, the WSP* entity.cannot appear on its own as one of the string
literals in the list. It must\be used in combination with other text
characters or entitiesso as to describe a representation that cannot evef
be an empty string.
It is a Schema Befinition Error if the string literal contains any of the
disallowed syntax constructs.
Annotation;\dfdl:element, dfdl:simpleType
textStanglardBase Non-negative Integer
Valid Values 2, 8, 10, 16
Indicates the number base.
Only used when dfdl:textNumberRep is 'standard'.
When base is not 10, xs:decimal, xs:float, and xs:double are not
supported.
When dfdl:textNumberRep is 'zoned' dfdl:textStandardBase is not used
and base 10 is assumed.
Annotation: dfdl:element, dfdl:simpleType
textZonedSignStyle Enum

Specities the code points that are used to modity the sign nibble of the
byte containing the sign, when the dfdl:encoding is an ASCII-derived
character set encoding. The location of this sign nibble is indicated in the
dfdl:textNumberPattern.

This property is applicable when dfdl:textNumberRep is 'zoned'.

Used only when dfdl:encoding is an ASCII-derived character set
encoding. The encoding must provide the character to single byte code
point mapping used by the specified value of dfdl:textZonedSignStyle, as
stated below.

© ISO/IEC 2024 - All rights reserved

104

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

Valid values 'asciiStandard', 'asciiTranslatedEBCDIC',
'asciiCARealiaModified’, and 'asciiTandemModified'

Which characters are used to represent modified (also called

compiler, and system. The code points are fixed for EBCDIC sys
not for ASCII.

are expressed for zoned numbers.

'overpunched’) positive and negative signs, varies by encoding, COBOL

tems but

In ASCIl-based encodings, this property is used to determine how signs

e asciiStandard: ASCII characters '0123456789' represent a
positive sign and the corresponding digit. (Sign nibble for '+' is
0x3, which is the high nibble of these code points unmodified.)

ASCIT characters pqrstuvwxy' represent negafive sign a
0 to 9. (Code points 0x70 to 0x79)

e asciiTranslatedEBCDIC: The overpunched character is
ASCII equivalent of the typical EBCDIC aboves.So; the
characters {ABCDEFGHI' still represent a positive sign
digits 0 to 9. (These are code points 0x7B)0x41 through
The characters 'JJKLMNOPQR' still represent negative s
digits 0 to 9. (These are code points 0x7D, 0x4A through

to ASCII as if it were textual data.)

e asciiCARealiaModified41: Inthis style, the ASCII chara
'0123456789' represent positive sign and digits 0 to 9 ag
asciiStandard. Howevef, ASCII characters from code po
0x20 to 0x29 are used for negative sign and the corresp
decimal digit. This'doesn't translate well into printing chg

"1"#$%4&' for 1 through 6, the single quote character " fo
the parenthesis '()' for 8 and 9.

e asciiTandemModified: In this style the ASCII characters
'0123456789' represent positive sign and digits 0to 9, b
points 0x80 to 0x89 are used to represent negative sign
digit. There are no corresponding code points in the star

hd digits
the

and

0x49).
ign and
0x52).

This case comes up if EBCDIC zonéd decimal data is translated

cters

in

nts
bnding
racters.

These characters.include the space (' ') for zero, characfers

r 7, and

it code
and a
dard

ASCII encoding since these values are all above 128 (d¢cimal).

This means the resultant bytes are not code points in standard
ASCII, so the schema must specify an encoding like 1ISQ-8859-1
for such zoned decimals to parse without an encoding efror.
(Note that neither ISO-8859-1 encoding, nor Unicode have
assigned glyphs for these code points. They are considgred
control characters.)
Annotation: dfdl:element, dfdl:simpleType
Table 31 Properties Specific to Number with Text Representation
THe dfdl:textStandardDecimalSeparator, dfdl:textStandardGroupingSeparator, dfdl:textStandardExppnentRep,
dfdl:textStandardInfinityRep, dfdl:textStandardNaNRep, and dfdl:textStandardZeroRep must all be djstinct,
and it is;a.Schema Definition Error otherwise. Note that if dfdl:textStandardDecimalSeparator,
dfgl:;textStandardGroupingSeparator, or dfdl:textStandardExponentRep are expressions, this checking can
only be carried out during processing (parsing or unparsing.) T

Implementation note: This rule is in the interests of clarity and is an extra constraint compared to ICU.

41 Reference for this CA Realia 0x20 overpunch for negative sign is the article: "EBCDIC to ASCII Conversion of Signed
Fields" [CARealia] where it says:

COBOL compilers that run on ASCII platforms have a "signed" data type that operates in a similar manner to the EBCDIC
Signed field -- that is, they over punch the sign on the LSD (Least Significant Digit). However, this is not standardized in
ASCII, and different compilers use different overpunch codes. For example, Computer Associates' Realia compiler uses a
30 hex for positive values and a 20 hex for negative values, but Micro Focus® and Microsoft® use 30 hex for positive
values and 70 hex for negative values.

© ISO/IEC 2024 - All rights reserved

105

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

13.6.1 The dfdl:textNumberPattern Property

The dfdl:textNumberPattern describes how to parse and unparse text representations of number logical types

with base

10.

The length of the representation of the number is determined first, and the number pattern is used only for
conversion of the content text to and from a numeric logical Infoset value.

The pattern described below is derived from the ICU DecimalFormat class described here: [ICUDecimal]

The pattern is an ICU-like syntax that defines where grouping separators, decimal separators, implied decimal
points, exponents, positive signs and negative signs appear. It permits definition by either digits/fractions or
significant digits.

13.6.1.1
When dfd

The pattefn comes in two parts separated by a semi-colon. The first is mandatory and applies to positive

numbers,
Examples

shows virfual decimal point, the fourth shows scaling position.

dfdl:-textNumherPattern for dfdl:textNumbherRep ‘standard"
-textNumberRep is 'standard’ this property only applies when dfdl:textStandardBase is 10.

the second is optional and applies to negative numbers.
The first shows digits/fractions and positive/negative signs, the second shows exponent, the third

+H##4, #4000, (##4#,##0.00)

#4#0.04E0

000V00

PPP0000

The 'V' synbol is used to indicate the location of an implied decimal point for fixed point number

representations. (This is an extension to the ICU pattern language.)

The 'P' syl

the ICU pattern language.)

The actua
pattern.

The actua

Many cha
unparsing

For examile, the '#' character is replaced by adigit.

To insert

mbol is used to indicate that a decimal scaling factor needs to be applied. (This is an extension to
grouping separator, decimal separator and exponént characters are defined independently of the
positive sign and negative sign are defined within the pattern itself.

acters in a pattern are taken literally; they.are matched during parsing and output unchanged duripng
Special characters, on the other hand;stand for other characters, strings, or classes of characters.

special character in a pattern as atliteral, that is, without any special meaning, the character, or a

string containing it must be surrounded.by.quote symbols. There are some exceptions to this which are noted
below.
Symbol || Location Meaning
0 Number Digit
1-9 Number 1" through '9' indicates rounding.
Number Digit, zero shows as absent
Number Decimal separator or monetary decimal separator
- Number Minus sign
, Number Grouping separator
E Number Separates mantissa and exponent in scientific notation. Need not be quoted in
prefix or suffix if use is unambiguous.
+ Exponent Prefix positive exponents with plus sign. Need not be quoted in prefix or suffix
if use is unambiguous.
; Subpattern Separates positive and negative subpatterns
boundary

© ISO/IEC 2024 - All rights reserved

106

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

o''clock.

format 123 to VALUE 123.

Prefix or suffix | Used to escape special characters in a prefix or suffix, for example, '# ' #
formats 123 to #123. To create a single quote itself, use two in a row:

#

Multiple special characters may be escaped either by quoting individually or by
quoting a containing string, for example 'VALUE' # and 'V'ALU'E' # both

Prefix or suffix | Pad escape, precedes pad character
boundary

\% Number Virtual decimal point marker. Only used with decimal, float and double

tvnes
Yoo

simple

R Number Decimal scaling position. Only used with decimal, float and doublée sin
types.

ple

@ Number Significant digits specifier. Only used with decimal simple type! Controj
number of significant digits when used alone or in conjunction with thej
character.

Tdble 32 dfdl:textNumberPattern Special Characters

A pattern contains a positive and negative subpattern, for example, "#,##0.00j(#,##0.00)". Each sub
a prefix, a numeric part, and a suffix. If there is no explicit negative subpattern, the negative sub
thé minus sign prefixed to the positive subpattern. That is, "0.00" alone’is equivalent to "0.00;-0.00".
an explicit negative subpattern, it serves only to specify the negative prefix and suffix; the number of
minimal digits, and other characteristics are ignored in the negative subpattern. That means that
"###0.0#;(#)" has precisely the same result as "#,##0.0#; (#,##0.0%)".

THe prefixes, suffixes, and various symbols used for infinity, ‘digits, grouping separators, decimal sep

battern
battern is
fthere is
digits,

arators,
be taken
itive and
ative

5 more
ng size is
000"
rouping
ut

2, then

thils corresponds to the patterq "#,##,##0", and the number 123456789 is formatted as "12,34,56,789". If a

pattern contains multiple greuping separators, the interval between the last one and the end of the i
ines the primary grouping size, and the interval between the last two defines the secondary groug
All others are ignored,. SO "# ## #HH HHHE" == "HHHE HE HAHE == "H#HE 3 R A

THe P symbol is used‘to derive the location of an assumed decimal point when the point is not within
number that appears in the data. It acts as a decimal scaling factor.

THe symbolR can be specified only as a continuous string of Ps in the leftmost or rightmost digit pos
the vpintegertregion of the pattern.

It iIs a,.Schema Definition Error if any symbols other than "0", "1" through "9" or # are used in the vpin

teger
ing size.

the
itions in

teger

region, of the pattern.

Examples
Data Representation Pattern Value
123 PP000 0.00123
123 000PP 12300

Table 33 Examples of P Symbol in the dfdl:textNumberPattern Property

pattern = subpattern (';' subpattern)?

subpattern := prefix? ((number exponent?)| vpinteger) suffix?
number = (integer ('.' fraction)?) | sigdigits
vpinteger := pinteger | (vinteger exponent?)

© ISO/IEC 2024 - All rights reserved

107

http://www.icu-project.org/apiref/icu4c/classDecimalFormat.html#fe6f4084b4a6ccff6977501d90011fa4
https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

pinteger := ('P' 'P'* '0'* '0') | (integer 'P'* 'P')
vinteger := ('#'* '0'* 'V' '0'* '0') | (integer 'V')
prefix = '\u0000'..'\uFFFD' - specialCharacters
suffix = '"\u0000"'..'\uFFFD' - specialCharacters
integer = '"#$'* '0'* 'O
fraction = '0'* '#'*
sigDigits i A CRENRN G S
exponent = 'E'" '"+'?2 '0'* 'Q!
padSpec = '*' padChar
padChar = '"\u0000'..'"\uFFFD' - quote
Notation:
X* 0 or more instances of X
X? Q or 1 dngstance of X
XY either X or Y
C..D any character from C up to D, inclusive
S= characters in S, except those in T

Figure 4 dfdl:textNumberPattern BNF syntax

The first sfibpattern is for positive numbers. The second (optional) subpattern is for negative Aumbers.
Not indicated in the BNF syntax above:

e The grouping separator',' can occur inside the integer region, between any two‘pattern characters o
that region, as long as the number region is not followed by an exponent region.
e Two grouping intervals are recognized: That between the decimal point ard the first grouping symbd

)

and that between the first and second grouping symbols. These intervals are identical in most localgs,

but in some locales they differ. For example, the pattern "#,## ####" formats the number 123456789 g
"12,34,56,789".

e The pad specifier padSpec may appear before the prefix, afterthe prefix, before the suffix, after the
suffix, or not at all.

e In[place of '0', the digits '1' through '9" in the number or vpinteger region may be used to indicate a

rounding increment.

The term maximum fraction digits is the total number of '0' ahd '#' characters in the fraction sub-pattern aboy
The term minimum fraction digits is the total number of '0'*characters (only) in the fraction sub-pattern above

The term maximum integer digits is a limit that is implémentation-dependent but MUST be at least 20 (which
the numbger of digits in a base 10 unsigned long):4?

The term minimum integer digits is the total number of '0' characters (only) in the integer sub-pattern above.
Parsing
During pafsing, grouping separators aréremoved from the data.
Unparsing
Unparsing is guided by several parameters all of which can be specified using a pattern. The following
description applies to formats that do not use scientific notation.

If the numper of actual integer digits exceeds the maximum integer digits, then only the least significant digit
are outpuf. For example).1997 is formatted as "97" if the maximum integer digits are 2.

[

S

®

S

If the numper of actuakinteger digits is less than the minimum integer digits, then leading zeros are added. Hor

example, [1997 is fermatted as "01997" if the minimum integer digits are 5.

If the numper of\actual fraction digits exceeds the maximum fraction digits, then half-even rounding is
performed
digits are 2- vier-ean-be-changed y rent-and-atrotnding-mode

If the number of actual fraction digits is less than the minimum fraction digits, then trailing zeros are added.
For example, 0.125 is formatted as "0.1250" if the minimum fraction digits are 4.

Trailing fractional zeros are not output if they occur j positions after the decimal, where j is less than the
maximum fraction digits. For example, 0.10004 is formatted as "0.1" if the maximum fraction digits are four or
less.

Special Values

42 Implementations which use current versions of the popular ICU library will allow 309 digits as maximum integer digits.

© ISO/IEC 2024 - All rights reserved

108

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

NaN is represented as a string determined by the dfdl:textStandardNaNRep property. This is the only value for
which the prefixes and suffixes are not used.

Infinity is represented as a string with the positive or negative prefixes and suffixes applied. The infinity string
is determined by the dfdl:textStandardInfinityRep property.

Scientific Notation

Numbers in scientific notation are expressed as the product of a mantissa and a power of ten, for example,
1234 can be expressed as 1.234 x 103. The mantissa is typically in the half-open interval [1.0, 10.0) or
sometimes [0.0, 1.0), but it need not be. In a pattern, the exponent character immediately followed by one or
more digit characters indicates scientific notation. Example: "0.###EQ" formats the number 1234 as "1.234E3".

The number of digit characters after the exponent character gives the minimum exponent digit count. There is
no maximum. Negative exponents are formatted using the minus sign, not the prefix and suffix from the
pattern. This allows patterns such as "0.####E0 m/s". To prefix positive exponents with a plus sign, gpecify '+'
between the exponent and the digits: "0.###E+0" produces data like "1E+1", "1E+0", "1E-1", etc(
THe minimum number of integer digits is achieved by adjusting the exponent. Example: 0.00123 formatted
with "00.###EQ" yields "12.3E-4". This only happens if there is no maximum number of intéger digits| If there
is B maximum, then the minimum number of integer digits is fixed at one.
THe maximum number of integer digits, if present, specifies the exponent grouping. The’ most commpn use of
this is to generate engineering notation, in which the exponent is a multiple of three, e.g., "##0.###EQ". The
number 12345 is formatted using "##0.####E0" as "12.345E3".
When using scientific notation, the formatter controls the digit counts using significant digits logic. The
maximum number of significant digits limits the total number of integer and-fraction digits that are shpwn in the
mantissa; it does not affect parsing. For example, 12345 formatted with<"##0.##E0" is "12.3E3". .

EXponential patterns must not contain grouping separators.
Significant Digits

THe '@' pattern character can be used with the '# to control hiew many integer and fraction digits arg needed
to [display the specified number of significant digits. The '@"only affects unparsing behavior. Examples:

Rattern | Minimum significant digits | Maximum(significant digits | Number | Formatted|Output
@@@ |3 3 12345 12300

@@@ |3 3 0.12345 | 0.123

@@# | 2 4 3.14159 | 3.142

@@# | 2 4 1.23004 | 1.23

Tdble 34 Significant Digits '@’ Symbol in the dfdl:textNumberPattern Property

Significant digit counts may be.expressed using patterns that specify a minimum and maximum numper of
significant digits. These are indicated by the '@' and '#' characters. The minimum number of significant digits
is fhe number of '@' characters. The maximum number of significant digits is the number of '@’ characters
plus the number of '#"characters following on the right. For example, the pattern "@@@" indicates gxactly 3
significant digits. The-pattern "@##" indicates from 1 to 3 significant digits. Trailing zero digits to the fright of
the decimal separator are suppressed after the minimum number of significant digits have been shoyn. For
example, the.pattern "@##" formats the number 0.1203 as "0.12".
If & pattern-uses significant digits, it must not contain a decimal separator, nor the '0' pattern character.
P3atternssuch as "@00" or "@.###" are disallowed.
Arnfytaumber of '#' characters may be prepended to the left of the leftmost '@' character. These have|no effect
on i i fgmifi o] itt i tors. For
example, "# #@#" indicates a minimum of one significant digit, a maximum of two significant digits, and a
grouping size of three.

The number of significant digits has no effect on parsing.

Significant digits may be used together with exponential notation. For example, the pattern "@@###EQ" is
equivalent to "0.0###EQ".

The '@’ pattern character can be used only in 'standard' textNumberRep (not 'zoned') and excludes the 'P"'
and 'V' pattern characters. It is a Schema Definition Error if the '@' pattern character appears in 'zoned'
textNumberRep, or in conjunction with the 'P' or 'V' pattern characters.

Padding

© ISO/IEC 2024 - All rights reserved

109

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

Padding may be specified through the pattern syntax. In a pattern the pad escape character, followed by a
single pad character, causes padding to be parsed and formatted. The pad escape character is "™'. For
example, "*x#,##0.00" formats 123 to "xx123.00", and 1234 to "1,234.00".

When padding is in effect, the width of the positive subpattern, including prefix and suffix, determines the
format width. For example, in the pattern "* #0 o"clock", the format width is 10.

The width is counted in 16-bit code units.

Some parameters which usually do not matter have meaning when padding is used, because the pattern

width is significant with padding. In the pattern "* ## ## # ##0.##", the format width is 14. The initial characters
"## ##," do not affect the grouping size or maximum integer digits, but they do affect the format width.

Padding may be inserted at one of four locations: before the prefix, after the prefix, before the suffix, or after
the suffix. If there is no prefix, before the prefix and after the prefix are equivalent, likewise for the suffix.

When speicified in a pattern, the 32-bit codepoint immediately following the pad escape is the pad character,
This may be any character, including a special pattern character. That is, the pad escape escapes the
following ¢haracter. If there is no character after the pad escape, then the pattern is illegal.
Note: Padding specified through the pattern syntax is distinct from, and in addition to, padding spetified using
dfdl:textPadKind.
Roundin
How roungling is controlled is given by dfdl:textNumberRounding. The rounding increment-may be specified
the dfdl:tektNumberPattern itself using digits '1' through '9' or using an explicit incrementin
dfdl:textNgimberRoundingincrement. For example, 1230 rounded to the nearest 50 is 1250. 1.234 rounded tp
the neares$t 0.65 is 1.3.
¢ Rpunding only affects the string produced by unparsing. It does not affect parsing or change any
ndmerical values.
e In|a pattern, digits '1' through '9' specify rounding, but otherwise’béhave identically to digit '0'. For
example, "#,#50" specifies a rounding increment of 50.
e Using digits in a pattern, rounding is always 'half even', meaning rounds towards the nearest integer,
orl towards the nearest even integer if equidistant.

Using an ¢xplicit rounding increment, dfdl:textNumberRoundingMode determines how values are rounded.

n

13.6.1.2 dfdl:textNumberPattern for dfdl:textNumberRep 'zoned'

When dfdl:textNumberRep is 'zoned' a subset of thesnumber pattern language described in Section 13.6.1.1
dfdl:textNéimberPattern for dfdl:textNumberRep {standard' is used.

Only the gattern for positive numbers is used. It'is a Schema Definition Error if the negative pattern is
specified.
In additior], only the following pattern characters may be used:

e '+ must be present at the bedinning or end of the pattern to indicate whether the leading or trailing
digit carries the overpunched sign, if the logical type is signed

e 4 may be present atthe beginning or end of the pattern to indicate whether the leading or trailing
digit carries the oyerpunched sign, if the logical type is unsigned. If logical type is unsigned and
dfdl:textNumbetPolicy 'lax’ specified it is a Schema Definition Error if no '+' is present.

e '\I'may bewused to indicate the location of an implied decimal point
¢ 'P| maybeused to indicate the decimal scaling
o '0-9vindicates the number of needed digits (including overpunched).

° '‘“Hlindicatace tha niumhar af antinnal Ainitc
1 HeroeteStreTor e OO ptSrartngo:

Rounding occurs as described under Rounding in 13.6.1.1 dfdl:textNumberPattern for dfdl:textNumberRep
'standard'

13.6.2 Converting logical numbers to/from text representation
e Signed numbers with dfdl:textNumberRep 'standard' and dfdl:textStandardBase 10 are mapped using
the dfdl:textNumberPattern.
¢ Signed numbers with dfdl:textNumberRep 'standard’ and dfdl:textStandardBase not 10 are mapped to

an unsigned representation. On unparsing the minimum number of characters to represent the digits
is output and it is a Processing Error if the value is negative.

© ISO/IEC 2024 - All rights reserved

110

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

Signed numbers with dfdl:textNumberRep 'zoned' are mapped using the dfdl:textNumberPattern to
indicate the position of the sign and virtual decimal point. On parsing if the sign is not overpunched,
that is it does not have a sign, it is treated as positive. On unparsing the sign is always overpunched.
Unsigned numbers with dfdl:textNumberRep 'standard' and dfdl:textStandardBase 10 are mapped
using the dfdl:textNumberPattern. On parsing it is a Processing Error if the data are negative.
Unsigned numbers with dfdl:textNumberRep 'standard’ and dfdl:textStandardBase not 10 are
mapped to an unsigned representation. On unparsing the minimum number of characters to represent
the digits is output.

Unsigned numbers with dfdl:textNumberRep 'zoned' are mapped using the dfdl:textNumberPattern to
indicate the position of the sign and virtual decimal point. On parsing it is a Processing Error if the
data are negative. On unparsing the data are not overpunched with a sign.

© ISO/IEC 2024 - All rights reserved

111

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

13.7 Properties Specific to Number with Binary Representation

These properties are applicable to simple type xs:decimal and its derived types which include all the signed
and unsigned integer types. These properties are not applicable to types xs:float and xs:double. See Section
13.8. Note that simple types derived from xs:decimal do not imply base-10 representations in the data stream.

Property Name Description

binaryNumberRep Enum
Valid values are 'packed', 'bcd', 'binary', ibm4690Packed’
Allowable values for each number type are:

Logical Type Permitted Value

Decimal, Integer, NonNegativelnteger packed, bcd, binary,
ibm4690Packed

Long, Int, Short, Byte, packed, binary,
ibm4690Packed (but'mot bcd)

UnsignedLong, Unsignedint, packed, bcd, binary,

UnsignedShort, UnsignedByte ibm4690Packed

e 'packed' means represented as an IBM 390 packed decimal. Each
byte contains two decimal digits, except for the) least significant byte,
which contains a sign in the least significantnibble.

e 'bed' means represented as a binary coded decimal with two digits pe
byte.

e 'binary' means represented as twos complement for signed types and
unsigned base-2 binary for unsighed types.

Note that the maximum allowed value for twos-complement and unsigned
base-2 binary integers is implementation-dependent but MUST be at least thg
of a xs:long type, which is the equivalent of an 8 byte/64-bit signed integer.

o 'iIbm4690Packed' is:avariant of a packed decimal having the following
characteristics:
o Nibbles represent digits 0 - 9 in the usual BCD manner.
o Apositive value is simply indicated by digits.
o Albegative number is indicated by digits with the most
significant nibble being xD.
o, If a positive or negative value packs to an odd number of
nibbles, an extra xF nibble is added as the most significant
nibble.

