INTERNATIONAL ISO/IEC
STANDARD 11889-2

Second edition
2015-12-15

Information technology —~Trusted
Platform Module Library —

Part 2:
Structures

Technologies de l'information — Bibliothéque de module
de plate-forme de confidnce —

Partie 2: Structures

Reference number

@ m ISO/IEC 11889-2:2015(E)
Y=
©ISO/IEC 2015

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

© ISO/IEC 2015, Published in Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form
or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior
written permission. Permission can be requested from either ISO at the address below or ISO’s member body in the country of
the requester.

ISO copyright office

Ch. de Blandonnet 8 « CP 401
CH-1214 Vernier, Geneva, Switzerland
Tel. +41 22 749 01 11

Fax +41 22 749 09 47
copyright@iso.org

WwWw.iso.org

ii © ISO/IEC 2015 - All rights reserved

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

CONTENTS

L0113] (o B TP P PP PP OPPPPRP XV
T oo [N Lot i o] o E TP P PR TUPPPPTPI XVi
Yo 0] o PP SPPPPPPTP 1
2 NOIMALIVE FEIEIEINCES ...ttt s e b e e s bt e et bt e st e e e beeenb e e e snreesneeennes 1
3 Terms and AefiNItIONSooiuiiiiiie ettt b e b e b e e e b e nr e nes 1
4 [SymbOIS and abbreVialed TS oo 1
ST I N[0 T o PR PPR PRSP 1
ST N 1011 oo 1U T 1o o T OO PR RTPPRRPPRP =R ORI 1
5.2 NAMEA CONSEANTS......eiiiiiiiiiieiitiie ettt ettt e e e s sbbe e e s s stbeeeesnbeeeesnbee B TTab e e e e snbeeeeenees .2
5.3 Data Type Aliases (IYPeefS)coocuiiiiiiiiiiiiiee e e .3
5.4 ENUMEIALIONS ...eeeiiiiiiieiitiiee ettt e ettt e ettt e e sttt e e s st e e s snbeeeessnbneeessnnneeessnnneeessafebaseannneesansreeesanreeeeennres .3
T T 01 (=] g 7= Lo I Y o= R e O RUOPUPURRTN 4
BB ATTAYS - e e n e e s e e e e e e naeaaaaeeanenees { T e n e e e e e e e e e e e e .5
5. SHrUCLUrE DEfINItIONSeoiiiiiiiii ettt o skt sabe e e s bn e e snneesnne e e nnneesnneean .6
s T O] oo [1ioT g =TI 1N/ =Y PR PPRSRR 7
IR I 1o o T OO TP PR PP OUPRPRROPIN .8

I T B [011 {0 o [8 od 1 (o]« P oS ST PSP OO PR PPPPRPPPN .8

5.9.2 UNION DEFINITION ..eeiiiiiiiiiiiieeeit et Gttt ettt e sttt et e e e e s sabn et e s ann e e e e snnnee s .8

5.9.3 UNION INSTANCE....ceiiiiiiieiiiiieee ittt e ettt ettt ettt e e st e e st e e s b e e e s s e e e snne e e e snnnee s .9

5.9.4 Union Selector DefiNitioNcviiiiee ittt 10
5.30 Bit Field DefiNitiONS.coivieiiiieiieesiie N Tttt sttt ettt e b e s e n e neend 11
5.31 Parameter LIMILSoooveeiieeiiieeiee ey 00T sttt sttt e e e e e ne e e snre e e snreesnneeen 12
5.32 ENUMETAION MACTO ... s e et ene e 13
I SIS 4T @ 1= Tod (] o eSS 13
oI LD - 1=] (=Tt o o O PO P R OTRR PRI 14
5.15 Sructure ValidationNS .. h..J. . o et 15
5.16 Name PrefiX CONVEBITIONoi.uiiiiiiiiie ettt ekttt e et e e e e sab e e s aabb e e e e anbe e e e anbeeeeenees 15
B5.07 Data AlIGNMEALT. ..ottt et e oottt e e e e a bt e e e e b et e e e et e e e e e b b e e e e b e e e e aabe e e e neee 16
5.18 ParameterdnmarshaliNng EITOISoooiiiioiiiiee et e s b e e snre e e e e 16
B | B Y08 e e e e e e e e e e e e e e e e e e e aa e 18
N T4 AT Y/ 01T PSP PRRRRN 18
L B 1V Yo=Y = Vg 1= T o LU E R I8 1= PSRRI 18
A O] 4151 7= o £ PP PPPT 19
7.1 TPM_SPEC (Specification VErsion VAIUES)cuuiieiiiiiiiiiiiiiie s siiieeee e e s s ssttaeee e e e s e s snnsnsneeeeeeennnes 19
7.2 TPM_GENERATED ...ttt ettt e e e e e s e et e e e e e e s bbb e et e e e e e e s nnneeeeeeeaenanes 19
7.3 TPIM_ALG _ID oottt et e ettt e e et et ee e s et et en e e enenen e 20
T4 TPM_ECC _CURVE ... 24
7.5 TPM_CC (COMMANT COUES) ...ceiiiiiiiieiiiiiee ettt e ettt ettt et e e e st e e e et e e s abb e e e e anb e e e e e seeeeannees 24
© ISO/IEC 2015 - All rights reserved [

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

48570 S o o = PP PTP PR 24

ARSI 0 1= ox] o] (T o PSSR PT ST PPN 25

7.5.3 TPM_CC LISHNG «.vovoveeeeeeeeeeeeeeeeeee et n e en st sn e es s ene s esneeean 26
7.6 TPM_RC (RESPONSE COUES) ..eeiiiiiiiieiiitiiee ittt e ettt e ettt ettt e et e e e et b e e s et b e e e e aabe e e e e anbe e e e s anreeeeannees 29

ST R B 1= ox] o] (1o IO PO UPP T OTRUUPTPRPUPRN 29

7.6.2 ReSPONSE COUE FOMMIALS......uuiiiiiiiei i iciieiie e e e s s e e e e e s s st r e e e e e s e annnrrnaeeeaeeesennnes 30

7.6.3 TPM_RC VAIUEScutiiiiieiiiiiitieet e sttt e e e e e st e e e e e e e s st e e e e e e s s aasntataaeeeeeeeaansnnnneeeeesnannns 33
7.7 TPM_CLOCK _ADJIUST ..ottt s e ee e et en s e e e s s e e e e s enen s s 38
7. TPV EO(EA ANIMENT OPBTaNUS) T 38
7.9 TPM_ST (SITUCLUIE TAUS) «eevveeeeiiurrieeiititeeeateeeeeastteeeeastbeeeesasbreeesabaeeesatbeeesaanbeeeeaasbeeeessnsseessnss (Thgs ees 39
7. 00 TPM_SU (SEArtUP TYPE) .veeeeiiutiieeiiiteieeeattte e e ettee e e aitee e e sttt e e e s sibe e e e s sibneeessnbeeeessnbneesssnnneeessnneg@p nesCensnnnnns 41
7.1 TPM_SE (SESSION TYPE) ..eerereeieeeieeeeeeeeeeeeeeeeeteseseeeesesees s eees s eseeeses s en st en s en s poie oo, 41
7.12 TPM_CAP (CAP@DIIIIES) ...t en e e, 42
T A3 TPM_PT (Property TAG) ..uueeeeeeeieiiiirrreeeeeeeeiiiinireeeeeeesssasssssssseesesssssssssssssesssessesafisnsesseeseseamssssseseeessennnn 43
7.14 TPM_PT_PCR (PCR PrOPErY TAG)......vevevvreeeererereressseeseesesesesssesesen b0 eeeeereseseseseesenesesesnnens 48
7.15 TPM_PS (Platform SPECIFIC).....ccciiiiiiiiiiiiie e siitie e e e e e e e T e s s e arae e e e e e e s e snsbnaneeeeeeeeenned 50
8 | HANAIES ...t nn e ne e 51
LS 2 N 1011 oo 1N T 1 o] o T TSRO PRSPPI OTRR PRI 51
8.3 TPM_HT (HANAIE TYPES) .eveereeeeeiiiiiieiiieieeeisiiiieereeeeesessige s e neaee e s s snntnaeeeeeeesssnntnnnnenaeesessnnnneneeseeeseannns 51
8.3 Persistent Handle Sub-rangescooovvereiiiiieeenne e SO e 52
8.4 TPM_RH (Permanent HANAIES)coooiuiiiiii e 30T ettt ettt et s 53
8.5 TPM_HC (Handle Value CONSLANIS)eeeeieeodit ettt 54
O [AUNDULE STIUCTUIES. ...eeieiiiieeee et B ettt ettt e e st e e e st e e e s sab e e e e s sabreeeesreeeeeane 56
1S I B B 1T Yol o] o TP PEPP R OUPTUPRPPPRN 56
0.2 TPMA _ALGORITHM L T e aaae e e ae e 56
9.3 TPMA_OBJECT (ODBJECE ATTDUIES)vveeeeeeeeeeeeeeeeeeese s eeeeeeeees e e eeeeee et eresse e eeesesesese s eseeeseseneseseseneens 56

(S 20 R [011 {0 Lo [¥ [od 1 o] o P TP PSP TP PPPPRPPPN 56

9.3.2 SHUCLUIE DETINIHONA. ...eeiitieee ettt et ettt e ab et e e sabb et e e sne e e e snnneees 57

9.3.3 AUINDULE DESEHIPIIONSveeeeeiitiie ettt s ittt ettt et e st e e s b e e e s st et e s asne e e e e annne e e annneees 58
9.4 TPMA_SESSION(SESSION ALHDULES)coi ittt e e e e e e 63
9.4 TPMA_LOCALITY (LOCAltY AIDULE)o.viveeieeeeeeeseeeeeeeee e eeee e ees s en e, 64
9.8 TPMA _PERMANENT L. a e aaeaeaaaaaaaananansaaaaaans 65
9.1 TPMALSTARTUP _CLEAR. ... ean e anns 66
9.8 TRMA_MEMORY ..ttt e e et et et e e e e e s e bbb e e et e e e e e e e bbb e et e e e e e e s rnneeeaeeeaeane 67
9.9—FRPMA—CCH{Command-Cede-Attribute s} ————rrrrrerrereree e e 68

(S T8 B [011 {o o [¥ od 1 (o]« P PP P TP PPPPR PRI 68

9.9.2 SErUCLUrE DEFINILIONeeiiiiieeiie ittt e s e e snr e e snee e 68

LS IR IR B 1= o 1= o] 1 0] R ERPRR 68
O [01 (T = oI I o 1= SRR 71
IO I 1T [0 Tox T o PP PR 71
202 TPMI_YES INO ..ottt ettt ee et e et en e e et e e en e e et et eeee e eeeee e en e, 71
L1O.3 TPMI_DH_OBUIECT ...ttttiiiiiiiiiiiiiitie ettt e e e e st e e e e e e s s s e e et e e e e e s e s b e b e e et e e e e e e s e nnbreeeeeeessnnrnrnees 71
i © ISO/IEC 2015 — All rights reserved

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

L10. 4 TPMI_DH_PERSISTENTttiiie ittt ettt sttt s sttt e e st e e s nbb e e s anbb e e e s ensbeeesnbbeeeeennees 72
LO.5 TPMI_DH_ENTITY ceetiitittite ettt ettt ettt sttt e sttt e sttt e e e ab bt e e s e nb b et e e aanbe e e e annbee e e e abeeeeansbeeeeenees 72
OB I Y) T O S SRR 73
10.7 TPMI_SH_AUTH_SESSIONciiiitiiiiiiiiiie ettt ettt e st e e e et e e e st e e e s st e e e s snnbe e e s snbaeeeanneaeeannres 73
LO.BTPMI_SH _HMAC ..ottt ettt e e st e e e ettt e e e s et e e e st et e e s ntaeeeeassbeeeaabeeesansreeeeenres 73
LO.9 TPMI_SH _POLICY ettt ittt sttt ettt e e sttt e e e sttt e e e ettt e e e e tbe e e e et be e e e et beeeeaasbeeeeensteeeeenntaeeeenntes 73
10.20 TPMI_DH_CONTEXT .. ititieiitiieeeitiiee ettt e ettt e e sttt e e s rtbe e e e s sabeee e e ssbeeeeeanbbeeeesbbeeessabbeeeesanreeesn 74
L0 00 0 R I g\ 1 1 Y 4 o I A PR 74
10.12 TPMI_RH_ENABLESooi ittt et e e stae e e s staee e e sntaneeesnnnneeessnnneeesens D s 74
10.13 TPMI_RH_HIERARCHY _AUTH.....ooiiiiiiiii et e st e e snaee e snnne e e 75
10.14 TPMI_RH_PLATFORMoiiiiiiiiii ittt tee et et e e e stvae e s nnvana e s nnnnee e s e @ s e s€annananns 75
10.15 TPMI_RH_OWNER ...ttt ittt et et e e stne e e s staee e s sntaeeessssenessnssne @i daCennnnnneenns 75
10.16 TPMI_RH_ENDORSEMENTcciittiittiiiiieesitiiee e s siiee e siaeee s siaeeessssneeesssnseeesssng g ip e neeeesnsseneenns 76
10.17 TPMI_RH_PROVISIONccciiiiiiiiiiiiieiiiiie e siiee e siiee e sineeessineeessneeesssssees s b e s snnneeesssnneeennes 76
10.18 TPMI_RH_CLEAR ...ttt ettt stee et e et e e s stbeee e s sntee S sstaeeessnbreeessneeee e 76
10.19 TPMI_RH_NV_AUTH ..ottt siieee e siveee s ssieeee s sh e e s siee e e snineee e 77
10.20 TPMI_RH_LOCKOUT ...oiiiiiiiiiieeiiiiee et siieee e siieee e sneeee s snneee s s b i e e e s ntbeeeesnnbeeeesnnneeennes 77
10.21 TPMI_RH_NV_INDEX.....ccciiiiiiiiiiiiiieeiiiieeeinieeeesnieeeessneeeessneeed e et siieee e s 77
10.22 TPMI_ALG_HASHoiiiiiii ettt 0 T sttt e ettt e e s sabae e e e nnbeeeeeseeee s e 78
10.23 TPMI_ALG_ASYM (Asymmetric AlgOrithms)cc.eeeiiiii e 78
10.24 TPMI_ALG_SYM (Symmetric AIGOrthMS)oooiiiiiiii e e 79
10.25 TPMI_ALG _SYM_OBJECToiiiiiiiiiieiiiieee e a5 ettt ettt e et e e e saaae e e s ennaee e 79
10.26 TPMI_ALG_SYM_MODEcccceeiiiiiieiiiieeecieeee S e 80
10.27 TPMI_ALG_KDF (Key and Mask Generation FURCHONS)...........coiuiiieiiiiiieniiiiee e 80
10.28 TPMI_ALG_SIG_SCHEMEccciiiiiieiiiiiie e 0 ettt e saaae e e e e snnaee e 81
10.29 TPMI_ECC_KEY_EXCHANGEcoiiiiamed ittt sttt e siaeeeessitaeeessnnaeesssnnseeend 81
10.30 TPMI_ST_COMMAND _TAGciittiieiiiiie e Nietieeestieeeesstteeeessstaeessstaeeessbeeeeesssbeeesssntaeeessnseeeesan 81
11| Structure DefiNitioNSceveiiiieriniiieeeie 0 83
N T I Y S Y | O o, PSPPI 83
11|12 TPMS_ALGORITHM_DESCRIPTION .. et ttette ittt ettt ettt sibe e st e s snbbe e e s snbe e e s snnbeeeeenees 83
R o F= TS gV Do TS] (W od (1] = S 84
11.3.1 TPMU_HA (HAS) .. ettt sttt e ettt e e e sttt e e e snbt e e e snbbeeeesnbbeeesnteeeenans 84
I T Y W o R OPPPRPRPR 84
114 SIZEA BUFFEIS .. e 5ttt ettt ettt sttt e e et e e e abb e e e e st e e e s anbbe e e e annbeeeeenees 85
5 o R g o To 18 o 1T PP PPRPUP O 85
11.4.2 TPM2BDIGEST .oiiiiiiiiiii ettt ettt ettt e e st e e e st e e e stae e e e s stbeeeeesstaeaeesntaeeessntaeaeesntaeeenan 85
L11.4.3 TPM2B YD AT A ettt ettt e e sttt e e sttt e e e et b et e e s asbe e e e e snbe e e e e sntbeeeeanbbeeeesbbeeeeanreeeeeans 86
11.4.4 TPM2B _NONCE.......iii ittt ittt ettt ettt e e st e e e s sbbe e e e s ssbaeeesssbaeeeeanbaeeesntneeenans 86
11.4.5 JFPIMZ2B_AUTH .ttt ettt ettt e e ettt e e s st e e e sabe e e e e snbbeeeeabbeeeesasbeeesanteeeeeans 86
11.46°5TPM2B_OPERANDttt ittt ettt ettt e ettt e e s st be e e e s sabbeeeesnbbeeeeanbneeeesnnbeeesns 86
N Y b = B e N RO OPPPRRTRPR 87
1104.8 TPM2B_MAX_BUFFER ...ttt sttt e e et e e st e e e s nnbeeee e 87
11.4.9 TPM2B MAX_NV_BUEFER 87
11.4.10 TPM2B_TIMEOUTotiiiii ittt ettt e e e st e e e st e e e e s bt e e e e s atbe e e e s ssbaeeeesstaeaessneaenans 88
O 0 5 R I Y 2 S PRPPPPRUPRI 88
T V=T 1= PP P TP P TP PT PP PRTRPRPRTRIRS 88
(R A [o To (U7 i oo PP PRSP 88
11.5.2 TPMU_NADME ...ttt ettt ettt e e e sttt e e s st e e e e sttt e e e s abbe e e e s abbeeeesanbeeeesnbeeeenans 88
11.5.3 TPM2B NAME ..ottt ettt et e e st e e e st e e e et e e e e et ta e e e e sataeaeesntaeeaestbaeeessaseeesntaeaanans 89
LG o O o] 1o {0 =PTSRS 89
11.6.1 TPMS _PCR_SELECT ..ottt ettt ekt e e sttt e e sttt e e s snba e e e s snbaeeessnbaeeeeataeeenns 89

© ISO/IEC 2015 - All rights reserved ii

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

11.6.2 TPMS PCR_SELECTION ... cittiiiiiiiiitiiiit e e e s sette e e e e e e s st e e e e e e s s snsastaneeeaeeesasnsnssanneeeeeesaannes 90
8 A 103 = £ 90
e 0 A 190 To [o 1 T T o TR 90
A N V1O I o3 = T 91
11.7.3 TPMT _TK _CREATION ettt e e e e s e e e e e e e e s s st e e e e e e e s s s nntaeeeeeeeesaannnnees 92
11.7.4 TPMT _TK _VERIFIEDottt ettt s s e e e e e e s s s ae e e e e e e s e st e e e e e e e e srnanees 93
5 T I I 2 U I SRR 94
11.7.6 TPMT _TK _HASHCHECKcoti ittt ettt e e s s e e e e e e e s s e e e e e e s e snnrrenneaaeeesennnes 95
11,8 Property Structures 95
11.8.1 TPMS _ALG PROPERTY ..ottt ittt e s ssitteee e e e e e e s eanteee e s e e s s s ssnnnnnneaeaessssnnnnnnnneseesene o 95
11.8.2 TPMS_TAGGED_PROPERTY ..ottt ssetttteee e e e e e s ssnnnnene e e e e snnnnnee s es (Nt 95
11.8.3 TPMS_TAGGED _PCR_SELECT ...uiiiiiiiiiiiiiiiiieeee e ettt e e e e e s s ssieten e s e e e s s s nnsnaeeeess oo s dfannneees 96
R0 T 1= Y s A SR 96
11.9.1 TPML_CC ...ttt e e e st e e e e e e e s s sanbaane e e e e e s s snnnnnnnneseses SadiThareeee e s senaenreees 96
11.9.2 TPML_CCA ... et e e e e e s e st e e e e e e s s sstnnteeeeaaesssensnnnesshess Shresssnreneeesesssannsned 97
5 T T I SRR 97
11.9.4 TPML_HANDLEooooii it ssteee e e e e e e s s snnveneneae e e s e e s e an e e e e s annsneneneeaeeennnnrnees 97
11.9.5 TPML_DIGEST .utiiiiiiiiiiiiitiieieee e e sssttteeer e e e e e s ssnanneeeeeeaesesnsnssrnneeeses prmabe Saensesesesssnssssnneeesessnnssssnnes 98
11.9.6 TPML_DIGEST VALUES ..o oot st e e e e e e s st ee e e e e e s e nnnnnes 98
11.9.7 TPM2B DIGEST VALUESooi it oot N e sttt e e e s ntta e e e s sntaaa e s snraeae e 98
11.9.8 TPML_PCR_SELECTIONooiiiiiiiiiiciiiieeecrieie e sieee el et s e e st e e st e e e s srtnae e s snnaeee e 99
11.9.9 TPML_ALG _PROPERTY ...cotiiiiiiiiiieecitiiee e ciieee e ssveeent e e e e st e e s staeaa e staaea e snsaneaessnsaeae e 99
11.9.10 TPML_TAGGED_TPM PROPERTY ...coiiiiiiiie sl Nl sttt e ettt e e e e e einavene e e e e e e naen 99
11.9.11 TPML_TAGGED_PCR_PROPERTY ... ettt e sesiteee e e e e e saatanae e e e e e e e eaans 100
11.9.12 TPML_ECC CURVE ..ottt b i e e e ettt e e e e e e s ettt e e e e e e s e e sanabaaeeeaeeeseennnres 100
11.10 Capabilii©S StIUCIUIES.......ueeiie e i i i iiiiiieeee e e e e eeeeee e s e sitar e e e eaeesssaatrarereeeessssnntrreeeeeeennsrnreees 100
11.10.1 TPMU_CAPABILITIES ..ottt 30 ettt e e e e e e e e 100
11.10.2 TPMS_CAPABILITY _DATA ..ttt e e s r e e e e e e s sttt e e e e e e s s e saan e e e e e e e e e s annnnneees 101
11.11 CloCK/COUNLEN SITUCTUMES ... i e e s et s e e e e e e e e e e aaeeeees 101
5 I O O Y S I T o S SR 101
T I 7 O [T S 101
I I G B =TS Y = (0 11 [A T 101
I I I Y3 = [(o T | | S T 102
O R R Y- | (= TR 102
11.11.6 TPMS _TIME _INF O .. ittt e e et e e e e e e e et e e e e e e e e e saabebeeeeaeeeesnneeees 102
11[12 TPM AtESIAtION STIUBTUEESuuiiieeieeieie e et eeee e e e e e e et e e s eaa e e s eaa e saes b esssaasessbassseebasesssnneseran 103
O 2 A 1 1 (o Yo 11 T 10 o 103
11.12.2 TPMS _TIME ATTEST INFO ...ttt ettt ettt e e ae e e entan e e e etbe e e e enneas 103
11.12.3 TPMSCEERTIFY _INFO ...ttt ettt e e st e e e snae e e e s nnaeas 103
11.12.1 TPMS) QUOTE_INFO ...ciiiiiiiiieiiiiite ittt e sttt e e siaee e s sttee e e stbaeeesstaeeessssaeeessnsseeassnsseeeesnnseens 103
11.12.2 TPMS COMMAND _AUDIT INFO....ciiii ittt ettt e e e et e e e e e e e e e enaaes 104
11.12.3TPMS_SESSION _AUDIT INFO....uuiiiiiiiiiiiiiiiieee ettt ettt e e e e e e eaaare e e e e e e e e ennenes 104
11.12.4TPMS_CREATION _INFO ...ciii ittt ee e e e e e s ettt e e e e e e e e s e sanntaaeeeaeeesannnnes 104
12.12:5 TPMS_NV_CERTIFY _INFO ...ttt e e s st e e e e e s annaaa e e e e e e e e nnnnnees 104
L11M2.6 TPMI ST AT TEST ..ttt e e e e e e e e s e et e e e s e st a e e e e e e e s e e sanrbereeeeeeesasnsrenes 105
27 rPMy-—A S 05
L11.02.8 TPMS AT TE ST eeoiiiii ittt e e e e e e e e s e st e e e e e e s s asastaaeeeeeeesaeansananneaeeeanannns 105
o T I Y = T N I s P PRSERS 106
11.13 AULNOTIZATION SITUCTUIES ... cieeei et e e e et e et e e e et e e e e et s e e e sae s e s et e eesebasessannseseran 106
T I 20 A T (o To [T 1 o o 106
11.13.2 TPMS_AUTH_COMMANDccoiiiiiiiiiie et s s e e e e e e e s tarra e e e e e e e s s e sannbaaeeeaeeesaannnes 106
11.13.3 TPMS_AUTH_RESPONSEcuttiiiiiiee it sse e e e e e e e s sstaree e e e e e e e s snnnnraneeeaeeesnnnnnes 106
12 Algorithm Parameters and StIUCLUIESuuuiieieeeiiiiiiiiee e e e s s s e e e e e s s s e e e e e e s e s reeeeeeeenreneees 107
iv © ISO/IEC 2015 — All rights reserved