Forall"'values, the dfdl:byteOrder property is used to determine the numeric
significance of the bytes making up the representation, and the dfdl:bitOrder
property is used to determine the numeric significance of the bits within a byte.

Annotation: dfdl:element, dfdl:simpleType

=

—

binaryDdcimalVirtualPoint | Integer.

Used when the base simpleType is xs:decimal exactly. That is, not any of the
built-in integer simple types.

An integer that represents the position of an implied decimal point within a
number or Specify 0:

If specified as 0 then there is no virtual decimal point

If specified as a positive integer, the position of the decimal point is moved
from the least-significant side of the number toward the most-significant side
of the number. For example, if 3 is specified then, the integer value 1234
represents 1.234. This is equivalent to dividing by 10>

If specified as a negative integer, the position of the decimal point is moved
from the least significant side of the number further in the less-significant
direction. For example, if specified as -3, the integer value 1234 represents 1
234 000.This is equivalent to multiplying by 103

© ISO/IEC 2024 - All rights reserved

112

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

When unparsing, if the property value is not sufficient to remove the d
point from the Infoset value, it is a Processing Error. This is true even

ecimal
if the

resultant number can be converted into an integer (that is, all digits after the
decimal point are zero) because it is an example of excess precision where no

rounding is possible.
Annotation: dfdl:element, dfdl:simpleType

binaryPackedSignCodes

List of Characters
Used only when dfdl:binaryNumberRep or dfdl:binaryCalendarRep is

A whitespace separated string giving the hex sign nibbles to use for a
value, a negative value, an unsigned value, and zero.

'packed'

positive

Yatid-vatoesforpositive nibbteA S £+

Valid values for negative nibble: B, D

Valid values for unsigned nibble: F

Valid values for zero sign: ACEF 0

Example: 'C D F C' — typical S/390 usage
Example: 'C D F 0' — handle special case for zero

On parsing, whether to accept all valid values fora‘positive, negative
unsigned number, and for zero, is governed by the&
dfdl:binaryNumberCheckPolicy property. On unparsing, the specified
are always used.

Annotation: dfdl:element, dfdl:simpleTyfpe

alues

inaryNumberCheckPolicy

Enum
Values are 'strict’' and 'lax’.
Indicates how lenient to be When parsing binary numbers.

If 'lax' then the parser tolerates all valid alternatives where such altern
exist. Specifically, for dfdl:binaryNumberRep 'packed' the sign nibble f
positive, negative, unsigned and zero can be any of the valid respecti
values.

On unparsing;, the specified value is always used

Annotation:'dfdl:element, dfdl:simpleType

atives
pr
e

Tgble 35 Properties Specific to Number with Binary Representation

13

.7.1 Converting Logical Numbers to/from Binary Representation

Nen unparsing a binary ndmber (packed decimal or twos-complement) and excess precision is suf
¢ Infoset no rounding acCgurs. It is a Processing Error.

plied in

forthe XS: deC|maI type, the dfdl blnaryDeC|maIV|rtuaIPO|nt property can be used to convert this mteger into a
decimal value with an integer and a fractional component.

A DFDL implementation can use any conversion technique consistent with this description.

13.7.1.2 Bit strings, Alignment, and dfdl:fillByte

The dfdl:alignmentUnits of 'bits', and dfdl:alignment of '1' can be used to position a bit string anywhere in the
data stream without regard for any other grouping of bits into bytes.

The numeric value of the unsigned integer represented by a bit string is unaffected by alignment.

When unparsing a bit string, alignment may cause the bits within the bit string to occupy only some of the bits
within a byte of the data stream. The bits of data in the alignment fill region are unspecified by the elements of

© ISO/IEC 2024 - All rights reserved

113

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

the DFDL schema, and when parsing, neither they, nor any data computed from them are put into the DFDL
Infoset. During unparsing, such unspecified bits are filled in using the value of the dfdl:fillByte property.
Corresponding bits from the dfdl:fillByte value are used to fill in unspecified bits of the data stream. That is, if
bit K (K'is 1 or greater, but less than or equal to 8) of a data stream byte is unspecified, its value is taken from
bit K of the dfdl:fillByte property value.

Since the value of any bit string element is unaffected by alignment, the logical unsigned integer value for a
bit-string is always computed as if the first bit were at position 1 of the bit stream. If the dfdl:length for the bit-
string evaluates to M, then the bit-string conceptually occupies bits 1 to M of a data stream for purposes of
computing its value.

13.7. 1 3 Bits WIthln Blt Strlngs of Length <=8

13.7.1.4 Bits within Bit Strings of Length > 8

Call M thel length of the bit string element in bits. In general, when M > 8 the contribution of a bit/in position ilto
the numerjic value of a bit string is given by a formula specific to the dfdl:byteOrder.

For dfdl:byteOrder of 'bigEndian’ the value of bit i is given by 24(M - i), where i = 1 is the index of the most-
significan{| bit.

For dfdl:byteOrder of 'littleEndian’ the value of bit i is given by a more complex formula. The following pseud
code computes the value of a bit in a littleEndian bit string. It is just a very big expression but is spread out
over many local variables to illustrate the various sub-calculations clearly. DFDL implementations MAY use
any way of converting bit strings to the corresponding integer values that.is«<onsistent with this:

In the pselido code below:

'%' is modular division (division where remainder is returned)
''lis regular division (quotient is returned)
o the expression 'a ? b : ¢' means 'if a is true, then the yalue is b, otherwise the value is ¢'

A=

littleEndianBitValue (bitPosition, bitStringLeagth)
bssert bitPosition >= 1;
bssert bitStringLength >= 1;
bssert bitStringLength >= bitPositdion;
humBitsInFinalPartialByte = bitStixingLength % 8;
humBitsInWholeBytes = bitStringlength -
numBit§InFinalPartialByte;
bitPosInByte = ((bitPosition - 1) % 8) + 1;
vidthOfActiveBitsInByte & \(bitPosition <= numBitsInWholeBytes)
? 8 : numBitsInFirdalPartialByte;
blaceValueExponentOfBigInByte = widthOfActiveBitsInByte -
bitPosInByte;
bitValuelInByte = (24placeValueExponentOfBitInByte;
byteNumZeroBased s (bitPosition - 1)/8;
EcaleFactorFofBytePosition = 27 (8 * byteNumZeroBased) ;
bitValue = HifValueInByte * scaleFactorForBytePosition;
Feturn bitValue;

Figure 5 Little Endian bit position and value

13.7.1.4.1| Examples of Unsigned Integer Conversion
Consider the first three bytes of the data stream. Imagine their numeric values as Ox5A 0x92 0x00.

Positions:
00000000 01111111 11122222
12345678 90123456 78901234
Bits:
01011010 10010010 00000000
Hex wvalues

5 A 9 2 0 0

Beginning at bit position 1, (the very first bit) considering the first two bytes as a bigEndian short, the value is
0x5A92.

© ISO/IEC 2024 - All rights reserved

114

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

<xs:element name="num" type="unsignedShort"

dfdl:alignment="1"
dfdl:alignmentUnits="bytes"
dfdl:byteOrder="bigEndian"
dfdl:bitOrder="mostSignificantBitFirst"
dfdl:representation="binary"
dfdl:binaryNumberRep="binary"/>

As

a littleEndian short, the value is 0x925A.

<xs:element name="num" type="unsignedShort"

dfdl:alignment="1"
dfdl:alignmentUnits="bytes"
dfdl:byteOrder="1ittleEndian"

Sedl ol <l 1

e o el e
S der— et S e e
dfdl:representation="binary"
dfdl:binaryNumberRep="binary"/>

EXx

amining a bit string of length 13, beginning at position 2:

</

s : sequence>

xs:element name="ignored" type="unsignedByte"
dfdl:alignment="1"
dfdl:alignmentUnits="bits"
dfdl:lengthUnits="bits"
dfdl:length="1"
dfdl:representation="binary"
dfdl:binaryNumberRep="binary"/>

xs:element name="x" type="unsignedShort"
dfdl:alignment="1"
dfdl:alignmentUnits="bits"
dfdl:byteOrder="bigEndian"
dfdl:bitOrder="mostSignificantBitFirst"
dfdl:lengthUnits="bits"
dfdl:length="13"
dfdl:representation="binary"
dfdl:binaryNumberRep="binary"/>

XS :sequence>

One can examine the same data stream and.consider the bit positions that make up element 'x', whi

bit

5 at positions 2 through 14 inclusive.

ch are the

Pd
0(Q
14
Bi]
il

sitions:

000000 01111111 11122222
345678 90123456 78901234
ts:

011010 100100

Si
TH

at is, the value isthe same as if the bits of the element's representation began with bit position 1.

nce alignment does not-affect logical value, one obtains the same logical value as if the bits were realigned.

R4
0d
17
Bi
1

aligned Posifions:
000000 0131111 11122222
345678<90123456 78901234
=Sk

1161901 00100

Th

e DEDL schema fragment above gives element 'x' the dfdl:byteOrder 'bigEndian’ property and the

dfdl:bitOrder 'mostSignificantBitFirst' property. In this case the place value of each position is given by 29,
Below the bit values are lined up underneath their place-values.

Place value of bits

.11110 00000000
.21098 76543210

Bit values

.10110 10100100

Hex wvalues

1 6 A 4

© ISO/IEC 2024 - All rights reserved

115

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

The value of element 'X' is 0x16A4. Notice how it is the most-significant byte -- which is the first byte when big
endian -- that becomes the partial byte (having fewer than 8 bits) in the case where the length of the bit string
is not a multiple of 8 bits.

For dfdl:byteOrder of 'littleEndian’. The place values of the individual bits are not as easily visualized. However
there is still a basic formula (given in the pseudo code in Section 13.7.1.4 Bits within Bit Strings of Length > 8)
and value.

Looking again at our realigned positions:

Realigned Positions:
00000000 01111111 11122222
12345678 90123456 78901234
Bits:

10110107 0UTUU

The place|values of each of these bits, for little endian byte order can be seen to be:

PlaceValue positions

0000000¢ ...11100
76543210 ...21098
Bit valufes
10110101 ...00100
Hex valtfes

B 0 4

One must|reorder the bytes for little endian byte order. The value of element 'x' is-0x04B5. In little endian form,
the first 8 pits make up the first byte, and that contains the least-significant byt&\of the logical numeric
unsigned$hort value. The additional bits of the partial byte are once again.the most significant byte; howeve
for little endian form, this is the second byte. The second byte contains only*5 bits, and they are the most
significan{] bits within that byte, but they are treated as if shifted to become the least significant 5 bits of a
logical byte that contributes to the integer value. This logical byte makes up the most-significant byte of the
unsigned$hort integer.

oy

Now exanpine the 13 bits beginning at position 2, in the context where dfdl:byteOrder is 'littleEndian’ and
dfdl:bitOrder is 'leastSignificantBitFirst' and dfdl:binaryNumberRep is 'binary'.

In this case, the bit positions are assigned differently. Below the bytes are shown left-to-right:

Positiong:
00000000] 11111110 22222111
87654321| 65432109 43210987
Bits:
01011010f10010010 00000000
Hex valugs

5 A 9 2 0 0

The bits of interest are highlightedabove. Redisplaying this same data, but reversing the order of the bytes {o
right-to-left, then one gets:

Positiong:
22222111111111110 006090000
43210987]| 65432109 (87654321
Bits:
00000000 1001000 01011010
Hex valugs

0 0 9 2 5 A

Th b = Il Lasielk ' H £ loik P
€ above-snowsmore vlicdally Ui CUTNMIyuuuUS TTUIUTT UT UTLS CUTTLWAl g .

0 1001 0010 1101

or the value 0x092D.

13.7.1.5 Converting Packed Decimal Numbers

Signed numbers with dfdl:binaryNumberRep 'packed' are parsed using a nibble to indicate the sign. The
unsigned nibble is treated as positive. On unparsing the sign nibble is written according to
dfdl:binaryPackedSignCodes. The unsigned nibble is never written.

Signed numbers with dfdl:binaryNumberRep 'bcd' are always positive. On unparsing it is a Processing Error if
the Infoset data is negative.

© ISO/IEC 2024 - All rights reserved

116

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

Signed numbers with dfdl:binaryNumberRep 'ibm4690Packed' are parsed using the sign nibble to identify

negative values. There is no sign nibble for positive values. On unparsing the nibble 0xD is written for
negative values.

Unsigned numbers with dfdl:binaryNumberRep 'packed' are parsed if the nibble is positive or unsigned. It is a
Processing Error if the data is negative. On unparsing the unsigned nibble is used.

Unsigned numbers with dfdl:binaryNumberRep 'bed' are readily parsed as BCD data is always positive.

Unsigned numbers with dfdl:binaryNumberRep 'ibm4690Packed' are parsed if there is no sign nibble of 0xD to
identify a negative value. It is a Processing Error if the data is negative. On unparsing no sign nibble is written.

© ISO/IEC 2024 - All rights reserved

117

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

13.8 Properties Specific to Float/Double with Binary Representation

Property Description
Name
binaryFloatRep | Enum or DFDL Expression

This specifies the encoding method for the float and double.

Valid values are 'ieee’, 'iIbm390Hex', This property can be computed by way of an
expression which returns a string of 'ieee' or ' ibm390Hex' . The expression must not
contain forward references to elements which have not yet been processed.

The enumeration value 'ieee' refers to the IEEE 754-1985 specification.

Ear both 'ieee’ and 'ibm390hex’ _an xs:float must have a phyeir‘nl Inngfh of4 hyfnc ltis a

Schema Definition Error if there is a specified length not equivalent to 4 bytes.

Similarly, for both 'ieee' and 'ibm390hex’, an xs:double must have a physical length of8
bytes. It is a Schema Definition Error if there is a specified length not equivalent tol8
bytes.

The dfdl:byteOrder property is used to construct a value from the bytes in the binary
representation.

Note: The DFDL Infoset float and double data types match the precision of the IEEE
specification. There may be precision/rounding issues when conveértirig IBM float/double
to/from the DFDL Infoset float/double types.

Half-precision IEEE and quad-precision IEEE/IBM are not supported.*
Annotation: dfdl:element, dfdl:simpleType

Table 36 Properties Specific to Float/Double with Binary Representation
13.9 Properties Specific to Boolean with Text Representation

Property Name

Description

textBoolganTrueRep List of DFDL String Literals or.DFDL Expression

A whitespace separated list‘of representations to be used for 'true'. These are
compared after trimming when parsing, and before padding when unparsing.
If dfdl:lengthKind is\'explicit' or 'implicit’ and either dfdl:textPadKind or
dfdl:textTrimKind «is’'none' then both dfdl:textBooleanTrueRep and
dfdl:textBooleanFalseRep must have the same length else it is a Schema
Definition Error.

This property can be computed by way of an expression which returns a string
of whitespace separated list of values. The expression must not contain
forward references to elements which have not yet been processed.

Op unparsing the first value is used
If dfdl:ignoreCase is 'yes' then the case of the string is ignored by the parser.

Text Boolean Character Restrictions: The string literal is restricted to allow onl
certain kinds of DFDL String Literal syntax:

e DFDL character entities are allowed
The DFDL byte value entity (%#rXX;) is not allowed.
e DFDL Character classes NL, WSP, WSP+, WSP*, and ES are not

allowed

It is a Schema Definition Error if the string literal is the empty string or contains
any of the disallowed constructs.

Annotation: dfdl:element, dfdl:simpleType

textBooleanFalseRep List of DFDL String Literals or DFDL Expression

43 Note that XSD 1.1 moved to IEEE 754-2008 only because of new decimal support, and not for enhanced float support.
That's why in XSD 1.1 there are still just the xs:float and xs:double built-in types. Any future support for half-precision and
quad-precision in XSD would very likely be implemented by adding new built-in types that derive from xs:anySimpleType.
It is likely therefore that future DFDL support for half-precision and quad-precision will build on XSD.

© ISO/IEC 2024 - All rights reserved

118

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

A whitespace separated list of representations to be used for 'false' These are
compared after trimming when parsing, and before padding when unparsing.
If dfdl:lengthKind is 'explicit' or 'implicit' and either dfdl:textPadKind or
dfdl:textTrimKind is 'none' then both dfdl:textBooleanTrueRep and
dfdl:textBooleanFalseRep must have the same length else it is a Schema
Definition Error.

This property can be computed by way of an expression which returns a string
of whitespace separated list of values. The expression must not contain
forward references to elements which have not yet been processed.

On unparsing the first value is used
If dfdl:ignoreCase is 'yes' then the case of the string is ignored by the parser.

The string literal value is restricted in the same way as described in "Text
Boolean Character Restrictions" in the description of the
dfdl:textBooleanTrueRep property.

Annotation: dfdl:element, dfdl:simpleType

textBooleandustification Enum

Valid values 'left’, 'right', 'center'

Controls how the data is padded or trimmed on pafsing and unparsing
Behavior as for dfdl:textStringJustification.

Annotation: dfdl:element, dfdl:simpleType

textBooleanPadCharacter | DFDL String Literal

The value that is used when padding)or trimming boolean elements. The value
can be a single character or a single byte.
If a character, then it can be specified using a literal character or using|DFDL
entities.

If a byte, then it must be:Specified using a single byte value entity.

If a pad character is specified when lengthUnits is 'bytes' then the pad
character must be a‘single-byte character.

If a pad byte isspecified when lengthUnits is 'characters' then
o the dfdl:encoding must be a fixed-width encoding

e padding and trimming must be applied using a sequence of N pad
bytes, where N is the width of a character in the fixed-width enfoding.

The'string literal value is restricted in the same way as described in "Pad
Character Restrictions" in the description of the dfdl:textStringPadCharacter
property.

Annotation: dfdl:element, dfdl:simpleType

Tdble 37 Properties-Specific to Boolean with Text Representation

13.10 Properties Specific to Boolean with Binary Representation

Rroperty-Name Description

hinaryBooleanTrueRep | Non-negative Integer
This value _treated as a hinary ye'llneignndlnf (Qpn Section 1371 Conv :\r[ing

Logical Numbers to/from Binary Representation), gives the representation to be
used for 'true’

If this property value is the empty string, when parsing it means
dfdl:binaryBooleanTrueRep is any value other than dfdl:binaryBooleanFalseRep;
when unparsing, the one's complement of the dfdl:binaryBooleanFalseRep is
used.

The length of the data value of the element must be between 1 bit and 32 bits (4
bytes) as described in Section 12.3.7.2. It is a Schema Definition Error if the
value (when provided) of dfdl:binaryBooleanTrueRep cannot fit as an unsigned
binary integer in the specified length.

© ISO/IEC 2024 - All rights reserved

119

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

Annotation: dfdl:element, dfdl:simpleType

binaryBooleanFalseRep

Non-negative Integer

This value, treated as a binary xs:unsignedint (See Section 13.7.1 Converting
Logical Numbers to/from Binary Representation), gives the representation to be
used for 'false’

The length of the data value of the element must be between 1 bit and 32 bits (4
bytes) as described in Section 12.3.7.2. It is a Schema Definition Error if the
value of dfdl:binaryBooleanFalseRep cannot fit as an unsigned binary integer in
the specified length.

Annotation: dfdl:element, dfdl:simpleType

Table 38

1311 P
The prop¢g
pattern pr:

These pro
a packed

Properties Specific to Boolean with Binary Representation

roperties Specific to Calendar with Text or Binary Representation

rties describe how a calendar (that is, date/time data) is to be interpreted including an unparsing
bperty plus properties that qualify the pattern.

perties can be used when a calendar has dfdl:representation 'text' or dfdl:representation 'binary' a
Hecimal representation.

Property

Name

Description

calendar|

Pattern

String

Defines the ICU pattern that describes the formatiof'the calendar. The pattern
defines where the year, month, day, hour, minute; second, fractional second
and time zone components appear. See calendarPattern property section
below.

When the dfdl:representation is binary-and the representation is a packed
decimal then the pattern can contain only characters and symbols that always
result in the presentation of digits:

Annotation: dfdl:element, dfdlisimpleType

calendar

PatternKind

Enum

Valid values 'explicit', “implicit'

'explicit’ means the-pattern is given by dfdl:calendarPattern,

'implicit' means the pattern is derived from the XML schema date/time type.

Logical Type Default Pattern

xs:date yyyy-MM-dd

x§:dateTime yyyy-MM-dd'T'"HH:mm:ss

Xs:time HH:mm:ssZ

Annotation: dfdl:element, dfdl:simpleType

calendar

CheckPolicy

Enum
Valid values are 'strict’, 'lax’
Indicates how lenient to be when parsing against the pattern.

See Section 13 11 2 The dfdl:calendarCheckPalicy Property below for details
of the specific behaviors for 'strict' and 'lax'.
Annotation: dfdl:element, dfdl:simpleType

calendarTimeZone

String
This property provides the time zone that is assumed if no time zone explicitly
occurs in the data.

Valid values specify a UTC time zone offset by matching the regular
expression:

(UTC) ([+\=1 ([01I\d[\d) ((([:]1[0-5]\d){1,2})?))>

© ISO/IEC 2024 - All rights reserved

120

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

In addition, empty string can be specified to indicate "no time zone" which
simply leaves the time zone unknown/unspecified. Data which does not specify
a time zone does not obtain a time zone from this property and so simply lacks

time zone information.

The IANA time zone format (also known as the Olson time zone format) may

also be used. (e.g., America/New_York)) See [IANATimeZone].
Note that this property is used when parsing only.
Annotation: dfdl:element, dfdl:simpleType

calendarObserveDST

Enum
Valid values are 'yes', 'no'

Whether the time zone given In didl:calendarlimeZone observes dayli
savings time.

Ignored if dfdl:calendarTimeZone is specified in UTC format, or’if

hht

dfdl:calendarTimeZone is empty string. That is, this property‘syused only if the
dfdl:calendarTimeZone is in IANA (also known as Olson) format
[IANATIimeZone].
This property applies to parsing only.
Annotation: dfdl:element, dfdl:simpleType

calendarFirstDayOfWeek | Enum
Valid values 'Monday' ... 'Sunday’
The day of the week upon which a new week is considered to start.
Annotation: dfdl:element, dfdl:simpleType

calendarDaysInFirstWeek | Non-negative Integer
Valid values 1 to 7
Specify the number of days of the new year that must fall within the firgt week.
The start of a year usually falls in the middle of a week. If the number gf days in
that week is less than the value specified here, the week is considered|to be
the last week of the previous year; hence week 1 starts some days intq the
new year. Otherwise it is considered to be the first week of the new year;
hence week 1 starts some days before the new year.
Annotation: dfdl:element, dfdl:simpleType

calendarCenturyStart Non-negative Integer
Valid values 0 to 99.
This property determines on parsing how two-digit years are interpretef. It
specifies the two digits that start a 100-year window that contains the durrent
year. For example, if 89 is specified, and the current year is 20086, all two-digit
dates are interpreted as being in the range 1989 to 2088. A two-digit ye¢ar less
than 89 is interpreted as 20nn and a two-digit year more than or equal o 89 is
treated as 19nn.
Annotation: dfdl:element, dfdl:simpleType

calendarLanguage String or DFDL Expression
The language that is used when the pattern produces a presentation in text

such as for names of the months, and names of days of the week.
The value must match the regular expression:

([A-Za-z]1{1,8} ([\-_1[A-Za-z0-9]{1,8})%*)

It is a Schema Definition Error otherwise.

The expression must not contain forward references to elements which have

not yet been processed.

All DFDL Implementations MUST support dfdl:calendarLanguage value "en".