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

I RS 0 011 1 1 o PR PR 107
D2 0 R 1o £ o To 18 o 1T o PP PPPR RO 107
12.1.2 TPMI_AES _KEY _BITS .. ettt ittt ettt st e e et e e e et e e e e nnbbeeeeennnes 107
12.1.3 TPMI_SMA_KEY _BITS ..ot iiiiiieiitiite ettt sttt ettt ettt e e sttt e e s st e e e s sntae e e e snbteeeeanneees 107
12.1.4 TPMI_CAMELLIA KEY _BITS ..ttt ettt ettt st e st e e snnneeaesnanee s 108
12.1.5 TPMU_SYM_KEY _BITS ..ottt sttt sttt et e e s st e e s bt e e e s snnneeas 108
12.1.6 TPMU_SYM_MODEootiiiiiiiiiiiiiie ettt st sb e st e e s bt e e e e snbee e e s nnaee s 108
12.0.7 TPMU_SYM_DETAILLSttt ettt sttt e e e e et e e e e nnbbe e e e ennres 109
12.1.8 TPMT _SYM DEFoiiiiiiiii ittt s ettt s et e e e et e e e st et e e st et e e s s st e e e s snbaeeeesnseeeaesanaees 109
12.1.9 TPMT_SYM_DEF OBJECTuuuiiiiiiiiiiieieiiieeeii it ieieeeieieeeieeeeeiiieeeieeeeieeeeeeeees 110
12.1.10 TPM2B_SYM_KEY ...ttiiiiiiiiii ittt ste ettt e s nttae e e s sstae e e s snaae e e s snnaaeaesnsaneesnsneeesnnes o 110
12.1.11 TPMS_SYMCIPHER_PARMSooii ittt see e ee e sae e s sniae e e s enrees prae s 110
12.1.12 TPM2B_SENSITIVE _DATA ...ci ittt ettt sstiee e sivee e sisenessssneeesnssneessnssnnnsssssedehaTmeees 110
12.1.13 TPMS_SENSITIVE_CREATEcttiiiiiiiie ittt siiee e snine e s nnne e s e bt e 111
12.1.14 TPM2B_SENSITIVE_CREATE......ciiiiiiiiieiiiiiie i ssiie e siieee s ssinee e ssvnee e s sadea) e e 111
12.1.15 TPMS_SCHEME_SIGHASH. ...ttt s s {ite e 112
12.1.16 TPMI_ALG_HASH_SCHEMEcciiiiiiiiiiiiie it Nn s e eibee e e 112
12.1.17 HMAC_SIG_SCHEMEctiiiiiiiiiie ettt ettt e s T e a e et e e s snbee e e s sneeeas 112
12.1.18 TPMS_SCHEME_XORcttiiiiiiiiiieiiiiiieiniiieee s nvieee e snneee e sveeeee s e Soheea e e nttee e sineeeesnneeas 113
12.1.19 TPMU_SCHEME_HMACooiiiiiiie ittt e e ssee s sna ke e ae e e entve e e s enbeeeeenneas 113
12.1.20 TPMT_KEYEDHASH_SCHEMEcociiiiiiiiiie et s ead e etae e e etae e e 113

12|12 ASYMIMEIIICeeeeiiiiiiie ettt et e et e e e sbe e e e e sbne e e e s g e o e bt e e e e bt e e e aabe e e abb e e e e e snbeeeeennnee 114
2 R S T [1T T S Y] =T T e PO 114
12.2.2 ENCryption SChEMES.......iviiiiiie i s S e ettt s e e e e e e s e e e e e e e s nnrnneees 116
12.2.3 Key Derivation SChEMEScccvviieiiiiciciiciiieer g ¥ttt e e e r e e e e e e 116
L12.2.4 RSA oottt St e et bt e e et e e e — e e e e aata e e e s aae e anareeenaaraes 119
T T O PSRRI 122

12|33 SIGNALIUMESeeieeiiiiiie ettt ettt et e e siee e e sbreee s Fab e+ e bttt e e ettt e e et b et e e e sabe e e e e asbe e e e e anbe e e e ebbeeeeeanbeeeeennee 124
12.3.1 TPMS_SIGNATURE_RSASSA ... ettt ettt sttt s e e e st e e s snbee e e e neeas 124
12.3.2 TPMS_SIGNATURE _RSAPSS ... ittt sttt s e e e naeas 124
12.3.3 TPMS_SIGNATURE_ECDSA ... () ettt iittiteiiiiieeeaiieeeessiiieeesstieeessnteeesssnbaeeesansbeeessnsbeeessnnses 125
12.3.4 TPMU_SIGNATUREooiiii e ittt e e e e e e e sttt e e st e e e e s nnnaeeesanaeaas 125
12.3.5 TPMT_SIGNATURE ittt e et e e sara e e e s nanee s 126

12[4 KeY/SECIEt EXCRANGEccii i ettt e ettt e e e e e s e e b e e e e e e e snnnreees 126
D o A o To (U1 i o o e PP RPN 126
12.4.2 TPMU_ENCRYPTED _SECRETctiiiiiiie ittt st e e s 126
12.4.3 TPM2B _ENCRYPTED _SECRETciiiiiiiiie ittt see e st e et a e saae e e e sntaea e s annbeaeeenneas 127

R | I =) V7O] o] 1T A @ T 1]] (= et SRS RRSRR 128

] I o T (U Tod 1 To] o T PP PP PP PPPRPPPRPPNS 128

13[2 PUDIIC ATQACSIIUCTUIES......eeiiie ettt ettt et e e e e e s b et e e et e e e e e s aanbbeeeeeaeeeaeannnbabeeeaaaeaaann 128
R T R I =T o]) 1T o P 128
132727 TPMI_ALG_PUBLICeeiiiiitiiit ettt ettt st et e e s st e e e snbte e e e saeeeas 128
18.2.3 Type-SPECIfiC PAraQMELEISeiiiiiiiii ittt e e e e s nneee s 128
F3.2.4 TPMT _PUBLIC ... oottt ettt et e e ettt e e s et e e e st e e e e ssaaa e e e sssaeeesnssbeesnnaees 132
G JZ 4 T I 1Y/ 2 =] = [USRS 32

13.3 PriVAte AIEa SEIUCLUIESceeiiiiiitiiieiee e e e ettt e e e e e e bbbttt e e e e e e e bbb te e e e e e e e e s anbabeeeeaaeseaannbeeaaaeeeaannnreees 133
IR TR 70 A [o To (U7 i o o PP RR 133
13.3.2 SeNSItiVe Data SIIUCIUIESeeiiiiiiiiiie ittt e et sttt e e st e et e e e sbeeeeenneeeeas 133
13.3.3 TPM2B_SENSITIVEooiiiiitiiie ettt sttt et e e et e e et e e e st e e e st e e e s naaa e e e s snnreeesannaeees 134
R JRC T =l [od Y/ o1 o] o DS PP PPP PRI 135
R R TG I [1](=To | {117 TSRO U PP PPP PRI 135
R TR TG I = = LY I PR 135
13.3.7 TPM2B_PRIVATE ..ooii ittt ettt ettt ettt e e ettt e e sttt e e st e e e ssta e e e sssaeeesnssaeeesnnaeeas 135

© ISO/IEC 2015 - All rights reserved Y

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

R B T 1T 1 1Y] 1= o SRR 136
R B o R B =TT od] [[P PPPTRP O 136
TR S 15 O] N | O O RR 136
13.4.3 TPM2B_ID_OBJECT ... itiiiiiiiiitee ittt e ettt e sttt e sttt e e sttt e e s asbae e e s snbe e e e e snbeeeessnbbeeeesnsteeeesneeeas 136
14 NV STOTrAQE SITUCTUMES .uvuuiiiiiieiiiiii et e ettt se s e e e e ee ittt s e e e e e e e ea s e e e et e ae b e a e s e e et eeetab s e eeaeesaebbnnanneeeeenes 137
I T I Y AV 1N 3 = PSP TPPR 137
14.2 TPMA NV (NV INAEX ALIDULES) ..eeieiee it s e e e e e s s e e e e e e s st ne e e e e e e ennrnrnees 138
14 3TPMS_NV_PUBIIC 41
144 TPM2B NV _PUBLICooiii oottt ettt e s e e e e stae e e e stae e e s sntaeaessnaeeesssaeeesnnseeees Puges 141
S I 0T 11 (B - | = R UTUTPRPRP B Bt 142
] I g1 0T [1 o) o 1 RSP 142
15|2 TPM2B_CONTEXT_SENSITIVE ...cociiiiiiieiiiiiee it eie e esiee e sine e ety T 142
1513 TPMS _CONTEXT _DATA . . it ctitee ettt e sttte e ettt e e s stbeeeessrteeeessntaeeessnsneeessnsnssesssDuaeessnsseeesssseeeennns 142
15[4 TPM2B_CONTEXT _DATA ..ottt e ssiiee e siteee s snree e s snnee e s snnee e s S apeennteeeeesntaeeessnbaeesennnes 142
15|15 TPMS_CONTEXT .tiiieiiiiieeeiitiieeestiieessniieeesssiieeessssneeessssseeessssnenessssneessssndhee b inneeesssnsneessssneessnssenessnnnns 143
15(6 Parameters of TPMS _CONTEXTccoiiiiiiiiiieee e iiiiiiieiee e e e e s sssinines e e s s sannreee e e e e e s sssnnntaaeeaeesessnnnnnenes 143
15.6.1 SEQUENCEccoiiiiieiiieieie ettt e ettt 143
15.6.2 SAVEAHANIE.......iiiiiiiiei e e ettt e e e e e e e e e e 144
15.6.3 hierarChy ... S 145
S O] 0112 (A o (0] (=11 o] o O S PR PPR 145
15.7.1 CONEXE INTEGIILYvveeeiiiiieeeiiiieeeiieieee s (et e et e e e e sn e e e s nnneeas 145
15.7.2 Context ConfIdentiality..........ocveereiiieee s B e 145
| I O (=T Vi o]l DT - e o S TP PRPT 146
16|21 TPMS _CREATION _DAT A .o ittte et o essteeeeassteeasasstaeaeaastaeaeastaeaesataeeesasbaeesaastaeeesassaeeesasteessnsens 146
16|2 TPM2B_CREATION_DATA ..o ittt e e e sstae e e e sntae e e e sntae e nnnes 146
Annex A (informative) Algorithm CONSIANTScooiiiiiiiiiie e e e s eanrrrreeee e 147
N0 R g1 1 o T [0 Tox 1T o PSPPSR 147
A.2 Allowed Hash AlGOrthmSi e e e e e e e st bre e e e e e s eeannrraneeeeeas 147
AL2. L SHAL i ettt e e e e e — e e e et ee e e et aee e e ettt e e e e taeeeeareeeeearreeaeans 147
AL2.2 SHA DG .. (i ettt ettt ettt et e e e e e e e e et e e e et ——e e ettt e e e ettt e e e ataee e e e treeeearaeaaeans 147
F N B o VNG 1 PSSR PUPRRR 147
YN] o ¥ Iy PR RRRPPPRRR 148
A28 SIMBAZ56 ...ieiiie ittt e e e e et e e e e b et e e e e bae e e e atae e e e e beeeesanrreaeeans 148
A3 ArChILECIURAL LIMIES .ooeeiieie ittt sttt e sttt e e s st e e e e nbbe e e e enbbe e e s ensbeeeeeneee 148
Annex B (informative) Implementation DefinitioNSueeiiiiiiiic e 149
23 g oo (U 1% 1o o WO RTTPPR 149
B.2 LOGIC VAIUBS ...ttt et e ettt e e et e oo e i bt e e oo st et e e e aabe e e e e et e e e e b e e e e e anbr e e e e annee 149
B.3 PrOCESSOI VAIUESttt e e ettt e e e e e sttt e e e e e e e s s nsbeeeeeeeeeeesnnneeeeaaeeeaannnnnenes 149
B.4 Implemented AlGOItNMIS.uiii et e et e e et e e s nbb e e e s anbe e e e e 150
B.5 Implemented COMMENTSoiuiiiiiiiia ettt e e e e e e bt e e e e e e e s e an b e e e e e aa e e s e annbeaeeaaaesannrereees 151
B.6 AIGOItNmM CONSIANTSeiiiiiiiie ittt e e e ettt e e e e e e s e bbb e e e e e e e e e e snnbeeaaaeeeaannnreees 154
2 TSt R = 3SY RO PRR 154
320 T O SRS 154

Vi © ISO/IEC 2015 — All rights reserved

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

BLB.3 A S ... i e n et nee e 154
BLB.4 S ..ot e e 154
B.6.5 CAMELLIA ...ttt e e s 155
B.B.6 SYMIMEIIIC . ..cttiiii ittt ettt ettt et e e s bbbt e e s bbbt e e s bbb e e e s anbb e e e sabr e e e s nnneeas 155
B.7 Implementation SPECIfIC VAIUEScoiuiiiiiiiiie e 156
(S]] [ToTo [£=1 o] 1) VNN PP PPPTRP 159

© ISO/IEC 2015 - All rights reserved vii

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

Tables

Table 1 — Name PrefiX CONVENTIONcviiiiiiieei et nes 15
Table 2 — UNMaArshaling EITOISuuiiiiiiii ettt ettt e e e nane s 17
Table 3 — Definition Of BASE TYPESeiiiiiiieieiiiiie ettt ettt ettt e s asbe e e s anbb e e e e anbbeeeesnnnees 18
Table 4 — Definition of Types for Documentation CIAIILYc..ciiiiiiiiiiiiie e 18
Table 5 — Definition of (UINT32) TPM_SPEC CONSLANS <>........coiiiiiiiiiiiiiiiieaeeeeiiiieee e 19
Tapte-6—DBefintttonroH BN FPM—GENERATEB-Constants<O>——rr 19
Taple 7 — Legend for TPM_ALG_ID TabBI......coooi e S 20
Taple 8 — Definition of (UINT16) TPM_ALG_ID Constants <IN/OUT, S>.........ccccovvviiiieeeees it e e 21
Taple 9 — Definition of (UINT16) {ECC} TPM_ECC_CURVE Constants <IN/OUT, S> ... vveeennn 24
Taple 10 — TPM Command Format Fields DeSCIIPLONccccvvierieeeeeiiiiiiieeeee e e e e ol e e s seivnnee e e e e e 24
Taple 11 — Legend for Command Code TabIESueiiiiiiiiiiiiiee e e e e ee e e e 25
Taple 12 — Definition of (UINT32) TPM_CC Constants (Numeric Order) <IN/QUT; S>.......ccccovveveeeennnnnd 26
Taple 13 — Format-Zero RESPONSE COUES.........uuii ittt T N ettt ettt e et e e snbne e e s snneeend 31
Taple 14 — Format-One RESPONSE COUESuueiiiiiiiiieiiiiieeiiiieee it ee s sieee e e stbs e e ssibeeeesnabneeessnneeend 32
Taple 15 — ReSpoNSe COUE GrOUPINGSuveeeirrreeeiirreeeriireeesnineesasdrreenannneeesasseesesassseeesssseeesasseeessnsneeend 32
Taple 16 — Definition of (UINT32) TPM_RC Constants (ActionS) KOUT>ccooiiiiieiiiiieeeiieee e 33
Taple 17 — Definition of (INT8) TPM_CLOCK_ADJUST Constants <IN> ..ot 38
Taple 18 — Definition of (UINT16) TPM_EO Constants <RIN/OUT>ccuuiiiiiiiiiiiiiiiiieee e 38
Taple 19 — Definition of (UINT16) TPM_ST Constants <IN/OUT, S>......ccccccceieeiiiiiiiiiiiee e ceciiireee e 39
Taple 20 — Definition of (UINT16) TPM_SU Constants <IN>.........ccccccoiiiiiiiiiiiiec e e siinnee e e 41
Taple 21 — Definition of (UINT8) TPM_SE CONstants <IN>........c.ccccceeiiiiiiiiiiiiiiee et e e e sivnnee e e e 41
Taple 22 — Definition of (UINT32) TPMACAP CONSLANTScevviiiiiieee st ee e e e s ssiineee e s e e e e e snrnneeeeeee e 42
Taple 23 — Definition of (UINT32) TPM_PT Constants <IN/OUT, S>.......ccccccveeiiiiiiiiiiree e riiieeee e e 43
Taple 24 — Definition of (UINT32)'TPM_PT_PCR Constants <IN/OUT, S>ccccoiiireeeiniiiiiieeeee e 48
Taple 25 — Definition of (UINT32) TPM_PS Constants <KOUT>.........ooiiiiiiiiiiiiieeeiiiiee et 50
Taple 26 — Definition Of-TFYPES fOr HANGIESooiiiiiiiieiiie e 51
Taple 27 — Definjtionof (UINT8) TPM_HT CONSIANTS <S>uiiiiiiiiiieiiiiiie et 51
Taple 28 — Defidition of (TPM_HANDLE) TPM_RH CONStantS <S>.......cccceiiiiiiieiiiiieeeiiieee e snieeeessieeee s 53
Taple 29 —Definition of (TPM_HANDLE) TPM_HC CoNnstants <S>cccccciiiiiiiiiiiiieee e 55
Taple 30~ Definition of (UINT32) TPMA_ALGORITHM BIitSccttiiiiiiiiiiiiiaea i 56
Taple.81 — Definition of (UINT32) TPMA _OBJECT BIlS ...uuiiiiiiiiiiiiiiiieiiiiiiessiiieessiieeeesiiieeeesnneseeessneneeesd 57
Table 32 — Definition of (UINT8) TPMA_SESSION Bits <IN/OUT>.......cccciiiiiieeiiiiiieieee e sciinvnen e 63
Table 33 — Definition of (UINT8) TPMA_LOCALITY Bits <IN/OUT>ccuviiiiiieeiiiiiieieee e ceiieee e e e 65
Table 34 — Definition of (UINT32) TPMA_PERMANENT BitS SOUT>......ccoiiiiiiiiiiiiiie e 65
Table 35 — Definition of (UINT32) TPMA_STARTUP_CLEAR Bits OUT>........ccccooevivieeeeeersseenssnennns 66
Table 36 — Definition of (UINT32) TPMA_MEMORY BitS SOUL>ccoiiiiiiiiiiiie e 67
Table 37 — Definition of (TPM_CC) TPMA_CC BitS SOUT>.....c..curveeueiereeeeeeeeeeeeeeeeeeeeeeeseseeees e eseenenen 68

viii © ISO/IEC 2015 — All rights reserved

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

Table 38 — Definition of (BYTE) TPMI_YES NO TYPE .eevieeiiiiiitiieiiee sttt e e sitneee e e e e e s sntaneeeee e e e 71
Table 39 — Definition of (TPM_HANDLE) TPMI_DH_OBJECT TYPE....cccutteiieeeeeiiiieiieereeeeessninveneeeaeeeeanns 71
Table 40 — Definition of (TPM_HANDLE) TPMI_DH_PERSISTENT TYPEovvvuieeeeeeieeseeseesseesenenenes 72
Table 41 — Definition of (TPM_HANDLE) TPMI_DH_ENTITY Type <IN>ccccoevviiiveirsersressrsnnns 72
Table 42 — Definition of (TPM_HANDLE) TPMI_DH_PCR TYPe <IN>covivoiereeieeseeeeesesseeseneneens 73
Table 43 — Definition of (TPM_HANDLE) TPMI_SH_AUTH_SESSION Type <IN/OUT>ccccccceernnnnns 73
Table 44 — Definition of (TPM_HANDLE) TPMI SH HMAC Type <IN/JOUT>..........c.cccvviiiiiiiiiiiiiiiaaaannns 73
Taple 45 — Definition of (TPM_HANDLE) TPMI_SH_POLICY Type <IN/OUT>cccccceeiiiiiiiiiiienneea g Vo 73
Taple 46 — Definition of (TPM_HANDLE) TPMI_DH_CONTEXT TYPE .cvevvveveeeeeeeeeeerereeeeeseee s £ s 74
Taple 47 — Definition of (TPM_HANDLE) TPMI_RH_HIERARCHY TYPE ...oovveeeeeeereeeeesipcssilorrsnenns 74
Taple 48 — Definition of (TPM_HANDLE) TPMI_RH_ENABLES TYPE ...cvvvvvevveereeeses s idedereeeerereresenns 74
Taple 49 — Definition of (TPM_HANDLE) TPMI_RH_HIERARCHY_AUTH Type <INS...\...coovovevieen 75
Taple 50 — Definition of (TPM_HANDLE) TPMI_RH_PLATFORM Type <IN> ...£ 5 oveeeeeeeeeeeeeeees 75
Table 51 — Definition of (TPM_HANDLE) TPMI_RH_OWNER Type <IN> ...£0 e 75
Taple 52 — Definition of (TPM_HANDLE) TPMI_RH_ENDORSEMENT, TYP€ <IN>.......c.cccvveiirriernnnns 76
Taple 53 — Definition of (TPM_HANDLE) TPMI_RH_PROVISION FypPe <IN>.......cocovreereerererereenes 76
Taple 54 — Definition of (TPM_HANDLE) TPMI_RH_CLEAR TYPEeXIN>ccccoiiiiiiiiiiaee i 76
Taple 55 — Definition of (TPM_HANDLE) TPMI_RH_NV_AUTH Type <IN> ... 77
Taple 56 — Definition of (TPM_HANDLE) TPMI_RH_LOECKOUT Type <IN> ..o 77
Taple 57 — Definition of (TPM_HANDLE) TPMI_RH. NV_INDEX Type <INJOUT>ocoeeeeerererrsnnn, 77
Taple 58 — Definition of (TPM_ALG_ID) TPMI_ALG HASH TYPE......eeeeeeeeeeeeeeeeeeeeeeeseseeeeeseeenenesessens 78
Taple 59 — Definition of (TPM_ALG_ID) TPMI ALG_ASYM TYPE w..eveeeeeeeeeeeeeeeeeeeeeeseseseeeeeeneneseseens 78
Taple 60 — Definition of (TPM_ALG_ID)TPMI_ALG _SYM TYPE..civiiiiiiciiieieeee e eeetieee e e e e seineee e e e 79
Taple 61 — Definition of (TPM_ALG \ID) TPMI_ALG_SYM_OBJECT TYPE ..eeeeiiiierieiieee e e ecieiieen e e e e 79
Taple 62 — Definition of (TPM_ALG_ID) TPMI_ALG_SYM_MODE TYPE€....ctvteeeiiiiiriiiiieeeeesseieiiennaeee e 80
Taple 63 — Definition of (TRM=ALG_ID) TPMI_ALG_KDF TYPEuutiiiiiiiiieiiiiee ettt ettt 80
Table 64 — Definition of (TPM_ALG_ID) TPMI_ALG_SIG_SCHEME TYPE......cevrveerereieeirseersressnsenns 81
Table 65 — Definition-0f (TPM_ALG_ID) TPMI_ECC_KEY_EXCHANGE TYPE.....cocvvevviverieeseeriresirsnnes 81
Taple 66 — Definition of (TPM_ST) TPMI_ST_COMMAND_TAG TYPE ...uttiiiiiiaaiiiiiiiiiiea e eeiiiieee e e e 81
Taple 67 —/MDefinition of TPMS_EMPTY Structure <IN/OUT>.....ccoiiiiiiiiiiiiie i seiiie e svee e sivee e sneaee e 83
Taple 68.= Definition of TPMS_ALGORITHM_DESCRIPTION Structure <OUT>.......ccoeiiiiiiiiiiiinnaaennnnd 83
Taple-69 — Definition of TPMU_HA Union <IN/OUT, S>.....coiiiiiiiiiiic ettt e e srnae e e e 84
Table 70 — Definition of TPMT_HA Structure <IN/OUT> ...t e e e 84
Table 71 — Definition of TPM2B_DIGEST StIUCLUIEccvviieii ittt e e e e e e e e e e e e e 85
Table 72 — Definition of TPM2B_DATA SHUCIUIEuviiiiieee e ieieiieie e e e e s s ettte e e e e e e s ssnretee e e e e e e s snnnnreeeneeeeen 86
Table 73 — Definition of Types for TPM2B_NONCEcccoiiiiiiiiiiieee s e e e e e snrrreeee e e e 86
Table 74 — Definition of Types for TPM2B_AUTHooiiiiiiiii e 86
Table 75 — Definition of Types for TPM2B_OPERANDcccuitiiiiiiieiiiiee et 86
Table 76 — Definition of TPM2B_EVENT StrUCTUIE.......cocuuiiiiiiiiiie et 87

© ISO/IEC 2015 - All rights reserved iX

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

Table 77 — Definition of TPM2B_MAX_BUFFER StrUCLUIeueviieiiiiiiiiieice et e e e e 87
Table 78 — Definition of TPM2B_MAX_NV_BUFFER StrUCIUreccccvviiiiie e e e e 87
Table 79 — Definition of TPM2B_TIMEOUT Structure <INJOUT>ccoiiiiiiiiiiieieiiiiee e 88
Table 80 — Definition of TPM2B_IV Structure <INJOUT>.......ocuiiiiiiiiiiie e 88
Table 81 — Definition of TPMU_NAME URNION <>uiiiiiiiiiic et e e nnnae e e nnane s 88
Table 82 — Definition of TPM2B_NAME STrUCLUIEooiiiiiiiiiiiiiiee ettt eaeeeeaeeaeaenes 89
Table 83 — Definition of TPMS PCR SELECT SITUCIUIEciuuveiiiiieieieiiiiiieiee e eeaa e 90
Taple 84 — Definition of TPMS_PCR_SELECTION StIUCIUIE.......cciiiiiiiiiiiiiiiieeeeeiriiiieeee e e siieieeee g o) 90
Taple 85 — Values for proof Used iN TICKELSccccoiiiiiiiiiiecc et e e e e e i) 91
Table 86 — General Format Of @ TICKEL........cociiiiiieiie e g W e 91
Taple 87 — Definition of TPMT_TK_CREATION StrUCUIE........ccvvveeieeeiiiiiiiieieee e fadade s vnvee e e e 92
Taple 88 — Definition of TPMT_TK_VERIFIED StruCture.........ccccvvvreeeiiiiciiiieiree et e 93
Taple 89 — Definition of TPMT_TK_AUTH STrUCIUIEcoeeeeiiiiiiiiiieee e ope Sttt e e 94
Taple 90 — Definition of TPMT_TK_HASHCHECK StruCture...........cccoevveeee oy er e 95
Taple 91 — Definition of TPMS_ALG_PROPERTY Structure KOUT> ... 00 eeieeiiiiiee e 95
Taple 92 — Definition of TPMS_TAGGED_PROPERTY Structure SOUT>.........coocciiiiiieeeeeiiiiiieieee e 95
Taple 93 — Definition of TPMS_TAGGED_PCR_SELECT Struettire <OUT>......ccccuviiiiiieieeiiiiiieeeee e 96
Taple 94 — Definition of TPML_CC StrUCIUIEocoiiiiiiiee ettt ettt ee e e e e eeeeeeteeeeasseesssesssessserene 96
Taple 95 — Definition of TPML_CCA Structure KOUT>.. .. ittt eeeeeeeeaeeee 97
Taple 96 — Definition of TPML_ALG SIIUCIUIEccco it e e e e e s st e e e e e e e e s snnnaneeeaaee e 97
Taple 97 — Definition of TPML_HANDLE Structuf@ <OUT>........uuiiiiiiiiiiiiiiieiee et e e snvnne e e e e 97
Taple 98 — Definition of TPML_DIGEST StEUCHUIE......uuviiiiieeiiiciiiieee e e e e e s ettt e e e e e e s ssirnree e e e e e e s snnnnrneeeaaeeend 98
Taple 99 — Definition of TPML_DIGESTVALUES StrUCLUIEvvvviieeiieiiiiieiee et ee e e e s e e siinneee e e e 98
Taple 100 — Definition of TPM2B_DIGEST VALUES StrUCIUIEccoiiiiiiiiiiee e ceceiieee e e e seivneee e e e 98
Taple 101 — Definition of TPMLy.PCR_SELECTION StrUCLUIEccceeeiiiiiiiiiieeee e eieciiieee e e e e e s seennieeee e e e 99
Taple 102 — Definition of TPME_ALG_PROPERTY Structure KOUT>ccooiiiiiiiiiiiiee e 99
Taple 103 — Definition of TPML_TAGGED_TPM_PROPERTY Structure <KOUT>ccceevviiiiiiiiineeeennnns 99
Taple 104 — Definitionsof TPML_TAGGED_PCR_PROPERTY Structure <OUT>ccccoveeiiiiiiiiiieennnn. 100
Taple 105 — Definition of {ECC} TPML_ECC_CURVE Structure <OUT> ... 100
Taple 106 —=Definition of TPMU_CAPABILITIES Union <OUT>......cccciiiiiiiiiiiiiie e 100
Taple 107 Definition of TPMS_CAPABILITY_DATA Structure KOUT>cccooiiiiiiiiiiiiiiaaeeniiiieeeee e 101
Taple-108 — Definition of TPMS_CLOCK _INFO SIrUCIUIE.........uuiiieeeeiiiiiiiiiii e e e e ccciiire e e e e e s ssivnrneeea e e 101
Table 109 — Definition of TPMS_TIME_INFO SITUCIUIEccvviiiiiiee ettt e ivnvee e e 102
Table 110 — Definition of TPMS_TIME_ATTEST _INFO Structure <KOUT>......ccccoiiviiiiiiieeee e 103
Table 111 — Definition of TPMS_CERTIFY _INFO Structure <OUT>......cccviiiieiiiiiiiieieee e cinieeen e 103
Table 112 — Definition of TPMS_QUOTE_INFO Structure <OUT>cccviiiiieeiii e cieieeen e 103
Table 113 — Definition of TPMS_COMMAND_AUDIT _INFO Structure <OUT>.......ccccccveveeeieiiiiiiieeeen. 104
Table 114 — Definition of TPMS_SESSION_AUDIT _INFO Structure <OUT>.......coccviiiieeieee e 104
Table 115 — Definition of TPMS_CREATION_INFO Structure KOUT>ccoviiiiiiiiiiiiiiieeeeeseiiiieeeee e 104

X © ISO/IEC 2015 — All rights reserved

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

Table 116 — Definition of TPMS_NV_CERTIFY_INFO Structure <KOUT>........ccoviiiiiiiiiireeeeesriiiieeeeeeee 104
Table 117 — Definition of (TPM_ST) TPMI_ST_ATTEST Type <OUT>....coovevevieeeeeeeeeeeeeeeeeeeeeeenenenn 105
Table 118 — Definition of TPMU_ATTEST UNION SOUT>coiiiiiiiiiiiiieiiiee et 105
Table 119 — Definition of TPMS_ATTEST Structure KOUT>cooiiiiiiiiiiiiee e 105
Table 120 — Definition of TPM2B_ATTEST Structure KOUT>cooiiiiiiiiiiieiiiee e 106
Table 121 — Definition of TPMS_AUTH_COMMAND Structure <IN>........cccccoiiiiiiiiiiiiiaeeeiiieeeeee e 106
Table 122 — Definition of TPMS AUTH RESPONSE Structure KOUT>........coiiiiiiiiiiiiiiiieeeeeeiiiieeeee 106
Taple 123 — Definition of {AES} (TPM_KEY_BITS) TPMI_AES_KEY_BITS TYPE ..oevviiueeeieereeeeenne o 107
Taple 124 — Definition of {SM4} (TPM_KEY_BITS) TPMI_SM4_KEY_BITS TYPE...ecvrvreererere b 107
Table 125 — Definition of {CAMELLIA} (TPM_KEY_BITS) TPMI_CAMELLIA_KEY_BITS Typel-.......... 108
Taple 126 — Definition of TPMU_SYM_KEY_BITS UNION.......cccvviieeeiiiiiiiieeee e b s nveee e 108
Taple 127 — Definition of TPMU_SYM_MODE URNION ...ccceceiiiiiiiiiireee e snieeee e 108
Taple 128 —xDefinition of TPMU_SYM_DETAILS UNIONcccvvviiieieeiiiiiiieene e o e sseiieeeea e 109
Taple 129 — Definition of TPMT_SYM_DEF Structure..........coocoveiniereeneeeed e 109
Taple 130 — Definition of TPMT_SYM_DEF_OBJECT StrUCTUIe........c.q 8T 110
Taple 131 — Definition of TPM2B_SYM_KEY SHIUCIUIE.......ccoiuiiie s ittt 110
Taple 132 — Definition of TPMS_SYMCIPHER_PARMS StrUCIUI®./.........vviiiiiiiiiiiiiiiiieeeee e 110
Taple 133 — Definition of TPM2B_SENSITIVE_DATA StrUCIUIEcoceiiiiiiiiiiiiiiiee e 111
Taple 134 — Definition of TPMS_SENSITIVE_CREATE Structure <IN> ..o 111
Taple 135 — Definition of TPM2B_SENSITIVE_CREATE Structure <IN, S>........ccccoccvvviiineiiiiiee e 111
Taple 136 — Definition of TPMS_SCHEME_SIGHASH StruCtUre..........cccccviiieiie e ciinneeeen 112
Taple 137 — Definition of (TPM_ALG_ID) TPMI_ALG_KEYEDHASH_SCHEME TYP€.....cvoveeererennn. 112
Taple 138 — Definition of Types for HMACTSIG_SCHEMEooiviiiiiie e 112
Taple 139 — Definition of TPMS_SCHEME_XOR StrUCLUIEccviiieiiiiiiiiiiiiee e sciiiieee e e e e sevnneeee e e 113
Taple 140 — Definition of TPMU_SCHEME_KEYEDHASH Union <IN/OUT, S>........cccccviveiniierenninnnn. 113
Taple 141 — Definition of TPMT_KEYEDHASH_SCHEME StrUCtUrecccoiiiiiiiiiiiee e 113
Taple 142 — Definition of {RSA} Types for RSA_SIG_SCHEMES..........ccccci ittt 114
Table 143 — Definitionof {ECC} Types for ECC_SIG_SCHEMES...........ccovivoeeiveseeeeeeeeeeessesensnnens 114
Taple 144 — Definition of {ECC} TPMS_SCHEME_ECDAA StrUCLUIe........ccviiiiiiiiiiiiieea e eeiiiiieeee e 114
Taple 145 —=Definition of TPMU_SIG_SCHEME Union <IN/OUT, S>.......ccccceiiiiiiiiiiiieeee et 115
Taple 146~ Definition of TPMT_SIG_SCHEME STrUCIUIEceiiiiiiiiiiiiiiiiee e 115
Taple-147 — Definition of {RSA} TPMS_SCHEME_OAEP StruCtUreccccccveeeiiiiiiiiieeeee e ccivieeee e 116
Table 148 — Definition of {ECC} TPMS_SCHEME_ECDH StruCture........cccccveeeiviiiiiiieeeee e ccivveeeeee e 116
Table 149 — Definition of TPMS_SCHEME_MGFL StrUCIUIEcevvvieeiiiiiiiiieeee e e e 116
Table 150 — Definition of {ECC} TPMS_SCHEME_KDF1_SP800 56a Structure........cccccceeevevvnvvvnnnnnnn. 116
Table 151 — Definition of TPMS_SCHEME_KDF2 StrUCLUIEcceveeeii e e et ee e e e eenveeeee e e 117
Table 152 — Definition of TPMS_SCHEME_KDF1_SP800_108 StruCture..........cooeevvvvieeeeeesiiiiieieennn. 117
Table 153 — Definition of TPMU_KDF_SCHEME Union <IN/OUT, S>.......cccooiiiiiiiiiiee e 117
Table 154 — Definition of TPMT_KDF_SCHEME StrUCTUIEcccoiiiiiiiiiiiie it 117

© ISO/IEC 2015 - All rights reserved Xi

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

Table 155 — Definition of (TPM_ALG_ID) TPMI_ALG_ASYM_SCHEME TYPe <>......ccocvvevvereerrrnenn 118
Table 156 — Definition of TPMU_ASYM_SCHEME UNIONuuiiiiiieiiiiiiiiiiinee e e e e snneeae e 118
Table 157 — Definition of TPMT_ASYM_SCHEME STrUCIUIE <>cciiiiiiiiiiiiiee e 119
Table 158 — Definition of (TPM_ALG_ID) {RSA} TPMI_ALG_RSA_SCHEME TYP€......ccccvvevvrrrrerrrnnn. 119
Table 159 — Definition of {RSA} TPMT_RSA_SCHEME StrUCLUIecoccuviiiiiiiiieeeiiee e 119
Table 160 — Definition of (TPM_ALG_ID) {RSA} TPMI_ALG_RSA _DECRYPT TYPE....cccevviurereerrrrnns 120
Table 161 — Definition of {RSA} TPMT RSA DECRYPT StrUCIUIEcuvvviiiiiieiiiiiiiiieieeeeeeieceaaeee 120
Taple 162 — Definition of {RSA} TPM2B_PUBLIC_KEY_RSA StruCturecoooecvivieeieeeeeniiiiieeeee g Y 120
Taple 163 — Definition of {RSA} (TPM_KEY_BITS) TPMI_RSA_KEY _BITS TYPE..cecvvrvereerereee e 121
Taple 164 — Definition of {RSA} TPM2B_PRIVATE_KEY RSA StrUCIUIE......vveeeeeeeeeeeeeeroressoonenerenn 121
Taple 165 — Definition of {ECC} TPM2B_ECC_PARAMETER StruCtureccccoovvvvee e @bdeneinnneennnn. 122
Taple 166 — Definition of {ECC} TPMS_ECC_POINT StruCturecccovvevvvvmrereeeed St 122
Taple 167 — Definition of {ECC} TPM2B_ECC_POINT StrUCIUI€ccoovveviiiee e ot e eeciivieeeens 122
Table 168 — Definition of (TPM_ALG_ID) {ECC} TPMI_ALG_ECC_SCHEME\TYPEcvovvverererrrernenne 123
Table 169 — Definition of {ECC} (TPM_ECC_CURVE) TPMI_ECC_CURVE TYPE......covvvevrerrereerrreen. 123
Taple 170 — Definition of (TPMT_SIG_SCHEME) {ECC} TPMT_ECC“SCHEME Structure.................. 123
Taple 171 — Definition of {ECC} TPMS_ALGORITHM_DETAIL~ECC Structure <OUT>.........ccceveeeenn. 124
Taple 172 — Definition of {RSA} TPMS_SIGNATURE_RSASSA StruCtUrecooiiiiiiiiiieeeee i 124
Taple 173 — Definition of {RSA} TPMS_SIGNATURE_RSAPSS StruCtureoooviuviiieeieeeieiiiiieeennn 125
Taple 174 — Definition of {ECC} TPMS_SIGNATURE MNECDSA StrUCLUIeevvvveiiiiieee et 125
Taple 175 — Definition of TPMU_SIGNATURE UAion <IN/OUT, S>.....cccoiiiieiiiiiiieeeeee e civineee e 125
Taple 176 — Definition of TPMT_SIGNATURE) StIUCIUIE..........uviiiieeee it e e e ccivire e e e e e s esirnrneeea e e 126
Taple 177 — Definition of TPMU_ENCRYRTED_SECRET UnNIion <S>ccccoiiiiiiiiiiiee e 126
Taple 178 — Definition of TPM2B_ENCRYPTED_SECRET StrUCIUI€.......uvvvieeeieiiiiiieeree e e e s ciinieeneeee e 127
Taple 179 — Definition of (TPM<ALG_ID) TPMI_ALG _PUBLIC TYPE .uvtviiiiieee e iiiiiieeee e e e seiieineea e e 128
Taple 180 — Definition of TPMU_PUBLIC_ID Union <IN/OUT, S>......cciiiiiiiiiieiiiiiieieeee e 129
Taple 181 — Definition of TPMS_KEYEDHASH_PARMS StrUCIUIE........cuviiiiiiiiii e 129
Taple 182 — Definition\of TPMS_ASYM_PARMS STIUCIUIE <>oviiiiiiiiiiieiiiiee et 130
Taple 183 — Definition of {RSA} TPMS_RSA_PARMS StIUCLUIE........coiiiiiiiiiiiiiee et 130
Taple 184 —=Definition of {ECC} TPMS_ECC_PARMS SIIUCIUIEcoviiiiiiiieiiiiieessiieeessieeeeesieeee e 131
Taple 185 Definition of TPMU_PUBLIC_PARMS Union <IN/OUT, S>......ccccooiiiiiiiiiiiiiaeeeiiiieeeeee e 131
Taple-186 — Definition of TPMT_PUBLIC_PARMS StrUCIUIEuveviieeiiiiiiiiiie e ccivene e e e e snrnneeee s 132
Table 187 — Definition of TPMT_PUBLIC StTUCIUIEcciieeiiiiiiiie ettt e e e e e snrnanenea e e 132
Table 188 — Definition of TPM2B_PUBLIC StrUCIUIE........ccciiiiiiieieee et sse e e e e esneeee e e e 132
Table 189 — Definition of TPM2B_PRIVATE_VENDOR_SPECIFIC Structure<>........ccccccceevviiinvvnnennnn. 133
Table 190 — Definition of TPMU_SENSITIVE_COMPOSITE Union <IN/OUT, S>cccoccveiiiiieeniinnn. 133
Table 191 — Definition of TPMT_SENSITIVE STUCIUIEccoiiuiiiiiiiiie it 134
Table 192 — Definition of TPM2B_SENSITIVE Structure <IN/OUT>ccuiiiiiiiiiiiniieee e 134
Table 193 — Definition of _PRIVATE SIIUCIUIE <>oiiiiiiiii ittt e 135

Xii © ISO/IEC 2015 — All rights reserved

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

Table 194 — Definition of TPM2B_PRIVATE Structure <IN/OUT, S>cccocieeiiiiiiieeee e 135
Table 195 — Definition of _ID_OBJECT SHTIUCIUIE S>....civiiiiiiiiiieiiee e s esiiteie e e e s s ee e e e e e s nnrnaneenaee e 136
Table 196 — Definition of TPM2B_ID_OBJECT Structure <IN/OUT>c.coeiiiiiiiiiiiiiiee e 136
Table 197 — Definition of (UINT32) TPM_NV_INDEX BitS <>.........cccvvrieueeieeereeeeseeeeeeeesesseneseseeneens 137
Table 198 — Definition of (UINT32) TPMA NV BilSuuiiiiiiiiiiiiiiiieie et e e s enveeeea e e e 139
Table 199 — Definition of TPMS_NV_PUBLIC StrUCIUIE..........uutiiiiiieiiiiiiiiiie et eiieeee e 141
Table 200 — Definition of TPM2B NV PUBLIC SrUCIUIE.........uviiiiiiiiiiiiiiiiiiiiee e siiiieeeaaae e 141
Taple 201 — Definition of TPM2B_CONTEXT_SENSITIVE Structure <IN/OUT>.......ccccccoeeiiiiniiinnenn Yo 142
Taple 202 — Definition of TPMS_CONTEXT_DATA Structure <IN/OUT, S>.......cccccovveviiverennccn O30 142
Taple 203 — Definition of TPM2B_CONTEXT_DATA Structure <IN/OUT>cccoocvvvevnvvinpe s e 142
Taple 204 — Definition of TPMS_CONTEXT StIUCLUIEccoooiiiiiiieeee e ccciiiieee e ceivnvee e e nvee e e 143
Taple 205 — Context Handle VAlUES............cocviiiieiie e e 144
Taple 206 — Definition of TPMS_CREATION_DATA Structure KOUT>coovee oS eeeiiieeeeeeee 146
Taple 207 — Definition of TPM2B_CREATION_DATA Structure <OUT> ... e 146
Taple A.1 — Defines for SHAL Hash ValUES..........cocuiiiiiiiiiii i e ATt 147
Taple A.2 — Defines for SHA256 Hash ValUES............oiiiiiiiiiii s e 147
Taple A.3 — Defines for SHA384 Hash ValUES............ovi i s Nt 147
Taple A.4 — Defines for SHAS512 Hash VAlUES...........oiiiic ittt 148
Taple A.5 — Defines for SM3_256 Hash ValUuEs.............c... ittt eaeaaaeees 148
Table A.6 — Defines for Architectural LImits ValUeS e 148
Taple B.1 — Defines for LOQIiC ValUES ... sttt e ee e e 149
Table B.2 — Defines for ProCeSSOr VAIUES ... uvieiiee ittt et e e sne e sine e 149
Taple B.3 — Defines for Implemented AlGOTtNMS..........ovii i 150
Taple B.4 — Defines for Implemented_ COMMEANGASccuieeiiiiiiiiiiree e e e e e s ereee e 151
Taple B.5 — Defines for RSA Algarithm CONStants.........cccooiiiiiiiiiiiii e 154
Taple B.6 — Defines for ECC AIGOrithm CONSIANTScuuiiiiiiiiiiiii e 154
Taple B.7 — Defines for AES Algorithm CONSTANTScoouiiiiiiiiiie s 154
Taple B.8 — Definesfor SM4 Algorithm CONSLANTS........ciiuuiieiiiiie ettt 154
Taple B.9 — Defines for CAMELLIA AIgorithm CONSLANTSeveiiiiiieiiiiie e 155
Taple B.10 = Defines for Symmetric Algorithm CONSIANTScoiiiiiiiiiiiiiiie e 155
Taple B:11.— Defines for Implementation ValUES ...t 156

© ISO/IEC 2015 - All rights reserved Xiii

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

Figures

Figure 1 — Command FOIMMALooiiuiiiiiiiee e st e e e e s s s e e e e e e s s e e e e eeeessaantaeereaaeessaasnssnnneeeeeesaannns 24
Figure 2 — Format-Zero RESPONSE COUES.........c.uuuiiiiieee i e it e e e e e e s st e e e e e e e sssanteeer e e e e e s asnssraaneeeeeesennnnes 30
Figure 3 — FOrmat-One RESPONSE COUESociiiiiiiieiiiiiie ettt ettt e e e e b ee e e e annees 31
Figure 4 — ISO/IEC 11889 (first edition) TPM_NV_INDEXcoceviuireieereieeeieseeseseeseesssessneseesesneseenens 137
Figure 5 — ISO/IEC 11889 TPM_NV _INDEXuutiiiiiieiiiiiiiiiiiieee e e sessiiiieee e e e e e s sssessteeeeeaeessssesteeeeeeeeessnnsnes 137

Xiv © ISO/IEC 2015 — All rights reserved

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are
members of ISO or IEC participate in the development of International Standards through technical
committees established by the respective organization to deal with particular fields of technical activity.
ISO and IEC technical committees collaborate in fields of mutual interest. Other international
organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the
work. In the field of information technology, ISO and IEC have established a joint technical committee,
ISO/IEC JTC 1.

The procedures used to develop this document and those intended for its further maintenance-are
depcribed in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed-for the
different types of document should be noted. This document was drafted in accordance with the editoyial
rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may. be the subject of
patent rights. ISO and IEC shall not be held responsible for identifying any orall 'such patent rights.
Details of any patent rights identified during the development of the document'will'be in the Introductjon
anf/or on the ISO list of patent declarations received (see www.iso.org/patents):

Anly trade name used in this document is information given for the cenvénience of users and does hot
cofstitute an endorsement.

For an explanation on the meaning of ISO specific terms)and expressions related to confornity
asgessment, as well as information about ISO's adherence to the WTO principles in the Technical
riers to Trade (TBT), see the following URL: Foreword *-8Supplementary information.

ISQ/IEC 11889-2 was prepared by the Trusted Computing Group (TCG) and was adopted, under the
PAS procedure, by Joint Technical Committee ISOAEC JTC 1, Information technology, in parallel with|its
approval by national bodies of ISO and IEC.