© ISO/IEC 2024 - All rights reserved

121

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

DFDL implementations MAY support additional values, however, the value of
the dfdl:calendarLanguage property is always interpreted as a Unicode
Language ldentifier as defined by [LDML], and [CLDR].

Annotation: dfdl:element, dfdl:simpleType

Table 39 Properties specific to Calendar with Text or Binary Representation
13.11.1 The dfdl:calendarPattern property

The dfdl:calendarPattern describes how to parse and unparse text and binary representations of dateTime,
date and time logical types. The pattern is primarily used on unparsing to define the format but is also used to
aid parsing.

The pattern is derived from the ICLI Qimplnnafnﬁmnl:nrmnf class described here- [ICI InafnTimn]’ which-uses
symbols defined by [LDML].
An extensjon is the formatting symbol | which means accept a subset of ISO 8601 [ISO8601] compliant
calendars
Symbo Presentation Meaning Example
G Text era designator G AD
y Number year y 1996
yyyy 1996
yy 96
u Number year(allows negative years) | u 1900, 0, -500
Y Number year (of the week of year) Y 1997
M Text & Number | month in year M 9,12
N 09, 12
MMM Sep
MMMM September
MMMMM S
d Number day in month d 2
dd 02
h Number hour insam/pm (1~12) h 7
hh 07
H Number hour in day (0~23) H 0
HH 00
m Number: minute in hour m 4
mm 04
S Number second in minute s 5
S Number fractional second S 2
SS 23
SSS 235
E Text day of week E Tue
EE Tue
EEE Tue

© ISO/IEC 2024 - All rights reserved

122

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

EEEE Tuesday
EEEEE T
EEEEEE Tu
Text & Number | day of week (local) e 2
ee 02
eee Tue
eeee Tuesday
eeeee T
eeeeee Tu
Number day in year D 3, 24,189
DD 03, 24, 189
DDD 003,024, 189
F Number day of week in month F 2(2nd Wed in July)
w Number week in year W, Ww 27
w Number week in month w 2
a Text am/pm marker A pm
k Number hour in day (0~24) k 2,24
kk 02, 24
Number hour in am/pm (0~11) K 0
KK 00
Text time zone: specific’non- z,2z, 722 PDT
location 7777 Pacific Daylight Time
Text time zene: ISO8601 basic 2,272,777 -0800, +0000
format
time zone: long localized 2277 GMT-08:00, GMT+00:00
GMT
Text time zone: localized GMT o] GMT-8
0000 GMT-08:00
Text time zone: generic non- v PT
location v Pacific Time
Text H:r)ne zone: short time zone | V uslax
’firr\ne zone: long time zone \AY; America/Los_Angeles
time zone: exemplar city AVAYAY Los Angeles
time zone: generic location. | VVVV Los Angeles Time
Text time zone: ISO8601 basic X -08, +0530, +0000
or extended format o 20800, +0000
XXX -08:00, +00:00
Text X -08, +0530, Z

© ISO/IEC 2024 - All rights reserved

123

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

Time Zone: ISO8601 basic | XX -0800, Z

or extended format .The]

UTC indicator "Z" is used XXX -08:00, Z

when local time offset is 0.
| Text ISO8601 date/time | 2006-10-07T12:06:56.568+01:00
' Delimiter escape for text ' 'Date='
" Literal single quote " 'o"clock’

Table 40 Symbols in the dfdl:calendarPattern Property

The count of pattern letters determines the format as indicated in the table.

When numeric fields abut one another directly, with no intervening delimiter characters, they constitute a_rfur
of abutting numeric fields. Such runs are parsed specially as described at [[ICUDateTime].

The maxihum number of "S" symbols that may appear in the pattern is implementation-defined but MUST bg
at least thfee. The stored accuracy for fractional seconds is also implementation-defined but MUST-be at legst
millisecond accuracy. When the number of "S" symbols in a pattern exceeds the supported aecuracy, exces
fractional seconds are truncated from the right (not rounded) when parsing, and zeros are added to the right
when unpérsing. For example, a DFDL processor allows up to six "S" symbols and has niillisecond accuracy;
"ss.SSSSSS", data "12.345678" would be parsed into Infoset xs:time "00:00:12:345", which woul
be unparsgd into data "12.345000".

Unlike othgr fields, fractional seconds, “S”, are padded on the right with zero.
It is a Progessing Error if seconds appear in that part of the SimpleContent region that represents a time zorje.
The counf of pattern letters determines the format as indicated in the table.

If dfdl:repriesentation is text, any characters in the pattern that are not it/the ranges of ['a'..'’z'] and ['A'.."Z'] ar
treated as|quoted text. For instance, characters like "', ", ', '# and '@’ appear in the formatted output even
they are npt embraced within single quotes. The single quote is used to 'escape’ letters. Two single quotes i
a row, whether inside or outside a quoted sequence, represent.a’real’ single quote.

If dfdl:repriesentation is binary, then the pattern can contain_only characters and symbols that always result i
the presentation of digits.

The symbpls 'z, 'zz', and 'zzz' have identical meaning,as do 'Z', 'ZZ', and 'ZZZ'.

The 'I' synmpbol must not be used with any other symbol except for 'escape for text'. It represents calendar

formats thiat match those defined in the restricted profile of the ISO 8601 standard proposed by the W3C at
http://www.w3.0rg/TR/NOTE-datetime. The formats are referred to as 'granularities’.

e xg:.dateTime. When parsing, the data must match one of the granularities. When unparsing, the fullgst
granularity is used.

e xd:date. When parsing, the(data must match one of the date-only granularities. When unparsing, the
fullest date-only granularity is used.

e xg:time. When parsing;.the data must match only the time components of one of the granularities tha
cgntains time components. When unparsing, the time components of the fullest granularity are used.
The literal 'T' character is not expected in the data when parsing and is not output when unparsing.

e The number-offractional second digits supported is the same as for the “S” fractional seconds
specifier deseribed above.

e The omission of time zone from the input data when the type is xs:dateTime or xs:time is not a
Processing Error. If that occurs then the time zone is obtained from the calendarTimeZone property

e When unparsing and the iime zone is UTC, the Time zone 1s ouiput as +00:00'.

When parsing, for any pattern that omits components the values for the omitted components are supplied from
the Unix epoch 1970-01-01T00:00:00.000.44

Uy

| & S

o=

-

—

44 Note that DFDL does not support an isolated month, day, or year that is not part of a greater date type, as it does not
support the XSD simple types xs:gMonth, xs:gDay, and xs:gYear.

© ISO/IEC 2024 - All rights reserved

124

http://www.w3.org/TR/NOTE-datetime
https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

When unparsing, and the pattern contains a formatting symbol that requires a component of the date/time and
the Infoset value does not contain that component, it is a Processing Error.

When parsing a calendar element with a packed decimal representation then the nibbles from the data are

converted to text digits without any trimming of leading or trailing zeros, and the result is then matched against
the pattern according to the usual rules.
When unparsing, if a time zone symbol is not available for a particular time zone, a fallback may be used as
defined in [ICUDateTime].

13.11.2 The dfdl:calendarCheckPolicy Property

The differences in behavior between 'strict' and 'lax’ for this property can be subtle. Both are quite lenient in
enforcement of many variations in format, with the 'lax' value adding additional tolerance of more format

variations to those already allowed by the 'strict’ value

1. Lenient parsing behaviour when in 'strict' policy:

value can be a single character or a single byte.

entities.
If a byte, then it must be specified using a single byte value entity

a. Case insensitive matching for text fields
b. MMM, MMMM, and MMMMM all accept either short or long form of Month
c. E, EE, EEE, EEEE, EEEEE , and EEEEEE all accept either abbreviated, full, narrow and
short forms of Day of Week
d. Accepts truncated leftmost numeric field (e.g., pattern "HHmmss! allows "123456" (12:34:56)
and "23456" (2:34:56) but not "3456")
2. Additional lenient parsing behaviour when in 'lax’ policy is implementation-defined, but typically
includes:
a. Values outside valid ranges are normalized (e.g., "March 32 1996" is treated as "Apfil 1
1996")
b. Ignoring a trailing dot after a non-numeric field
c. Leading and trailing whitespace in the data but not in the pattern is accepted
d. Whitespace in the pattern can be missing in"the data
e. Partial matching on literal strings. E.g:{data "20130621d" allowed for pattern "yyyyMMdd'date’
13.12 Properties Specific to Calendar with Text Representation
Rroperty Name Description
téxtCalendardJustification Enum
Valid values 'left', 'right', 'center’
Controls how the data is padded or trimmed on parsing and unparsing.
Behavior as for dfdl:textStringJustification.
Annotation: dfdl:element, dfdl:simpleType
textCalendarPadCharacter | DFDL String Literal
The value that is used when padding or trimming calendar elements. The

If a character, then it can be specified using a literal character or using DFDL

If a pad character is specified when dfdl:lengthUnits is 'bytes' then the

pad

character must be a single-byte character.
If a pad byte is specified when dfdl:lengthUnits is 'characters' then
e the encoding must be a fixed-width encoding
e padding and trimming must be applied using a sequence of N

property.
Annotation: dfdl:element, dfdl:simpleType

pad

bytes, where N is the width of a character in the fixed-width encoding.

The string literal value is restricted in the same way as described in "Pad
Character Restrictions" in the description of the dfdl:textStringPadCharacter

© ISO/IEC 2024 - All rights reserved

125

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

Table 41 Properties Specific to Calendar with Text Representation

13.13 Properties Specific to Calendar with Binary Representation

Property Name Description

binaryCalendarRep Enum

Valid values are 'packed’, 'bed', 'ibm4690Packed', 'binarySeconds',
'binaryMilliseconds'

For all values, the dfdl:byteOrder property is used to determine the numeric
significance of the bytes making up the representation.

e 'packed' means represented as an IBM 390 packed decimal. Each byte
comntaiTs two decmat digits; except for therightmost byte; whichcontaims =
sign to the right of a decimal digit. The digits are interpreted according+to
the dfdl:calendarPattern property. Property dfdl:binaryPackedSignCades is
applicable.

e 'bed' means represented as a binary coded decimal with two digits’per
byte. The digits are interpreted according to the dfdl:calendarPattern
property

¢ 'ibm4690Packed' means represented as a variant of packed format as
described in property dfdl:binaryNumberRep. The digits’are interpreted
according to the dfdl:calendarPattern property.

For all packed decimals, property dfdl:binaryNumberCheckPolicy is applicable.

For all these packed decimals, dfdl:calendarPattern€an contain only characters
and symbols that always result in the presentation’of digits. It is a Schema
Definition Error otherwise. This implies that property dfdl:calendarPatternKind mus
be 'explicit' because the default patterns for.'implicit' contain non-numeric
characters. It is a Schema Definition Error otherwise.

See Section 13.7 Properties Specific t6’Number with Binary Representation.

Note also that a virtual decimal pointfor the boundary between seconds and
fractional seconds is implied from-the pattern at the boundary of 's"and 'S', i.e.,
where the substring 'sS' appears’in the pattern.

e 'binarySeconds' means represented as binary xs:int, that is, as a 4 byte
signed integer that is the number of seconds from the epoch (positive or
negative). Itis:a Schema Definition Error if there is a specified length not
equivalent to’4 bytes.

¢ 'binaryMilliseconds' means represented as binary xs:long, that is, as an 8
byte signed integer that is the number of milliseconds from the epoch
(positive or negative). Itis a Schema Definition Error if there is a specified
length not equivalent to 8 bytes.

Values’binarySeconds and binaryMilliseconds may only be used when the type is
xs:0ateTime. (It is a Schema Definition Error otherwise.)

Ahnotation: dfdl:element, dfdl:simpleType

binaryCdlendarEpoch | DateTime
Used when dfdl:binaryCalendarRep is 'binarySeconds' or 'binaryMilliseconds'
The epoch from which to calculate dates and times.

L thao tiona oo 1o anal
T ot TC~Z0TTC TS OTTitteT

Annotation: dfdl:element, dfdl:simpleType

Aframa tha ol thaoan LITO o caod
O O varoC T o T O T O 19 OoTUT

Table 42 Properties Specific to Calendar with Binary Representation

Examples of packed decimal format calendars for December 14, 1923 and dfdl:calendarPattern of 'MMddyy'
would be:

e packed: (hexadecimal) 01 21 42 3C
e bcd: (hexadecimal) 12 14 23
e ibm4690Packed: (hexadecimal) 12 14 23

© ISO/IEC 2024 - All rights reserved

126

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

The 'C' nibble at the end of the 'packed' representation is a sign nibble, and the leading 0 nibble is just to align
to a byte boundary..

13.14 Properties Specific to Opaque Types (xs:hexBinary)
There are no properties specific to opaque types

13.15 Nil Value Processing

Sometimes it is desirable to represent an unused element, place-holder for unknown information, or
inapplicable information explicitly with an element, rather than by the lack of an element.

For example, it may be desirable to represent a sparsely populated array of data using a distinguished nil
element to fill the locations where data is absent, thereby preserving the position for the elements that are
present

A another example, it may be desirable to represent an unused simple element by a value whichlis|not
conformant to the logical type of the element.

Sych cases can be represented using the DFDL nil mechanism which is based on the XML Schemalnil
méechanism. DFDL provides what are commonly called "in-band" nil values by way of dfdlnitKind
'logicalValue', and also provides for two kinds of literal indicators of nil through dfdl:nilKind 'literalValye' and
dfdl:nilKind 'literalCharacter'. Nil processing is used when the XSD 'nillable' property of‘an element ig true.

DEDL allows elements of complex type to be nillable. However, to avoid the concept of a complex element
having a value, which does not exist in DFDL, the only permissible nil value is ttie”"empty string, reprg¢sented
by|the DFDL %ES; entity and using dfdl:nilKind 'literalValue'.

On parsing, an element occurrence is nil if the element has XSD nillable“true' and the data is a nil
representation as defined in Section 9.2.1. Specifically:

1. When dfdl:nilKind is 'literalValue', the NilLiteralValue region of the data stream matches any of the
dfdl:nilValue values.

2. When dfdl:nilKind is 'literalCharacter', all characters inthe NilLiteralCharacters region of the data
stream match the dfdl:nilValue character.

3. When dfdl:nilKind is 'logicalValue', the data contains a normal representation, and the
NilLogicalValue region of the data stream, converted to the element's logical type, matcheg any of
the dfdl:nilValue values.

Fdr dfdl:nilKind 'literalValue' or 'literalCharacter":

o Determination of whether the data,is a nil representation for a literal nil happens first before any
consideration of whether the representation is the empty, normal, or absent representations.

o Property dfdl:nilValueDelimiterPolicy controls whether matching one of the nil values also inyolves
matching the initiator or terminator specified by the element. This gives control over whether|a nil
indicator may or may agt:also require the delimiters that a normal data element requires.

On unparsing, an element i$ nil'if XSD nillable is 'true' AND the element information item in the augmented

Infoset has the [nilled] niember as true, in which case what is output to the data stream is one of the

following:

1. When dfdlnilKind is 'logicalValue' then the first value of dfdl:nilValue converted to the physical
representation is output as the NilLogicalValue region.

2. When\dfdl:nilKind is 'literalValue' then the first value of dfdl:nilValue is output as the NilLiteralValue
region.

3., When dfdl:nilKind is 'literalCharacter' then the character from dfdl:nilValue, repeated to the needed
length, is output as the NilLiteralCharacters region.

Fordfdtmitimd-titeratvatue-or-fiteratCtaracter themdfdtmitvatoeDetimiterPoticy determimes whettretr any
initiator or terminator also appear surrounding the literal nil in the output data.

13.16 Properties for Nillable Elements

These properties are used when the XSD 'nillable’ property of an element is 'true’, and they control when and
how the representation data are interpreted as having the logical meaning 'nil'.

Property Name Description

nilKind Enum
Valid values 'literalValue', 'logicalValue', 'literalCharacter'.
Used when XSD nillable is 'true'.

© ISO/IEC 2024 - All rights reserved

127

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

Specifies how dfdl:nilValue is interpreted to represent the nil value in the data
stream.

If 'literalCharacter' then dfdl:nilValue specifies a single character or a single byte
that, when repeated to the length of the element, is the nil value. 'literalCharacter'
may only be specified for fixed-length elements, otherwise it is a Schema
Definition Error..

If 'literalValue' then dfdl:nilValue specifies a list of DFDL literal strings that are the
possible representations for nil.

If 'logicalValue' then dfdl:nilValue specifies a list of logical values that are the
possible logical values for nil.

Complex elements can be nillable, but dfdl:nilKind can only be 'literalValue' and

dfdl:nilValue must be "%ES;". It is a Schema Definition Error otherwise.
Annotation: dfdl:element

nilValue

List of DFDL String Literals, List of Logical Values, DFDL String Literal

Specifies the text strings that are the possible literal or logical nil values-of the
element.

If dfdl:nilKind is 'literalValue' then dfdl:nilValue specifies a whitespdce separated
list of DFDL literal strings that are the possible representatiofis.for nil. On parsing
the element value is nil if the trimmed data matches one of'the string literals in the
list. On unparsing if the element value is nil the first string-literal in the list is
output.
If dfdl:nilKind is 'logicalValue' then dfdl:nilValue specifies a whitespace separated
list of logical values that are the possible logicalvalues for nil. On parsing the
element value is nil if the data, converted to{ts"ogical type, matches any of the
logical values in the list. On unparsing if the. element value is nil, the first value
from the list is converted to its physical’representation and output.
If dfdl:nilKind is 'literalCharacter' then“dfdl:nilValue specifies a single character of
byte that, when repeated to the length of the element, is the nil representation. If &
character, then it can be specified using a literal character or using DFDL entities
If a character is specified whén dfdl:lengthUnits is 'bytes' then the dfdl:nilValue
must be a single-byte chafacter. To specify a byte, it must be specified using a
single "%##r;" entity. If albyte is specified when dfdl:lengthUnits is 'characters' ther
the dfdl:encoding must’be a fixed-width encoding.
On parsing, the element value is nil if all characters in the untrimmed data conten
match the dfdknilValue character . On unparsing, if the element value is nil the
dfdl:nilValue character is output to the needed length.
There are restrictions on the string literal syntax of dfdl:nilValue.
When.dfdl:nilKind is literalValue and text representation:

e DFDL character entities are allowed

e The DFDL byte value entity (%#rXX;) is allowed

e DFDL Character classes NL, WSP, WSP+, WSP*, and ES are allowed.
When dfdl:nilKind is literal value and binary representation:

e DFDL character entities are allowed

e The DFDL byte value entity (%#rXX;) is allowed

—

e DFDL Character class ES is allowed.

e Other DFDL Character classes NL, WSP, WSP+, and WSP*, are not
allowed.

When dfdl:nilKind is literalCharacter and text representation:
e DFDL character entities are allowed
e The DFDL byte value entity (%#rXX;) is allowed.

e DFDL Character classes NL, WSP, WSP+, WSP*, and ES are not
allowed.

When dfdl:nilKind is literalCharacter and binary representation:

© ISO/IEC 2024 - All rights reserved

128

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

e DFDL character entities are allowed
e The DFDL byte value entity (%#rXX;) is allowed

e DFDL Character classes NL, WSP, WSP+, WSP*, and ES are not
allowed.

dfdl:nilValue is sensitive to dfdl:ignoreCase when dfdl:nilKind is 'literalValue' or
'logicalValue', but not when dfdl:nilKind is 'literalCharacter'

Complex elements can be nillable, but dfdl:nilKind can only be 'literalValue' and
dfdl:nilValue must be "%ES;". It is a Schema Definition Error otherwise.

Annotation: dfdl:element

nilValueDelimiterPolicy

Enum

Valid values are 'none’, 'initiator', 'terminator' or 'both'.

Indicates that when the value nil is represented, an initiator (if one is defined), a
terminator (if one is defined), both an initiator and a terminator (if defined) or
neither must be present.

This property enables distinguishing the nil representation from the repregentation
of a value or an empty representation based on presence or absence of the
initiator and terminator.

Ignored if both dfdl:initiator and dfdl:terminator are "\(émpty string).

Ignored if dfdl:nilKind is set to 'logicalValue' In this-Case the DFDL procesgor
treats a nil representation like any other representation of the element in that it
expects delimiters when parsing, outputs thém when unparsing.

'initiator’ indicates that, on parsing, the-dfdl:initiator followed by a dfdl:nilValue
indicates that a nil representation isresent. It also indicates that on unpgrsing
when the logical value is nil that the.dfdl:initiator is output followed by the first
dfdl:nilValue.

'terminator' indicates that, apparsing, a dfdl:nilValue followed by the
dfdl:terminator indicates that'a nil representation is present. It also indicates that
on unparsing when theJogical value is nil the first dfdl:nilValue followed by the

dfdl:terminator is output.

'both’ indicates that, on parsing, both the dfdl:initiator and dfdl:terminator must be
present with g dfdl:nilValue to indicate that a nil representation is present|On

unparsing,thedfdl:initiator followed by the first dfdl:nilValue, followed by the
dfdl:terminator is output.

'none’indicates that a dfdl:nilValue without any dfdl:initiator or dfdl:terminator
indicates that a nil representation is present. On unparsing the first dfdl:ni[Value is
output without any dfdl:initiator or dfdl:terminator.

The value of dfdl:nilValueDelimiterPolicy MUST only be checked if there is a
dfdl:initiator or dfdl:terminator in scope. If so, and dfdl:nilValueDelimiterPdlicy is
not set, it is a Schema Definition Error. If dfdl:initiator is not " and dfdl:terminator
is " and dfdl:nilValueDelimiterPolicy is 'terminator' it is a Schema Definitign Error.
If dfdl:terminator is not " and dfdl:initiator is " and dfdl:nilValueDelimiterPolicy is
"initiator' it is a Schema Definition Error. It is not a Schema Definition Errof if
dfdl:nilValueDelimiterPolicy is 'both' and one or both of dfdl:initiator and
dfdl:terminator is "". This is to accommodate the common use of setting 'Hoth' as a
schema-wide setting.

It is a Schema Definition Error if dfdl:nilValueDelimiterPolicy is set to 'none’ or
'terminator' when the parent xs:sequence has dfdl:initiatedContent 'yes'.

Annotation: dfdl:element

useNilForDefault

Enum
Valid values are 'yes', 'no'

When the conditions for applying a simple element default are satisfied, this
property controls whether to set the Infoset item [nilled] boolean member, or to
use the XSD default or fixed properties to obtain a data value.

© ISO/IEC 2024 - All rights reserved

129

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

This property has precedence over the XSD default and XSD fixed properties. It is
only used, and must be defined, if the XSD nillable property is 'true’.

Defaulting occurs as described in Section 9.4 Element Defaults with nil as the
default value. The dfdl:nilValue property must specify at least one nil value

otherwise it is a Schema Definition Error. The dfdl:nilKind property may be any of
its values.

Annotation: dfdl:element (simpleType)

Table 43 Properties for Nillable Elements

The DFDL element defaults processing uses XSD default, XSD fixed or dfdl:useNilForDefault to provide a
default value. See Section 9.4 Element Defaults for a full description.

© ISO/IEC 2024 - All rights reserved

130

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

14 Sequence Groups
The following properties are specific to sequences.

Property Description
Name

sequenceKind Enum
Valid values are 'ordered', 'unordered'

When 'ordered’, this property means that the contained items of the sequence are
expected in the same order that they appear in the schema, which is called schema-
definition-order.

When-tnorderedthis-property-means-that-the-tems-of-the-sequence-are-expeeied in
any order. Repeating occurrences of the same element do not need to be contiglious.
The children of an unordered sequence must be xs:element otherwise it is @S¢thema

Definition Error.