Thjs second edition cancels and replaces‘the first edition (ISO/IEC 11889-2:2009), which has begen
teghnically revised.

ISQ/IEC 11889 consists of the following parts, under the general title Information technology — Trusted
Plgtform Module Library:

— Rart 1: Architecture
—Rart 2: Structures
—PRart 3: Commands

—Rart 4: Supporting/routines

© ISO/IEC 2015 - All rights reserved XV

http://www.iso.org/directives
http://www.iso.org/patents
http://www.iso.org/iso/home/standards_development/resources-for-technical-work/foreword.htm
https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

Introduction

The International Organization for Standardization (ISO) and International Electrotechnical Commission
(IEC) draw attention to the fact that it is claimed that compliance with this document may involve the use
of a patent.

ISO and IEC take no position concerning the evidence, validity and scope of this patent right.

The holder of this patent right has assured the ISO and IEC that he/she is willing to negotiate licences
either free of charge or under reasonable and non-discriminatory terms and conditions with applicants
throughout the world. In this respect, the statement of the holder of this patent right is registered with ISO
anfl IEC. Information may be obtained from:

1

Fujjitsu Limited
I-IF, Kamikodanaka 4-chrome, Nakahara-ku, Kawasaki-shi, Kanagawa, 211-8588 Japan

Microsoft Corporation

One Microsoft Way, Redmond, WA 98052

Enterasys Networks, Inc

50 Minuteman Road, US-Andover, MA 01810

Ljnovo
1009 Think Place, US-Morrisville, NC 27560-8496

Advanced Micro devices, Inc. - AMD

7171 Southwest Parkway, Mailstop B100.3 US:Austin, Texas 78735

Hegwlett-Packard Company
P.0. Box 10490, US-Palo Alto, CA 94303-0969

Infineon Technologies AG - Neubiberg

Am Campeon 1-12, DE-85579 Neubiberg

Sun Microsystems Inc. - Menlo'Park, CA

10 Network Circle, UMPK10-146, US-Menlo Park, CA 94025

IBM Corporation
Narth Castle Drive, US-Armonk, N.Y. 10504

Intel Corporation

5200 Elam Young Parkway, US-Hillsboro, OR 97123

At+ nHon 1c dravgn 0 tha naccoihiling that camn Af tha Alamante Af thic dAastmant may, ha tha opihin o Of
o S—arotvv T to— e P OSSOty ottt SO C— o tic— Sttt S Ot o Gotumt ittty oC—thiC—Suiojett

patent rights other than those identified above. ISO and IEC shall not be held responsible for identifying
any or all such patent rights.

ISO (www.iso.org/patents) and IEC (http://patents.iec.ch) maintain on-line databases of patents relevant
to their standards. Users are encouraged to consult the databases for the most up to date information
concerning patents.

XVi © ISO/IEC 2015 — All rights reserved

http://www.iso.org/patents
http://patents.iec.ch/
https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

Information technology — Trusted Platform Module Library —
Part 2: Structures

1 Scope

This part of ISO/IEC 11889 contains the definitions of the constants, flags, structure, and union definitions
used to communicate with the TPM. Values defined in this part of ISO/IEC 11889 are used by the TPM
commands defined in ISO/IEC 11899-3 and by the functions in ISO/IEC 11889-4.

NOJTE The structures in this document are the canonical form of the structures on the interface. All structures
are "packed" with no octets of padding between structure elements. The TPM-internal form ‘of |the
structures is dependent on the processor and compiler for the TPM implementation.

2 | Normative references

The following documents, in whole or in part, are normatively referenced in thissdocument and are
indispensable for its application. For dated references, only the edition cited_applies. For undafed
references, the latest edition of the referenced document (including any amendments) applies.

e | ISO/IEC 9797-2, Information technology -- Security techniques -- MesSage Authentication Codes
(MACSs) -- Part 2: Mechanisms using a dedicated hash-function

e | ISO/IEC 10116:2006, Information technology — Security technigues — Modes of operation for an 1
bit block cipher

o [ISO/IEC 11889-1, Information technology — Trusted Platform Module Library — Part 1: Architectur,

D

¢ | ISO/IEC 11889-3, Information technology — Trusted Platform Module Library — Part 3: Commands

e | ISO/IEC 11889-4, Information technology — Trusted Platform Module Library — Part 4: Supporting
routines

e | TCG Algorithm Registry, available at
<http://www.trustedcomputinggroup.org/resources/tcg_algorithm_registry>

3 | Terms and definitions

Fof the purposes of this part of ISO/IEC 11889, the terms and definitions given in ISO/IEC 11889-1 apgly.

4 | Symbols and abpreviated terms

For the purposes Jof this part of ISO/IEC 11889, the symbols and abbreviated terms given|in

ISP/IEC 11889-L apply.

5 | Notation

5.1 Tntroduction

The information in this part of ISO/IEC 11889 is formatted so that it may be converted to standard
computer-language formats by an automated process. The purpose of this automated process is to
minimize the transcription errors that often occur during the conversion process.

For the purposes of this part of ISO/IEC 11889, the conventions given in ISO/IEC 11889-1 apply.

In addition, the conventions and notations in clause 5 describe the representation of various data so that
it is both human readable and amenable to automated processing.

© ISO/IEC 2015 — All rights reserved 1

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

When a table row contains the keyword “reserved” (all lower case) in columns 1 or 2, the tools will not
produce any values for the row in the table.

NOTE 1 In the examples in clause 5, the unmarshaling routines are shown as returning bool. In the code of

reference implementation, the return value is a TPM_RC. A bool is used in the examples, because
meaning of a TPM_RC is not yet defined.

the
the

NOTE 2 The unmarshaling code examples are the actual code that would be produced by the automatic code
generator used in the construction of the reference code. The actual code contains additional parameter
checking that is omitted for clarity of the principle being illustrated. Actual examples of the code are found
in ISO/IEC 11889-4.

5.2 Named Constants

wi
st
Th
wil
Th
mi

NO

EX

EX

A mamed constant is a numeric value to which a name has been assigned. In the C language, this is dd
i

a #define statement. In ISO/IEC 11889, a named constant is defined in a table that-has a title t
rts with “Definition” and ends with “Constants.”

hat

P table title will indicate the name of the class of constants that are being defined inh the table. The title

include the data type of the constants in parentheses.

E table in Example 1 names a collection of 16-bit constants and Example 2 shows the C code that

jht be produced from that table by an automated process.

TE A named constant (#define) has no data type in C and an eaumeration would be a better choice|for
many of the defined constants. However, the C language~dées not allow an enumerated type to have a
storage type other than int so the method of using a cemhination of typedef and #define is used.

AMPLE 1

Table xx — Definition of (UINT26) COUNTING Constants
Parameter Value Description
first 1 decimal value is implicitly the size of the
second 0x0002 hex value will match the number of bits in the constant
third 3
fourth 0x0004
ANMPLE 2
/* The C language)equivalent of the constants from the table above */
typedef UINTI6 COUNTING;
#define first 1
#define second 0x0002
#define third 3
#define fourth 0x0004
© ISO/IEC 2015 — All rights reserved

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

5.3

ISO/IEC 11889-2:2015(E)

Data Type Aliases (typedefs)

When a group of named items is assigned a type, it is placed in a table that has a title starting with
“Definition of Types.” In ISO/IEC 11889, defined types have names that use all upper-case characters.

The table in Example 1 shows how typedefs would be defined in ISO/IEC 11889 and Example 2 shows

the C-compatible code that might be produced from that table by an automated process.
EXAMPLE 1
Table xx — Definition of Types for Some Purpose

Type Name Description

unsigned short UINT16

UINT16 SOME_TYPE

unsigned long UINT32

UINT32 LAST_TYPE
EXAMPLE 2

5.4 Enumerations

A table that defines an enumerated data type will start with the word “Definition” and end with “Values.”

A
"U

Md
bu
32

The table in Example 1 showsthow an enumeration would be defined in ISO/IEC 11889. Examplg
shpws the C code that mightbe-produced from that table by an automated process.

/* C language equivalent of the typedefs from the table above-*/
typedef unsigned short UINT16;

typedef UINT16 SOME_TYPE;
typedef unsigned long UINT32;
typedef UINT32 LAST_TYPE;

alue in parenthesis will denote the intrinsic data size of the value and may have the values "INT]
NT8", "INT16", “UINT16", "INT32", and “UINT32.” If this value is not present, “UINT16” is assumed.

st C compilers set the type of an enumerated value to be an integer on the machine — often 16 bit
this is not always consistent. To.\ensure interoperability, the enumeration values may not excs
384.

EXAMPLE 1
Table xx — Definition of (UINT16) CARD_SUIT Values
Sujt-Names Value Description
CLUBS 0x0000
DIAMONDS 0x000D
HEARTS 0x001A
SPADES 0x0027
EXAMPLE 2
/* C language equivalent of the structure defined in the table above */
typedef enum {
CLUBS = 0x0000,
DIAMONDS = 0x000D,
HEARTS = 0x001A,
SPADES = 0x0027
} CARD_SUIT;
© ISO/IEC 2015 — All rights reserved

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

5.5 Interface Type

An interface type is used for an enumeration that is checked by the unmarshaling code. This type is
defined for purposes of automatic generation of the code that will validate the type. The title will start with
the keyword “Definition” and end with the keyword “Type.” A value in parenthesis indicates the base type
of the interface. The table may contain an entry that is prefixed with the “#” character to indicate the
response code if the validation code determines that the input parameter is the wrong type.

EXAMPLE 1
Table xx — Definition of (CARD_SUIT) RED_SUIT Type
Values Comments
HEARTS
DIAMONDS
#TPM_RC_SUIT response code returned when the unmarshaling of this type fails
NOTE TPM_RC_SUIT is an example and no such responsescede is actually
defined in ISO/IEC 11889.
EXAMPLE 2

In
list
ha

To
as
Cre

EX

/* Validation code that might be automatically generated from table above */
if((*target != HEARTS) && (*target != DIAMONDS))
return TPM_RC_SUIT;

some cases, the allowed values are numeric values with~16 associated mnemonic. In such a case,

of numeric values may be given a name. Then, wherrused in an interface definition, the name wo
ve a "$" prefix to indicate that a named list of values.should be substituted.

bociated with some algorithm (MY algorithm): 'In the implementation Annex B a named list would

he
uld

illustrate, assume that the implementation .only supports two sizes (1024 and 2048 bits) for keys

be

ated.
AMPLE 3
Table xx — Defines for MY Algorithm Constants
Name Value Comments
MY_KEY_SIZES BITS {1024, 2048} braces because this is a list value
© ISO/IEC 2015 — All rights reserved

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

Then, whenever an input value would need to be a valid MY key size for the implementation, the value
$MY_KEY_SIZES BITS could be used. Given the definition for MY_KEY_SIZES BITS in Example 3
above, the tables in Examples 4 and 5 below, are equivalent.

EXAMPLE 4
Table xx — Definition of (UINT16) MY_KEY_BITS Type
Parameter Description
{1024 2048} the number of bits in the supparted key
EXAMPLE 5
Table xx — Definition of (UINT16) MY_KEY_BITS Type
Parameter Description
$MY_KEY_SIZES_BITS the number of bits in the supported key
5.6 Arrays
Arfays are denoted by a value in square brackets (“[]”) following a jparameter name. The value in

brg
thd

Th
de
au

EX

EX

\Ickets may be either an integer value such as “[20]" or the name’of a component of the same struct
t contains the array.

e table in Example 1 shows how a structure containing:fixed and variable-length arrays would

ined in ISO/IEC 11889. Example 2 shows the C codexthat might be produced from that table by
omated process.
AMPLE 1
Table xx — Definition of A_STRUCT Structure
Parameter Type Description
array1[20] UINT26 an array of 20 UINT16s
a_size UINT16
array2[a_size] UINT32 an array of UINT32 values that has a
number of elements determined by a_size
above
AMPLE 2

/* C language equivalent of the typedefs from the table above */
typedef~struct {

UINT16 arrayl[20];
UINT16 a_size;
UINT32 array2[];

¥ A_STRUCT;

he
ire

an

© ISO/IEC 2015 — All rights reserved

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

5.7 Structure Definitions

The tables used to define structures have a title that starts with the word “Definition” and ends with
“Structure.” The first column of the table will denote the reference names for the structure members; the
second column the data type of the member; and the third column a synopsis of the use of the element.

The table in Example 1 shows an example of how a structure would be defined in ISO/IEC 11889 and
Example 2 shows the C code that might be produced from the table by an automated process. Example 3
illustrates the type of unmarshaling code that could be generated using the information available in the
tahle

EXAMPLE 1
Table xx — Definition of SIMPLE_STRUCTURE Structure
Parameter Type Description
tag TPM_ST
valuel INT32
value2 INT32
EXAMPLE 2

/* C language equivalent of the structure defined in the table above */
typedef struct {

TPM_ST tag;
INT32 valuel
INT32 value2;

} SIMPLE_STRUCTURE;

EXAMPLE 3

bool SIMPLE_STRUCTURE_Unmarshal (SIMPLEXSTRUCTURE *target, BYTE **buffer, INT32 *size)

// 1T unmarshal of tag succeeds
ifF(TPM_ST_Unmarshal ((TPM_ST, (*)&(target->tag), buffer, size))
// then unmarshal valuel, and if that succeeds...
IT(INT32_Unmarshal (CINT32 *)&(target->valuel, buffer, size))
// then return ‘€he results of unmarshaling values
return(INT32_Unmarshal ((INT32 *)&(target->value2, buffer, size))
// if unmarshal ofitag or value failed, return failure
return FALSE;

6 © ISO/IEC 2015 — All rights reserved

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

A table may have a termin {}. This indicates that the table is conditionally compiled. It is commonly used

when a table's inclusion is based on the implementation of a cryptographic algorithm.

See, for

example, Table 160 — Definition of (TPM_ALG_ID) {RSA} TPMI_ALG_RSA_DECRYPT Type, which is
dependent on the RSA algorithm.

5.8 Conditional Types

An enumeration may contain an extended value indicated by “+” preceding the name in the "Value"

column. This “+” indicates that this is a conditional value that may be allowed in certain situations.

NOITE

EXAMPLE 1

When an interface type is used, a “+" will be appended to the type specification for the parameter wh

In many cases, the input values are algorithm IDs. When two collections of algorithm IDs differ_a
because one collection allows TPM_ALG_NULL and the other does not, it is preferred that thére not
two completely different enumerations because this leads to many casts. To avoid this, the '+” can|
added to a TPM_ALG_NULL value in the table defining the type. When the use of that type all

TPM_ALG_NULL to be in the set, the use would append a “+” to the instance.

Table xx — Definition of (CARD_SUIT) TPMI_CARD_SUIT Type

Values

Comments

SPADES

HEARTS

DIAMONDS

CLUBS

+JOKER

an optional value that may. be allowed

#TPM_RC_SUIT

response code retutned when the input value is not one of the
values above

thg conditional value is allowed. If no “+" is preésent, then the conditional value is not allowed.

nly
be
be
S

EXAMPLE 2
Tablexx — Definition of POKER_CARD Structure
Parameter Type Description
suit TPMI_CARD_SUIT+ allows joker
number UINT8 the card value
EXAMPLE 3
Table xx — Definition of BRIDGE_CARD Structure
Parameter Type Description
strit TPWMH—CARD—SUHT doesmotattowjoket
number UINT8 the card value

© ISO/IEC 2015 — All rights reserved

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

5.9 Unions

5.9.1 Introduction

A union allows a structure to contain a variety of structures or types. The union has members, only one of
which is present at a time. Three different tables are required to fully characterize a union so that it may

be
1)

communicated on the TPM interface and used by the TPM:

union definition;

2)
3

~

5.9

Th
“D
thd
Th
de

If g
illu

EX

Th
on

EX

EX

union mstance, and

union selector definition.

.2 Union Definition

pfinition” and ends with “Union.” The “Parameter” column of a union definition lists‘the different nam

e “Selector” column identifies the value that is used by the marshaling \and unmarshaling code
ermine which case of the union is present.

strates a union in which a conditional null selector is allowed to indicate an empty union member.

ample 2 shows how the table would be converted into C-compatible code.

P expectation is that the unmarshaling code for the union.will validate that the selector for the union
b of values in the selector list.
\MPLE 1
Table xx — Definition of NUMBER_UNION Union

Parameter Type Selector Description

a_byte BYTE BYTE_SELECT

an_int int INT_SELECT

a_float float FLOAT_SELECT

+null NULL_SELECT the empty branch
\MPLE 2

// C-compatible version of the union defined in the table above
typedef{union {

BYTE a_byte;
int an_int;
Float a_Tloat;

3>NUMBER_UNION;

e table in Example 1 illustrates a union definition. The title of a union definition*table starts wi

EX

AMPLE 3

t are used when referring to a specific type. The “Type” column identifies the’data type of the memier.

parameter is the keyword “null,” then this denotes a selector with ng _contents. The table in Example 1

© ISO/IEC 2015 — All rights reserved

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

// Possible auto-generated code to unmarshal a union in Example 2 based on the
// input value of selector
bool NUMBER_UNION_Unmarshal (NUMBER_UNION *target, BYTE **buffer,
INT32 *size, UINT32 selector)
{

switch (selector) {
case BYTE_SELECT:

return BYTE_Unmarshal ((BYTE *)&(target->a_byte), buffer, size);
case INT_SELECT:

return INT_Unmarshal ((int *)&(target->an_int), buffer, size);
case FLOAT_SELECT:

return FLOAT_Unmarshal ((float *)&(target->a_float), buffer, size);
case NULL SELECT:

me
me

pre

5.6

return;

}

able may have a type with no selector. This is used when the first part of the structurefor'all un
mbers is identical. This type is a programming convenience, allowing code to referengethe comm
mbers without requiring a case statement to determine the specific structure. In{ebject orien
gramming terms, this type is a superclass and the types with selectors are subclasses.

.3 Union Instance

on
on

Wihen a union is used in a structure that is sent on the interface, the structure will minimally contaip a

se
thd
oc
se

Th
sh
u

>

EX

EX

EX

ector and a union. The selector value indicates which of the possiblé: union members is present so t
unmarshaling code can unmarshal the correct type. The selector'may be any of the parameters t

Cur in the structure before the union instance. To denote thesstructure parameter that is used as

ector, its name is in brackets (“[]”) placed before the paraméter'name associated with the union.

e table in Example 1 shows the definition of a structure that contains a union and a selector. Exampl

bws how the table would be converted into C-compatible code and Example 3 shows how
marshaling code would handle the selector.
AMPLE 1
Table xx — Definition of STRUCTURE_WITH_UNION Structure
Parameter Type Description
select NUMBER_SELECT a value indicating the type in number
[select] number NYMBER_UNION a union as shown in 5.9.2
ANMPLE 2
// C-compatible/version of the union structure in the table above
typedef struct {
NUMBER_SELECT select;
NUMBER_UNION number ;
} STRUCT WITH_UNION;
ANMPLE-3

hat
hat
he

P 2
he

// Possible unmarshaling code for the structure above

DOOT STRULUT_WITH_UNTUN_UNMarsfmar(STRUCT_WITH_UNTUN wargedt, byYlke purrter, INIrsZ biZe)
{

// Unmarshal the selector value

iF(INUMBER_SELECT_Unmarshal ((NUMBER_SELECT *)&target->select, buffer, size))

return FALSE;

// Use the unmarshaled selector value to indicate to the union unmarshal

// function which unmarshaling branch to follow.

return(NUMBER_UNION_Unmarshal ((NUMBER_UNION *)&(target->number),

buffer, size, (UINT32)target->select);

© ISO/IEC 2015 — All rights reserved

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

5.9.4 Union Selector Definition

The selector definition limits the values that are used in unmarshaling a union. Two different selector sets
applied to the same union define different types.

For the union in 5.9.2, a selector definition should be limited to no more than four values, one for each of

the union members. The selector definition could have fewer than four values.
In :AGIIIP:C 1, thC tab:c dCf;IICD A V(J.:UC fUI ca\,h Uf thc un;uu IIICIIIbCIO.
EXBMPLE 1

The unmarshaling code would limit the input values to the definedyvalues. When the NUMBER_SELE
is psed in the union instance of 5.9.3, any of the allowed unionl members of NUMBER_UNION could

pre

A dlifferent selection could be used to limit the values in @specific instance. To get the different selecti

af
un
be

bage type had been UINT8, then no checking would occur prior to checking that the value is in
allpwed list. In this particular case, the effect’is the same in either case since the only values that will
acgepted by the unmarshaling code fordJUST INTEGER are BYTE_SELECT and INT_SELECT.

Table xx — Definition of (INT8) NUMBER_SELECT Values <IN>

Name Value Comments
BYTE_SELECT 3
INT_SELECT 2
FLOAT_SELECT 1
NULL_SELECT 0

sent.

ew structure is defined with a different selector. The table in Example 2 illustrates a way to subset
on. The base type of the selection is NUMBER_SELECT so a NUMBER_SELECT will be unmarshal
ore the checks are made to see if the value_is:in the correct range for JUST_INTEGERS types. If

CT
be

bN,
he
ed
he
he
be

EXAMPLE 2
Table xx t—Definition of (NUMBER_SELECT) AN_INTEGER Type <IN>
Values Comments
{BYTE_SELECT, INT_SELECT} list of allowed values
NQITE Since NULL_SELECT is not in the list of values accepted as a JUST_INTEGER, the “+” modifier will have
no effect if used for a JUST_INTEGERS type shown in Example 3.
The selector in Example 2 can then be used in a subset union as shown in Example 3.
EXAMPEE3
Table xx — Definition of JUST_INTEGERS Structure
Parameter Type Description
select AN_INTEGER a value indicating the type in number
[select] number NUMBER_UNION a union as shown in 5.9.2
10 © ISO/IEC 2015 — All rights reserved

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

5.10 Bit Field Definitions

A table that defines a structure containing bit fields has a title that starts with “Definition” and ends with
“Bits.” A type identifier in parentheses in the title indicates the size of the datum that contains the bit
fields.

When the bit fields do not occupy consecutive locations, a spacer field is defined with a name of
“Reserved.” Bits in these spaces are reserved and shall be zero.

When a field has more than one bit, the range is indicated by a pair of numbers separated by a colon-('}:
The numbers will be in high:low order.

EXAMPLE1
Table xx — Definition of (UINT32) SOME_ATTRIBUTE Bits
Bit | Name Action
0 zeroth_bit SET (1): what to do if bit is 1
CLEAR (0): what to do if bit is 0
1 first_bit SET (1): what to do if bit is 1
CLEAR (0): what to do if bitjis O
6:2 | Reserved A placeholder that spans‘ bits
7 third_bit SET (1): what to do-if\bit'is 1
CLEAR (0): whatte.do if bit is 0
31:8 | Reserved Placeholder.to.fill 32 bits
EXAMPLE 2

/* C language equivalent of the attributes structure defined in the table above */
typedef struct {
int zeroth_bit : 1;
int first_bit : 1
int Reserved3 : 5
int third bit : 1;
int Reserved7 2
} SOME_ATTRIBUTE;

a3

© ISO/IEC 2015 — All rights reserved 11

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

5.11 Parameter Limits

A parameter used in a structure may be given a set of values that can be checked by the unmarshaling
code. The allowed values for a parameter may be included in the definition of the parameter by
appending the values and delimiting them with braces (“{ }"). The values are comma-separated
expressions. A range of numbers may be indicated by separating two expressions with a colon (“:"). The
first number is an expression that represents the minimum allowed value and the second number
indicates the maximum. If the minimum or maximum value expression is omitted, then the range is open-

ended.

Pmame er NMItS expressed using braces apply only to Inputs to the .~ Any value returned by
TPAM is assumed to be valid.

The maximum size of an array may be indicated by putting a “{}" delimited expression following

square brackets (“[]7) that indicate that the value is an array.