Annotation: dfdl:sequence, dfdl:group (sequence)

mitiatedContent | Enum
Valid values are 'yes', 'no'

When 'yes' indicates that all the children of the sequence aré.initiated. It is a Schema
Definition Error if any children have their dfdl:initiator property set to the empty string.

If the child is optional then it is known to exist when its initiator has been found. Any
subsequent error parsing the child does not cause the parser to backtrack to try ¢ther
alternatives.

When 'no', the children of the sequence mayyhave their dfdl:initiator property set fo the
empty string.
Annotation: dfdl:sequence, dfdl:choice;:dfdl:group

Tdble 44 Properties for Sequence Groups

A sequence can have a dfdl:initiator and/or a dfdliterminator as described earlier.

14.1 Empty Sequences

A sequence having no children is syntactically legal in DFDL. In the data stream, such a sequence cpn have
nan-zero length LeftFraming and RightFraming regions, but the SequenceContent region in between must
be empty. It is a Processing Error if the! SequenceContent region of an empty sequence has non-zerp length
when parsing.

XML schema does not define@n‘empty sequence that is the content model of a complex type definitjon as
effective content so any DFDL annotations on such a construct would be ignored. It is a Schema Definition
Error if the empty sequence-is the content model of a complex type, or if a complex type has nothing in its
content model at all.

A hidden group reference is indicated in DFDL using an empty sequence such as

<xs:sequencedfdl:hiddenGroupRef="QName"/>

Td XML Sehema this is an empty sequence group; hence it is a Schema Definition Error if this appears as the
maodel group of a complex type. Otherwise this is not considered an empty sequence, but a group reference.

© ISO/IEC 2024 - All rights reserved

131

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

14.2 Sequence Groups with Separators

Additional properties apply to sequence groups that use text delimiters to separate one occurrence of a
member of the group from the next. Such a delimiter is called a separator. DFDL provides several properties
that control the parsing and writing of separators, and satisfy the requirement to model sequences where:

1. A separator has alternative potential representations in the data.
2. A separator is placed before, after, or between occurrences in the data.
3. Separators are used to indicate the position of occurrences in the data

These requirements are addressed by the properties dfdl:separator, dfdl:separatorPosition and
dfdl:separatorSuppressionPolicy, as described below.

These properties combine to define the syntax for a sequence group with dfdl: sequenceKlnd 'ordered'. Not all
combmatl D

Non-positional sequence - Occurrences in the sequence cannot be identified.by their position in the data
alone. Often the components of such a sequence have an initiator. Such sequences sometimes allow the
separator to be omitted for optional zero-length occurrences anywhere inthe sequence. Speculative parsing
might neef to be employed by the parser to identify each occurrence. dn"BFDL, a sequence is non-positional
if it contaims any optional or array elements that have dfdl:occursCouniKind 'parsed' or 'stopValue', and/or it
has dfdl:s¢paratorSuppressionPolicy 'anyEmpty'.

Property Name Description

separatoy List of DFDL String Literals‘or DFDL Expression

Specifies a whitespace.separated list of alternative DFDL String Literals thaf
are the possible separators for the sequence. Separators occur in the data
either before, between or after all occurrences of the elements or groups thg
are the children.of the sequence, in accordance with dfdl:separatorPosition
and dfdl:separatorSuppressionPolicy. Elements with dfdl:inputValueCalc
have no representation in the data stream, and so never have an associateq
separator:

This property can be computed by way of an expression which returns a
string of whitespace separated values. The expression must not contain
forward references to elements which have not yet been processed. ltis a
Schema Definition Error if the expression returns an empty string.

This property can be used to determine the length of an element as
described in Section 12.3.2 dfdl:lengthKind 'delimited'.

Each string literal in the list, whether apparent in the schema, or returned as
the value of an expression, is restricted to allow only certain kinds of DFDL
String Literal syntax:

+—DEDl-characterentities-are-allowed-
DFDL Byte Value entities (%#rXX;) are allowed.
DFDL Character Class ES is not allowed.
DFDL Character Classes NL, WSP, WSP+, and WSP* are allowed.
The WSP* entity cannot appear on its own as one of the string
literals in the list when determining the length of a component by
scanning for delimiters.
If the above rules are not followed it is a Schema Definition Error.

The Separator, PrefixSeparator and PostfixSeparator regions contain
one of the strings specified by the dfdl:separator property. When this

—

© ISO/IEC 2024 - All rights reserved

132

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

property has " (empty string) as its value then the separator region is of

length zero.

When parsing, the list of values is processed in a greedy manner, meaning it
takes all the separators, that is, each of the string literals in the whitespace
separated list, and matches them each against the data. The separator with
the longest match is the one that is selected as having been 'found'. Once a
matching separator is found, no other matches are subsequently attempted
(i.e., there is no backtracking).

On unparsing the first separator in the list is used as the separator.

If a child element uses an escape scheme, then the escape scheme also
applies to any separator; hence, if the separator appears within the element
value, it 1S escaped.

If dfdl:ignoreCase is 'yes' then the case of the string is ignored by th«L parser.
Annotation: dfdl:sequence, dfdl:group (sequence)

(/)]

eparatorPosition Enum

Valid values 'infix', 'prefix’, 'postfix'
'infix' means the separator occurs between the elements in the Sepgrator
grammar region.

'prefix' means the separator occurs before each element in the Sepgrator
grammar region and the PrefixSeparatof-grammar region.

'postfix’ means the separator occurs after each element in the Separator
grammar region and the PostfixSeparator grammar region.

Annotation: dfdl:sequence, dfdl:group (sequence).

(7))

eparatorSuppressionPolicy | Enum

Valid values 'never', 'anyEmpty', 'trailingEmpty', 'trailingEmptyStrict'
Only applicable if dfdl:separator is not " (empty string) and
dfdl:sequenceKind_is,'ordered'.

Controls the circufmstances when separators are expected in the data when
parsing, or generated when unparsing, if an optional element occurrénce or
a group has‘a zero-length representation.

See Section 14.2.1 Separators and Suppression.
When.dfdl:sequenceKind is 'unordered' then 'anyEmpty' is implied.
Annotation: dfdl:sequence, dfdl:group (sequence)

Tdble 45 Properties for Sequence Groups with Separators
14.2.1 Separators and.Suppression

When parsing a sequence group that specifies a separator, the number of occurrences and separatgrs that
arg expected in the data stream for a child (element or group) depends on several factors:

Whetherelement occurrences are optional or required

Whether the occurrences (element or group) have a zero-length representation
Whether occurrences (element or group) are trailing

Whether the sequence is positional

The dfdl:occursCountKind of the element

Where to expect a separator for optional content of zero-length is controlled by property
dfdl:separatorSuppressionPolicy.

separatorSuppressionPolicy | Implications

never Positional sequence where all occurrences must be found in the data,
along with their associated separator.

trailingEmptyStrict Positional sequence where frailing occurrences that have zero length
representation must be omitted from the data, along with their associated
separator.

© ISO/IEC 2024 - All rights reserved

133

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

trailingEmpty Positional sequence where frailing occurrences that have zero length
representation may be omitted from the data, along with their associated
separator.

anyEmpty Non-positional sequence where any occurrences that have zero length

representation may be omitted from the data, along with their associated
separator. It must be possible for speculative parsing to identify which
elements are present.

Table 46 Sequence groups and separator suppression

The following are defmmons for terminology used in this section:

Intuitively,|the array or optional element occurrence could be last.

Potentially trailing group — A group is said to be potentially trailing if the group has na@’framing and containg

groups.

Trailing dr Actually Trailing — An element occurrence or group occurrence ifithe data is said to be actually
trailing if i is potentially trailing and has zero-length representation and is-nét followed in the data by any oth
non-zero length element occurrence or group occurrence limited by the’end of the enclosing sequence grou

In the secjions that follow, it is important to remember that the dfdl:separatorSuppressionPolicy property is
carried on[the sequence, while the XSD minOccurs, XSD maxOcctirs and dfdl:occursCountKind properties 3
carried on[an element in that sequence.

14.2.2 Parsing Sequence Groups with Separators

20
=

_‘
@

Parsing child elements is described first. Parsing for child‘groups is described in Section 14.2.2.3.

When an ¢lement is required and is not an array themone occurrence is always expected along with its
separator| The dfdl:separatorSuppressionPolicy of the sequence has no effect (nothing is eligible for
suppressipn). Otherwise the behaviour is dependent on dfdl:occursCountKind.

When dfdl:occursCountKind is 'fixed' then XSD minOccurs must equal maxOccurs and that many occurrenc
are alway$ expected along with their separators. The dfdl:separatorSuppressionPolicy of the sequence has ho
effect (nothing is eligible for suppression).

When dfdl:occursCountKind is 'expfession' the number of occurrences is given by dfdl:occursCount and
exactly that many occurrences are)always expected along with their separators. The
dfdl:separptorSuppressionPoliey) of the sequence has no effect (nothing is eligible for suppression).

When dfdl:occursCountKind’is 'parsed' any number of occurrences and their separators are expected. The
dfdl:separptorSuppressionPolicy of the sequence must be 'anyEmpty' and it is a Schema Definition Error
otherwise

When dfdl:occursCountKind is 'stopValue', any number of occurrences and their separators are expected
followed by the stop value and its separator. The dfdl:separatorSuppressionPolicy of the sequence has no
effect.

14
(]

When dfd :UUUUI OCUUI It:(ll Id ;O l;I T IF:;U;t', bUtVVUUI 1 XSD III;I IOUUUI o Al Id XSD 1 IIGI\C\;UUI k=] (II IU:UO;VU)
occurrences and their separators are expected, according to the dfdl:separatorSuppressionPolicy of the
sequence.

The behaviour for 'implicit' is more fully expressed in matrix form. The cells in the matrix give the number of
occurrences of element values that are expected in the data stream when parsing, for the different values of
dfdl:separatorSuppressionPolicy. The number of occurrences also depends whether XSD maxOccurs is
unbounded or not, and the position of the element in the sequence. The number of separators can be inferred
from this, considering dfdl:separatorPosition.

dfdl:occursCountKind ‘implicit’

Potentially Trailing Not Potentially Trailing

© ISO/IEC 2024 - All rights reserved

134

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

maxOccurs unbounded maxOccurs bounded
Element not
dfdl: Element declared declared last
Element last or and maxOccurs maxOccurs
separl'ator- : el UG e occurrence occurrence unbounded bounded
Suppression-Policy e Y followed by end- not followed
L=t of-group by end-of-
group
never Schema definition error
. RepDef(min) [~ .
RepDef(min) [~) . RepDef(min) ~
trailingEmptyStrict Rep(M < INF) ~ RG] = RS RepDef(min) ~ | _Schema Rep(max -
min) ~ Rep(max - definition error .
RepNonZero(1)] RepNonZero(1)] ?’nin) min)
trailingEmpty RepDef(min) ~ N
RRepDﬁf(<m||m:~ Rep(M <= max - RepDef(min) £ e REHIT)=
anyEmpty ep() min) RepM < INF)| epM <=
nfax - min)

Tgble 47 Separator Suppression for dfdl:occursCountKind ‘implicit' when Parsing

THe notation in each cell uses the "~" symbol to mean "followed by" in the data streamr. Square brac
sufround things that are optional, as in they may or may not appear in the data stream.

THe descriptions found in the cells of the matrix do not provide a parsing algorithm, but rather state
declaratively a pattern that the data must match in order to be correctly parsed.

RepDef(min) is short for "representation" and "defaultable". It means XSD minOccurs occurrences g
enmpty or normal representation. These are required occurrences, sd.default rules apply for empty
representations. XSD minOccurs may be 0, in which case there areino required occurrences.

Rep(M) means M occurrences of nil, empty, normal or absent fepresentation. These are optional oc
so| default rules do not apply for empty representations.

RépNonZero(1) means an occurrence of a nil, empty or,normal representation where such a repres
daes not have zero-length6. This is an optional occurrerce, so default rules do not apply.

ets

f nil,

purrences,

entation

A notation like Rep(M <= max — min) means that there are M occurrences, where M is some value between

th¢ values of the XSD minOccurs and XSD maxQccurs properties. When an unbounded number of

oceurrences is possible this is shown explicitly by Rep(M < INF) , INF meaning infinity or unbounded,

14.2.2.1 Errors When the Sequence. is Positional

Infthe matrix abovethere are some célls'where the combination of properties doesn't make sense, ar

Sdghema Definition Error is raised. These occur when an element has dfdl:occursCountKind 'implicit'

maxOccurs 'unbounded', and dfdliseparatorSuppressionPolicy implies that the sequence is positiona

specifically:

e If a sequence has-dfdl:separatorSuppressionPolicy 'never’;

e If a sequence has dfdl:separatorSuppressionPolicy 'trailingEmptyStrict' or 'trailingEmpty' ang
element is_not the last declaration in the sequence. (This avoids ambiguity about which elem
being suppressed.)

14.2.2.2 Example Parsing Scenarios
Cansider.the cell of the matrix above for the element in this DFDL schema fragment:

da
and XSD

the
entis

<xs ssequence dfdl:separator="'|"' dfdl:separatorPosition="infix'

dfdl:separatorSuppressionPolicy="trailingEmptyStrict'>

<xs:element name='a' type='xs:int' default='0'
maxOccurs="'5" minOccurs="0"
dfdl:representation="'text' dfdl:textNumberPattern='#0"
dfdl:occursCountKind="implicit'
dfdl:initiator="[' dfdl:terminator="1]"
dfdl:emptyValueDelimiterPolicy="'both' />
</xs:sequence>

45 Absent representation implies Processing Error for ‘implicit’ when less than or equal to XSD minOccurs.

46 Absent representation always implies zero-length. Nil, empty, and normal representations can also be zero-length with

the right combinations of properties. See Section 9.2.5 Zero-length Representation.

© ISO/IEC 2024 - All rights reserved

135

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

Within the

ISO/IEC 23415:2024(en)

sequence this element 'a' is clearly potentially trailing as it is declared last. The corresponding cell

in the matrix above contains this description:
RepDef(min) [~ Rep(M < max — min) ~ RepNonZero(1)]
Since XSD minOccurs='0", the first term, RepDef(min) vanishes, leaving:
Rep(M < max - min) ~ RepNonZero(1)
Note Rep(M) permits absent representations, and if encountered they are simply omitted from the Infoset.
So, this data

[1111121

[311[4]11[5]

parses and 5 items appear in the Infoset.

This data

[111141

also parse
that the odg

—F

s because absent representations are accepted, but only one item appears in the Infoset.(The fac
currence is fourth in the array is not preserved into the Infoset). However, this data

[111141]

causes a
'trailingEn
Now cons

Processing Error because there is a final trailing separator and dfdl:separatorSuppressionPolicy is
ptyStrict'.
der the same scenario but XSD minOccurs of '2'. The first term reappears as‘RepDef(2). The dat3

[111141

which pre
are requir
initiator arn
minOccur:

iously parsed successfully would now cause a Processing Error because the first two occurrence
bd, so they must be either a normal representation, that is, matching xs:int syntax with surrounding
d terminator, or the empty representation which is []. An example which parses correctly with XS
5 of '2' is:

T

[4]

In this cas
the empty

If the scer
matrix abg

R
This has 4

e the Infoset contains 3 items with values 1, 0, 4. The 0 value arises because the occurrence has
representation, the occurs index is 2 so it is required,"and there is a default value 0.

ario is changed so that dfdl:separatorSuppressionPolicy is 'trailingEmpty' then a different cell of th
ve applies.

bpDef(min) [~ Rep(M < max — min) |
more lax behavior so that this data is also acceptable:

[]

E

[4] |

In this cas
not be cre
Infoset, bl

Now cons

e the final trailing separator is tolerated, though when unparsing this final trailing separator would
pted. This is a case where what'is parsed is not exactly recreated on unparsing from the resulting
t all the information content.is preserved.

der the same scenario-but"’XSD maxOccurs is 'unbounded'. In that case this data is acceptable:

TS

LTS T4y e

The Infosg¢t values are again-, 0, 4. But all the excess separators are tolerated.

Parsing Child'Groups within Separated Sequences

‘t

separator may appear or not. Additional separators are not expected.
‘trailingEmptyStrict’ — if the child group is potentially trailing, has zero-length and it is actually trailing,

ild of a.sequence is a group then a separator is expected/tolerated depending on

its separator must not appear.

14.2.3

‘anyEmpty’ — if the child group has zero-length its separator must not appear.
Unparsing Sequence Groups with Separators

Unparsing child elements is described first. Unparsing for child groups is described in Section 14.2.3.2.
When an element is required and is not an array then one occurrence is always output along with its

separator.

The dfdl:separatorSuppressionPolicy of the sequence has no effect (nothing is eligible for

suppression).

© ISO/IEC 2024 - All rights reserved

136

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

Otherwise the behaviour is dependent on dfdl:occursCountKind.

When dfdl:occursCountKind is 'fixed' or 'expression' the occurrences in the augmented Infoset are always
output along with their separators. The dfdl:separatorSuppressionPolicy of the sequence has no effect
(nothing is eligible for suppression).

When dfdl:occursCountKind is 'parsed' non zero-length occurrences in the augmented Infoset are output
along with their separators. The dfdl:separatorSuppressionPolicy of the sequence must be 'anyEmpty' and it is
a Schema Definition Error otherwise.

When dfdl:occursCountKind is 'stopValue' the occurrences in the augmented Infoset are output along with
their separators followed by the stop value and its separator, according to the dfdl:separatorSuppressionPolicy
of the sequence.

When dfdl:occursCountKind is 'implicit' the occurrences in the augmented Infoset are output along with their
separators, according to the dfdl:separatorSuppressionPolicy of the sequence.

THe behaviour for 'implicit' is more fully expressed in matrix form. The cells in the matrix give the pumber of
oceurrences of element values that are output to the data stream when unparsing, for the different values of
dfdl:separatorSuppressionPolicy. The number of occurrences also depends whether XSD maxOccurs is
unbounded or not, and the position of the element in the sequence. The number of separators outpuft can be
inferred from this, considering dfdl:separatorPosition.

dfdl:occursCountKind ‘implicit’
Potentially Trailing Not Potentially Trailing
dfdl: Ol maxOccurs bounded
) . unbounded
spparatorSuppressionPolicy

Element Element Element not maxOccurs maxOccurs

- Element declared last declared last unbounded bdunded

declared or occurrence ~\and occurrence
declared
last followed by not followed by
last
end-of-group end-of-group
h\}
Unpar occurrences ~ unparse Unparse N
never Schema definition error (ccurs -- N) trailing zero- occufrences ~
A\ length occurrences Schema umparse
— -) definition (maxdccurs - N)
trailingEmptyStrict Unparse N occurrences error trailing zero-
- (suppressing trailing zero- length
trailingEmpty length occurrences) occlirrences
anyEmpty Unparse N occurrences (suppressing any optional zero-length occurrences)

Tdble 48 Separator Suppressions for dfdl:occursCountKind 'implicit’

THe notation in each cell uses the\"~" symbol to mean "followed by" in the output data stream.
N ptands for the number of elements in the augmented Infoset, which includes any defaults.
unparse N occurrences means output N unparsed Infoset items and associated separators.

unparse(M) trailing zero length occurrences means output M adjacent separators (according to
dfdl:separatorPosition) as if separating M element occurrences.

(suppressing trailing zero-length reps) implies the unparser MUST look ahead into the Infoset and
eparators

<xs:sequence dfdl:separator="'|"' dfdl:separatorPosition="infix"'
dfdl:separatorSuppressionPolicy="'trailingEmpty'>
<xs:element name='a' type='xs:int'
maxOccurs="'5" minOccurs='0"
nillable="'true'
dfdl:representation="'text' dfdl:textNumberPattern='#0"
dfdl:occursCountKind="implicit'
dfdl:initiator="["' dfdl:terminator="1]"
dfdl:emptyValueDelimiterPolicy="none'
dfdl:nilKind="'literalValue' dfdl:nilValue='S%ES;"
dfdl:nilvalueDelimiterPolicy="'none' />
</xs:sequence>

© ISO/IEC 2024 - All rights reserved

137

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

This example is similar to the one used above in the discussion of parsing with separator suppression.
However, the element has no default value, the dfdl:emptyValueDelimterPolicy has been removed, and the
element is nillable. Element 'a' is clearly potentially trailing as it is declared last. The corresponding cell in the
matrix above contains this description:

unparse N occurrences (suppressing trailing zero length reps)
Assume unparsing an Infoset containing five values: 1, 0, nil*’, 4, nil. Five occurrences are unparsed;
however, the last value is nil, which has a representation of '%ES;' meaning empty-string, and
dfdl:nilvalueDelimiterPolicy is 'none' meaning no initiator or terminator is to appear in the data. Since the
schema is suppressing trailing zero-length reps the unparse results in this output:

[11110011114]

This is an example where if the data is reparsed. it does not result in that original Infoset, because the trailing
empty vallie which is the representation of the nil value, is not represented in the output, and so does not
cause an |nfoset item with [nilled] true to be created in the Infoset when this data is parsed. To preserve|the
nil, changg the dfdl:nilValueDelimiterPolicy to 'both'. In that case the output would be:

|[1]|[O]|[]|[4]|[]

The nils npw have explicit representation in the data and are recreated in the Infoset when parsing.

14.2.3.2 Unparsing Child Groups within Separated Sequences

When a clpild of a sequence is a group then a separator is output depending on
dfdl:separptorSuppressionPolicy and other factors:

e ‘npver - the child group’s associated separator is output

e ‘trpilingEmpty’ or ‘trailingEmptyStrict’ — if the child group is potentially trailing, has zero-length and it fis
agtually trailing, its separator is not output.

o ‘apyEmpty’ — if the child group has zero-length its separator isdiotoutput.

rdered Sequence Groups

The occurrences of members of a sequence group with dfdl:sequenceKind of 'unordered' (hereafter referred
to as an 'ynordered sequence') may appear in the data in any.order. Occurrences of the same member do not
have to be contiguous. In the Infoset, sequence groups aretalways in schema order, so a DFDL processor
MUST sornt the members of an unordered sequence into:sehema order when parsing. When unparsing, the
Infoset myst already be in schema order, and the members of the sequence are output in schema order.

14.3.1 estrictions for Unordered Sequences
It is a Schema Definition Error if any member-of.the unordered sequence is not an element declaration or an
element r¢ference.

It is a Schema Definition Error if a member of an unordered sequence is an optional element or an array
element apd its dfdl:occursCountKind.property is not 'parsed’

It is a Schema Definition Error if two or more members of the unordered sequence have the same name ang
the same hamespace (see post-processing transformation below)

It is a Schema Definition Ertor'if an unordered sequence has no members.
14.3.2 PRarsing an Unordered Sequence

When parging, the semantics of an unordered sequence are expressed by way of:
1. apourceste-Source transformation of the sequence group definition, and
2. apostprocessing transformation of the Infoset .

An implenpentation MAY use any technigue consistent with this semantic.

14.3.2.1 Source-to-source Transformation

The source-to-source transformation turns the declaration of an unordered sequence into an ordered
sequence group that contains a repeating choice. To ensure that the resulting schema is a valid DFDL
schema, the choice group is wrapped in an array element.

The unordered sequence is transformed as follows:

47 An Infoset item value of nil means the Infoset item [nilled] member is true, and the [dataValue] member has no value.
See Section 4.2.2 Element Information Items.

© ISO/IEC 2024 - All rights reserved

138

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

o the dfdl:sequenceKind property of the unordered sequence is changed to "ordered"

e the content of the unordered sequence is replaced by a complex element (the 'choice element') with
the following properties:

o XSD minOccurs="0"

o XSD maxOccurs="unbounded"

o dfdl:lengthKind "implicit"

o dfd:occursCountKind "parsed"
o the content of the choice element's complex type is a choice group with the following properties:
e dfdl:choiceLengthKind "implicit"
e The members of the unordered sequence hecome the members of the choice group. with their

declaration order preserved.

e The XSD minOccurs and XSD maxOccurs properties on each member of the choice group are both
setto 1.