EXAMPLE

Table xx — Definition of B_STRUCT Structure

Parameter

Type

Description

valuel {20:25}

UINT16

a parameter that must have)a value between 20
and 25, inclusive

value2 {20}

UINT16

a parameter that myst have a value of 20

value3 {:25}

INT16

a parameter that may be no larger than 25

Since the parameter is signed, the minimum value
is the dargest negative integer that may be
expressed-in 16 bits.

value4 {20:}

a parameter that must be at least 20

value5 {1,2,3,5}

UINT16

a parameter that may only have one of the four
listed values

value6 {1, 2, 10:(10+10)}

UINT32

a parameter that may have a value of 1, 2, or be
between 10 and 20

arrayl[valuel]

BYTE

Because the index refers to valuel, which is a
value limited to be between 20 and 25 inclusive,
arrayl is an array that may have between 20 and
25 octets. This is not the preferred way to indicate
the upper limit for an array as it does not indicate
the upper bound of the size.

array2[valued]{:25}

BYTE

an array that may have between 20 and 25 octets

This arrangement is used to allow the automatic
code generation to allocate 25 octets to store the
largest array2 that can be unmarshaled. The code
generation can determine from this expression that
value4 shall have a value of 25 or less. From the
definition of value4 above, it can determine that
value4 must have a value of at least 20.

size of the array.

= Tla i ot £l H £ q Liaaitati £ 4l " A clifE "
= e TESUTCHONS O the—SIZE€- 0T artay T 1S—a iiatoi Oor te Cuftrent parset—7x arrerent

parser could associate the range of valuel with the value and compute the maximum

12

he

© ISO/IEC 2015 — All rights reserved

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

5.12 Enumeration Macro

An enumeration can be a list of allowed numeric values.

EXAMPLE The permitted sizes for an AES key might be expressed as in Table 123 — Definition of {AES}

(TPM_KEY_BITS) TPMI_AES_KEY_BITS Type.

$AES_KEY_SIZE_BITS is a macro that will take the value of AES_KEY_SIZE_BITS from Table B.7 —

Defines for AES Algorithm Constants and substitute it.

5.13 Size Checking

In bome structures, a size field is present to indicate the number of octets in some subsequent‘part of
s

—

shpws a structure where the size parameter would nominally indicate the ,nnumber of octets in
remainder of the structure.

EXAMPLE 1

Table xx — Definition of C_STRUCT Structure

Parameter Type Comments
size UINT16 the expected\size of the remainder of the structure
aninteger UINT32 a 4-octet value

In this particular case, the value of size would be_incorrect if it had any value other than 4. So that

tahjle parser is able to know that the purpose of’the size parameter is to define the number of oct

expected in the remainder of the structure, an equal sign (“=") is appended to the parameter name.

In |Example 2 below, the size= causes the parser to generate validation code that will check that

unmarshaled size of someStructure and.someData adds to the value unmarshaled for size. When the

deforation is present, a value of zero.is'not allowed for the size.

EXAMPLE 2

Table xx — Definition of D_STRUCT Structure

Parameter Type Comments
size= UINT16 the size of a structure
The “=" indicates that the TPM is required to

validate that the remainder of the D_STRUCT
structure is exactly the value in size. That is, the
number of bytes in the input buffer used to
successfully unmarshal someStructure must be the
same as size.

rpcture. In the B_STRUCT table in 5.11, value4 indicates how many octets to unmarshal for, array2. T|
semantic applies when the size field determines the number of octets to unmarshal. However, in so
cages, the subsequent structure is self-defining. If the size precedes a parameter that is not an og
array, then the unmarshaled size of that parameter is determined by its data type. The table in Exampl

he
his
me
tet
b 1
he

he
S

he

Tl

someStructure A_STRUCT a structure to be unmarshaled
The size of the structure is computed when it is
unmarshaled. Because an “=" is present on the

definition of size, the TPM is required to validate
that the unmarshaled size exactly matches size.

someData UINT32 a value

© ISO/IEC 2015 — All rights reserved

13

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

5.14 Data Direction

A structure or union may be input (IN), output (OUT), or internal. An input structure is sent to the TPM and
is unmarshaled by the TPM. An output structure is sent from the TPM and is marshaled by the TPM. An
internal structure is not used outside of the TPM except that it may be included in a saved context.

By default, structures are assumed to be both IN and OUT and the code generation tool will generate
both marshaling and unmarshaling code for the structure. This default may be changed by using values
enclosed in angle brackets (“<>") as part of the table title. If the angle brackets are empty, then the
structure is internal and neither marshaling nor unmarshaling code is generated. If the angle brackets
cofifain the Tetter T (Such as In "TN" or "In” or 1), then the Structure 1S mput and unmarshalng code willlbe
geperated. If the angle brackets contain the letter “O” (such as in *OUT” or “out” or “0”), then the structpre
is putput and marshaling code will be generated.

EXAMPLE 1 Both of the following table titles would indicate a structure that is used in both input and eutput

Table xx — Definition of TPMS_A Structure
Table xx — Definition of TPMS_A Structure <IN/OUT>

EXAMPLE 2 The following table title would indicate a structure that is used only for input
Table xx — Definition of TPMS_A Structure <IN>
EXAMPLE 3 The following table title would indicate a structure that is used only for output

Table xx — Definition of TPMS_A Structure <OUT>

14 © ISO/IEC 2015 — All rights reserved

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

5.15 Structure Validations

By default, when a structure is used for input to the TPM, the code generation tool will generate the
unmarshaling code for that structure. Auto-generation may be suppressed by adding an “S” within the
angle brackets.

EXAMPLE The following table titles indicate a structure for which the auto-generation of the validation code is to be
suppressed.

Table xx — Definition of TPMT_A Structure <S>

Table xx — Definition of TPMT_A Structure <IN, S>
Table xx — Definition of TPMT_A Structure <IN/OUT, S>

5.16 Name Prefix Convention

Pafameters are constants, variables, structures, unions, and structure members. Structure members are
given a name that is indicative of its use, with no special prefix. The other parameter types are named
acgording to their type with their name starting with “TPMx_", where “X” is an optional character to indicate
thg data type.

In fome cases, additional qualifying characters will follow the underscore CFhese are generally used when
depling with an enumerated data type.

Table 1 — Name Prefix ConyMention

Prefix Description

TPM an indication/signal from the TPM'’s systemrinterface

TPM_ a constant or an enumerated type

TPM2_ a command defined by ISO/IEC 11889

TPM2B_ a structure that is a sized buffer where the size of the buffer is contained in a 16-bit, unsign¢d
value
The first parameter is the\size in octets of the second parameter. The second parameter may be
any type.

TPMA _ a structure whereeach of the fields defines an attribute and each field is usually a single bit

All the attribltes in an attribute structure are packed with the overall size of the structure
indicated in the heading of the attribute description (UINT8, UINT16, or UINT32).

TPM_ALG_ an enumerated type that indicates an algorithm
A TPM_ALG_ is often used as a selector for a union.

TPMI_ an interface type
The value is specified for purposes of dynamic type checking when unmarshaled.

TPML_ a list length followed by the indicated number of entries of the indicated type
This is an array with a length field.

TRMS a structure that is not a size buffer or a tagged buffer or a list
TPMT _ a structure with the first parameter being a structure tag, indicating the type of the structure that
follows

A structure tag may be either a TPMT_ST_ or TPM_ALG_ depending on context.

TPMU _ a union of structures, lists, or unions

If a union exists, there will normally be a companion TPMT__ that is the expression of the union
in a tagged structure, where the tag is the selector indicating which member of the union is
present.

TPM_xx_ an enumeration value of a particular type

© ISO/IEC 2015 — All rights reserved 15

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

constant definitions will exist to define each of the TPM_xx_ values.

The value of “xx” will be indicative of the use of the enumerated type. A table of “TPM_xx"

EXAMPLE 1

EXAMPLE 2

enumeration values will be found in the table defining the TPM_CC constants (Table 12).

enumeration values are in Table 16.

Regarding the prefix TPM_xx_, TPM_CC_ indicates that the type is used for a commandCode. The allowed

Regarding the prefix TPM_xx_, TPM_RC_ indicates that the type is used for a responseCode. The allowed

5.17 Data Alignment

Th

taljle to indicate a maximum size, the sizeof () function returns the octet-aligned size of the struetu

wi

5.1

Th
de
co

NO

un
pa
reg
de

When an error is encountered while unmarshalinga command parameter, an error response codg

ret
eni
o]

=

EX

NO

data structures in this part of ISO/IEC 11889 use octet alignment for all structures. When used-i

no padding.

8 Parameter Unmarshaling Errors

e TPM commands are defined in ISO/IEC 11889-3. The command definition includes C code t
ails the actions performed by that command. The code is written assumingdhat'the parameters of
mmand have been unmarshaled.

TE 1 An implementation does not need to process parameters in this“manner or to separate the paramé
parsing from the command actions. This method was chosen for, ISO/IEC 11889 so that the norma
behavior described by the detailed actions would be clear and unencumbered.

marshaling is the process of processing the parameters/in the input buffer and preparing
rameters for use by the command-specific action code. No data movement need take place but i
uired that the TPM validate that the parameters meet the requirements of the expected data type
ined in this part of ISO/IEC 11889.

urned and no command processing occurs. A¢able defining a data type may have response coq
bedded in the table to indicate the error returned when the input value does not match the paramet
he table.

ANMPLE Table 12 has a listing ;of TPM command code values. The last row in the table contg
"#TPM_RC_COMMAND_CODE" indicating the response code that is returned if the TPM is unmarsha
a value that it expects to be a TPM_CC and the input value is not in the table.

TE 2 In the referenceé implementation, a parameter number is added to the response code so that the offend
parameter can“be isolated.

na

hat
he

pter
ive

he
is
as
is
es

eIrs

ins
ing

ing

16

© ISO/IEC 2015 — All rights reserved

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

In many cases, the table contains no specific response code value and the return code will be determined

as defined in Table 2.

Table 2 — Unmarshaling Errors

Response code

Usage

TPM_RC_INSUFFICIENT

the input buffer did not contain enough octets to allow unmarshaling of the
expected data type;

TPM_RC_RESERVED

a non-zero value was found in a reserved field of an attribute structure (TPMA)

TPM_RC_SIZE the value of a size parameter is larger or smaller than allowed
TPM_RC_VALUE A parameter does not have one of its allowed values
TPM_RC_TAG A parameter that should be a structure tag has a value that is not supported by

the TPM

In [some commands, a parameter may not be used because of various optiohs of that command.

Hgwever, the unmarshaling code is required to validate that all parameters have’values that are allowed
by(the definition in this part of ISO/IEC 11889 of the parameter type even_if that parameter is not used i

thg command actions.

n

© ISO/IEC 2015 — All rights reserved 17

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

6 Base Types

6.1 Primitive Types

The types listed in Table 3 are the primitive types on which all of the other types and structures are
based. The values in the “Type” column should be edited for the compiler and computer on which the
TPM is implemented. The values in the “Name” column should remain the same because these values
are used in the remainder of ISO/IEC 11889.

NOITE The types are compatible with the C99 standard and should be defined in stdint.h that is provided Wwith a
C99-compliant compiler.

The parameters in the Name column should remain in the order shown.

Table 3 — Definition of Base Types

Type Name Description

ui||1t8_t UINT8 unsigned, 8-bit integer
uir||t8_t BYTE unsigned 8-bit integer
in8_t INT8 signed, 8-bit integer
int BOOL abitin an int

This is not used across the interface but is used in many places in the codef If
the type were sent on the interface, it would have to have a type with a specific
number of bytes.

uintle_t UINT16 unsigned, 16-bit integer
inf16_t INT16 signed, 16-bit integer
uint32_t UINT32 unsigned, 32-bit\integer
inf32_t INT32 signed, 32-bit integer
uint64_t UINT64 unsigned, 64-bit integer
int64_t INT64 signed, 64-bit integer

6.2 Miscellaneous Types

These types are definedeither for compatibility with ISO/IEC 11889 (first edition) or for clarity of ISO/IEC
11B89.

Table 4 — Definition of Types for Documentation Clarity

Type Name Description

UINT32 TPM_ALGORITHM_ID this is the ISO/IEC 11889 (first edition) compatible form|of
the TPM_ALG_ID

UINT32 TPM_MODIFIER_INDICATOR

UINT32 TPM_AUTHORIZATION_SIZE the authorizationSize parameter in a command

UINT32 TPM_PARAMETER_SIZE the parameterSizeset parameter in a command

UINT16 TPM_KEY_SIZE a key size in octets

UINT16 TPM_KEY_BITS a key size in bits

18 © ISO/IEC 2015 — All rights reserved

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

7

7.1

Constants

ISO/IEC 11889-2:2015(E)

TPM_SPEC (Specification Version Values)

These values are readable with TPM2_GetCapability().

NOTE This table will require editing when ISO/IEC 11889 is updated.

Table 5 — Definition of (UINT32) TPM_SPEC Constants <>
Name Value Comments
TRM_SPEC_FAMILY 0x322E3000 ASCII “2.0” with null terminator
TRM_SPEC_LEVEL 00 the level number for ISO/IEC 11889
TRM_SPEC_VERSION 107 the version number of ISO/IEC"11889 (001.07* 100
TRM_SPEC_YEAR 2014 the year of the version
TRM_SPEC_DAY_OF_YEAR 23 the day of the year (Maxch 18, 20154)

7.3

Th

TPM_GENERATED

s constant value differentiates TPM-generated structures from non-TPM structures.

Table 6 — Definition of (UINT32) TPM>GENERATED Constants <O>

N3

ime

Value

Comments

TH

M_GENERATED_VALUE

0xff544347

OXFESTCG' (FF 54 43 4715)

© ISO/IEC 2015 — All rights reserved

19

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

7.3 TPM_ALG_ID

The TCG maintains a registry of all algorithms that have an assigned algorithm ID. That registry is the
definitive list of algorithms that may be supported by a TPM. Use of the algorithm identifiers defined in
the TCG Algorithm Registry is mandatory, making the TCG Algorithm Registry an indispensable reference

for implementing this International Standard.

NOTE 1 Inclusion of an algorithm does NOT indicate that the necessary claims of the algorithm are available

under reasonable and non-discriminatory (RAND) terms from a TCG member.

Taple 8 i1s a copy of the TPM_ALG_ID constanis table in the TCG Algorithm Regisiry, Revis
1.15. Table 8 is provided for illustrative purposes only.

Anf algorithm ID is often used like a tag to determine the type of a structure in a context-sensitive w
The values for TPM_ALG_ID shall be in the range of 00 00,5 — 7F FF35. Other structure tags will be in
range 80 00,6 — FF FFys.

aYy.
he

NOITE 2 In ISO/IEC 11889 (first edition), these were defined as 32-bit constants. ISO/IEC 11889 limits the future
size of the algorithm ID to 16 bits. The TPM_ALGORITHM_ID data type mwill continue to be a 32-bit
number.

Anf algorithm shall not be assigned a value in the range 00 C1;5 — 00 C6,¢-in_order to prevent any over|ap

with the command structure tags used in ISO/IEC 11889 (first edition).

The implementation of some algorithms is dependent on the presence-of other algorithms. When there is

a dependency, the algorithm that is required is listed in column lapbeled "D" (dependent) in Table 8.

EXAMPLE Implementation of TPM_ALG_RSASSA needs the RSA, algorithm be implemented.

TPAM_ALG_KEYEDHASH and TPM_ALG_NULL are reqguired of all TPM implementations.

Table 7 — Legenddor TPM_ALG_ID Table
Column Title Comments
Algorithm Name the mnemonic-name assigned to the algorithm
Vhlue the numeric value assigned to the algorithm
Type The.allowed values are:
A — asymmetric algorithm with a public and private key
S — symmetric algorithm with only a private key
H — hash algorithm that compresses input data to a digest value or indicates|a
method that uses a hash
X — signing algorithm
N — an anonymous signing algorithm
E — an encryption mode
M — a method such as a mask generation function
O — an object type
(Claccification) Tha allonuad valiinc arn:
{Slassification FFhe-alewed-values-are:
A — Assigned
S — TCG Standard
L — TCG Legacy
Dep (Dependent) Indicates which other algorithm is required to be implemented if this
algorithm is implemented
Reference the reference document that defines the algorithm
Comments clarifying information
20 © ISO/IEC 2015 — All rights reserved

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

Table 8 — Definition of (UINT16) TPM_ALG_ID Constants <IN/OUT, S>

Algorithm Name Value Typ |Dep | C | Reference Comments
e

TPM_ALG_ERROR 0x0000 should not occur

TPM_ALG_FIRST 0x0001 marker value

TPM_ALG_RSA 0x0001 |AO IETF RFC 3447 the RSA algorithm

TPM_ALG_SHA 0x0004 |H ISO/IEC 10118-3 the SHA1 algorithm

TPM_ALG_SHAT 0x0004 [H S | 1S0/IEC 10118-5 redefinition for documentation
consistency

TPM_ALG_HMAC 0x0005 [H X S | ISO/IEC 9797-2 Hash Message Authénticatiop
Code (HMAC) algorithm

TPM_ALG_AES 0x0006 |S S | ISO/IEC 18033-3 the AES algorithm with variolis
key sizes

TPM_ALG_MGF1 0x0007 |[HM S | IEEE Std 1363™-2000 |hash-based mask-generatior]

IEEE Std 1363a™- function
2004

TPM_ALG_KEYEDHASH 0x0008 |HO S | ISO/IEC 11889 an object type that may use
XOR for encryption or an
HMAC for signing and may ajso
refer to a data object that is
neither signing nor encrypting

TPM_ALG_XOR Ox000A |[HS S | ISO/IEE€\11889 the XOR encryption algorithm

TPM_ALG_SHA256 0x000B S | JSOJIEC 10118-3 the SHA 256 algorithm

TPM_ALG_SHA384 0x000C ASP ISO/IEC 10118-3 the SHA 384 algorithm

TPM_ALG_SHA512 0x000D A | ISO/IEC 10118-3 the SHA 512 algorithm

TPM_ALG_NULL 0x0010 S | ISO/IEC 11889 Null algorithm

TPM_ALG_SM3_256 0x0012 A | GM/T 0004-2012 SM3 hash algorithm

TPM_ALG_SM4 0x0013 A | GM/T 0002-2012 SM4 symmetric block cipher

TPM_ALG_RSASSA 0xQ024 |AX |RSA | S | IETF RFC 3447 a signature algorithm defined in
section 8.2 (RSASSA-PKCS]-
vl_5)

TPM_ALG_RSAES 0x0015 |AE |RSA | S | IETF RFC 3447 a padding algorithm defined in
section 7.2 (RSAES-PKCS1+
vl 5)

TPM_ALG_RSAPRSS 0x0016 |AX |RSA | S | IETF RFC 3447 a signature algorithm defined in
section 8.1 (RSASSA-PSS)

TPM_ALG-OAEP 0x0017 |A E|RSA | S | IETF RFC 3447 a padding algorithm defined in

H section 7.1 (RSAES_OAEP)

TPM_ALG_ECDSA 0x0018 [AX [ECC | S | ISO/IEC 14888-3 signature algorithm using
elliptic curve cryptography
(ECC)

TPM_ALG_ECDH 0x0019 |AM|ECC | S | NIST SP800-56A secret sharing using ECC

Based on context, this can be
either One-Pass Diffie-Hellman,
C(1, 1, ECC CDH) defined in
6.2.2.2 or Full Unified Model
C(2, 2, ECC CDH) defined in

© ISO/IEC 2015 — All rights reserved

21

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

Algorithm Name

Value

Dep

Reference

Comments

6.1.1.2

TPM_ALG_ECDAA

0x001A

ECC

ISO/IEC 11889

elliptic-curve based,
anonymous signing scheme

TPM_ALG_SM?2

0x001B

AX

ECC

GM/T 0003.1-2012
GM/T 0003.2-2012

SM2 — depending on context,
either an elliptic-curve based,
signature algorithm or a key

GW/T 0003:3—2012
GM/T 0003.5-2012

exchange protocol

TPM_ALG_ECSCHNORR

0x001C

AX

ECC

ISO/IEC 11889

elliptic-curve based Schnorr
signature

TPM_ALG_ECMQV

0x001D

AM

ECC

NIST SP800-56A

two-phase elliptic-curve key
exchange,—C(2, 2, ECC MQ}V)
section 6.1.1.4

TPM_ALG_KDF1_SP800_56A

0x0020

HM

ECC

NIST SP800-56A

concatenation key derivation
fungtion (approved alternative
1)'section 5.8.1

D

TPM_ALG_KDF2

0x0021

HM

IEEE Std 1363a-2004

key derivation function KDF2
section 13.2

TPM_ALG_KDF1_SP800_108

0x0022

HM

NIST SP800<1.08

a key derivation method

Section 5.1 KDF in Counter
Mode

TPM_ALG_ECC

0x0023

AO

ISO/IEC 15946-1

prime field ECC

TPM_ALG_SYMCIPHER

0x0025

OS

ISO/IEC 11889

the object type for a symmetiic
block cipher

TPM_ALG_CAMELLIA

0x0026

ISO/IEC 18033-3

Camellia is symmetric block
cipher. The Camellia algorithm
with various key sizes.

TPM_ALG_CTR

0x0040

SE

ISO/IEC 10116

Counter mode — if
implemented, all symmetric
block ciphers (S type)
implemented shall be capabl
of using this mode.

1%

TPM_ALG_OFB

0x0041

SE

ISO/IEC 10116

Output Feedback mode — if
implemented, all symmetric
block ciphers (S type)

implemented shall be capable
of using this mode.

1%

TPM_A1 G _CRC

0x0042

ISO/NEC 10116

Cipher Rlock Chaining model—

if implemented, all symmetric
block ciphers (S type)
implemented shall be capable
of using this mode.

TPM_ALG_CFB

0x0043

SE

ISO/IEC 10116

Cipher Feedback mode — if
implemented, all symmetric
block ciphers (S type)
implemented shall be capable
of using this mode.

22

© ISO/IEC 2015 — All rights reserved

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

Algorithm Name Value Typ | Dep Reference Comments
e
TPM_ALG_ECB 0x0044 |SE ISO/IEC 10116 Electronic Codebook mode — if
implemented, all symmetric
block ciphers (S type)
implemented shall be capable
of using this mode.
TPM_ALG_LAST 0x0044 marker value
reserved 0x00C1 0x00C1 — 0x00C6 are reserved
through to prevent any overlap with the
0x00C6 command structure tags'used
in ISO/IEC 11889 (firsteditio)
regerved 0x8000 reserved for other structure
through tags
OxFFFF

NO|
codecs.

NOEE 1 For TPM_ALG_SM2, the Type is listed as signing but, other uses are allowed according to context.

E2 For TPM_ALG_ECB, this mode is not recommended for uses unless the key is frequently rotated such as in vifleo

© ISO/IEC 2015 — All rights reserved

23

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

7.4 TPM_ECC_CURVE

The TCG maintains a registry of all curves that have an assigned curve identifier. That registry is the
definitive list of curves that may be supported by a TPM.

Table 9 is a copy of the TPM_ECC_CURVE constants table in the TCG Algorithm Registry, Revision
1.15. Table 9 is provided for illustrative purposes only.

Table 9 — Definition of (UINT16) {ECC} TPM_ECC_CURVE Constants <IN/OUT, S>

Nafne value Classiication Comments
TPM_ECC_NONE 0x0000 Assigned
TPM_ECC_NIST_P192 0x0001 Assigned
TPM_ECC_NIST_P224 0x0002 Assigned
TPM_ECC_NIST_P256 0x0003 TCG Standard

TPM_ECC_NIST_P384 0x0004 Assigned

TPM_ECC_NIST_P521 0x0005 Assigned

TPM_ECC_BN_P256 0x0010 TCG Standard curve to support EEDAA
TPM_ECC_BN_P638 0x0011 Assigned curve to support<ECDAA
TPM_ECC_SM2_P256 0x0020 Assigned

#TPM_RC_CURVE

7.% TPM_CC (Command Codes)

7.%.1 Format

A ¢ommand is a 32-bit structure with fields assigned as shown in Figure 1.

3(3(2(2 1(1 0
1/0(9]8 6|5 0
Res |V Reserved Command Index

Figure 1 — Command Format

T,able 10 — TPM Command Format Fields Description

Bit | Name Definition
15:0 | Command.Index the index of the command
28:16 | Reserved shall be zero
PO 4V SET(1): the command is vendor specific
CLEAR(0): the command is not vendor specific
31:30 |Res shall be zero

24 © ISO/IEC 2015 — All rights reserved

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

7.5.2 Description

Table 11 provides the legend for the interpretation of the column data in Table 12.