Usging the following example as an illustration:

<xls:sequence dfdl:sequenceKind="unordered" dfdl:separator=",">

<xs:element name="a" type="xs:string" dfdl:initiator="A:" />

<xs:element name="Db" type="xs:int" minOccurs="0" dfdl:initiatoxr="B:" />

<xs:element name="c" type="xs:string" minOccurs="0" maxOccurssf0"
dfdl:initiator="C:" />

</lxs:sequence>

THe above unordered sequence group is conceptually rewritten into the following ordered sequence |group:

<xls:sequence dfdl:sequenceKind="ordered" dfdl:separatohrs", ">
xs:element name="choiceElement" minOccurs="0" maxOg¢gurs="unbounded"
dfdl:occursCountKind="parsed">
<xs:complexType>
<xs:choice dfdl:choicelLengthKind="implicit¥>
<xs:element name="a" type="xs:string!l.dfdl:initiator="A:" />
<xs:element name="b" type="xs:int" dfdl:initiator="B:" />
<xs:element name="c" type="xs:strihg" dfdl:initiator="C:" />
</xs:choice>
</xs:complexType>
/xs:element>
</lxs:sequence>

Prpcessing then constructs a temporaryinfo set for this ordered sequence group by parsing the datd.
If I;}member element is found to have the empty representation then the parsing of that element musgt use the

original value of XSD minOccurs:h this example, element "b" has XSD minOccurs "0" and if it is foynd with
the empty representation then.it'must not be defaulted.

14.3.2.2 Post-processing Transformation
Pgst-processing comsists of the following steps:

1. Sort thetemporary Infoset to produce the real Infoset
2. Checkscalar elements and validate

Step 1: Sort.the Temporary Infoset

THe temporary Infoset is transformed into the Infoset conforming to the original unordered sequence| All
@ prdered
2 _ : ord A VIV d- = peats—+o nd child
of the unordered sequence and so on until all members of the temporary Infoset have been sorted into the
schema declaration order of the original unordered sequence.

For the example above, the temporary Infoset is transformed into the Infoset corresponding to:

<xs:sequence>

<xs:element name="a" type="xs:string" />

<xs:element name="b" type="xs:int" minOccurs="0" />

<xs:element name="c" type="xs:string" minOccurs="0" maxOccurs="10" />
</xs:sequence>

Step 2: Check Scalar Elements and Validate

© ISO/IEC 2024 - All rights reserved

139

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

For each element in the unordered sequence having XSD minOccurs "1" and maxOccurs "1", the number of
occurrences is checked. Each such element must occur exactly once in the Infoset, else it is a Processing
Error.

If validation is enabled, the DFDL processor validates the number of occurrences of each member of the
unordered sequence against XSD minOccurs and XSD maxOccurs.

These checks are the same as those performed for an ordered sequence group. However, in an unordered
sequence the checking of XSD minOccurs and XSD maxOccurs MUST be performed after the entire group
has been parsed.

14.3.3 Unparsing an Unordered Sequence

When unparsing, the behavior is exactly as if dfdl:sequenceKind is 'ordered'. The members of the unordered
sequence group are output in schema declaration order

14.4 Flgating Elements

Elements within an ordered sequence can be designated as floating which means that they can appéat-in any
position wjthin the sequence.*®

An orderefl sequence with floating components is similar to an unordered sequence except oplysthe floating
elements fnay be out of order.

Within an prdered sequence with floating components a non-floating array element must thave its occurrencgs
appearing| contiguously, so any floating element occurrences cannot appear in betweentoccurrences of the
array elenpent.(In other words, property dfdl:floating 'yes' only makes a statement about the floating element
not about pny other elements in the sequence.)

Property Name Description

floating Enum
Valid values are 'yes', 'no'

Whether the occurrences of an element in an_ordered sequence can appear out-of-
order in the representation.

When parsing, and dfdl:floating is 'yes',occurrences of the element may be
encountered in the representation inithany positions within its containing sequence. If
present they are placed into the_Infoset in schema declaration order. If the element
repeats, occurrences do not need to be contiguous in the representation.

When parsing, and dfdl:floating is 'no', occurrences of the element must be in schema
declaration order, and, if\present, they are placed into the Infoset in schema
declaration order. It is\a’Processing Error if instances of the element are not
encountered in schema declaration order.

When unparsing; occurrences of the element are expected in the Infoset in schema
declaration arder and are output in the representation in schema declaration order. It
is a Processing Error if occurrences of the element are not encountered in schema
declaration order,

It is~saZSchema Definition Error if an unordered sequence or a choice contains any
element with dfdl:floating 'yes'.

Itis a Schema Definition Error if an ordered sequence contains any element with
dfdl:floating 'yes' and also contains non-element component (such as a choice or
sequence model group).

Itis a Schema Definition Error if an element with dfdl:floating 'yes' is an optional

aleamaent or an arrav alament and-ite dfdl-accursCountKind nranarbic nat 'narcad’
S10eR+-odh—aHay-eremeRtahiaHS-atar- tHS HHHHRE-PrOpeHy1SHot+—Ppatsea

It is a Schema Definition Error if two or more elements with dfdl:floating 'yes' in the
same group have the same name and the same namespace.

Annotation: dfdl:element

Table 49 Properties for Floating Elements

An ordered sequence of N element children with dfdl:floating 'yes' is equivalent to an unordered sequence
with the same N element children with dfdl:floating 'no'.

48The NTE segment in the X12 EDI standard is an example of a floating element.

© ISO/IEC 2024 - All rights reserved

140

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

A complex element with dfdl:floating 'yes' can have as its content model a sequence with elements that also
have dfdl:floating 'yes'.

Every element in a sequence containing one or more floating elements is a point of uncertainty, similar to the
way every element in an unordered sequence is a point of uncertainty.

In resolving this point of uncertainty, a parser MUST look for the element defined at that position in the
schema first and only if unsuccessful with parsing that element, the parser MUST subsequently attempt to
parse the floating elements in the order they are defined in the schema. As soon as any such parse is
successful this resolves the point of uncertainty.

14.5 Hidden Groups

Some fields in the phyS|caI stream prowde information about other fields i in the stream and are not really part
i y not be
on

parsing by containing the element declarations for them W|th|n a hidden group. A hidden grouprallow
elements to be defined that are not added to the Infoset on parsing and are not expected in the-Infoget on
unlparsing.

[

<Xs:element name="root">
xs:complexType>
<xs:sequence>

<xs:sequence>
<xs:annotation><xs:appinfo source="http://www.ogf.orghldfdl/">
<dfdl:sequence hiddenGroupRef="tns:hiddenRepeatCount">
</xs:appinfo></xs:annotation>
</xs:sequence>

<xs:element name="arrayElement" type="xs:int"

minOccurs="0" maxOccurs="unbounded"
dfdl:occursCountKind="expression"
dfdl:occurCount= "{../repeatGount}"
dfdl:representation="binaxy™ dfdl:lengthKind="implicit" />

</xs:sequence>

/xs:complexType>

</kks:element>

<x®s:group name="hiddenRepeatCount" >

Xs:sequence>

<xs:element name="repeatCount" type="xs:int"
dfdl:outputvValu€Calc="{count (../arrayElement) }"
dfdl:representation="binary" dfdl lengthKind="implicit" />

/xs:sequence>

</kks:group>

Ar element contained within the extent of a hidden group is commonly called a hidden element.

Hidden elements are referenced via path expressions using the same DFDL expression that would Qe used if
they were not hidden.

Higdden elements‘ean (typically will) contain the regular DFDL annotations to define their physical prgperties
and on unparsing to set their value. They are processed using the same behavior as non-hidden elements.

definition.

It is a Schema Definition Error if dfdl:hiddenGroupRef appears on a xs:group reference, that is, unlike most
format properties that apply to sequences, dfdl:hiddenGroupRef cannot be combined from a xs:group
reference.

A hidden group may appear within another hidden group.

Property Name | Description

hiddenGroupRef | QName

© ISO/IEC 2024 - All rights reserved

141

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

Reference to a global model group definition. Elements within this model group are not
added to the Infoset and are called hidden elements.

The model group within the model group definition may be a xs:sequence or xs:choice
It is a Schema Definition Error if the value is the empty string.

It is not possible to place this property in scope on a dfdl:format annotation.
Annotation: dfdl:sequence

Table 50 Properties for Hidden Groups

When unparsing a hidden group, the behaviour is the same as when elements are missing from the Infoset;

that is, the default- values algorlthm applles The only dlfference |s that if a reqwred element does not have a
default value-c) a-SC

that this can be checked stat|cally

When ungarsing a hidden group, it is a Processing Error if an element information item is provided in the
Infoset forla hidden element.

Examples|of hidden groups are in Section 17 Calculated Value Properties.

© ISO/IEC 2024 - All rights reserved

142

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

15 Choice Groups

A choice corresponds to concepts variously called variant records, multi-format records, discriminated unions,
or tagged unions in various programming languages. In some contexts, choices are referred to generally as
'unions'. However, this should not be confused with XSD unions which are an unrelated concept.

The following properties are specific to xs:choice.

Property Name Description

choiceLengthKind | Enum

Valid values are 'implicit', 'explicit'

'implicit' means the branches of the choice are not filled, so the ChoiceContent region
H okl 1 b ol P~ H hiab- b [

o VAlIiduIGe 101 IHLI T UUVUI LA™ 1) IH vl vwiimort vrdariolt GV'JUC!I 9.
'explicit' means that the branches of the choice are always filled to the fixed<l¢ngth

specified by dfdl:choiceLength, so the ChoiceContent region is fixed-length regardless
of which branch appears.

Annotation: dfdl:choice, dfdl:group (choice)

choiceLength Integer
Only used when dfdl:choiceLengthKind is 'explicit'.
Specifies the length of the choice in bytes, so the ChoiceContent region is fix¢d-
length regardless of which branch appears. A ChoiceUnused region is therefore
possible which when unparsing is filled with dfdl:fillByte.
Annotation: dfdl:choice, dfdl:group (choice)

initiatedContent Enum

Valid values are 'yes', 'no'

When 'yes' indicates that all the branches of the choice are initiated. It is a Sghema
Definition Error if any children have their dfdl:initiator property set to the empty string.
The branch is known to exist when its initiator has been found. Any subsequgnt error
parsing the branch does not'cause the parser to backtrack.
When 'no’, the branches 0fthe choice may have their dfdl:initiator property set to the
empty string.

Annotation: dfdl:sequence, dfdl:choice, dfdl:group

(@]

hoiceDispatchKey | DFDL Expression

The expression must evaluate to an xs:string. It is a Schema Definition Error |f the
expression returns an empty string.

It is @ Schema Definition Error if the expression contains forward references tp
elements which have not yet been processed.
This property is used only when parsing.

The resultant string must match one of the dfdl:choiceBranchKey property values of
one of the branches of the choice. This match is case sensitive. If so, it discriminates
to that branch. The parser then goes straight to that branch, ignoring considefation of
any other choice branches. No backtracking of this decision occurs if there is|a
subsequent Processing Error.

Itis a Processing Error if the value of the expression does not match any of the
dfdl'rhniPannPhKny property values for any of the bhranches

It is a Schema Definition Error if any choice branch does not specify a
dfdl:choiceBranchKey in a choice that carries choiceDispatchKey.

It is not possible to place this property in scope on a dfdl:format annotation.
Annotation: dfdl:choice

choiceBranchKey | List of DFDL String Literals

This literal provides an alternate way to discriminate a choice to a branch. When the
dfdl:choiceDispatchKey expression evaluates to a string matching one of this
property's values, the choice is discriminated to this branch. The match is case
sensitive.

© ISO/IEC 2024 - All rights reserved

143

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

Itis a Schema Definition Error if individual dfdl:choiceBranchKey values are not
unique across all branches of a choice that carries dfdl:choiceDispatchKey.

It is a Schema Definition Error if dfdl:choiceBranchKey is specified on a global
element, or on a sequence or choice that is the child of a global group definition.

It is a Schema Definition Error if any choice branch does not specify a
dfdl:choiceBranchKey in a choice that carries choiceDispatchKey.

Byte value entities are not allowed.

Character classes are not allowed.

This property is only used when parsing.

It is not possible to place this property in scope on a dfdl:format annotation.

Annotation: ardl:element, didl:sequence, drdl:choice, didl:group

Table 51

A choice d
The expla

Branch -
type or co

Root of the Branch - Each branch conceptually has a single schema component at its.root which is an

element, 4
The Root
A choice t

When pro
contained
Note that
alternativg

Properties for Choice Groups

an have a dfdl: initiator and/or a dfdl:terminator as described earlier.
hation of choices requires this terminology:

A\ branch is one of the available alternatives within a choice. A branch can be an élement of simplg
Mmplex type, or it can be an embedded sequence, choice or group reference.

equence, choice or group reference. This component is known as the Rdaot)of the Branch
bf the Branch must not be optional. That is XSD minOccurs must be greater than zero.
hat declares no branches in the DFDL schema is a Schema Definition Error.

Cessing a choice group, the parser validates any contained pattrexpressions. If a path expression
inside a choice branch refers to any other branch of the choice,then it is a Schema Definition Errg
his rule handles nested choices also. A path that navigates:outward from an inner choice to anoth
of an outer choice is violating this rule with respect to thie-outer choice.

15.1 Repolving Choices

When progessing a choice, there are two ways to resolve.the intended branch. In one, speculative parsing is
used. In the other, a constant-time direct dispatch to a branch is performed.

15.1.1 Resolving Choices via Speculation

Speculatije resolution works as follows:
1. Attempt to parse the first branch of the choice.
2. If this fails with a Processing Error

a) If p dfdl:discriminator evaluatédyto true earlier on this branch
then the parser is 'bound' t@_this branch and parsing of the entire choice construct fails with a
Processing Error.

b) If the branch has a dfdlinitiator and the choice has dfdl:initiatedContent ‘yes’
then the parser is*bound' to this branch and parsing of the entire choice construct fails with a
Processing Errop.

c) Otherwiserepeat from step 1 for the next branch of the choice.

3. ltisa

4. If a branch is successfully parsed without error, then that branch's Infoset becomes the Infoset for the
parse|ofthe choice construct.

rocessing Error if the branches of the choice are exhausted.

-

5. If the branch is an element declaration having dfdl:occursCountKind="expression' or
dfdl:occursCountKind='parsed', then zero instances are possible. If the branch parses successfully without

a disc

riminator but produces no element occurrences, then the branch is considered missing, and the

parser looks for the next branch

It is not possible for variable settings to be communicated from the speculative attempt to parse a branch to
any other parsing situation. The speculative effort is completely isolated. Whether it succeeds or fails, neither

the parse

position in the source data, nor anything in the variable memory, nor the Infoset is affected.

© ISO/IEC 2024 - All rights reserved

144

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

Nested choices can require unbounded*® look ahead into the data.

15.1.2 Resolving Choices via Direct Dispatch

Direct dispatch provides a constant-time dispatch to a choice branch independent of how many choice
branches there are.

Direct dispatch is indicated by the dfdl:choiceDispatchKey property. This expression is evaluated to compute
the string matching (case sensitive) one of the dfdl:choiceBranchKey property values of one of the choice
branches.

When a match is found, it is as if a dfdl:discriminator had evaluated to true on that branch. It is selected as
resolution of the choice, and there is no backtracking to try other alternative selections if a Processing Error
occurs.

may
: n the
Infoset is used to search the choice branches in the schema, in schema definition order, but without Jooking

next element to unparse does not identify any branch of the €hoice, or there is no next element to urjparse,

theén there must be a choice branch with no required elemeénis and the first such branch would be selected for
unparsing. A choice branch can consist only of a nest ofmodel groups with no actual element content or only
optional element content.

Td avoid any unintended behavior, all the children-of a choice can be modeled as elements.

15.1.3.1 Unparsing Choices in Hidden Groups

When a choice appears inside a hidden group, there are no corresponding Infoset elements as therg are none
for hidden groups. The first branch of the-Choice is unparsed. All elements contained in the branch must have
default values or must have dfdl:outputValueCalc properties to compute their values, and it is a Schgma
Définition Error otherwise.

49 Because DFDL v1.0 does not allow recursive definitions, the notion of unbounded here is limited by the depth of the
DFDL schema, so is not truly unbounded as it would be if recursion were allowed.

© ISO/IEC 2024 - All rights reserved

145

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

16 Properties for Array Elements and Optional Elements

These properties are for array elements (XSD maxOccurs >1 or unbounded) or optional elements (XSD
minOccurs 0 and XSD maxOccurs 1). The properties handle a logical one-dimensional array of any simple or
complex type.

Property Name | Description

occursCountKind | Enum

Specifies how the actual number of occurrences is to be established.
Valid values 'fixed', 'expression’, 'parsed’, 'implicit' ,'stopValue'.
'fixed' means use the XSD maxOccurs property.

Eexpression’ means use the didl.occursCount property.

'parsed’ means that the number of occurrences is determined solely by speculative
parsing.

'implicit' means that the number of occurrences is determined by speculative parsing in
conjunction with the XSD minOccurs and XSD maxOccurs properties.

'stopValue' means look for a mandatory logical stop value which signifies the end of the
occurrences.

These values are described in detail in Section 16.1.
Annotation: dfdl:element

occursCount DFDL Expression
Specifies the number of occurrences of the element.
Required only when dfdl:occursCountKind is 'expression'.

This property is computed by way of an expression which returns a non-negative
integer. The expression must not contain forward references to elements which have
not yet been processed.

Annotation: dfdl:element,

occursStppValue | List of DFDL Logical Values

A whitespace separated list of logical values that specify the alternative logical stop
values for the element.

Required only when dfdl:occursCountKind is 'stopValue'.

When parsing then if an.occurrence of the element has a logical value that matches on
of the values in thisist.then the parser MUST not expect any more occurrences of the
element.

On unparsing the first value is inserted as an additional final occurrence in the array
after all the(ogcurrences in the Infoset have been output.

The dfdl:occursStopValue property must not be empty string.
Anngtation: dfdl:element

1]

Table 52 Properties for Array Elements and Optional Elements

When XSID minOceurs 1 and XSD maxOccurs 1, the above properties are not used, and the behavior is as if
dfdl:occurgCountKind is 'fixed' as described in Section 16.1.1.

16.1 The-dfdl:occursCountKind property

16.1.1 dfdl:occursCountKind ‘fixed’

The enum 'fixed' should be used when the number of occurrences is always the same. The number is
provided by the XSD maxOccurs property.

When parsing, maxOccurs occurrences are expected in the data. It is a Processing Error if less than
maxQOccurs occurrences are found or defaulted. The parser stops looking for occurrences when maxOccurs
have been found or defaulted. When maxOccurs is 0, no occurrences are looked for in the data.

When unparsing, maxOccurs occurrences are expected in the Infoset. It is a Processing Error if less than
maxQOccurs occurrences are found or defaulted. The processor stops looking for more occurrence in the

© ISO/IEC 2024 - All rights reserved

146

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

Infoset after maxOccurs occurrences have been found. When maxOccurs is 0, no occurrences are looked for
in the Infoset or written.

It is a Schema Definition Error if XSD minOccurs is not equal to XSD maxOccurs.
16.1.2 dfdl:occursCountKind ‘implicit’

The enum 'implicit' should be used when the number of occurrences is to be established using speculative
parsing, and there are lower and upper bounds to control the speculation. The bounds are provided by the
XSD minOccurs and XSD maxOccurs properties.

When parsing, up to maxOccurs occurrences are expected in the data. It is a Processing Error if less than
XSD minOccurs occurrences are found or defaulted. The parser stops looking for occurrences when either
XSD minOccurs have been found or defaulted and speculatlve parsmg does not find another occurrence, or
ced forin

When unparsing, up to XSD maxOccurs occurrences are expected in the Infoset. It is a Processing [rror if
legs than XSD minOccurs occurrences are found or defaulted. The processor stops looking formore
oceurrences in the Infoset after XSD maxOccurs occurrences have been found. When XSD-maxOcdurs is 0,
ng occurrences are looked for in the Infoset or written.

16.1.3 dfdl:occursCountKind ‘parsed’

THe enum 'parsed' should be used when the number of occurrences is to be established solely using
speculative parsing.

When parsing, any number of occurrences is expected in the data. The parser stops looking for occyrrences
when speculative parsing does not find another occurrence. If validation is enabled, it is a Validation|Error if
legs than XSD minOccurs occurrences are found or defaulted, or greater than XSD maxOccurs occyrrences
are found.

When unparsing, any number of occurrences is expected in thednfoset. If validation is enabled, it is
Vglidation Error if less than XSD minOccurs occurrences arefound or defaulted, or if more than XSO
xOccurs occurrences are found.

.1.4 dfdl:occursCountKind 'expression’

12

THe enum 'expression’ should be used when the number of occurrences is calculated by evaluating # DFDL

When parsing, the dfdl:occursCount expression is evaluated and provides the number of occurrences
expected in the data. It is a Processing Error if less than dfdl:occursCount occurrences are found or fefaulted.
THe parser stops looking for occurrences-when dfdl:occursCount occurrences have been found. If validation is
enabled, it is a Validation Error if less than XSD minOccurs occurrences are found or defaulted, or more than
X$D maxOccurs occurrences are.found. When dfdl:occursCount is 0, no occurrences are looked for|in the

When unparsing, any numbger,of occurrences are expected in the Infoset. If validation is enabled, it i$ a
Vdlidation Error if less than, XSD minOccurs occurrences are found or defaulted, or if more than XSO
maxOccurs occurrencesyare found. The dfdl:occurs expression is not evaluated. The ‘count’ is the nimber of
oceurrences in the augmented Infoset.

It is a Schema Definition Error if dfdl:occursCount is not provided or in scope.
.1.5 dfdl:oecursCountKind 'stopValue'

THe enum-stopValue' should be used when the end of the array is signaled by an occurrence having a logical
value that'is equal to one of the specified 'stop values'.

Whémparsing, any number of occurrences is expected in the data, followed by an occurrence whichlis a stop
value as specified by dfdl:occursStopValue. Tt is a Processing Error if a stop value occurrence is not found in
the data (including when there are zero other occurrences). The parser stops looking for occurrences once a
stop value has been found. If validation is enabled, it is a Validation Error if less than XSD minOccurs
occurrences are found or defaulted, or more than XSD maxOccurs occurrences are found, not including the
stop value.

When unparsing, the behavior is the same as for 'parsed’, with the addition that a stop value occurrence is
output after the last Infoset occurrence. If dfdl:occursStopValue provides multiple stop values then the first is
used.

The stop value itself is not added to the Infoset when parsing. It is a Processing Error if a stop value is found
in the Infoset when unparsing. (This ensures that the array can be reparsed, as the stop value is placed
automatically and only at the end.)

© ISO/IEC 2024 - All rights reserved

147

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

Itis a Schema Definition Error if dfdl:occursStopValue is not provided or in scope.
It is a Schema Definition Error if the type of the element is complex.

It is a Schema Definition Error if any of the stop values provided by dfdl:occursStopValue do not conform to
the simple type of the element.

16.2 Default Values for Arrays

When parsing, required occurrences that have empty representation may trigger the application of a default
value, as described in Section 9.4.2 Element Defaults When Parsing.

When unparsing, required occurrences that are missing from the Infoset may trigger the application of a
default value, as described in Section 9.4.3 Element Defaults When Unparsing.

The application of default values is not dependent on dfdl:occursCountKind, only on whether the occurrence

is required or optional, whether there is a default value specified, and whether the data contains the empty,
representation (parsing) or is missing (unparsing). Section 9.4 Element Defaults contains the details.

16.3 Arrays with DFDL Expressions

If the valug of a DFDL property of an array element (other than dfdl:occursCount) is given by a DFDL
Expression, then the expression MUST be re-evaluated for each occurrence of the element injease the valu
changes.

16.4 Pojnts of Uncertainty

Arrays ca have points of uncertainty depending on the value of dfdl:occursCountKind. See Section 9.3.3
Resolving|Points of Uncertainty for details.

11%

16.5 Arrays and Sequences
In some sftuations, arrays of elements and sequence groups of elements Seem to be similar; however, there
no notion pf the array itself independent of its contained elements. Arrays are distinctly different from
sequence|groups in this way.

A sequenge can have its own initiator, and a complex element having that sequence as its content can also
have its own initiator, so one can express two different initiatars:

Unlike a spquence group, an array does not have its own initiator, terminator, or alignment. Those propertie$
apply to epch element occurrence of the array. To give at‘alignment, initiator, separator, or terminator to an

S

e dfgdl:occursCountKind is 'stop\alue'
e dfgl:occursCountKind is 'parsed'
o dfdl:occursCountKind is /implicit' and XSD maxOccurs is unbounded

dfdl:occursCountKind is stopVaIue in which case thls results ina Processmg Error because the stop value
will never be encountered.

Further, to prevent unnecessary consumption of resources for large bounded values of XSD maxOccurs, the
parsing of an array must similarly terminate when the following are true:
e dfdl:occursCountKind is 'implicit';
e The occurrence is a point of uncertainty;
e The position in the data does not move during the parsing of the occurrence (including any associated
Separator, PrefixSeparator, or PostfixSeparator region);
o The occurrence is known to exist with empty representation.

© ISO/IEC 2024 - All rights reserved

148

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

In this situation no forward progress occurs, and nothing is being added to the infoset. Note that this differs
from the above array termination because nil representation does not cause detection of this lack of forward
progress as nilled element items are added to the Infoset, and the array eventually terminates when it
contains XSD maxOccurs occurrences.

16.7 Parsing Occurrences with Non-Normal Representation

When parsing a single array, it is possible to extract occurrences that have different representations (nil,
empty, normal, absent) although with some values of dfdl:lengthKind certain combinations of representations
are not possible.

Occurrences with nil representation are added to the Infoset with [nilled] member true.
Occurrences with empty representation may or may not be added to the Infoset, as described in Section 9.4. If

Og¢currences with absent representation are not added to the Infoset. For a required occurrence\itmay be a
Prpcessing Error, dependent on dfdl:occursCountKind as described in Section 16.1.

16.8 Sparse Arrays

Cansider parsing an array where optional occurrences with empty representation are|present in the data, but
there are also later optional occurrences present with normal representation. Such an array is called|a 'sparse

arfay'.

If fhe indices of the occurrences are significant and need to be preserved, then the array may be mogelled
usjng an element with XSD nillable 'true’, dfdl:nilKind 'literalValue', dfdl:nilValue '%ES;' and
dfdl:nilValueDelimiterPolicy the same as dfdl:emptyValueDelimiterPolicy. The occurrences with empty
representation now become occurrences with nil representation, and produce nil values in the Infosqt, so the
absolute positions of all occurrences are preserved.

If the indices of the occurrences are not significant, then the array should be modelled using an element with
X$D nillable 'false'. Optional occurrences with empty representation do not create items in the Infoset, so the
absolute positions of any optional occurrences with normal representation are not preserved. Optionpl
oceurrences with empty representation are therefore skipped.

© ISO/IEC 2024 - All rights reserved

149

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

17 Calculated Value Properties

This section describes properties which allow the creation of calculated elements. When parsing, the value of
a calculated element is derived using a DFDL Expression, and not by processing bytes from the data stream.
When unparsing, the value of a calculated element is derived using a DFDL Expression and is not obtained
from the Infoset in the usual way.

Calculated elements allow a technique that is commonly called layering. In this technique, some elements are
said to be in the physical layer, and some in the logical layer. When parsing, the logical layer values are
computed from physical layer values. When unparsing the opposite occurs, that is the physical layer values
are computed from the logical layer values.

Calculated elements are commonly used with hidden elements to hide the physical layer elements so that
they do not become part of the Infoset.

When a DtDL Schema is used to both parse and unparse data, then a calculated element on parsing
normally inplies use of one or more calculated elements on unparsing.

These properties apply to elements of simple type.

Property Name | Description

inputValyeCalc | DFDL Expression
An expression that calculates the value of the element when parsing:

It is a Schema Definition Error if the result type of the expression dees not conform to
the base type of the element.

The element value created using dfdl:inputValueCalc is validated like any other element
value (when validation is enabled).

An element that specifies a dfdl:inputValueCalc expression has no representation of its
own in the data stream. All other DFDL representation properties are ignored.

When an element which carries this property appears in a sequence that has a
separator, no separator is associated with the element. When parsing, no separator is
expected in the input data. When unparsing, no separator is written to the output data.

The element must not be optional nor.an array nor be global.

The DFDL Expression must not referto this element nor cause a circular reference to
this element. The expression must not contain forward references to elements which
have not yet been processed.

It is a Schema Definition Erfor if this property is specified on an element which has an
XSD fixed or default property.

It is a Schema Definition Error if dfdl:inputValueCalc and dfdl:outputValueCalc are
specified on the same element.

It is not possible_to place this property in scope on a dfdl:format annotation.

If this property appears on an element declaration or element reference schema
component;ythe appearance of any other DFDL properties on that component is a
Schema-Definition Error.

If this-property appears on an element reference, then DFDL properties expressed on
the referenced global element declaration or its type are ignored.

If this property appears on an element declaration, then DFDL properties expressed on
its type are ignored.

Annotation: dfdl:element

outputValueCalc | DFDL Expression
An expression that calculates the value of the current element when unparsing.
The element must not be optional nor an array nor be global.

It is a Schema Definition Error if the result type of the expression does not conform to
the base type of the element.

The value created using dfdl:outputValueCalc is validated like any other element value
(when validation is enabled).

The value for the element, if any, in the Infoset is ignored.

© ISO/IEC 2024 - All rights reserved

150

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

not yet been processed.

The DFDL expression must not refer to this element nor cause a circular reference to
this element. The expression may contain forward references to elements which have

It is a Schema Definition Error if dfdl:outputValueCalc is specified on an element which

has an XSD fixed or default property.

It is a Schema Definition Error if dfdl:inputValueCalc and dfdl:outputValueCalc are
specified on the same element.

It is not possible to place this property in scope on a dfdl:format annotation.
Annotation: dfdl:element

Table 53 Calculated Value Properties

of

17.1 Example: 2d Nested Array

Cansider this simple example. The data stream contains two elements giving the number of rews and number

columns of an array of numbers. The representation of the array is stored after these two.elements.

<x

s:complexType name="array">
xs:sequence dfdl:initiator="" >

<xs:sequence dfdl:hiddenGroupRef="tns:hiddenArrayCounts"/>
<xs:element name="rows" maxOccurs="unbounded"

dfdl:occursCountKind="expression"
dfdl:occursCount="{ ../nrows }">

<xs:complexType>
<xs:sequence>

dfdl:occursCount=" {
</xs:sequence>
</xs:complexType>
</xs:element>
/xs:sequence>
</lks:complexType>

<x®s:group name="hiddenArrayCounts" >
Xs:sequence>

dfdl:lengthKind="implicit"

dfdlghengthKind="implicit"

dfdlisdutputvValueCalc=

/%6 \ééquence>
</kgsgroup>

<xs:element name="cols" type="xs:float" maxXOdcurs="unbounded"
dfdl:occursCountKind="expression"

../../D¢ols } " />

<xs:element name="nrows" typeE!xs:unsignedInt"
dfdl:representatiton="binary"

dfdl:outputValueCalc="{ count(../rows)
<xs:element name="ncOls" type="xs:unsignedInt"
dfdl:répresentation="binary"

YSN\"1f (count(../rows) ge 1)
then
count (../rows[1l]/cols)
else
0
y"/>

}"/>

In the example abovethere are two hidden elements named 'nrows’ and 'ncols’. These hidden elements'
values are computed when unparsing from the number of occurrences in the 'rows' and 'cols' repeating
elements. The 'rows' and 'cols' repeating elements number of occurrences are computed when parsing from

the hidden elements 'nrows' and 'ncols'.

17.2 Example: Three-Byte Date
Logically, the data is a date.

|<xs:element name="d" type="date"/>

Physically, it is stored as 3 single byte integers.
The format of this data is expressed as this schema:

© ISO/IEC 2024 - All rights reserved

151

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

<xs:sequence dfdl:representation="binary">
<xs:element name="mm" type="byte" />
<xs:element name="dd" type="byte" />
<xs:element name="yy" type="byte"/>
</xs:sequence>

This physical representation can be hidden so that it does not become part of the Infoset:

<xs:sequence>
<xs:sequence dfdl:hiddenGroupRef="tns:hiddenpDate"/>

<xs:element name="d" type="date">

</xs:element>

</xs:seqpes

<xs:group name="hiddenpDate" >
<xs:sefuence>
<xs:glement name="pdate">
<xg:complexType>
xs:sequence dfdl:representation="binary">
<xs:element name="mm" type="byte" />
<xs:element name="dd" type="byte" />
<xs:element name="yy" type="byte"/>
/Xs:sequence>
</ks:complexType>
</xstelement>
</xs:sgquence>
</xs:gropp>

A calculatjon can be used to compute the logical date element 'd' from_ the physical 'pdate’ when parsing:

<xs:sequg¢nce>
hiflden pdate here

<xs:elgment name="d" type="date">
<xs:pnnotation><xs:appinfo source="http://www\ogf.org/dfdl/">
<dfdl:element>
dfdl:property name="inputValueCalc">
{
fn:date (fn:concat (if (../pdate/yy*gt 50)then "19" else "20",
if (../pd&te/yy gt 9)
then(ksistring(../pdate/yy)
else fn:concat ("0",
xs:string(../pdate/yy)),
14
xs:string(../pdate/mm),

w_mn

4
xs:string(../pdate/dd)))
}
/dfdl :property=
</ffdl:elementy
</xstappinfo></xs:annotation>
</xs:element>

</xs:seghenge

The expression above assembles a string resembling, for example, "2005-12-17" or "1957-3-9" which is the

string representation of a date that IS acceptable {0 the n:date coOnstructor function. The hidden element
'pdate’ is referenced by relative paths. The expression '../pdate/yy' accesses an element of type
'int', and the xs: string constructor function turns it into an integer.

Finally,one must handle the unparse case where the physical layer is computed from the logical layer:

<xs:sequence dfdl:representation="binary"
<xs:element name="mm" type="byte"

dfdl:outputValueCalc="{ fn:month-from-date(../d) " />
<xs:element name="dd" type="byte"

dfdl:outputValueCalc="{ fn:day-from-date(../d) }" />
<xs:element name="yy" type="byte"

dfdl:outputValueCalc="{ fn:year-from-date(../d) idivmod 100 }"/>

© ISO/IEC 2024 - All rights reserved

152

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

|</xs:sequence>

The entire example in one place:

<xs:sequence>
<xs:sequence dfdl:hiddenGroupRef="tns:hiddenpDate"/>

<xs:element name="d" type="date">
<xs:annotation><xs:appinfo source="http://www.ogf.org/dfdl/">
<dfdl:element>
<dfdl:property name="inputValueCalc">
{
fn:date (fn:concat (if(../pdate/yy gt 50) then "19" else "20",
if (../pdate/yy gt 9)

then se.stringl ndate /5757)
=) 25

else fn:concat ("0",
xs:string(../pdate/yy)),

14

xs:string(../pdate/mm),

w_nmn
4

xs:string(../pdate/dd)))
}
</dfdl:property>
</dfdl:element>
</xs:appinfo></xs:annotation>
/xs:element>

</lxs:sequence>

<gs:group name="hiddenpDate" >
XS :sequence>
<xs:element name="pdate">
<xs:complexType>
<xs:sequence dfdl:representation="binasy"™>
<xs:element name="mm" type="byte"
dfdl:outputValueCalc="{ fn:month-from-date(../d) " />
<xs:element name="dd" type="byte"
dfdl:outputValueCalc="{\Nftn:day-from-date(../d) }" />
<xs:element name="yy" type="byte"
dfdl:outputValueCale="{ fn:year-from-date(../d) idivmod 100 }" /
</xs:sequence>
</xs:complexType>
</xs:element>
/Xs:sequence>
</lks:group>

THe above sequence contains logically only a single date element.

© ISO/IEC 2024 - All rights reserved

153

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

18 DFDL Expression Language

The DFDL expression language allows the processing of values conforming to the data model defined in the
DFDL Infoset. It allows properties in the DFDL schema to be dependent on the value of an occurrence of an
element or the value of a DFDL variable. For example, the length of the content of an element can be made
dependent on the value of another element in the document.

The main uses of the expression language are as follows:

1. When a DFDL property needs to be set dynamically at parse time from the value of one or more
elements of the data. Properties such as dfdl:initiator, dfdl:terminator, dfdl:length, dfdl:occursCount,
and dfdl:separator accept an expression.

2. In a dfdl:assert annotation

w

Infadfdtdiscrimimatoranmotatiorto resoive uncertainty wherm parsing

4. In|a dfdl:inputValueCalc property to derive the value of an element in the logical model that doesn't
exist in the physical data.

5. In|a dfdl:outputValueCalc property to compute the value of an element on unparsing.

6. As the value in a dfdl:setVariable annotation or the dfdl:defaultValue in a dfdl:defineVariable or
dfdl:newVariablelnstance.

The DFDUY expression language is a subset of XPath 2.0 [XPath]. DFDL uses a subset of XML schema and
has a simpler information model, so only a subset of XPath 2.0 expressions is meaningful in DFDL Schemas.
For example, there are no attributes in DFDL, so the attribute axis is not needed.

XPath 2.0|specification [XPATHZ2] allows implementation-dependent evaluation ef expressions thereby
allowing ejther lazy (sequential) evaluation or full (parallel) evaluation of expressions with OR and AND
clauses. Tlhis flexibility is not desirable in DFDL 1.0 implementations, so the specification is changed to
prescribe [azy (sequential) evaluation left-to-right.

In additior], DFDL expressions never return node-sequences having-more than one node. DFDL expressiong
either return a simple value, a node sequence containing exactly éne node/value, or an empty node
sequence| Node sequences of length greater than one can be used within the expression, just not as the finpl
result. Altgrnatively, one can state this as there are no constructs in DFDL which can accept a node sequenge
of more thlan one node; hence, DFDL expressions can nevérreturn a node sequence of more than one nod¢
as their firjal result.

For nilled Elements, an attempt to get the value of a nilled element returns an empty node sequence.

DFDL implementations MUST comply with the error code behaviour in Appendix G of the XPath 2.0 spec and
map these to the correct DFDL failure type. Alkbut one of XPath's errors map to a Schema Definition Error.
The exception is XPTY0004, which is used both for static and dynamic cases of type mismatch. A static type
mismatch|maps to a Schema Definition Etror, whereas a dynamic type mismatch maps to a Processing Errg
A DFDL irhplementation SHOULD distinguish the two kinds of XPTY0004 error if it is able to do so, but if
unable it MUST map all XPTY0004¢&érrors to a Schema Definition Error

Implementation Note: DFDL implementations MAY use off-the-shelf XPath 2.0 processors, but must pre-
process DIFDL expressions toe‘ensure that the behaviour matches the DFDL specification:
e Ensure that whatis.returned as the result is not a sequence with length > 1 by appropriate use of
fnfexactly-one(y:
e Check for the'disallowed use of those XPath 2.0 functions that are not in the DFDL subset

XPath 2.0|specification [XPATHZ2] defines its functions to be in namespace http://www.w3.0rg/2005/xpath-
functions.|[The. DFDL specification assumes namespace prefix “fn:” is bound to this namespace.

=

18.1 Expression Language Data Model

The DFDL expression language operates on the DFDL augmented Infoset with the addition of the hidden
elements.

Relative path expressions are evaluated relative to the current Infoset Element Information ltem, also referred
to as the current element for short.

In general, a DFDL expression can only reference an element that precedes the position in the schema where
the expression is declared, and it is a schema definition otherwise, with the following exceptions:

e An assert or discriminator on a component may reference an element that is a descendent of the
component.

e A dfdl:outputValueCalc property may reference an element that follows the position in the schema
where the property is specified.

© ISO/IEC 2024 - All rights reserved

154

http://www.w3.org/2005/xpath-functions
http://www.w3.org/2005/xpath-functions
https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

Implementations MAY have implementation-defined limitations on the use of forward or backward reference or
MAY provide controls for bounding the reach of such references. These mechanisms are beyond the scope of
this specification.

18.2 Variables

A variable is a binding between a (qualified) name and a (typed) value. Variables are defined using the
dfdl:defineVariable annotation (see 7.7); defining a variable causes an initial instance also to be created.
Further instances of variables are created using the dfdl:newVariablelnstance annotation. Instances of
variables are assigned a value using the dfdl:setVariable annotation. Variables are referenced in expressions
by preceding the QName with '$'.
This section describes the semantics of variables. Any implementation consistent with the behavior described
here is acceptable

TH

Sy

e memory where the information about a variable is stored during DFDL processing is called thex
memory. A variable is a name that is associated with a storage tuple in the variable memory.

ecifically, the variable memory contains:
e acounter used to generate locations for new tuples. Initial value is 1.
e an ordered list of locations. Each location contains a tuple of values:

O
O

e variable memory is initialized when a.dfdl:defineVariable annotation is encountered.

ch time a dfdl:newVariablelnstance-annotation is encountered, the parser captures the current va
unter from the variable memory. It then creates a new variable memory where the location counte

bne greater, and where the list'ef locations has been augmented with a new tuple at the location g
¢ prior value of the location counter. The tuple is initialized based on the specifics of the dfdl:defing

has-been-set flag. This Boolean is originally false. dfdl:setVariable changes this flag

has-been-referenced flag. This Boolean is originally false. Evaltation of an expressi
uses the variable value changes the value to true.

has-value flag. This Boolean is originally true if the dfd|.defineVariable or
dfdl:newVariablelnstance annotation has a default value specified, or if a default val
been supplied externally. Otherwise it is false but i§/set to true if a dfdl:setVariable a
is processed.

typelD. This string is a type identifier taken frent the type specified in the dfdl:define
annotation.

value. This is a typed value, or the distinguished value "unknown". The type of the v
MUST correspond to the typelD. The*value is optionally specified in dfdl:defineVaria
dfdl:newVariablelnstance annotations in which case it is referred to as the default v

ariable

to true.
bn that

e has
nnotation

ariable

alue
ble or
lue for

the variable. A default value may-also be provided by the DFDL processor when the variable

is defined with external "true’-

ue of the
's value
iven by

Variable

resh
e tuple

default or external value)

DFDL annotation before annotation processed after annotation processed
has- has-been- has- has- has-been- has-value
been- referenced value | been- referenced
set set

defineVariable (without tuple doesn't exist false false false

defineVariable (with tuple doesn't exist false false true
default value)

© ISO/IEC 2024 - All rights reserved

155

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

defineVariable (with tuple doesn't exist false false true
external value)
newVariablelnstance tuple doesn't exist false false false
(without default value)
newVariablelnstance (with | tuple doesn't exist false false true
default value)
setVariable tuple doesn't exist Schema Definition Error
false false false true false true
false false true true false true (also
value changeq
to new value)
false true true Schema Definition Error — set aften
reference not allowed.
true any true Schema Definition Error ~double set not
allowed.
reference variable (from tuple doesn't exist Schema Definition Efror
DFDL expression) false false false Schema Definition’ Error — undefined
variable
any any true false trbe (value is | true
returned)
Table 54 Memory States for Expression Language Variables

The abovg table describes a set of rules which might be abbreviated as:
e wfite once, read many
e n@ write after the value has been read

An excepfjon to this behavior occurs whenever the DFDL processor backiracks because it is processing
multiple afms of a choice or as a result of speculative-parsing. In this case the variable state is also rewound.

It is a Schema Definition Error if a dfdl:setVariable or a variable reference occurs and there is no
corresponding variable name defined by a dfdlidefineVariable annotation.

Itis a Schema Definition Error if a dfdl:setVariable provides a value of incorrect type which does not
correspon(d to the type specified by the‘dfdl:defineVariable.

Itis a Schema Definition Error if a variable reference in an expression is able to return a value of incorrect
type for the evaluation of that expression. That is, DFDL - including the expressions contained in it - is a
statically type-checkable language. DFDL implementations SHOULD issue these Schema Definition Errors
prior to prpcessing time if possible.

Even if the errors are detected at processing time, the errors associated with write-after-read, and double-
write are $chema Definition Errors because they indicate the schema is not properly designed to use
variables ¢onsistent with their single-assignment behavior.

18.3 General-Syntax

DFDL expressions follow the XPath 2.0 syntax rules but are always enclosed in curly braces "{" and "}".

When a property accepts either a DFDL string literal or a DFDL expression, and the value is a string literal
starting with a "{" character, then "{{"must be used to escape the "{" character. Note that no escaping is
required on the "}" character.

The syntax "{}" is a Schema Definition Error as it results in an empty XPath 2.0 expression which is not legal.
It is not the equivalent of setting the property to empty string.

Examples

{ /book/title }
{ $x+2 }
{ if (fn:exists(../fieldl)) then 1 else 0 }

© ISO/IEC 2024 - All rights reserved

156

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

The result of evaluating the expression must be a single atomic value of the type expected by the context, and
it is @ Schema Definition Error otherwise. Some XPath expressions naturally return a sequence of values, and
in this case, it is also Schema Definition Error if an expression returns a sequence containing more than one
item.