Table 11 — Legend for Command Code Tables

Allowed
Column Values Comments
Name Command Name of the command
Code-Name

Command Code Numeric value the numeric value for the commandCode

NV Write blank, Y, O indicates whether the command may cause an NV write operation
If this column contains a “Y,” then successful completion of the
command is expected to cause modification of the”NV memofy
because of the command actions.
If the column contains an “O,” then the command may cause |a
modification to NV associated with an orderly shutdown. That is, the
command may modify the orderly save state ,0f NV, in which case, gn
NV write will be necessary.
If the entry is blank, then writing to N\,'is not allowed in the command
actions.

Physical Presence blank, Y indicates whether the Platform ‘Authorization for this command may
require confirmation througha‘physical presence indication

Decrypt blank, 2, 4 A numeric value that indicates the number of octets in the size field pf
the first parameter of. a,command
Blank indicates that no size field is present and no parametgr
encryption is allowed.

Ehcrypt blank, 2, 4 A numeric.value that indicates the number of octets in the size field pf
the first parameter of a response
Blank~indicates that no size field is present and no parametgr
encryption is allowed.

NPTE1 Any command can be delayed in.order for the TPM to complete NV actions due to a previous command or becauge
of an asynchronous update of Clock.

NPTE 2 Any command with an auth@rization value can cause an NV write on an authorization failure but the command dog¢s
not complete successfully:

© ISO/IEC 2015 — All rights reserved 25

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

7.5.3 TPM_CC Listing
Table 12 lists the command codes and their attributes. The only normative column in this table is the

column indicating the command code assigned to a specific command (the "Command Code" column).
For all other columns, the command and response tables in ISO/IEC 11889-3 are definitive.

Table 12 — Definition of (UINT32) TPM_CC Constants (Numeric Order) <IN/OUT, S>

2z zlz

Command E _Z>" z g EZ;
Ngme Code Zlaal al ol Comments
THM_CC_FIRST 0x0000011F g;’srgz”gn ixqapﬂgr?]l:hta’t\i/l;r{ decreage
TRM_CC_PP_FIRST 0x0000011F ﬁgﬁgfc‘ﬂ;ﬂﬁaz\gg'g d%eecéease i
TRM_CC_NV_UndefineSpaceSpecial 0x0000011F | Y | Y
TRM_CC_EuvictControl 0x00000120(Y | Y
TRM_CC_HierarchyControl 0x00000121 (Y | Y
TRM_CC_NV_UndefineSpace 0x00000122 | Y | Y
TRM_CC_ChangeEPS 0x00000124 (Y | Y
TRM_CC_ChangePPS 0x00000125(Y | Y
TRM_CC_Clear 0x00000126 | Y ¢, Y
TRM_CC_ClearControl 0x000001274 Y | Y
THM_CC_ClockSet 0x00000128 | Y | Y
TRM_CC_HierarchyChangeAuth 0x00000129 (Y | Y | 2
TRM_CC_NV_DefineSpace 0x0000012A| Y | Y | 2
TRM_CC_PCR_Allocate 0x0000012B| Y | Y
TRM_CC_PCR_SetAuthPolicy 0x0000012C| Y | Y | 2
TRM_CC_PP_Commands 0x0000012D | Y | Y
TRM_CC_SetPrimaryPglicy O0x0000012E| Y | Y | 2
TRM_CC_FieldUpgrageStart 0x0000012F (O | Y | 2
TRM_CC_ClockRateAdjust 0x00000130|(O | Y
TRM_CC sCreatePrimary 0x00000131 Y |2]|2
TRM.CC' NV_GlobalWriteLock 0x00000132 | O | Y
TPM_CC_PP_LASI UX0U000UT3Z Compile variable
TPM_CC_GetCommandAuditDigest 0x00000133 | Y 2
TPM_CC_NV_Increment 0x00000134 | Y
TPM_CC_NV_SetBits 0x00000135 | Y
TPM_CC_NV_Extend 0x00000136 | Y
TPM_CC_NV_Write 0x00000137 | Y 2

26 © ISO/IEC 2015 — All rights reserved

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

2l5dlsls

Command i i § g g‘
Name Code 2 (£ &l 81 5| comments
TPM_CC_NV_WriteLock 0x00000138 | Y
TPM_CC_DictionaryAttackLockReset 0x00000139 | O
TPM_CC_DictionaryAttackParameters 0x0000013A | Y
TRM—ECE—NV—ChangeAtth 8x0660643B—Y 2
TRM_CC_PCR_Event 0x0000013C | O 2 PCR
TRM_CC_PCR_Reset 0x0000013D | O PCR
TRM_CC_SequenceComplete 0x0000013E | O 212
TRM_CC_SetAlgorithmSet 0x0000013F | Y
TRM_CC_SetCommandCodeAuditStatus | 0x00000140 | Y
TRM_CC_FieldUpgradeData 0x00000141 | O 2
TRM_CC_IncrementalSelfTest 0x00000142 | O
TRM_CC_SelfTest 0x00000143 | O
TRM_CC_Startup 0x00000144 | Y
TRM_CC_Shutdown 0x00000145 | Y
TRM_CC_StirRandom 0x00000146 | Y 2
TRM_CC_ActivateCredential 0x00000147 212
TRM_CC_Certify 0x00000148 | O 2|2
TRM_CC_PolicyNV 0x00000149 2 Policy
TRM_CC_CertifyCreation 0x0000014A | O 212
TRM_CC_Duplicate 0x0000014B 212
TRM_CC_GetTime 0x0000014C 2
TRM_CC_GetSessionAuditDigest 0x0000014D 2
TRM_CC_NV_Read 0x0000014E 2
TRM_CC_NV_Readloek 0x0000014F | O
TRM_CC_ObjectChangeAuth 0x00000150 212
TRM_CC PulicySecret 0x00000151 2 Policy
TRM_“CC' Rewrap 0x00000152 212
TPM—€CCreate 6x60606153 212
TPM_CC_ECDH_ZGen 0x00000154 2|2
TPM_CC_HMAC 0x00000155 2|2
TPM_CC_Import 0x00000156 2|2
TPM_CC_Load 0x00000157 2|2
TPM_CC_Quote 0x00000158 | O 2|2

© ISO/IEC 2015 — All rights reserved

27

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

2l5dlsls

Command i i § g g‘
Name Code 2 (£ &l 81 5| comments
TPM_CC_RSA_Decrypt 0x00000159 2
TPM_CC_HMAC_Start 0x0000015B 2|2
TPM_CC_SequenceUpdate 0x0000015C 2
TRM—EE—Sign 8x66600615B 2
TRM_CC_Unseal 0x0000015E 2
TRM_CC_PolicySigned 0x00000160 2 Policy
TRM_CC_ContextLoad 0x00000161 Context
TRM_CC_ContextSave 0x00000162 Context
TRM_CC_ECDH_KeyGen 0x00000163 2
TRM_CC_EncryptDecrypt 0x00000164 2
TRM_CC_FlushContext 0x00000165 | O Context
TRM_CC_LoadExternal 0x00000167 212
TRM_CC_MakeCredential 0x00000168 24| 2
TRM_CC_NV_ReadPublic 0x00000169 NV
TRM_CC_PolicyAuthorize 0x0000016A 2 Policy
TRM_CC_PolicyAuthValue 0x0000016B Policy
TRM_CC_PolicyCommandCode 0x0000016C Policy
TRM_CC_PolicyCounterTimer 0x0000016D 2 Policy
TRM_CC_PolicyCpHash 0x0000016E 2 Policy
TRM_CC_PolicyLocality 0x0000016F Policy
TRM_CC_PolicyNameHash 0x00000170 2 Policy
TRM_CC_PolicyOR 0x00000171 Policy
TRM_CC_PolicyTicket 0x00000172 2 Policy
TRM_CC_ReadPubtic 0x00000173 2
TRM_CC_RSA:ERcrypt 0x00000174 212
TRM_CC StartAuthSession 0x00000176 | O 212
TRM_“CC! VerifySignature 0x00000177 2
TPM—EEECECParameters 6x00606178
TPM_CC_FirmwareRead 0x00000179
TPM_CC_GetCapability 0x0000017A
TPM_CC_GetRandom 0x0000017B 2
TPM_CC_GetTestResult 0x0000017C
TPM_CC_Hash 0x0000017D 2|2
28 © ISO/IEC 2015 — All rights reserved

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

2l5dlsls

Command i i § g g‘
Name Code 2 (£ &l 81 5| comments
TPM_CC_PCR_Read 0x0000017E PCR
TPM_CC_PolicyPCR 0x0000017F Policy
TPM_CC_PolicyRestart 0x00000180
TRW—CEReatClock 9x0000618%
TRM_CC_PCR_Extend 0x00000182 | O 2
TRM_CC_PCR_SetAuthValue 0x00000183 | N 2
TRM_CC_NV_Certify 0x00000184 | O
TRM_CC_EventSequenceComplete 0x00000185 | O
TRM_CC_HashSequenceStart 0x00000186
TRM_CC_PolicyPhysicalPresence 0x00000187 Policy.
TRM_CC_PolicyDuplicationSelect 0x00000188 Palicy
TRM_CC_PolicyGetDigest 0x00000189 Policy
TRM_CC_TestParms 0x0000018A
TRM_CC_Commit 0x0000018B | O 2|2
TRM_CC_PolicyPassword 0x0000018C Policy
TRM_CC_ZGen_2Phase 0x0000018D 2|2
TRM_CC_EC_Ephemeral 0x0000018E
TRM_CC_PolicyNvWritten 0x0000018F Policy
TRM_CC_LAST OX0000018F ggg”;g”gn ir\:]?)rlzlr?:ﬁtatli\g?./ increage
#1PM_RC_COMMAND_CODE
7.6 TPM_RC (Respanse Codes)
7.6.1 Description
Each returnArom the TPM has a 32-bit response code. The TPM will always set the upper 20 bits (31:12)
of the response code to 0 00 00,5 and the low-order 12 bits (11:00) will contain the response code.
eren a command succeeds, the TPM shall return TPM_RC_SUCCESS (0 004) and will update gny
aufharization-session nonce associated with the command.

When a command fails to complete for any reason, the TPM shall return

e aTPM_ST (UINT16) with a value of TPM_TAG_RSP_COMMAND or TPM_ST_NO_SESSIONS,
followed by

e a UINT32 (responseSize) with a value of 10, followed by
e a UINT32 containing a response code with a value other than TPM_RC_SUCCESS.

Commands defined in ISO/IEC 11889 will use a tag of either TPM_ST _NO_SESSIONS or
TPM_ST_SESSIONS. Error responses will use a tag value of TPM_ST_NO_SESSIONS and the

© ISO/IEC 2015 — All rights reserved 29

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

response code will be as defined in ISO/IEC 11889. Commands that use tags defined in ISO/IEC 11889
(first edition) will use TPM_TAG_RSP_COMMAND in an error and a response code defined ISO/IEC
11889 (first edition).

If the tag of the command is not a recognized command tag, the TPM error response will differ depending
on ISO/IEC 11889 (first edition) compatibility. If the TPM supports ISO/IEC 11889 (first edition)
compatibility, the TPM shall return a tag of TPM_TAG_RSP_COMMAND and an appropriate ISO/IEC
11889 (first edition) response code (TPM_BADTAG = 00 00 00 1Eg). If the TPM does not support
compatibility with ISO/IEC 11889 (first edition), the TPM shall return TPM_ST _NO_SESSION and a
response code of TPM_RC_TAG.

Wlluen a command fails, the TPM shall not update the authorization-session nonces associated with

co

up
the

failure due to an authorization failure may update the dictionary-attack protection values.

7.6.2 Response Code Formats

The response codes for ISO/IEC 11889 are defined such that there is no overldp between the respor
cofles used for ISO/IEC 11889 and those assigned in ISO/IEC 11889 (first-edition).

The formats defined in clause 7.6.2 only apply when the tag for the response
TAM_ST_NO_SESSIONS.

The response codes use two different format groups. Onegreup contains the ISO/IEC 11889 (f
ed|tion) compatible response codes and the response codes, for ISO/IEC 11889 that are not related

co
pa
Ei

g

mmand and will not close the authorization sessions used by the command. Audit digests with not
Hated on an error. Unless noted in the command actions, a command that returns an error shall lez
state of the TPM as if the command had not been attempted. The exception to this principle is thg

mmand parameters. The second group contains the efrers that may be associated with a commsa

rameter, handle, or session.
ure 2 shows the format for the response codes when bit 7 is zero.
bit | L1200 |ofojolo ‘ ofo]|o
9f8|7|6|5|4(3]|2|1]0
S| Ty«] V]F E

Figure 2 *— Format-Zero Response Codes

he
be
ve
ta

se

rst
to
nd

30

© ISO/IEC 2015 — All rights reserved

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(

The field definitions are:

Table 13 — Format-Zero Response Codes

E)

Bit Name | Definition
06:00 E the error number
The interpretation of this field is dependent on the setting of the F and S fields.
07 F format selector
D3 \% version
SET (1): The error number is defined in this part of ISO/IEC 11889 and is returned.When the
response tag is TPM_ST_NO_SESSIONS.
CLEAR (0): The error number is defined by ISO/IEC 11889 (first edition). Fhe error number| is
returned when the response tag is TPM_TAG_RSP_COMMAND.
D9 | Reserved | shall be zero.
10 T TCG/Vendor indicator
SET (1): The response code is defined by the TPM vendor.
CLEAR (0): The response code is defined by the TCG (a value-in this part of ISO/IEC 11889).
|1 S severity
SET (1): The response code is a warning and the €ommand was not necessarily in error. This
command indicates that the TPM is busy or that the résources of the TPM have to be adjusted|in
order to allow the command to execute.
CLEAR (0): The response code indicates that‘the command had an error that would prevent it
from running.
NQTE 1 In any error number returned by a TPM;“the F (bit 7) and V (bit 8) attributes will be CLEAR when the
response tag is TPM_TAG_RSP_COMMAND value used in ISO/IEC 11889 (first edition).
NQTE 2 The TCG/Vendor indicator attribute does not indicate a vendor-specific code unless the F attriblite
(bit[07]) is CLEAR.
When the format bit (bit 7) is SET, then the error occurred during the unmarshaling or validation of |an
ingut parameter to the TPM. Figure 3 shows the format for the response codes when bit 7 is one.
i1(1j0/0|]0|O0O|0O0O|0O|O|O]|O]|O
bit|]1{0|9(8|7|6|5|4|3|2|1]|0
N 1]P E
Figure 3 — Format-One Response Codes
There are™64 errors with this format. The errors can be associated with a parameter, handle, or sessipn.
The error number for this format is in bits[05:00]. When an error is associated with a parameter, 0 40,4 is
adged)and N is set to the parameter number.

For an error associated with a handle, a parameter number (1 to 7) is added to the N field. For an error
associated with a session, a value of 8 plus the session number (1 to 7) is added to the N field. In other
words, if P is clear, then a value of 0 to 7 in the N field will indicate a handle error, and a value of 8 — 15
will indicate a session error.

NOTE

If an implementation is not able to designate the handle, session, or parameter in error, then P and N will
be zero.

© ISO/IEC 2015 — All rights reserved

31

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

The field definitions are:

Table 14 — Format-One Response Codes

Bit Name |Definition
05:00 E the error number
The error number is independent of the other settings.
06 P SET (1): The error is associated with a parameter.
CLEAR Q) The ernprisassociated-withahandlegrasessiogp———
D7 F the response code format selector
This field shall be SET for the format in this table.
11:08 N the number of the handle, session, or parameter in error
If P is SET, then this field is the parameter in error. If P is CLEAR, then this field indicates the
handle or session in error. Handles use values of N between 0000, and QII1,. Sessions use
values between 1000, and 1111,.
The groupings of response codes are determined by bits 08, 07, and 06 <f, the response code |as
summarized in Table 15.
Table 15 — Response Code Groupings
Bit
offolo
8]l 7 | 6 | Definition
0]l 0 | x | aresponse code defined by ISO/IEC 11889 (first edition)
1| 0 | x | a response code defined by this part of ISO/IEC” 11889 with no handle, session, or parameter numbegr
modifier
x| 1| 0]| aresponse code defined by this part of ISO/IEC 11889 with either a handle or session number modifigr
x| 1| 1] aresponse code defined by this part of ISO/IEC 11889 with a parameter number modifier
NQTE An “xX" in a column indicates that this\smay be either 0 or 1 and not affect the grouping of the response code.
32 © ISO/IEC 2015 — All rights reserved

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

7.6.3

In

ISO/IEC 11889-2:2015(E)

TPM_RC Values

general, response codes defined in this part of ISO/IEC 11889 will be unmarshaling errors and will

have the F (format) bit SET. Codes that are unique to ISO/IEC 11889-3 will have the F bit CLEAR but the
V (version) attribute will be SET to indicate that it is an ISO/IEC 11889 response code.

NOTE The constant RC_VER1 is used to indicate that the V attribute is SET and the constant RC_FMTL1 is used
to indicate that the F attribute is SET and that the return code is variable based on handle, session, and
parameter modifiers.

Table 16 — Definition of (UINT32) TPM_RC Constants (Actions) <OUT>

Name Value Description

TPM_RC_SUCCESS 0x000

TPM RC BAD TAG OXOLE deflr\ed for compatibility with ISO/IEC/11889 (firs

- = - edition)
R VER1 0x100 set for all format O response.codes
TPM_RC_INITIALIZE RC_VER1 + 0x000 TPM not initialized

TP

M_RC_FAILURE

RC_VER1 + 0x001

commands not being accepted because of a TPM
failure

TP

M_RC_SEQUENCE

RC_VERL + 0x003

improper use of)a sequence handle

TP

M_RC_PRIVATE

RC_VER1 + 0x00B

TP

M_RC_HMAC

RC_VER1 + 0x019

TP

M_RC_DISABLED

RC_VER1 + 0x020

TP

M_RC_EXCLUSIVE

RC_VER1 + 0x021

command failed because audit sequence requireg
exclusivity

TP

M_RC_AUTH_TYPE

RC_VER1 + 0x024

authorization handle is not correct for command

TP

M_RC_AUTH_MISSING

RC_VERI 0x025

command requires an authorization session fo
handle and it is not present.

policy Failure In Math Operation or an invalig

TPM_RC_POLICY RCJVER1 + 0x026 .

- = = authPolicy value
TPM_RC_PCR RC_VER1 + 0x027 PCR check fall
TPM_RC_PCR_CHANGED RC_VER1 + 0x028 PCR have changed since checked.

TP

M_RC_UPGRADE

RC_VER1 + 0x02D

for all commands other thar
TPM2_FieldUpgradeData(), this code indicateq
that the TPM is in field upgrade mode; fo
TPM2_FieldUpgradeData(), this code indicates
that the TPM is not in field upgrade mode

TP

M_RC_TO©’' MANY_CONTEXTS

RC_VER1 + 0x02E

context ID counter is at maximum.

TP

M_RE_'AUTH_UNAVAILABLE

RC_VER1 + 0x02F

authValue or is not available fo

selected entity.

authPolicy

TPM_RC_REBOOT

RC_VER1 + 0x030

a _TPM_Init and Startup(CLEAR) is
before the TPM can resume operation.

required

TPM_RC_UNBALANCED

RC_VER1 + 0x031

the protection algorithms (hash and symmetric) are
not reasonably balanced. The digest size of the
hash must be larger than the key size of the
symmetric algorithm.

© ISO/IEC 2015 — All rights reserved

33

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

Name

Value

Description

TPM_RC_COMMAND_SIZE

RC_VER1 + 0x042

command commandSize value is inconsistent with
contents of the command buffer; either the size is
not the same as the octets loaded by the hardware
interface layer or the value is not large enough to
hold a command header

TPM_RC_COMMAND_CODE

RC_VER1 + 0x043

command code not supported

TPM_RC_AUTHSIZE

RC_VERI1 + 0x044

the value of authorizationSize is out of range or the
number of octets in the Authorization Area s

greater than required

TPM_RC_AUTH_CONTEXT

RC_VER1 + 0x045

use of an authorization session with a_contex
command

TPM_RC_NV_RANGE

RC_VER1 + 0x046

NV offset+size is out of range.

TPM_RC_NV_SIZE

RC_VER1 + 0x047

Requested allocation size is largérthan allowed.

TPM_RC_NV_LOCKED

RC_VER1 + 0x048

NV access locked.

TPM_RC_NV_AUTHORIZATION

RC_VER1 + 0x049

NV access authorization_fails in command actiong
(this failure does not affeet lockout.action)

TPM_RC_NV_UNINITIALIZED

RC_VER1 + Ox04A

an NV Index is used before being initialized or thg
state saved by TPM2_Shutdown(STATE) could no
be restored

TPM_RC_NV_SPACE

RC_VER1 + 0x04B

insufficient)space for NV allocation

TPM_RC_NV_DEFINED

RC_VERL + 0x04C

NV {ndex or persistend object already defined

TPM_RC_BAD_CONTEXT

RC_VERL + 0x050

context in TPM2_ContextLoad() is not valid

TPM_RC_CPHASH

RC_VER1 + 0x051

cpHash value already set or not correct for use

TPM_RC_PARENT

RC_VER1 + 0x052

handle for parent is not a valid parent

TPM_RC_NEEDS_TEST

RC_VER1 +0x053

some function needs testing.

TPM_RC_NO_RESULT

RC.VER1 + 0x054

returned when an internal function cannot process
a request due to an unspecified problem. Thig
code is usually related to invalid parameters tha
are not properly filtered by the input unmarshaling
code.

TPM_RC_SENSITIVE

RC_VER1 + 0x055

the sensitive area did not unmarshal correctly afte
decryption — this code is used in lieu of the othe
unmarshaling errors so that an attacker canno
determine where the unmarshaling error occurred

R _MAX_FMO RC_VER1 + Ox07F largest version 1 code that is not a warning

New Subsection

This bit is SET in all format 1 response codes
ROLEMT1 0x080 The codes in this group may have a value added tdg

them to indicate the handle, session, or parameter
to which they apply.

TPM_RC_ASYMMETRIC

RC_FMT1 + 0x001

asymmetric algorithm not supported or not correct

TPM_RC_ATTRIBUTES

RC_FMT1 + 0x002

inconsistent attributes

TPM_RC_HASH

RC_FMT1 + 0x003

hash algorithm not supported or not appropriate

TPM_RC_VALUE

RC_FMT1 + 0x004

value is out of range or is not correct for the
context

34

© ISO/IEC 2015 — All rights reserved

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

Name

Value

Description

TPM_RC_HIERARCHY

RC_FMT1 + 0x005

hierarchy is not enabled or is not correct for the
use

TPM_RC_KEY_SIZE

RC_FMT1 + 0x007

key size is not supported

TPM_RC_MGF

RC_FMT1 + 0x008

mask generation function not supported

TPM_RC_MODE

RC_FMT1 + 0x009

mode of operation not supported

TPM_RC_TYPE

RC_FMT1 + 0x00A

the type of the value is not appropriate for the use

TPM_RC_HANDLE

RC_FMT1 + 0x00B

the handle is not correct for the use

TPM_RC_KDF

RC_FMT1 + 0x00C

unsupported key derivation function or function no
appropriate for use

TPM_RC_RANGE

RC_FMT1 + 0x00D

value was out of allowed range.