Additionally:

e Every property that accepts an expression states exactly what the expression is expected to return.
To ensure the returned value is of the correct type, an expression must use XPath constructors or the
correct literal values.

e What appears lexically as the syntax of an expression follows XPath 2.0 rules. Note specifically that
this is not the same as XSD default and XSD fixed property lexical syntax. Specifically, XSD default
and XSD fixed properties do not accept expressions. They are always interpreted as XML Schema

string Titerals. See [XSD] for details.
¢ No extra auto-casting is performed over and above that provided by XPath 2.0. XPath 2.0,has rules
for when it promotes types and when it allows types to be substituted. These are in Appendik B.1 of
the XPath 2.0 spec.
o If the property is not expecting an expression to return a DFDL string literal, the\returned valpie is
never treated as a DFDL string literal.
e If expecting an expression to return a DFDL string literal, the returned value is always treated as a
DFDL string literal.
e Within an expression, a string is never interpreted as a DFDL string\literal.
18.4 DFDL Expression Syntax
Refer to XML Path Language (XPath) 2.0 [XPath] for a description©f XPath expressions
OFDL Expression n= "{" Expr "}"
Bxpr = ExprSingle
HBxprSingle = IfExpr
| OrExpr
HEXxpr n= "if" "(" Expr ") Cthen" ExprSingle "else" ExprSingle
QrExpr n= AndExpr._(or" AndExpr)*
AndExpr n= CompatrisonExpr ("and" ComparisonExpr)*
CGomparisonExpr R AdditiveExpr ((ValueComp
) AdditiveExpr)?
AdditiveExpr = MultiplicativeExpr (("+" | "-") MultiplicativeExpr)*
NlultiplicativeExpr o= IntersectExceptExpr(("*" | "div" | "idiv" | "mod") IntersectExceptExpr)*
IntersectExceptExpr = UnaryExpr (("intersect" | "except") UnaryExpr)*
UnaryExpr n= ("-" | "+")* ValueExpr
\{alueExpr = PathExpr
ValueComp = "eq" | "ne" | "It" | "le" | "gt" | "ge"
RathExpr n= ("" RelativePathExpr?)
| RelativePathExpr | FilterExpr
RelativePathExpr n= StepExpr (("/") StepExpr)*
StepExpr = AxisStep
AxisStep R (ReverseStep | ForwardStep) Predicate?
ForwardStep = (ForwardAxis NodeTest) | AbbrevForwardStep
ForwardAxis = ("child" "::")
| ("self" "::")
AbbrevForwardStep n= NodeTest | ContextltemExpr
ReverseStep R (ReverseAxis NodeTest) | AbbrevReverseStep

© ISO/IEC 2024 - All rights reserved

157

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

ReverseAxis n= ("parent" "::")
AbbrevReverseStep n=
NodeTest n= NameTest
NameTest n= QName
FilterExpr = PrimaryExpr Predicate?
Predicate n= "[" Expr "
PrimaryExpr n= Literal | VarRef | ParenthesizedExpr | ContextltemExpr | FunctionCall
Literal n= NumericLiteral | StringLiteral
NumericLiteral = IntegerLiteral | DecimalLiteral | DoubleLiteral
VarRef n= "$" VarName
VarNam¢ = QName
ParenthgsizedExpr n= "(" Expr")"
ContextiiemExpr = "
FunctionfCall n= QName "(" (ExprSingle ("," ExprSingle)*)? ")"
Table 55 DFDL Expression Language
Notes:
1. Oply If and path expression types are supported
2. Oply the child, parent, and self axes are supported
3. Predicates are only used to index arrays and so must be integer expressions otherwise a Schema
Definition Error occurs
4. Alsubset of the XPath 2.0 operators is supported
5. NameTest - These QNames are path steps that refer to elements in the DFDL Infoset. If such an
element is in a namespace, then the NameTest\@Name must have a prefix which is bound to the
namespace. Specifically, any default namespace is not used to implicitly qualify these NameTest
QNames. This behavior is consistent with XPath expression usage in XML Schema [Walmsley] such
ag in the path property of the xs:selector and xs:field elements within xs:key and xs:unique
cqnstraints, and in related XML standards such as XSLT. Note however, that this behavior is differeft
from the way QNames are used in‘other places in XML and DFDL Schemas such as the ref propert
oflan element reference, or thesdfdl:ref property of a DFDL format annotation. There a QName with po
priefix must always be referring.to a global declaration or definition, and so is augmented with the
default namespace when.needed.
6. The FilterExpr".[1]" is the.same as ".". The FilterExpr ".[n]" where n is not equal to 1 returns an empty
ngde sequence.
18.5 Constructors,Functions and Operators
In the fungtion signatures below a '?' following an argument name, argument type or result type indicates that
the argument/result:can be a node or value of the expected type or it can have no value.
18.5.1 Constructor Functions for XML Schema Built-in Types
The argumeénts to the constructors are all of type xs:anyAtomicType. Since the expression language can be

statically type checked, it is a Schema Definition Error if the fype of the argument’is not one of the DFDL-
supported subtypes of xs:anyAtomicType,

However, many statically type-correct values are still not convertible to the result type. It is a Processing Error
if the supplied argument value is not convertible to the constructed type.

The following constructor functions for the built-in types are supported:

Function

xs:string($arg as xs:anyAtomicType) as xs:string

xs:boolean($arg as xs:anyAtomicType) as xs:boolean

© ISO/IEC 2024 - All rights reserved

158

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

xs:decimal($arg as xs:anyAtomicType) as xs:decimal

xs:float($arg as xs:anyAtomicType) as xs:float

xs:double($arg as xs:anyAtomicType) as xs:double

xs:dateTime($arg1 as xs:date, $arg2 as xs:time) as xs:dateTime

xs:time($arg as xs:anyAtomicType) as xs:time

xs:date($arg as xs:anyAtomicType) as xs:date

xs:hexBinary($arg as xs:anyAtomicType) as xs:hexBinary

integer($arg as xs:anvAtomicType) as xs:integer

x

s:long($arg as xs:anyAtomicType) as xs:long

x

s:int($arg as xs:anyAtomicType) as xs:int

x

s:short($arg as xs:anyAtomicType) as xs:short

x

s:byte($arg as xs:anyAtomicType) as xs:byte

x

s:nonNegativelnteger($arg as xs:anyAtomicType) as xs:nonNegativelnteger

x

s:unsignedLong($arg as xs:anyAtomicType) as xs:unsignedLong

x

s:unsignedint($arg as xs:anyAtomicType) as xs:unsignedint

x

s:unsignedShort($arg as xs:anyAtomicType) as xs:unsignedShort

x

5:unsignedByte($arg as xs:anyAtomicType) as xs:unsignedByte

Table 56 Basic Constructors

A gpecial constructor function is provided for constructing’a xs : dateTime value from an xs:date
an xs: time value.

alue and

Hunction

—h

n:dateTime($arg1 as xs:date, $arg2 as xs;time) as xs:dateTime

Tdble 57 Special Constructor for xs:dateTime
18.5.2 Standard XPath Functions

18.5.2.1 Boolean functions

THe following additional constructor functions are defined on the boolean type.

F|unction Meaning
f||1:true() Constructs the xs:boolean value 'true’.
f||1:false() Constructs the xs:boolean value 'false’.

Table 58<Boolean functions

THe following functions are defined on boolean values. The return type of these functions is xs:bool€

an.:

© ISO/IEC 2024 - All rights reserved

159

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

Function

Meaning

fn:not($arg?)

If Sarg is the empty sequence or a node with [nilled] true, fn:not returns true.

If Sarg is a sequence containing a node with [nilled] false or [nilled] having no value (that
is, a node corresponding to a non-nillable element), fn:not returns false.

If Sarg is a value of type xs:boolean or a derived from xs:boolean, fn:not returns the
boolean inverse of sarg.

If Sargis a value of type xs:string or a type derived from xs:string, fn:not returns
true if the operand value has zero length; otherwise it returns false.

If Sarg is a value of any numeric type or a type derived from a numeric type, fn:not

obnarand] kN aakal-to-zara-s

rotirnc o fitho ndvalua i MNeorto-numarieallh s o athanaicao it roti s
retaras—=uetthe-operand-vatueis—=i-orisrumercalhregqual-ozerootherwiseitreturns
false.

In all other cases, fn:not raises a Processing Error.
Inverts the xs:boolean value of the argument.

Table 59 Boolean functions

18.5.2.2 Numeric Functions

The followling functions are defined on numeric types. Each function returns a value-ef the same type as the
type of itsjargument. The argument must be convertible to a number type.

Functi0||| Meaning

fn:abs($ellrg as numeric) Returns the absolute value of the argument.

fn:ceiling($arg as numeric) Returns the smallest number with no fractional part that is greate
than or equal to the argument.

fn:floor($arg as numeric) Returns the largest namber with no fractional part that is less thap
or equal to the argtment.

fn:round($arg as numeric) Rounds to the @earest number with no fractional part. When the
value is x.5,"t rounds toward positive infinity.

fn:round{half-to-even($arg as numeric) | Takes.a number and a precision and returns a number rounded t

fn:roundhalf-to-even($arg as numeric, | the.given precision. If the fractional part is exactly half, the result

$precisidn as xs:integer) is(the number whose least significant digit is even.

Table 60 Numeric Functions

18.5.2.3 Btring Functions

The followling functions are defingd on values of type xs:string and types derived from it. In the functions
below which compare strings; DFDL always uses the default Unicode collation algorithm (which is a
comparisgn of codepoint,values).

Function Meaning

fn:concaf($argas xs:anyAtomicType, $arg2 Concatenates two or more xs:anyAtomicType

as xs:anyAtemicType, ...) arguments cast to xs:string.

fn:substr ng($cn||rr\th"ing as vc'cfring, Returns-the vc'cfr‘ing located at a cpnr\ifind plnnn

$startingLoc as xs:double) within an argument xs:string.

fn:substring($sourceString as xs:string,

$startingLoc as xs:double, $length as xs:double)

fn:string-length($arg as xs:string) Returns the length of the argument as an xs:integer

fn:upper-case($arg as xs:string) Returns the upper-cased value of the argument.

fn:lower-case($arg as xs:string) Returns the lower-cased value of the argument.

fn:contains($arg1 as xs:string, $arg2 as xs:string) | Returns xs:boolean indicating whether one xs:string
contains another xs:string.

© ISO/IEC 2024 - All rights reserved

160

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

fn:starts-with($arg1 as xs:string, $arg2 as
xs:string)

Returns xs:boolean indicating whether the value of
one xs:string begins with the characters of another
xs:string.

fn:ends-with($arg1 as xs:string, $arg2 as
xs:string)

Returns xs:boolean indicating whether the value of
one xs:string ends with the characters of another
xs:string.

fn:substring-before($arg1 as xs:string, $arg2 as
xs:string)

Returns the characters of one xs:string that precede in
that xs:string the characters of another xs:string.

fn:substring-after($arg1 as xs:string, $arg2 as
xs:string)

Returns the characters of xs:string that follow in that
xs:string the characters of another xs:string.

TJbIe 61 String Functions

18.5.2.4 Date and Time Functions

F|unction

Meaning

f||1:year-from-dateTime($arg as xs:dateTime)

Returns the year from an xs:dateTime value as an
xs:integer.

fn:month-from-
cTateTime($arg as xs:dateTime)

Returns the month from an-xs:dateTime value as an
xs:integer.

f||1:day-from-dateTime($arg as xs:dateTime)

Returns the day from an xs:dateTime value as an
xs:integer.

fn:hours-from-dateTime($arg as xs:dateTime)

Returns the hours from an xs:dateTime value as ah
xs:integer.

fih:minutes-from-
JateTime($arg as xs:dateTime)

Returns the minutes from an xs:dateTime value ag an
xs:integer.

fin:seconds-from-
ateTime($arg as xs:dateTime)

Returns the seconds from an xs:dateTime value ag an
xs:decimal.

fn:year-from-date($arg as xs:date)

Returns the year from an xs:date value as an xs:irfteger.

month-from-date($arg as xs:date)

Returns the month from an xs:date value as an xs|integer.

fn:day-from-date($arg as xs:date)

Returns the day from an xs:date value as an xs:integer.

|
1
|
|

fn:hours-from-time($arg as xs:time)

Returns the hours from an xs:time value as an xs:integer.

||1:minutes-from-time($arg as xs:time)

—h

Returns the minutes from an xs:time value as an
xs:integer.

fn:seconds-from-time($arg as xs:time)

Returns the seconds from an xs:time value as an
xs:decimal.

T4ble 62 Datetand Time Functions

18.5.2:5¢7Node Sequence Test Functions

THeffollowing functions are defined on sequences. (Note that DFDL v1.0 does not support sequences of

le gih = T as the 1inal results or expressions.)

In the functions below, if the argument evaluates to the current node, or any enclosing parent node, then it is a

Schema Definition Error.

Function Meaning
fn:empty($arg?) Indicates whether the provided sequence is empty.
fn:exists($arg?) Indicates whether the provided sequence is not empty.

otherwise

fn:exactly-one($arg?) | Returns the input sequence if it contains exactly one item. Raises an error

© ISO/IEC 2024 - All rights reserved

161

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

fn:count($arg) Returns the number of items in the value of $arg as an xs:integer.
Returns 0 if Sarg is the empty sequence.

Table 63 Node Sequence Test Functions

18.5.2.6 Node functions

This section discusses functions and operators on nodes.

Function Meaning

fn:local-name($arg)

fn:local-name() Returns the local name of the context node or the specified node as an xs:string.

fn:namegpace-uri() Returns the namespace URI as an xs:string for the argument node or the contex
fn:namegpace-uri($arg) node if the argument is omitted. Returns empty string if the argument/context
node is in no namespace.

Table 64 Node functions

18.5.2.7 Nillable Element Functions

This sectiti)n discusses functions related to nillable elements.

Functi0||| Meaning

fn:nilled(fparg?) | Returns an xs:boolean true when the argument node Infeset member [nilled] is true
and false when [nilled] is false. If the argument is not afi-element node, returns the empt
sequence. If the argument is the empty sequence, refurhs the empty sequence. If the
argument is an element node and [nilled] has no_value returns the empty sequence.

<<

Table 65 Nillable Element Functions
18.5.3 DFDL Functions

Function

Meaning

dfdl:contgntLength($node, $lengthUnits)

Returnsthe length of the supplied node's SimpleContent regior
for elements of simple type, or ComplexContent region for
elements of complex type. These regions are defined in Sectio
9,2 DFDL Data Syntax Grammar. The value is returned as an
xs:unsignedLong.

The second argument is of type xs:string and must be 'bytes’,
'characters', or 'bits' (Schema Definition Error otherwise) and
determines the units of length.

=

dfdl:valugLength($node, $lengthUnits)

Returns the length of the supplied node's SimpleLogicalValue
region for elements of simple type, or ComplexValue region for
elements of complex type. These regions are defined in Sectiof
9.2 DFDL Data Syntax Grammar. The value is returned as an
xs:unsignedLong.

For simple types, the dfdl:valueLength() function returns a
length which excludes any padding or filling.

Thesecondargumentisof typexs-stringamdmustbe-bytes’;
'characters', or 'bits' (Schema Definition Error otherwise) and
determines the units of length.

dfdl:testBit($data, $bitPos)

Returns Boolean true if the bit number given by the
xs:nonNegativelnteger $bitPos is set on in the xs:unsignedByte
given by $data, otherwise returns Boolean false.

dfdl:setBits($bit1, $bit2, ... $bits)

Returns an unsigned byte being the value of the bit positions
provided by the Boolean arguments, where true is1, false is 0.
The number of arguments must be 8.

© ISO/IEC 2024 - All rights reserved

162

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

dfdl:occursindex()

Returns the position of the current item of an array as an
xs:nonNegativelnteger.

The first element is at position 1.

The function may be used on non-array elements so long as it
appears within the dynamic scope of some array element.

In this case it returns the index of the current item of the
innermost enclosing array element.

It is a Schema Definition Error if this function is called when
there is no enclosing array element.

dfdl:checkConstraints($node)

Returns boolean true if the specified node value satisfies the

XML schema facet constraints that are associated withlit.
Returns false if the specified node does not meet the
constraints or does not exist.

The facets that are checked are

minLength, maxLength
pattern
enumeration
maxInclusive, maxExclusivé; minExclusive,
mininclusive

o totalDigits

¢ fractionDigits
See Section 5.3 for whichfacets are checked for each $imple
type.
Additionally, thesXSD fixed property is checked.
It is a Schema Definition Error if the argument is a complex
element.

dfdl:encodeDFDLEntities($arg)

Returns a’string containing a DFDL string literal constructed
fromcthe $arg string argument. If $arg contains any '%' and/or
space characters, then the return value replaces each 'Po' with
'%%' and each space with '%SP;', otherwise $arg is returned
unchanged.

dfdl:decodeDFDLEntities ($arg)

Returns a string constructed from the $arg string argument. If
$arg contains syntax matching DFDL Character Entitie syntax,
then the corresponding characters are used in the resuft. Any
characters in $arg not matching the DFDL Character Entities
syntax remain unchanged in the result.

It is a Schema Definition Error if $arg contains syntax matching
DFDL Byte Value Entities syntax.

dfdl:containsDFDIEntities($arg)

Returns a Boolean indicating whether the $arg string ajgument
contains one or more DFDL entities.

Q.

fdl:timeZorieFromDateTime($arg)
j:dl:timeZoneFromDate($arg)
dlitimeZoneFromTime ($arg)

Returns the timezone component, if any, of $arg as an
xs:string. The $arg is of type xs:dateTime, xs:date and ks:time
respectively.

It $arg has a timezone component, then the Tesuit IS a string in
the format of an ISO Time zone designator. Interpreted as an
offset from UTC, its value may range from +14:00 to -14:00
hours, both inclusive. The UTC time zone is represented as
"+00:00". If the $arg has no timezone component, then ™"
(empty string) is returned.

dfdl:checkRangelnclusive($node, $vali,
$val2)
dfdl:checkRangeExclusive($node, $vali,
$val2)

Returns boolean true if the specified node value is in the range
given by $val1 and $val2.

The type of $val1 and $val2 must be compatible with the type of
$node, and must be a derivative of xs:decimal, xs:float or

© ISO/IEC 2024 - All rights reserved

163

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

xs:double. It is a Schema Definition Error if the $node argument
is a complex element.

Table 66 DFDL Functions

Notes:

dfdl:valueLength(path, lengthUnits) - returns the value length which excludes any padding or filling which
might be added for a specified length.

If the element declaration in the DFDL schema corresponding to the Infoset item has the dfdl:inputValueCalc
property, then the unpadded length is defined to be 0.

The value Iength mcludes the Iength contributions from mtroduced escape characters needed to escape
contained delimiters-{if such-are-defined-and-would-appea S output repress atic

The value Iength is also a function of the dfdl:encoding property. Multi-byte and variable-width character-set
encodingd commonly contribute more bytes to the value length than a single-byte character set would

The valuellength is computed from the DFDL Infoset value, ignoring the dfdl:length or
dfdl:textObtputMinLength property. Other DFDL properties which affect the length of a text or binary
representation are respected, it is only an explicit length which is ignored.

For a complex type, this means a bottom up totaling of the dfdl:contentLength() of all the gonténts and framing
of the conjplex type.

dfdl:conteptLength(path, lengthUnits) — returns the length of the content of the Infoset'data item as identified
by the pat argument. This includes padding or filling or truncation which might becafried out for a specifieq

If the element declaration in the DFDL schema corresponding to the Infoset item has a dfdl:inputValueCalc
property, then the length is defined to be 0.

When ungarsing with dfdl:lengthKind "explicit", the calculation of dfdl;cententLength() returns the value of thg
dfdl:length property.
For both dfdl:contentLength() and dfdl:valueLength(), the contentlength excludes any alignment filling as we
as excluding any leading or trailing skip bytes. That is, the retuthed length is about the length of the content,
and not alpout the position of that content in the output data.stream.

Use dfdl:encodeDFDLEntities() when the value of a DFDI property is obtained from the data stream using an
expressiof, and the type of the property is DFDL String Literal or List of DFDL String Literals, and the values
extracted from the data stream can contain '%' or space characters. If the data already contains DFDL
entities, tHis function should not be used.

The dfdl:decodeDFDLERtities() function is used'to create a value which contains characters for which DFDL
Character|Entities are needed. An examplée is to create data containing the NUL (character code 0) codepoint.
This chargcter code is not allowed in XMk documents, including DFDL Schemas; hence, it must be specifieq
using a DFDL Character Entity. Within.a DFDL Expression, use this function to obtain a string containing thig
character.

18.5.4 DFDL Constructor Functions

There is spmetimes a need.to’ create a number type from hex binary, and a hex binary type from a number.
Accordingly, the following new DFDL specific functions are provided.

14

Functi0||| Meaning

dfdl:byte|($arg) These constructor functions behave identically to the XPath 2.0 constructor
dfdl:unsignedByte ($arg) functions of the same names, with one exception. The argument can be a
dfdl-shor%ara quoted string beginning with the letter 'x', in which case the remainder of the
SHOTEREY) string is hexadecimal digits that represent a big-endian twos complement
dfdl:unsignedShort($arg) | representation of a binary number.
dfdl:int ($arg)
dfdl:unsignedint ($arg)
dfdl:long ($arg)

dfdl:unsignedLong ($arg) | Each constructor function has a limit on the number of hex digits, with no more

digits than 2, 4, 8, or 16 for the byte, short, int and long versions respectively. It
is a Schema Definition Error if more digits are encountered than are suitable for
the type being created

If the string begins with 'X', it is a Schema Definition Error if a character appears
other 0-9, a-f, A-F.

© ISO/IEC 2024 - All rights reserved

164

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

dfdl:hexBinary ($arg)

This constructor function behaves identically to the XPath 2.0 constructor
function of the same name, with one exception. The argument can also be a
long, unsignedLong, or any subtype thereof, and in that case a xs:hexBinary
value containing a number of hex digits is produced. The ordering and number
of the digits correspond to a binary big-endian twos-complement
implementation of the type of the argument. Digits 0-9, A-F are used.

The number of digits produced depends on the type of $arg, being 2, 4, 8 or 16.
If $arg is a literal number then the type is the smallest signed type (long, int,
short, byte) that can contain the value.

If a literal number is not able to be represented by a long, it is a Schema

Dafinitian-t—rrar
DT mauoTT TTUOT

|
TJbIe 67: DFDL Construct

EXamples:

o dfdl:byte("x0A3") is

e dfdl:hexBinary(208)

o dfdl:unsignedint("xa1b2c3d4") is the unsigned int value 2712847316.
o dfdliint("xFFFFFFFF") is the signed int value -1.

e dfdl:unsignedByte("xFF") is the unsigned byte value 255.

o dfdl:byte("xff") is the signed byte value -1.

o dfdl:byte("x7F") is the signed byte value 127.

o dfdl:byte("x80") is the signed byte value -128.

e dfdl:unsignedByte("x80") is the unsigned byte value 128.

o dfdl:byte("xG3") is a Schema Definition Error (invalid:digit).
o dfdl:hexBinary(xs:unsignedByte(208)) is the hexBinary value "D0".

e dfdl:hexBinary(-2084) is the hexBinary valye™F7DC".
18.5.5 Miscellaneous Functions

or Functions

a Schema Definition Error (too many digits for type).

is the hexBinary value "00D0".

f:error($id as xs:string,
$Hesc as xs:string, $0bj?)

Function Meaning
fip:error() Causes a Processing Error.
f:error($id as xs:string) This function does not return a value. A Processing Error ends the

evaluation of the expression.

The $id argument is an error code identifier string that distinguishes this
error from others. The string should have the structure of an XSD QName;
the namespace URI conventionally identifies the component, subsystem, or
authority responsible for defining the meaning of the error code, while the
local part identifies the specific error condition. This information is
incorporated into any diagnostic messages created by the DFDL
implementation in response to the Processing Error in an implementation-
dependent manner. If the $id argument string does not have the fom of an
XSD QName, or the QName cannot be interpreted as a meaningfu
namespace prefix and local identifier, then the Processing Error still occurs

but the diagnne’rin message iscreated inan imlnlnmnnfa’rinn-rlnlnnn lent
manner.

The $desc is a natural-language description of the error condition. This
string appears in any diagnostic messages created by the DFDL
implementation in response to the Processing Error.

The $obj? argument is an arbitrary value used to convey additional
information about the error and it is used to construct the diagnostic
message in an implementation-dependent manner.

If any argument is not supplied the Processing Error occurs but the
diagnostic message created is implementation-dependent.

© ISO/IEC 2024 - All rights reserved

165

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

18.6 Unparsing and Circular Expression Deadlock Errors

It is possible for expressions and lengths of elements in a DFDL schema to interact badly, resulting in circular
deadlocks. In these cases, an expression is unable to evaluate because it depends in some way on the
length of something that depends on the expression itself.

Expression deadlocks are always Schema Definition Errors.

One scenario where such a deadlock can arise is due to what is called the interior-alignment problem. In this
scenario a dfdl:outputValueCalc expression depends on the dfdl:valueLength function being evaluated for a
following complex element which due to interior alignments, has a length that depends on its starting position.
In this case, a circular deadlock occurs, which is a unparse-time Processing Error.

© ISO/IEC 2024 - All rights reserved

166

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

19 DFDL Regular Expressions

A DFDL regular expression may be specified for the dfdl:lengthPattern format property and the dfdl:testPattern
property of the dfdl:assert and dfdl:discriminator annotations. DFDL regular expressions do not interpret DFDL
entities.

A DFDL regular expression is defined by a set of valid pattern characters. For portability, a DFDL regular
expression pattern is restricted to the inclusive subset of the ICU regular expression [ICURegex] and the
Java(R) 7 regular expression [JavaRegex] with the Unicode flags UNICODE_CASE and
UNICODE_CHARACTER_CLASS turned on. DFDL regular expressions thereby conform to Unicode
Technical Standard #18 , Unicode Regular Expressions, level 1 [UnicodeRegex].

The following regular expression constructs are not common to both ICU and Java(R) 7 and it is a Schema
Definition Error if any are used in a DEDL regular expression:

Gonstruct Meaning lhotes
\IN{UNICODE Match the named character ICU only
CGHARACTER NAME}
\X Match a Grapheme Cluster ICU only
\Uhhhhhhhh Match the character with the hex value hhhhhhhh ICU only
(P#...) Free-format comment IICU only
(Pw-w) UREGEX_UWORD - Controls the behaviour ofdb'in a pattern IICU only
(Pd-d) UNIX_LINES - Enables Unix lines mode Java 7
only
(Pu-u) UNICODE_CASE - Enables Unicode-aware case folding Java 7
only (1)
(PU-U) UNICODE_CHARACTER_CLASS - Enables the Unicode version of Java 7
predefined character classes and POSIX character classes only (2)

Tdble 68 Disallowed Regular Expression Constructs

Ngtes:

1.] Implementations using Java 7 MUST-set flag UNICODE_CASE by default to match ICU.
2.| Implementations using Java 7 MUST.set flag UNICODE_CHARACTER_CLASS by default to match ICU.

Additionally, the behaviour of the word-character construct (\w) is not consistent in ICU and Java 7. Ih Java 7
\wis

[\p{Alpha}\p{gc=Mn}\p{gc=Me}\p{gc=Mc}\p{Digit}\p{gc=Pc}],
which is a larger set than ICU/'where \w is
De{LINp{LuP\p{ttj\p{Lo}\p{Nd}].

THe use of \w is notrecommended in DFDL regular expressions in conjunction with Unicode encodirngs, and
an implementation MUST issue a warning if such usage is detected.

Character properties are detailed by the Unicode Regular Expressions [UnicodeRegex].

© ISO/IEC 2024 - All rights reserved

167

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

20 External Control of the DFDL Processor

In addition to providing the DFDL schema and data to be parsed or serialized, DFDL Schemas can also be
parameterized by external variables.

DFDL processors can provide implementation-defined means to specify:
1. The data to be processed: a data stream when parsing or an Infoset when unparsing.
2. The DFDL schema to be used

3. The distinguished global element declaration to be used (specifying both name of element and
namespace of that name)

4. Values for external varlables

command|line DFDL processors MAY use command line options, but DFDL processors embedded.in other
kinds of spftware systems may need other mechanisms.

© ISO/IEC 2024 - All rights reserved

168

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

21 Built-in Specifications

For convenience, a standard set of named DFDL format definitions MAY be provided with DFDL processors
by implementations. These built-in format definitions may be imported by DFDL schema authors.

© ISO/IEC 2024 - All rights reserved

169

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

22 Conformance

DFDL conformance can be claimed for schema documents and for processors

A schema document conforms to this specification if it conforms to the subset of XML Schema 1.0 defined in
Section 5.2 DFDL Subset of XML Schema and consists of components which individually and collectively
satisfy all the relevant constraints specified in this document.
Conformance may be claimed separately for a DFDL parser, a DFDL unparser or a DFDL processor that
parses and unparses.
1. A DFDL processor claiming conformance MUST identify the level of conformance and version
specification claimed.
2. A minimal conforming DFDL processor conforms to this specification when it implements all the non-
optiomat-features defimed-imthis document;
3. An extended conforming DFDL processor conforms to the specification when it implements all the
non-optional features and some of the optional features defined in this document.

4. Affully conforming DFDL processor conforms to the specification when it implements all the-features
defined in this document.

See Sectipn 23 Optional DFDL Features for the list of optional features

It is the infention of the DFDL Work Group to provide a conformance test suit to help verify conformance with
this specifjcation.

© ISO/IEC 2024 - All rights reserved

170

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

23 Optional DFDL Features

The following table lists the features of the DFDL language that are considered optional for DFDL processor
implementations. This list admits very small subsets of the full DFDL specification. For example, a binary-only
subset without any expressions or variables is specifically allowed.

Feature Detection
Validation External switch
Named Formats dfdl:defineFormat or dfdl:ref
Choices xs:choice in the schema
Arrays where size not known in dfdl:occursCountKind 'implicit’, 'parsed’, 'stopValue'
ddvance
Hxpressions Use of a DFDL expression in any property value
Hnd of parent dfdl:lengthKind "endOfParent"
Simple type restrictions xs:simpleType in the schema
Tlext representation for types other dfdl:representation "text" for Number, Calendar or Boolean fypes
than String
Delimiters dfdl:separator <> "" or dfdl:initiator <>!".er dfdl:terminator <3 " or
dfdl:lengthKind "delimited”
Nils XSD nillable 'true' in the schema
Defaults XSD default or XSD fixed in the schema
Defaulting to Empty dfdl:emptyElementParsePolicy="treatAsEmpty”
String/HexBinary values in the
Infoset
Lengths in Bits dfdl:alignmentUqits 'bits' or dfdl:lengthUnits 'bits'
Delimited lengths and dfdl:representation 'binary' (or implied binary) and dfdl:lengthKind
representation binary element 'delimited
Regular expressions dfdl:lengthKind 'pattern’,
dfdl:assert with dfdl:testkind 'pattern’ ,
dfdl:discriminator with dfdl:testkind 'pattern’
ZJoned numbers dfdl:textNumberRep 'zoned'
IBM 390 packed numbers dfdl:binaryNumberRep 'packed’
IBM 390 packed calendars dfdl:binaryCalendarRep 'packed’
IBM 390 floats dfdl:binaryFloatRep 'ibm390Hex’'
Unordered sequences dfdl:sequenceKind 'unordered'
Hloating elements dfdl:floating 'yes'
dfdl functions-inexpression DFDL functions in expression
language
Hidden groups dfdl:hiddenGroupRef <> "
CGaleulated values dfdl:inputValueCalc <> " or dfdl:outputValueCalc <> "
Escape schemes dfd:defineEscapeScheme in the schema
Extended encodings Any dfdl:encoding value beyond the core list
UTF-16 Variable Width Characters dfdl:utf16Width="variable”
Asserts dfdl:assert in the schema
Discriminators dfdl:discriminator in the schema
Prefixed lengths dfdl:lengthKind 'prefixed'
Variables dfdl:defineVariable,
dfdl:newVariableInstances,

© ISO/IEC 2024 - All rights reserved

171

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

ISO/IEC 23415:2024(en)

dfdl:setVariable
Variables in DFDL expression language
Note that variables as a feature is dependent on the Expressions
feature.

BCD calendars dfdl:binaryCalendarRep "bcd"

BCD numbers dfdl:binaryNumberRep "bcd"

Multiple schemas xs:include or xs:import in the schema

IBM 4690 packed numbers dfdl:binaryNumberRep "ibm4690Packed"

IBM 4690 packed calendars dfdl:binaryCalendarRep "ibm4690Packed"

DFDL ByteVatue Entites | USe of Yo#r syntax ima DFDEString titeratotherthamthedfdtfittByte
property

DFDL Standard Character Set dfdl:encoding name begins with "X-DFDL-".

Encodings

Bit Ordef - Least Significant Bit First | dfdl:bitOrder with value 'leastSignificantBitFirst'

Table 69 Dptional DFDL features

In order tq provide portability of a DFDL schema, a minimal or extended conforming proCessor MUST issue
warnings about any DFDL properties it does not implement. This warning can simplystate that the property |s
not recognized.

(This allows the implementation to simply have no knowledge of properties it does not need for the subset o
features it|{implements.)

For exammle, if the hidden groups feature were not implemented, then the implementation most likely would
not recogize the dfdl:hiddenGroupRef property at all. Such an implementation MUST issue a warning that the
dfdl:hiddepGroupRef property is not recognized.

It is a Schpma Definition Error if a DFDL schema uses an optional feature that is not supported by a minima
or extendgd conforming processor.

© ISO/IEC 2024 - All rights reserved

172

https://standardsiso.com/api/?name=e6b4a9e853da5c863b9aa6b8d7c73f73

	Data Format Description Language (DFDL) v1.0 Specification
	1 Introduction
	1.1 Why is DFDL Needed?
	1.2 What is DFDL?
	1.2.1 Simple Example

	1.3 What DFDL is not
	1.4 Scope of version 1.0

	2 Overview of the Specification
	3 Notational and Definitional Conventions
	3.1 Glossary and Terminology
	3.2 Failure Types

	4 The DFDL Information Set (Infoset)
	4.1 "No Value''
	4.2 Information Items
	4.2.1 Document Information Item
	4.2.2 Element Information Items

	4.3 DFDL Information Item Order
	4.4 DFDL Augmented Infoset

	5 DFDL Schema Component Model
	5.1 DFDL Simple Types
	5.2 DFDL Subset of XML Schema
	5.3 XSD Facets, min/maxOccurs, default, and fixed
	5.3.1 MinOccurs, MaxOccurs
	5.3.2 MinLength, MaxLength
	5.3.3 MaxInclusive, MaxExclusive, MinExclusive, MinInclusive, TotalDigits, FractionDigits
	5.3.4 Pattern
	5.3.5 Enumeration Values
	5.3.6 Default
	5.3.7 Fixed

	5.4 Compatibility with Other Annotation Language Schemas

	6 DFDL Syntax Basics
	6.1 Namespaces
	6.2 The DFDL Annotation Elements
	6.3 DFDL Properties
	6.3.1 DFDL String Literals
	6.3.1.1 Character strings in DFDL String Literals
	6.3.1.2 DFDL Character Entities, Character Class Entities, and Byte Values in String Literals
	6.3.1.3 DFDL Character Class Entities in DFDL String Literals
	6.3.1.4 DFDL Byte Value Entities in DFDL String Literals

	6.3.2 DFDL Expressions
	6.3.3 DFDL Regular Expressions
	6.3.4 Enumerations in DFDL

	7 Syntax of DFDL Annotation Elements
	7.1 Component Format Annotations
	7.1.1 Property Binding Syntax
	7.1.1.1 Property Binding Syntax: Attribute Form
	7.1.1.2 Property Binding Syntax: Element Form
	7.1.1.3 Property Binding Syntax: Short Form

	7.1.2 Empty String as a Representation Property Value

	7.2 dfdl:defineFormat - Reusable Data Format Definitions
	7.2.1 Using/Referencing a Named Format Definition: The dfdl:ref Property
	7.2.2 Inheritance for dfdl:defineFormat

	7.3 The dfdl:defineEscapeScheme Defining Annotation Element
	7.3.1 Using/Referencing a Named escapeScheme Definition

	7.4 The dfdl:escapeScheme Annotation Element
	7.5 The dfdl:assert Statement Annotation Element
	7.5.1 Properties for dfdl:assert

	7.6 The dfdl:discriminator Statement Annotation Element
	7.6.1 Properties for dfdl:discriminator

	7.7 DFDL Variable Annotations
	7.7.1 dfdl:defineVariable Annotation Element
	7.7.1.1 Examples
	7.7.1.2 Predefined Variables

	7.7.2 The dfdl:newVariableInstance Statement Annotation Element
	7.7.2.1 Examples

	7.7.3 The dfdl:setVariable Statement Annotation Element
	7.7.3.1 Examples

	8 Property Scoping and DFDL Schema Checking
	8.1 Property Scoping
	8.1.1 Property Scoping Rules
	8.1.2 Providing Defaults for DFDL properties
	8.1.3 Combining DFDL Representation Properties from a dfdl:defineFormat
	8.1.4 Combining DFDL Properties from References

	8.2 DFDL Schema Checking
	8.2.1 Schema Component Constraint: Unique Particle Attribution
	8.2.2 Optional Checks and Warnings

	9 DFDL Processing Introduction
	9.1 Parser Overview
	9.1.1 Points of Uncertainty
	9.1.2 Processing Error
	9.1.3 Recoverable Error

	9.2 DFDL Data Syntax Grammar
	9.2.1 Nil Representation
	9.2.2 Empty Representation
	9.2.3 Normal Representation
	9.2.4 Absent Representation
	9.2.5 Zero-length Representation
	9.2.6 Missing
	9.2.7 Examples of Missing and Empty Representation
	9.2.8 Round Trip Ambiguities

	9.3 Parsing Algorithm
	9.3.1 Known-to-exist and Known-not-to-exist
	9.3.1.1 Known-to-exist
	9.3.1.2 Processing Error After Determining Known-to-exist
	9.3.1.3 Known-not-to-exist

	9.3.2 Establishing Representation
	9.3.2.1 Simple element
	9.3.2.2 Complex element

	9.3.3 Resolving Points of Uncertainty
	9.3.3.1 Nested Points of Uncertainty

	9.4 Element Defaults
	9.4.1 Definitions
	9.4.1.1 Default Value
	9.4.1.2 Required/Optional Occurrence

	9.4.2 Element Defaults When Parsing
	9.4.2.1 Simple element (not xs:string and not xs:hexBinary)
	9.4.2.2 Simple element (xs:string or xs:hexBinary)
	9.4.2.3 Complex element
	9.4.2.4 Example: Complex Optional Empty Element Not Added to Infoset
	9.4.2.5 Example: Complex Optional Empty Element with Delimiters

	9.4.3 Element Defaults When Unparsing
	9.4.3.1 Simple element
	9.4.3.2 Complex element

	9.5 Evaluation Order for Statement Annotations
	9.5.1 Asserts and Discriminators with testKind 'expression'
	9.5.2 Discriminators with testKind 'expression'
	9.5.3 Elements and setVariable
	9.5.4 Controlling the Order of Statement Evaluation

	9.6 Validation
	9.7 Unparser Infoset Augmentation Algorithm

	10 Overview: Representation Properties and their Format Semantics
	11 Properties Common to both Content and Framing
	11.1 Unicode Byte Order Mark (BOM)
	11.2 Character Encoding and Decoding Errors
	11.2.1 Property dfdl:encodingErrorPolicy
	11.2.1.1 dfdl:encodingErrorPolicy 'error'
	11.2.1.2 dfdl:encodingErrorPolicy 'replace' for parsing
	11.2.1.3 dfdl:encodingErrorPolicy 'replace' for unparsing

	11.2.2 Unicode UTF-16 Decoding/Encoding Non-Errors
	11.2.3 Preserving Data Containing Decoding Errors

	11.3 Byte Order and Bit Order
	11.4 dfdl:bitOrder Example
	11.4.1 Example Using Right-to-Left Display for 'leastSignificantBitFirst'
	11.4.2 dfdl:bitOrder and Grammar Regions

	12 Framing
	12.1 Aligned Data
	12.1.1 Implicit Alignment
	12.1.2 Mandatory Alignment for Textual Data
	12.1.3 Mandatory Alignment for Packed Decimal Data
	12.1.4 Example: AlignmentFill

	12.2 Properties for Specifying Delimiters
	12.3 Properties for Specifying Lengths
	12.3.1 dfdl:lengthKind 'explicit'
	12.3.2 dfdl:lengthKind 'delimited'
	12.3.2.1 Non-Delimited Elements within Delimited Constructs
	12.3.2.2 Delimited Binary Data

	12.3.3 dfdl:lengthKind 'implicit'
	12.3.4 dfdl:lengthKind 'prefixed'
	12.3.4.1 Nested Prefix Lengths37F

	12.3.5 dfdl:lengthKind 'pattern'
	12.3.6 dfdl:lengthKind 'endOfParent'
	12.3.7 Elements of Specified Length
	12.3.7.1 Length of Simple Elements with Textual Representation
	12.3.7.1.1 Text Length Specified in Bytes

	12.3.7.2 Length of Simple Elements with Binary Representation
	12.3.7.2.1 Length of Base-2 Binary Number Elements
	12.3.7.2.2 Length of Floating Point Binary Number Elements
	12.3.7.2.3 Length of Packed Decimal Number Elements
	12.3.7.2.4 Length of Binary Boolean Elements
	12.3.7.2.5 Length of Base-2 Binary Calendar Elements
	12.3.7.2.6 Length of Packed Decimal Calendar Elements
	12.3.7.2.7 Length of Binary Opaque Elements

	12.3.7.3 Length of Complex Elements

	13 Simple Types
	13.1 Properties Common to All Simple Types
	13.2 Properties Common to All Simple Types with Text representation
	13.2.1 The dfdl:escapeScheme Properties
	13.2.1.1 Escape Scheme Example

	13.3 Properties for Bidirectional support for All Simple Types with Text representation
	13.4 Properties Specific to String
	13.5 Properties Specific to Number with Text or Binary Representation
	13.6 Properties Specific to Number with Text Representation
	13.6.1 The dfdl:textNumberPattern Property
	13.6.1.1 dfdl:textNumberPattern for dfdl:textNumberRep 'standard'
	13.6.1.2 dfdl:textNumberPattern for dfdl:textNumberRep 'zoned'

	13.6.2 Converting logical numbers to/from text representation

	13.7 Properties Specific to Number with Binary Representation
	13.7.1 Converting Logical Numbers to/from Binary Representation
	13.7.1.1 Converting Base-2 Binary Numbers
	13.7.1.2 Bit strings, Alignment, and dfdl:fillByte
	13.7.1.3 Bits within Bit Strings of Length <= 8
	13.7.1.4 Bits within Bit Strings of Length > 8
	13.7.1.4.1 Examples of Unsigned Integer Conversion

	13.7.1.5 Converting Packed Decimal Numbers

	13.8 Properties Specific to Float/Double with Binary Representation
	13.9 Properties Specific to Boolean with Text Representation
	13.10 Properties Specific to Boolean with Binary Representation
	13.11 Properties Specific to Calendar with Text or Binary Representation
	13.11.1 The dfdl:calendarPattern property
	13.11.2 The dfdl:calendarCheckPolicy Property

	13.12 Properties Specific to Calendar with Text Representation
	13.13 Properties Specific to Calendar with Binary Representation
	13.14 Properties Specific to Opaque Types (xs:hexBinary)
	13.15 Nil Value Processing
	13.16 Properties for Nillable Elements

	14 Sequence Groups
	14.1 Empty Sequences
	14.2 Sequence Groups with Separators
	14.2.1 Separators and Suppression
	14.2.2 Parsing Sequence Groups with Separators
	14.2.2.1 Errors When the Sequence is Positional
	14.2.2.2 Example Parsing Scenarios
	14.2.2.3 Parsing Child Groups within Separated Sequences

	14.2.3 Unparsing Sequence Groups with Separators
	14.2.3.1 Example Unparsing Scenarios
	14.2.3.2 Unparsing Child Groups within Separated Sequences

	14.3 Unordered Sequence Groups
	14.3.1 Restrictions for Unordered Sequences
	14.3.2 Parsing an Unordered Sequence
	14.3.2.1 Source-to-source Transformation
	14.3.2.2 Post-processing Transformation

	14.3.3 Unparsing an Unordered Sequence

	14.4 Floating Elements
	14.5 Hidden Groups

	15 Choice Groups
	15.1 Resolving Choices
	15.1.1 Resolving Choices via Speculation
	15.1.2 Resolving Choices via Direct Dispatch
	15.1.3 Unparsing Choices
	15.1.3.1 Unparsing Choices in Hidden Groups

	16 Properties for Array Elements and Optional Elements
	16.1 The dfdl:occursCountKind property
	16.1.1 dfdl:occursCountKind 'fixed'
	16.1.2 dfdl:occursCountKind 'implicit'
	16.1.3 dfdl:occursCountKind 'parsed'
	16.1.4 dfdl:occursCountKind 'expression'
	16.1.5 dfdl:occursCountKind 'stopValue'

	16.2 Default Values for Arrays
	16.3 Arrays with DFDL Expressions
	16.4 Points of Uncertainty
	16.5 Arrays and Sequences
	16.6 Forward Progress Requirement
	16.7 Parsing Occurrences with Non-Normal Representation
	16.8 Sparse Arrays

	17 Calculated Value Properties
	17.1 Example: 2d Nested Array
	17.2 Example: Three-Byte Date

	18 DFDL Expression Language
	18.1 Expression Language Data Model
	18.2 Variables
	18.2.1 Rewinding of Variable Memory State
	18.2.2 Variable Memory State Transitions

	18.3 General Syntax
	18.4 DFDL Expression Syntax
	18.5 Constructors, Functions and Operators
	18.5.1 Constructor Functions for XML Schema Built-in Types
	18.5.2 Standard XPath Functions
	18.5.2.1 Boolean functions
	18.5.2.2 Numeric Functions
	18.5.2.3 String Functions
	18.5.2.4 Date and Time Functions
	18.5.2.5 Node Sequence Test Functions
	18.5.2.6 Node functions
	18.5.2.7 Nillable Element Functions

	18.5.3 DFDL Functions
	18.5.4 DFDL Constructor Functions
	18.5.5 Miscellaneous Functions

	18.6 Unparsing and Circular Expression Deadlock Errors

	19 DFDL Regular Expressions
	20 External Control of the DFDL Processor
	21 Built-in Specifications
	22 Conformance
	23 Optional DFDL Features
	24 Security Considerations
	25 Authors and Contributors
	26 Intellectual Property Statement
	27 Disclaimer
	28 Full Copyright Notice
	29 References
	30 Appendix A: Escape Scheme Use Cases
	30.1 Escape Character Same as dfdl:escapeEscapeCharacter
	30.2 Escape Character Different from dfdl:escapeEscapeCharacter
	30.2.1 Example 1 - Separator ';'
	30.2.2 Example 2 - Separator 'sep'

	30.3 Escape Block with Different Start and End Characters
	30.4 Escape Block with Same Start and End Characters

	31 Appendix B: Rationale for Single-Assignment Variables
	32 Appendix C: Processing of DFDL String literals
	32.1 Interpreting a DFDL String Literal
	32.2 Recognizing a DFDL String Literal
	32.3 Recognizing DFDL String Literal Part

	33 Appendix D: DFDL Standard Encodings50F
	33.1 Purpose
	33.2 Conventions
	33.3 Specification Template
	33.4 Encoding X-DFDL-US-ASCII-7-BIT-PACKED
	33.4.1 Name
	33.4.2 Translation table
	33.4.3 Width
	33.4.4 Alignment
	33.4.5 Byte Order
	33.4.6 Example 1
	33.4.7 Example 2

	33.5 Encoding X-DFDL-US-ASCII-6-BIT-PACKED
	33.5.1 Name
	33.5.2 Translation Table
	33.5.3 Width
	33.5.4 Alignment
	33.5.5 ByteOrder
	33.5.6 Example 1

	33.6 References for Appendix D52F

	34 Appendix E: Glossary of Terms
	35 Appendix F: Specific Errors Classified
	36 Appendix G: Property Precedence
	36.1 Parsing
	36.1.1 dfdl:element (simple) and dfdl:simpleType
	36.1.2 dfdl:element (complex)
	36.1.3 dfdl:sequence and dfdl:group (when reference is to a sequence)
	36.1.4 dfdl:choice and dfdl:group (when reference is to a choice)

	36.2 Unparsing
	36.2.1 dfdl:element (simple) and dfdl:simpleType
	36.2.2 dfdl:element (complex)
	36.2.3 dfdl:sequence and dfdl:group (when reference is a sequence)
	36.2.4 dfdl:choice and dfdl:group (when reference is a choice)

	Blank Page