TPM_RC_AUTH_FAIL

RC_FMT1 + OXO0E

the authorization HMAC checK)failled and DA
counter incremented

TPM_RC_NONCE

RC_FMT1 + Ox00F

invalid nonce size

TPM_RC_PP RC_FMT1 + 0x010 authorization requires_assertion of PP
TPM_RC_SCHEME RC_FMT1 + 0x012 unsupported or inconipatible scheme
TPM_RC_SIZE RC_FMT1 + 0x015 structure is the-wrong size

TPM_RC_SYMMETRIC

RC_FMT1 + 0x016

unsupported symmetric algorithm or key size, o
not appnopfiate for instance

TPM_RC_TAG

RC_FMT1 + 0x017

incarrect structure tag

TPM_RC_SELECTOR

RC_FMT1 + 0x018

union selector is incorrect

TPM_RC_INSUFFICIENT

RC_FMT1 + Ox01A

the TPM was unable to unmarshal a valug
because there were not enough octets in the inpu
buffer

TPM_RC_SIGNATURE

RC_FMT4\+ 0x01B

the signature is not valid

TPM_RC_KEY

RC.EMT1 + 0x01C

key fields are not compatible with the selected use

TPM_RC_POLICY_FAIL

RC/FMT1 + 0x01D

a policy check failed

TPM_RC_INTEGRITY

RC_FMT1 + Ox01F

integrity check failed

TPM_RC_TICKET

RC_FMT1 + 0x020

invalid ticket

TPM_RC_RESERVED_BITS

RC_FMT1 + 0x021

reserved bits not set to zero as required

TPM_RC_BAD_AUTH

RC_FMT1 + 0x022

authroization failure without DA implications

TPM_RC_EXPIRED

RC_FMT1 + 0x023

the policy has expired

TPM_RC_POLICY_cC

RC_FMT1 + 0x024

the commandCode in the policy is not thg
commandCode of the command or the commang
code in a policy command references a commang
that is not implemented

nithlic and cancitivia nartinne af an ahiaet arg NA
pPHoHe—aRe—SEeRSHY FHERS—E—at—o8Bject—ale—+

TPM_RC_BINDING

RC_FMT1 + 0x025

cryptographically bound

TPM_RC_CURVE

RC_FMTL1 + 0x026

curve not supported

TPM_RC_ECC_POINT

RC_FMT1 + 0x027

point is not on the required curve.

New Subsection

RC_WARN

0x900

set for warning response codes

© ISO/IEC 2015 — All rights reserved

35

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

Name

Value

Description

TPM_RC_CONTEXT_GAP

RC_WARN + 0x001

gap for context ID is too large

TPM_RC_OBJECT_MEMORY

RC_WARN + 0x002

out of memory for object contexts

TPM_RC_SESSION_MEMORY

RC_WARN + 0x003

out of memory for session contexts

TPM_RC_MEMORY

RC_WARN + 0x004

out of shared object/session memory or need
space for internal operations

TPM_RC_SESSION_HANDLES

RC_WARN + 0x005

out of session handles — a session must be flushed

hafora-a nawsascion-mav-bae-craatad
PDEHOre-—cHeEYY H-HHety—o ettt

TPM_RC_OBJECT_HANDLES

RC_WARN + 0x006

out of object handles — the handle spacé\ fo
objects is depleted and a reboot is required

TPM_RC_LOCALITY

RC_WARN + 0x007

bad locality

TPM_RC_YIELDED

RC_WARN + 0x008

the TPM has suspended opegrafion on the
command; forward progress was_)made and thg
command may be retried.

See ISO/IEC 11889-1, clause 38, “Multi-tasking”

TPM_RC_CANCELED

RC_WARN + 0x009

the command was canceled

TPM_RC_TESTING

RC_WARN + 0x00A

TPM is performing-self-tests

TPM_RC_REFERENCE_HO

RC_WARN + 0x010

the 1° handle~in the handle area references 4§
transient object or session that is not loaded

TPM_RC_REFERENCE_H1

RC_WARN + 0x011

the 2 handle in the handle area references
transient object or session that is not loaded

Q)

TPM_RC_REFERENCE_H2

RC_WARN + 0x012

the~3" handle in the handle area references 3
transient object or session that is not loaded

TPM_RC_REFERENCE_H3

RC_WARN + 0x613

the 4™ handle in the handle area references 4§
transient object or session that is not loaded

TPM_RC_REFERENCE_H4

RC_WARN_* 0x014

the 5" handle in the handle area references 4§
transient object or session that is not loaded

TPM_RC_REFERENCE_H5

RE WARN + 0x015

the 6™ handle in the handle area references 3
transient object or session that is not loaded

TPM_RC_REFERENCE_H6

RC_WARN + 0x016

the 7" handle in the handle area references 4§
transient object or session that is not loaded

TPM_RC_REFERENCE_S0

RC_WARN + 0x018

the 1 authorization session handle references
session that is not loaded

Q)

TPM_RC_REFERENCE) S1

RC_WARN + 0x019

the 2" authorization session handle references 4
session that is not loaded

TPM_RC_REFERENCE_S?2

RC_WARN + 0x01A

the 3" authorization session handle references 4
session that is not loaded

TPM_RC\YREFERENCE_S3

RC_WARN + 0x01B

the 4th authorization session handle references 4
session that is not loaded

TPM_RC_REFERENCE_S4

RC_WARN + 0x01C

o th H In U £ H oot ¢
uac J STSSIUIT TIATTUIT TTITITIILTS Ad STOSSIUTNT UlAal 15

not loaded

TPM_RC_REFERENCE_S5

RC_WARN + 0x01D

the 6™ session handle references a session that is
not loaded

TPM_RC_REFERENCE_S6

RC_WARN + Ox01E

the 7™ authorization session handle references a
session that is not loaded

TPM_RC_NV_RATE

RC_WARN + 0x020

the TPM is rate-limiting accesses to prevent
wearout of NV

36

© ISO/IEC 2015 — All rights reserved

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

Name Value Description
authorizations for objects subject to DA protection
TPM_RC_LOCKOUT RC_WARN + 0x021 | are not allowed at this time because the TPM is in
DA lockout mode
TPM_RC_RETRY RC_WARN + 0x022 | the TPM was not able to start the command
TPM RC NV UNAVAILABLE RC WARN + 0x023 the command may require writing of NV and NV is
- == - not current accessible
TPM_RC._NOT LSED B WARN 4+ Oy 7E this value is reserved and shall not be returned by
= - = = the TPM
Additional Defines
TPM_RC_H 0x000 add to a handle-related error
TPM_RC_P 0x040 add to a parameter-related error
TPM_RC_S 0x800 add to a session-related error
™M RC 1 0x100 add to a parameter-, handle-,"or session-relateg
- = error
TPM RC 2 0x200 add to a parameter-mhandle-, or session-related
- = error
™M RC 3 0x300 add to a parameter-, handle-, or session-relateg
- = error
TPM RC 4 0x400 add to~a, parameter-, handle-, or session-relateg
- = error.
TPM RC 5 0X500 add to a parameter-, handle-, or session-relateq
- = error
M RC 6 0x600 add to a parameter-, handle-, or session-relateq
- = error
M RC 7 0x700 add to a parameter-, handle-, or session-relateg
- = error
TPM_RC_8 0x800 add to a parameter-related error
TPM_RC_9 0x900 add to a parameter-related error
TPM_RC_A 0xA00 add to a parameter-related error
TPM_RC_B 0xB00 add to a parameter-related error
TPM_RC_C 0xC00 add to a parameter-related error
TPM_RC_D 0xDO00 add to a parameter-related error
TPM_RC_E OxEOQ0 add to a parameter-related error
TPM_RC_F OxFO00 add to a parameter-related error
TPM_RC_N"MASK 0xFO0 number mask
NOJTE-1 TPM_RC_FAILURE can be returned by TPM2_GetTestResult() as the testResult parameter.
NOLH—FW—R&@B&E&FM&mrmﬂmmﬂmm—_ — — i fom
NOTE 3 For the response code TPM_RC_OBJECT_HANDLES there is no reason why an implementation would implement a
design that would deplete handle space. Platform specifications are encouraged to forbid it.
NOTE4 TPM_RC_YIELDED cannot occur on the reference implementation.

© ISO/IEC 2015 — All rights reserved 37

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

7.7 TPM_CLOCK_ADJUST

A TPM_CLOCK_ADJUST value is used to change the rate at which the TPM internal oscillator is divided.
A change to the divider will change the rate at which Clock and Time change.

NOTE The recommended adjustments are approximately 1% for a course adjustment, 0.1% for a medium
adjustment, and the minimum possible on the implementation for the fine adjustment (e.g., one count of
the pre-scalar if possible).

Table 17 — Definition of (INT8) TPM CLOCK ADJUST Constants <IN>

Nzlme Value |Comments

TRM_CLOCK_COARSE_SLOWER -3 Slow the Clock update rate by one coarse adjustment step:
TRM_CLOCK_MEDIUM_SLOWER -2 Slow the Clock update rate by one medium adjustment/step.
TRM_CLOCK_FINE_SLOWER -1 Slow the Clock update rate by one fine adjustment’step.

TRM_CLOCK_NO_CHANGE No change to the Clock update rate.

TRM_CLOCK_FINE_FASTER Speed the Clock update rate by one fine adjustment step.

0

1
TRM_CLOCK_MEDIUM_FASTER 2 Speed the Clock update rate by one,medium adjustment step.
TRM_CLOCK_COARSE_FASTER 3
#1PM_RC_VALUE

Speed the Clock update rate by ene coarse adjustment step.

7.8 TPM_EO (EA Arithmetic Operands)

Table 18 — Definition of (UINT16)TPM_EO Constants <IN/OUT>

Operation Name Value Cemments

TRM_EO_EQ 0x0000 A=B

TRM_EO_NEQ 0x0001 A#B

TRM_EO_SIGNED_GT 0x0002 A > B signed

TRM_EO_UNSIGNED_GT 0x0003 A > B unsigned

TRM_EO_SIGNED_LT 0x0004 A < B signed

TRM_EO_UNSIGNED LT 0x0005 A < B unsigned

TRM_EO_SIGNED_GE 0x0006 A = B signed

TAM_EO_UNSIGNER-GE 0x0007 A = B unsigned

TRM_EO_SIGNED LE 0x0008 A < B signed

TRM_EO_UNSIGNED_LE 0x0009 A < B unsigned

TRM_EO/BITSET OX000A All bits SET in B are SET in A. ((A&B)=B)
TAMZEO BITCLEAR 0x000B All bits SET in B are CLEAR in A. ((A&B)=0)
#TPM_RC_VALUE Response code returned when unmarshaling of this type fails

38 © ISO/IEC 2015 — All rights reserved

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(

7.9 TPM_ST (Structure Tags)

E)

Structure tags are used to disambiguate structures. They are 16-bit values with the most significant bit
SET so that they do not overlap TPM_ALG_ID values. A single exception is made for the value
associated with TPM_ST _RSP_COMMAND (0x00C4), which has the same value as the
TPM_TAG_RSP_COMMAND tag from ISO/IEC 11889 (first edition). This value is used when the TPM is
compatible with ISO/IEC 11889 (first edition) and the TPM cannot determine which family of response
code to return because the command tag is not valid.

M4
Stri
val

In
all
va

Ta
algd
val

ny of the structures defined in this part of ISO/IEC 11889 have parameters that are unions of{t
Lictures. That is, a parameter may be one of several structures. The parameter will have acseled
ue that indicates which of the options is actually present.

prder to allow the marshaling and unmarshaling code to determine which of the possihle’structures
bwed, each selector will have a unique interface type and will constrain the numberCof possible
ues.

ble 19 defines the structure tags values. The definition of many structures is céntext-sensitive using
orithm ID. In cases where an algorithm ID is not a meaningful way to designate the structure,
ues in this table are used.

Table 19 — Definition of (UINT16) TPM_ST Constants <IN/OUT, S>

Na

me Value Comments

TP

M_ST_RSP_COMMAND 0x00C4 | tag value for_a response; used when there is an error
in the tag. Fhis is also the value returned from a TPM
implementing ISO/IEC 11889 (first edition) when an
error_eccurs. This value is used in ISO/IEC 11889
because an error in the command tag may prevent
determination of the family. When this tag is used in
the response, the response code will be
TPM_RC_BAD_TAG (0 1Eig), which has the same
numeric value as the ISO/IEC 11889 (first edition)
response code for TPM_BADTAG.

TP

M_ST NULL 0X8000 | no structure type specified

TP

M_ST _NO_SESSIONS 0x8001 | tag value for a command/response for a command
defined in ISO/IEC 11889; indicating that the
command/response has no attached sessions and no
authorizationSize/parameterSize value is present

If the responseCode from the TPM is not
TPM_RC_SUCCESS, then the response tag shall
have this value.

TP

M_ST_SESSIONS 0x8002 | tag value for a command/response for a command
defined in ISO/IEC 11889; indicating that the
command/response has one or more attached
sessions and the authorizationSize/parameterSize
field is present

ner
tor

s
ag

an
he

reserved 0x8003 | When used between application software and the TPM

resource manager, this tag indicates that the
command has no sessions and the handles are using
the Name format rather than the 32-bit handle format.

Between the TRM and TPM, this tag would occur in a
response from a TPM that overlaps the tag parameter
of a request with the tag parameter of a response,
when the response has no associated sessions.

© ISO/IEC 2015 — All rights reserved

39

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

Name Value Comments

reserved 0x8004 | When used between application software and the TPM
resource manager, this tag indicates that the
command has sessions and the handles are using the
Name format rather than the 32-bit handle format.

Between the TRM and TPM, would occur in a
response from a TPM that overlaps the tag parameter
of a request with the tag parameter of a response,
when the response has authorization sessions.

TPM ST _ATTEST_NV Ox801Z | tag for an aftestafion structure

TPM_ST_ATTEST_COMMAND_AUDIT 0x8015 tag for an attestation structure

TPM_ST_ATTEST_SESSION_AUDIT 0x8016 | tag for an attestation structure
TPM_ST_ATTEST_CERTIFY 0x8017 | tag for an attestation structure
TPM_ST_ATTEST_QUOTE 0x8018 | tag for an attestation structure
TPM_ST_ATTEST_TIME 0x8019 | tag for an attestation structure

TPM_ST _ATTEST_CREATION 0x801A | tag for an attestation structure

regerved 0x801B | do not use

TPM_ST_CREATION 0x8021 | tag for a ticket type

TPM_ST_VERIFIED 0x8022 | tag for a ticket type

TPM_ST_AUTH_SECRET 0x8023 | tag for a tickettype

TPM_ST_HASHCHECK 0x8024 | tag for a ticket type

TPM_ST_AUTH_SIGNED 0x8025 | tag forca ticket type

TPM_ST_FU_MANIFEST 0x8029 | tag for a structure describing a Field Upgrade Policy
NQTE 1 In a previously published version ofsthe TCG TPM 2.0 Library specification, TPM_RC_BAD_TAG

was incorrectly assigned a value 0fy0x030 instead of 30 (0x01e). Some implementations my return
the old value instead of the new value.

NQTE 2 Regarding the value (0x8003, the response to application software will have a tag of
TPM_ST_NO_SESSIONS:

NQTE 3 Regarding the yalue 0x8003, this value is not used by all TPM or TPM Resource Manager
implementations,

NQ[TE 4 Regarding:the value 0x8004, if the command completes successfully, the response to application
software will have a tag of TPM_ST_SESSIONS.

NQTE 5 Regarding the value 0x8004, this value is not used by all TPM or TPM Resource Manager
implementations.

NQ[TE 6 Regarding the value 0x801B, This was previously assigned to TPM_ST_ATTEST_NV. The tag is
changed because the structure has changed.

40 © ISO/IEC 2015 — All rights reserved

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

7.10 TPM_SU (Startup Type)

These values are used in TPM2_Startup() to indicate the shutdown and startup mode. The defined

startup sequences are:

a) TPM Reset — Two cases:

1) Shutdown(CLEAR) followed by Startup(CLEAR)
2) Startup(CLEAR) with no Shutdown()

b) TPM Restart — Qhutdnwn(QTATF) followed hy ermp((‘l FAF?)

c) | TPM Resume — Shutdown(STATE) followed by Startup(STATE)

TRAM_SU values of 80 00,6 and above are reserved for internal use of the TPM and may not be assigned

vajues.

NOITE In the reference code, a value of FF FFs indicates that the startup state has nottpeen set. If this Was
defined in this table to be, say, TPM_SU_NONE, then TPM_SU_NONE would ke a valid input value [but
the caller is not allowed to indicate the that the startup type is TPM_SU_NONE so the reserved valug is
defined in the implementation as required for internal TPM uses.

Table 20 — Definition of (UINT16) TPM_SU Constants <IN>

Npme Value Description

TPM_SU_CLEAR 0x0000 on TPM2_Shutdown(); indicates that the TPM should prepafe
for loss of power/and’save state required for an orderly startdp
(TPM Reset).
on TPM2_Startup(), indicates that the TPM should perform
TPM Reset or TPM Restart

TPM_SU_STATE 0x0001 on TPM2_Shutdown(), indicates that the TPM should prepafe

fordass of power and save state required for an orderly startdp
(TPM Restart or TPM Resume)

on TPM2_Startup(), indicates that the TPM should restore the
state saved by TPM2_Shutdown(TPM_SU_STATE)

[PM_RC_VALUE response code when incorrect value is used

Th

.11 TPM_SE (Session Type)

s type is used in TPM2~StartAuthSession() to indicate the type of the session to be created.

Table 21 — Definition of (UINT8) TPM_SE Constants <IN>

Name Value Description

TRM_SE_HMAC 0x00

TRM_SE(POLICY 0x01

TRM=SE_TRIAL 0x03 The policy session is being used to compute the policyHash ahd
not for command authorization.
This setting modifies some policy commands and prevents
session from being used to authorize a command.

#TPM_RC_VALUE response code when incorrect value is used

© ISO/IEC 2015 — All rights reserved

41

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

7.12 TPM_CAP (Capabilities)

The TPM_CAP values are used in TPM2_GetCapability() to select the type of the value to be returned.
The format of the response varies according to the type of the value.

Table 22 — Definition of (UINT32) TPM_CAP Constants

Capability Name Value Property Type Return Type

TPM_CAP_FIRST 0x00000000

TPM_CAP_ALGS 0x00000000 | TPM_ALG_IDW TPML_ALG_PROPERTY
TPM_CAP_HANDLES 0x00000001 | TPM_HANDLE TPML_HANDLE
TPM_CAP_COMMANDS 0x00000002 (TPM_CC TPML_CCA
TPM_CAP_PP_COMMANDS 0x00000003 (TPM_CC TPML_CC
TPM_CAP_AUDIT_COMMANDS | 0x00000004 | TPM_CC TPML_CC

TPM_CAP_PCRS 0x00000005 |reserved TPML_PCR_SELECTION
TPM_CAP_TPM_PROPERTIES 0x00000006 | TPM_PT TPMLA\TAGGED_TPM_PROPERTY
TPM_CAP_PCR_PROPERTIES 0x00000007 | TPM_PT_PCR TPML_TAGGED_PCR_PROPERTY
TPM_CAP_ECC_CURVES 0x00000008 | TPM_ECC_CURVE®Y TPML_ECC_CURVE
TPM_CAP_LAST 0x00000008

TPM_CAP_VENDOR_PROPERTY | 0x00000100 | manufacturer specific manufacturer-specific values
#PM_RC_VALUE

NPTE The TPM_ALG_ID or TPM_ECC_CURVE s'east to a UINT32.

42 © ISO/IEC 2015 — All rights reserved

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

7.13 TPM_PT (Property Tag)

ISO/IEC 11889-2:2015(E)

The TPM_PT constants are used in TPM2_GetCapability(capability = TPM_CAP_TPM_PROPERTIES) to
indicate the property being selected or returned.

The values in the fixed group (PT_FIXED) are not changeable through programmatic means other than a
firmware update. The values in the variable group (PT_VAR) may be changed with TPM commands but
should be persistent over power cycles and only changed when indicated by the detailed actions code.

Table 23 — Definition of (UINT32) TPM_PT Constants <IN/OUT, S>

1
Czlpability Name

Value Comments

TRM_PT_NONE 0x00000000 |indicates no property type

PT_GROUP 0x00000100 | The number of properties in each group.

PT1_FIXED PT_GROUP *1|the group of fixed propertieésy~ returned [as
TPMS_TAGGED_PROPERTY
The values in this group are/only changed due to| a
firmware change in the TPM,

TRM_PT_FAMILY_INDICATOR PT_FIXED + O |a 4-octet character string containing the TPM Family valpe
(TPM_SPEC_FAMILY)

TRM_PT_LEVEL PT_FIXED + 1 |the level of ISO/IEC11889

TRM_PT_REVISION PT_FIXED + 2 | ISO/IEC 11889 Revision times 100

TRM_PT_DAY_OF_YEAR PT_FIXED + 3 [ISO/IEC 11889 publication day of year using TQGG
calendar

TRM_PT_YEAR PT_FIXED + 4 | ISOMEC 11889 publication year using the CE

TRM_PT_MANUFACTURER PT_FIXED + 5 |the vendor ID unique to each TPM manufacturer

TRM_PT_VENDOR_STRING_1 PT_FIXED +§’| the first four characters of the vendor ID string

TRM_PT_VENDOR_STRING_2 PT_FIXED + 7 [the second four characters of the vendor ID string

TRM_PT_VENDOR_STRING_3 PT (KEIXED + 8 |the third four characters of the vendor ID string

TRM_PT_VENDOR_STRING_4 PT_FIXED + 9 |the fourth four characters of the vendor ID sting

TRM_PT_VENDOR_TPM_TYPE PT_FIXED + 10| vendor-defined value indicating the TPM model

TRM_PT_FIRMWARE_VERSION-1 PT_FIXED + 11|the most-significant 32 bits of a vendor-specific valpe
indicating the version of the firmware

TRM_PT_FIRMWARE VERSION_2 PT_FIXED + 12|the least-significant 32 bits of a vendor-specific valpe
indicating the version of the firmware

TRM_PT_INPUT_BUFFER PT_FIXED + 13|the maximum size of a parameter (typically, |a
TPM2B_MAX_BUFFER)

TRM_PT HR"TRANSIENT_MIN PT_FIXED + 14|the minimum number of transient objects that can be he¢ld
in TPM RAM

TRMZPT_HR_PERSISTENT_MIN PT_FIXED + 15|the minimum number of persistent objects that can pe
held in TPM NV memory

TPM_PT_HR_LOADED_MIN PT_FIXED + 16|the minimum number of authorization sessions that can
be held in TPM RAM

TPM_PT_ACTIVE_SESSIONS_MAX |PT_FIXED + 17 |the number of authorization sessions that may be active at

atime

A session is active when it has a context associated with

its handle. The context may either be in TPM RAM or
context saved.

be

© ISO/IEC 2015 — All rights reserved

43

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

Capability Name Value Comments
TPM_PT_PCR_COUNT PT_FIXED + 18| the number of PCR implemented
TPM_PT_PCR_SELECT_MIN PT_FIXED + 19(the minimum number of octets in a
TPMS_PCR_SELECT.sizeOfSelect
TPM_PT_CONTEXT_GAP_MAX PT_FIXED + 20|the maximum allowed difference (unsigned) between the
contextlD values of two saved session contexts
This value shall be at least 2*°-1 (65535).
PT_FIXED + 21| skipped
TRM_PT_NV_COUNTERS_MAX PT_FIXED + 22|the maximum number of NV Indexes that are allowed|to
have the TPMA_NV_COUNTER attribute SET
TRM_PT_NV_INDEX_MAX PT_FIXED + 23| the maximum size of an NV Index data area

TRM_PT_MEMORY

PT_FIXED + 24

a TPMA_MEMORY indicating the memuory management
method for the TPM

TRM_PT_CLOCK_UPDATE PT_FIXED + 25| interval, in milliseconds, between updates to the copy|of
TPMS_CLOCK_INFO.clock in,NV

TRM_PT_CONTEXT_HASH PT_FIXED + 26| the algorithm used for the “integrity HMAC on saved
contexts and for,~\hashing the fuData |of
TPM2_FirmwareRead()

TRM_PT_CONTEXT_SYM PT_FIXED + 27| TPM_ALG_ID, the ‘algorithm used for encryption of saved
contexts

TRM_PT_CONTEXT_SYM_SIZE PT_FIXED + 28| TPM_KEY _BITS, the size of the key used for encryptipn
of saved-contexts

TRM_PT_ORDERLY_COUNT PT_FIXED + 29|the modulus - 1 of the count for NV update of an ordefly
caunter
The returned value is MAX_ORDERLY_COUNT.
This will have a value of 2" — 1 where 1 <N < 32

TRM_PT_MAX_COMMAND_SIZE PT_FIXED + 30| the maximum value for commandSize in a command

TRM_PT_MAX_RESPONSE_SIZE PT_FIXED + 31|the maximum value for responseSize in a response

TRM_PT_MAX_DIGEST RT_FIXED + 32|the maximum size of a digest that can be produced by the
TPM

TRM_PT_MAX_OBJECT_CONTEXT |PT_FIXED + 33[the maximum size of an object context that will pe
returned by TPM2_ContextSave

TRM_PT_MAX_SESSION_C€ONTEXT |PT_FIXED + 34|the maximum size of a session context that will pe
returned by TPM2_ContextSave

TRM_PT_PS_FAMILY_INDICATOR PT_FIXED + 35| platform-specific family (a TPM_PS value)(see Table 25

TRM_PT_PS_.LEVEL PT_FIXED + 36| the level of the platform-specific specification

TRM_PT PS REVISION PT_FIXED + 37|the specification Revision times 100 for the platform-
specific specification

TRM_PT PS DAY OF YEAR PT FIXED + 38|the platform-specific specification day of year using T¢G
calendar

TPM_PT_PS_YEAR PT_FIXED + 39| the platform-specific specification year using the CE

TPM_PT_SPLIT_MAX PT_FIXED + 40| the number of split signing operations supported by the
TPM

TPM_PT_TOTAL_COMMANDS PT_FIXED + 41| total number of commands implemented in the TPM

TPM_PT_LIBRARY_COMMANDS PT_FIXED + 42| number of commands from the TPM library that are

implemented

44

© ISO/IEC 2015 — All rights reserved

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

Capability Name

Value

Comments

TPM_PT_VENDOR_COMMANDS

PT_FIXED + 43

number of vendor commands that are implemented

TPM_PT_NV_BUFFER_MAX

PT_FIXED + 44

the maximum data size in one NV write command

PT_VAR PT_GROUP *2|the group of variable properties returned as
TPMS_TAGGED_PROPERTY
The properties in this group change because of a
Protected Capability other than a firmware update. The
values are not necessarily persistent across all power
transitions.

TRM_PT_PERMANENT PT_VAR +0 |TPMA_PERMANENT

TRM_PT_STARTUP_CLEAR PT_VAR+1 |TPMA_STARTUP_CLEAR

TRM_PT_HR_NV_INDEX PT_VAR + 2 |the number of NV Indexes currently defined

TRM_PT_HR_LOADED PT_VAR + 3 |the number of authorization sessions:currently loaded ifto
TPM RAM

TRM_PT_HR_LOADED_AVAIL PT_VAR +4 |the number of additional-authorization sessions, of any
type, that could be loaded\into TPM RAM
This value is an estimatée. If this value is at least 1, then|at
least one authorization session of any type may pe
loaded. Any commmand that changes the RAM memqgry
allocation carnmake this estimate invalid.

TRM_PT_HR_ACTIVE PT_VAR +5 |the number of active authorization sessions currently
being fracked by the TPM
Thislis the sum of the loaded and saved sessions.

TRM_PT_HR_ACTIVE_AVAIL PT_VAR + 6 |the number of additional authorization sessions, of any
type, that could be created
This value is an estimate. If this value is at least 1, then|at
least one authorization session of any type may pe
created. Any command that changes the RAM memdgry
allocation can make this estimate invalid.

TRM_PT_HR_TRANSIENT_AVAIL PT_VAR + 7 |estimate of the number of additional transient objects that
could be loaded into TPM RAM
This value is an estimate. If this value is at least 1, then|at
least one object of any type may be loaded. Any
command that changes the memory allocation can make
this estimate invalid.

TRM_PT_HR_PERSISTENT PT_VAR +8 |the number of persistent objects currently loaded into
TPM NV memory

TRM_PT_HR-PERSISTENT_AVAIL PT_VAR +9 |the number of additional persistent objects that could pe
loaded into NV memory
This value is an estimate. If this value is at least 1, then|at
least one object of any type may be made persistent. Any
command that changes the NV memaory allocation can
make this estimate invalid.

TPM_PT_NV_COUNTERS PT_VAR + 10 [the number of defined NV Indexes that have NV

TPMA_NV_COUNTER attribute SET

© ISO/IEC 2015 — All rights reserved

45

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

Capability Name Value Comments

TPM_PT_NV_COUNTERS_AVAIL PT_VAR + 11 [the number of additional NV Indexes that can be defined
with their TPMA_NV_COUNTER and
TPMA_NV_ORDERLY attribute SET
This value is an estimate. If this value is at least 1, then at
least one NV Index may be created with the
TPMA_NV_COUNTER and TPMA_NV_ORDERLY
attributes SET. Any command that changes the NV
memory allocation can make this estimate invalid.

TRM_PT_ALGORITHM_SET PT_VAR + 12 |code that limits the algorithms that may be used with the
TPM

TRM_PT_LOADED_CURVES PT_VAR + 13 [the number of loaded ECC curves

TRM_PT_LOCKOUT_COUNTER PT_VAR + 14 |the current value of the lockout counter (failedTries)

TRM_PT_MAX_AUTH_FAIL PT_VAR + 15 |the number of authorization failures before DA lockout|is
invoked

TRM_PT_LOCKOUT_INTERVAL PT_VAR + 16 |the number of seconds before the value reported py
TPM_PT_LOCKOUT_COUNTER is decremented

TRM_PT_LOCKOUT_RECOVERY PT_VAR + 17 |the number of seconds_after a lockoutAuth failure befqre
use of lockoutAuth may-bé attempted again

TRM_PT_NV_WRITE_RECOVERY PT_VAR + 18 |number of milliseConds before the TPM will accegpt
another command that will modify NV
This value 4s)'an approximation and may go up or doywn
over time;

TRM_PT_AUDIT_COUNTER_O PT_VAR + 19 |the high-order 32 bits of the command audit counter

TRM_PT_AUDIT_COUNTER_1 PT_VAR + 20 |the Jow-order 32 bits of the command audit counter

(00 00 01(3F;¢).

NOTE 1 Regarding PT_GROUP, the first group-/with any properties is group 1 (PT_GROUP * 1). Group 0| is
reserved.

NQTE 2 Regarding TPM_PT_LEVEL, forthis International Standard, the level is zero.

EYAMPLE 1 Regarding TPM_PT_REVISION, revision 01.01 would have a value of 101.

NQTE 3 Regarding TPM_-PT2REVISION, for this International Standard, the Revision is 1.07.

EXYAMPLE 2 Regarding.. TPM_PT_DAY_OF_YEAR, November 15, 2010, has a day of year value of 319

NQTE 4 Regafding TPM_PT_DAY_OF_YEAR, the date is on the title page of this International Standard.
EYAMPLE 3 Regarding TPM_PT_YEAR, the year 2010 has a value of 00 00 07 DAs.

NOQTE 5 Regarding TPM_PT_YEAR, the date is on the title page of this International Standard.

NQTE 6 Regarding TPM_PT_VENDOR_STRING_1, when the vendor string is fewer than 16 octets, the

additional property values do not have to be present. A vendor string of 4 octets can be represented

in

one 32-bit value and no null terminating character is required.

NOTE 7 Regarding TPM_PT_HR_TRANSIENT_MIN, this minimum will be no less than the minimum value
required by the platform-specific specification to which the TPM is built.

NOTE 8 Regarding TPM_PT_HR_PERSISTENT_MIN, this minimum will be no less than the minimum value
required by the platform-specific specification to which the TPM is built.

NOTE 9 Regarding TPM_PT_HR_LOADED_MIN, this minimum will be no less than the minimum value required
by the platform-specific specification to which the TPM is built.

46 © ISO/IEC 2015 — All rights reserved

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(

E)

Capability Name

Value Comments

NOTE 10

Regarding TPM_PT_ACTIVE_SESSIONS_MAX, this value will be no less than the minimum val
required by the platform-specific specification to which the TPM is built.

ue

NOTE 11 Regarding TPM_PT_PCR_COUNT, this number is determined by the defined attributes, not the number
of PCR that are populated.

NOTE 12 Regarding TPM_PT_PCR_SELECT_MIN, this value is not determined by the number of PCR
implemented but by the number of PCR required by the platform-specific specification with which the
TPM is compliant or by the implementer if not adhering to a platform-specific specification.

NQTE 13 Regarding TPM_PT_NV_COUNTERS_MAX, it is possible for this value to be larger than the number|of
NV Indexes that can be defined. This would be indicative of a TPM implementation that did_not-Use
different implementation technology for different NV Index types.

NQTE 14 Regarding TPM_PT_ORDERLY_COUNT, an “orderly counter” is an N\, lIndex ith
TPMA_NV_COUNTER and TPMA_NV_ORDERLY both SET.

NOQTE 15 Regarding TPM_PT_ORDERLY_COUNT, when the low-order bits of a counteryequal this value, an NV
write occurs on the next increment.

NQTE 16 Regarding TPM_PT_PS_FAMILY_INDICATOR, the platform-specific\\values for the TPM_PT_PS
parameters are in the relevant platform-specific specification. In thé teference implementation, all|of
these values are 0.

NQTE 17 Regarding TPM_PT_HR_LOADED_AVAIL, a valid implementation might return 1 even if more than one
authorization session would fit into RAM.

NQTE 18 Regarding TPM_PT_HR_ACTIVE_AVAIL, a valid implementation might return 1 even if more than one
authorization session could be created.

NQTE 19 Regarding TPM_PT_HR_TRANSIENT_AVAIL, ‘@ valid implementation might return 1 even if more than
one transient object would fit into RAM.

NQTE 20 Regarding TPM_PT_HR_PERSISTENTZAVAIL, a valid implementation might return 1 even if more thfan
one persistent object would fit into N\VL memory.

NQTE 21 Regarding TPM_PT_NV_COUNTERS_AVAIL, a valid implementation might return 1 even if more thian
one NV counter could be defined.

© ISO/IEC 2015 — All rights reserved 47

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

7.14 TPM_PT_PCR (PCR Property Tag)

The TPM_PT_PCR constants are used in TPM2_GetCapability() to indicate the property being selected
or returned. The PCR properties can be read when capability == TPM_CAP_PCR_PROPERTIES.

Table 24 — Definition of (UINT32) TPM_PT_PCR Constants <IN/OUT, S>

Capability Name

Value

Comments

TPM_PT_PCR_FIRST

0x00000000

bottom of the range of TPM_PT_PCR properties

TH

M_PT_PCR_SAVE

0x00000000

a SET bit in the TPMS_PCR_SELECT indicates that the PCRi

saved and restored by TPM_SU_STATE

TH

M_PT_PCR_EXTEND_LO

0x00000001

a SET bit in the TPMS_PCR_SELECT indicates that/the P(
may be extended from locality O

This property is only present if a localityCether than 0
implemented.

LR

is

TH

M_PT_PCR_RESET LO

0x00000002

a SET bit in the TPMS_PCR_SELECT indicates that the P(
may be reset by TPM2_PCR_Resei()froam locality 0

LR

TH

M_PT_PCR_EXTEND_L1

0x00000003

a SET bit in the TPMS_PCR_SELECT indicates that the P(
may be extended from locality:1

This property is only present if locality 1 is implemented.

LR

TH

M_PT_PCR_RESET L1

0x00000004

a SET bit in the TPMS_PCR_SELECT indicates that the P(
may be reset by TRM2" PCR_Reset() from locality 1

This property is only present if locality 1 is implemented.

LR

TH

M_PT_PCR_EXTEND_L2

0x00000005

a SET bit incthe TPMS_PCR_SELECT indicates that the P(
may be extended from locality 2

This property is only present if localites 1 and 2 3
implémented.

LR

TH

M_PT_PCR_RESET L2

0x00000006

a\SET bit in the TPMS_PCR_SELECT indicates that the P(
may be reset by TPM2_PCR_Reset() from locality 2

This property is only present if localites 1 and 2 4
implemented.

TH

M_PT_PCR_EXTEND_L3

0x00000007

a SET bit in the TPMS_PCR_SELECT indicates that the P(
may be extended from locality 3

This property is only present if localities 1, 2, and 3 &
implemented.

TH

M_PT_PCR_RESET (3

0x00000008

a SET bit in the TPMS_PCR_SELECT indicates that the P(
may be reset by TPM2_PCR_Reset() from locality 3

This property is only present if localities 1, 2, and 3 3
implemented.

TH

M_PT_PCR) EXTEND_L4

0x00000009

a SET bit in the TPMS_PCR_SELECT indicates that the P(
may be extended from locality 4

This property is only present if localities 1, 2, 3, and 4 4

implemented.

TPM_PT_PCR_RESET L4

0x0000000A

a SET bit in the TPMS_PCR_SELECT indicates that the PCR

may be reset by TPM2_PCR_Reset() from locality 4

This property is only present if localities 1, 2, 3, and 4 are

implemented.

48

© ISO/IEC 2015 — All rights reserv

ed

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

Capability Name Value Comments
reserved 0x0000000B —| the values in this range are reserved
0x00000010 They correspond to values that may be used to describe

attributes associated with the extended localities (32-
255).synthesize additional software localities. The meaning of
these properties need not be the same as the meaning for the
Extend and Reset properties above.

TPM_PT_PCR_NO_INCREMENT | 0x00000011 |a SET bit in the TPMS_PCR_SELECT indicates that
modifications to this PCR (reset or Extend) will not increment
the pcrUpdateCounter

TRM_PT_PCR_DRTM_RESET 0x00000012 |a SET bit in the TPMS_PCR_SELECT indicates that the.PCR is
reset by a D-RTM event
These PCR are reset to -1 on TPM2_Startup() and reset to 0 pn
a _TPM_Hash_End event following a _TPM_Hash_Start everft.

TRM_PT_PCR_POLICY 0x00000013 |a SET bit in the TPMS_PCR_SELECT indicates that the PCRis
controlled by policy
This property is only present if the TRM supports policy contfol
of a PCR.

TRM_PT_PCR_AUTH 0x00000014 |a SET bit in the TPMS_PCR /SELECT indicates that the PCRis
controlled by an authorization value
This property is only present if the TPM supports authorizatipn
control of a PCR.

regerved 0x00000015 |reserved for the next (2”d) TPM_PT_PCR_POLICY set

reserved 0x00000016 |reserved for.thenext (2”“) TPM_PT_PCR_AUTH set

referved 0x00000017 — | reserved.far the 2™ through 255™ TPM_PT_PCR_POLICY ahd

0x00000210 |[TPM_PT: PCR_AUTH values

regerved 0x00000211 |reserved to the 256“1, and highest allowed,
TPM_PT_PCR_POLICY set

regerved 0x00000212>1 reserved to the 256", and highest allowed,
TPM_PT_PCR_AUTH set

regserved 0x00000213 [new PCR property values may be assigned starting with this
value

TRM_PT_PCR_LAST 0x00000014 |top of the range of TPM_PT_PCR properties of the
implementation
If the TPM receives a request for a PCR property with a valpe
larger than this, the TPM will return a zero length list and set the
moreData parameter to NO.

NOTE Regarding TPM_PT_PCR_LAST, this is an implementation-specific value. The value shown reflects the

reference code implementation.
© ISO/IEC 2015 — All rights reserved 49

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

7.15 TPM_PS (Platform Specific)

The platform values in Table 25 are used for the TPM_PT_PS FAMILY_INDICATOR.

Table 25 — Definition of (UINT32) TPM_PS Constants <OUT>

Capability Name Value Comments
TPM_PS_MAIN 0x00000000 | not platform specific
TPM_PS_PC 0x00000001 | PC Client
TRM_PS_PDA 0x00000002 |PDA (includes all mobile devices that are not specifically_gell
phones)
TRM_PS_CELL_PHONE 0x00000003 | Cell Phone
TRM_PS_SERVER 0x00000004 | Server WG
TRM_PS_PERIPHERAL 0x00000005 | Peripheral WG
TRM_PS_TSS 0x00000006 |TSS WG
TRM_PS_STORAGE 0x00000007 | Storage WG
TRM_PS_AUTHENTICATION 0x00000008 | Authentication WG
TRM_PS_EMBEDDED 0x00000009 |Embedded WG
TRM_PS_HARDCOPY 0x0000000A |Hardcopy WG
TRM_PS_INFRASTRUCTURE 0x0000000B | Infrastructure WG
TRM_PS_VIRTUALIZATION 0x0000000C | Virtualization \WWG
TRM_PS_TNC 0x0000000D | Trusted\Néetwork Connect WG
TRM_PS_MULTI_TENANT 0x0000000E | Multistenant WG
TRM_PS_TC 0x0000000F |-Technical Committee

NOQTE

Values below six (6) have thexsame values as the purview assignments in ISO/IEC 11889 (first edition).

50

© ISO/IEC 2015 — All rights reserved

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

8

Handles

8.1 Introduction

ISO/IEC 11889-2:2015(E)

Handles are 32-bit values used to reference shielded locations of various types within the TPM.

Table 26 — Definition of Types for Handles

Tylpe Name Description
UINT32 TPM_HANDLE
Handles may refer to objects (keys or data blobs), authorization sessions (HMAC and policy), NV

Ing

8.3

Th

exes, permanent TPM locations, and PCR.

TPM_HT (Handle Types)

b 32-bit handle space is divided into 256 regions of equal size with 2** yalues in each. Each of thése

ranges represents a handle type.

The type of the entity is indicated by the MSO of its handle. The yalues for the MSO and the enfity

referenced are shown in Table 27.

Table 27 — Definition of (UINT8) TPM: HT Constants <S>

Name Value Comments

TRM_HT_PCR 0x00 PCR - consecutive numbers, starting at 0, that reference the PQR
registers
A platform-specific specification will set the minimum number of PQR
and’an implementation may have more.

TRM_HT_NV_INDEX 0x01 NV Index — assigned by the caller

TRM_HT_HMAC_SESSION 0x02 HMAC Authorization Session — assigned by the TPM when the
session is created

TRM_HT_LOADED_SESSION ([0x02 Loaded Authorization Session — used only in the context pf
TPM2_GetCapability
This type references both loaded HMAC and loaded poligy
authorization sessions.

TRM_HT_POLICY /SESSION 0x03 Policy Authorization Session — assigned by the TPM when the
session is created

TRM_HT_ACTIVE_SESSION 0x03 Active Authorization Session — used only in the context pf
TPM2_GetCapability
This type references saved authorization session contexts for whig¢h
the TPM is maintaining tracking information.

TPM_HT_PERMANENT 0x40 Permanent Values — assigned by this part of ISO/IEC 11889 in
Table 28

TPM_HT_TRANSIENT 0x80 Transient Objects — assigned by the TPM when an object is loaded
into transient-object memory or when a persistent object is converted
to a transient object

TPM_HT_PERSISTENT 0x81 Persistent Objects — assigned by the TPM when a loaded transient

object is made persistent

© ISO/IEC 2015 — All rights reserved

51

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

When a transient object is loaded, the TPM shall assign a handle with an MSO of TPM_HT_TRANSIENT.
The object may be assigned a different handle each time it is loaded. The TPM shall ensure that handles
assigned to transient objects are unique and assigned to only one transient object at a time.

EXAMPLE 1

those objects with the values 80 00 00 00,5 — 80 00 00 036.

If a TPM is only able to hold 4 transient objects in internal memory, it might choose to assign handles to

When a transient object is converted to a persistent object (TPM2_EvictControl()), the TPM shall validate
that the handle provided by the caller has an MSO of TPM_HT_PERSISTENT and that the handle is not
already assigned to a persistent object.

A
T
T
is |

EX

8.3

Pe
Au
se
ha

NO

Th
the
ou

handle is assigned to a session when the session is started. The handle shall have an MSO equal
M_HT_SESSION and remain associated with that session until the session is closed or flushed: T
M shall ensure that a session handle is only associated with one session at a time. When_the-sess
paded into the TPM using TPM2_LoadContext(), it will have the same handle each time it isloaded.

ANMPLE 2 If a TPM is only able to track 64 active sessions at a time, it could number those sessions using
values xx 00 01 00,6 — xx 00 01 3F;5 where xx is either 02,5 or 03;5 depending on.the session type.

Persistent Handle Sub-ranges

rsistent handles are assigned by the caller of TPM2_EvictControl(). \OWwner Authorization or Platfg
thorization is required to authorize allocation of space for a persistent object. These entities are giy
barate ranges of persistent handles so that they do not have¢to allocate from a common range,
ndles.

TE While this “namespace” allocation of the handle ranges could have been handled by convention, T
enforcement is used to prevent errors by the OS ot malicious software from affecting the platform’s us
the NV memory.

e Owner is allocated persistent handles in the range of 81 00 00 00,4 to 81 7F FF FFy4 inclusive 3
TPM will return an error if Owner Authorization is used to attempt to assign a persistent han
side of this range.

to
he
on

the

rm
en
of

PM
b of

nd
dle

52

© ISO/IEC 2015 — All rights reserved

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

8.4 TPM_RH (Permanent Handles)

Table 28 lists the architecturally defined handles that cannot be changed. The handles include
authorization handles, and special handles.

Table 28 — Definition of (TPM_HANDLE) TPM_RH Constants <S>

Name Value Type |Comments
TPM_RH_FIRST 0x40000000 R
TRM_RH_SRK 0x40000000 R not used
TAM RH OWNER 0x40000001 | K, A, P handle references the Storage Primary Seed (SPS), the
- - ownerAuth, and the ownerPolicy
TRM_RH_REVOKE 0x40000002 R not used
TRM_RH_TRANSPORT 0x40000003 R not used
TRM_RH_OPERATOR 0x40000004 R not used
TRM_RH_ADMIN 0x40000005 R not used
TRM_RH_EK 0x40000006 R not used
TAM RH NULL 0x40000007 | K, A, P a handle associated with the_null h|erar<_:hy, an EmptyAyth
- - authValue, and an Empty Policy authPolicy.
TAM RH UNASSIGNED 0x40000008 R value reserve_d to the TPM to |_nd|cate a handle location that
- = has not been.initialized or assigned
TBM RS PW 0x40000009 s author!zat!on val_ue used to indicate a passwqrd
- = authorization session
TAM RH LOCKOUT Ox4000000A A references the authorization associated with the dictiongry
- = attack lockout reset
THM RH ENDORSEMENT | 0x4000000B | K A P references the Endorsement Prlma_lry Seed (EPY),
- - endorsementAuth, and endorsementPolicy
TAM RH PLATFORM 0x4000000G P K, A, P references the F_’Iatform Primary Seed (PPS), platformAuth,
- = and platformPolicy
TRM_RH_PLATFORM_NV | 0x4000000D C for phEnableNV
Start of a range of authorization values that are vendpr-
specific. A TPM may support any of the values in this range
THM_RH_AUTH_00 0x40000010 A as are needed for vendor-specific purposes.
Disabled if ehEnable is CLEAR.
TRM_RH_AUTH_EF 0x4000010F A End of the range of vendor-specific authorization values.

© ISO/IEC 2015 — All rights reserved

53

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

IS

O/IEC 11889-2:2015(E)

Name Value Type |Comments

the top of the reserved handle area

TPM RH LAST 0x4000010F R This is set to allow TPM2_GetCapability() to know where to
-~ stop. It may vary as implementations add to the permanent
handle area.
Type definitions:
R — a reserved value
K —a Primary Seed
A an-authorizationvalue.
P — a policy value
S — a session handle
C - a control
NQTE 1 The handles TPM_RH_SRK, TPM_RH_REVOKE, TPM_RH_TRANSPORT, TPM~RH_OPERATQR,
TPM_RH_ADMIN and TPM_RH_EK, are only used in a TPM that is compatible withCISO/IEC 11889 (fifst
edition). It is not used in any command defined in this International Standard.
NOQTE 2 Regarding the values a TPM supports for TPM_RH_AUTH_00, “any” includes_“hone”.

8.% TPM_HC (Handle Value Constants)

Th

Th
the

HN
LG
TR
PQ

Th
PE
NV

NO

Fo
se
all

A
de
va

e definitions in Table 29 are used to define many of the interface)data types.

pse values, that indicate ranges, are informative and may-be changed by an implementation as long
values stay within the prescribed ranges for the handletype:

R_LAST

pse values are input by the caller. The.TPM implementation should support the entire range"

5sion handle. The_highest value for a session handle is determined by how many active sessions
bwed by the implementation. The MSO of the session handle will be set according to the session typ

Similar approach is used for transient objects with the first assigned handle at the bottom of the rar
ined by TPM_HT_TRANSIENT and the top of the range determined by the implementation-depend
ue of MAX” LOADED_OBJECTS.

Th
T

P _first' assigned handle for evict objects is also at the bottom of the allowed range defined

as

IAC_SESSION_FIRST, HMAC_SESSION-LAST, LOADED_SESSION_FIR$T,
ADED_SESSION_LAST, POLICY_SESSION_FIRST, POLICY_SESSION_LAST,
ANSIENT_FIRST, TRANSIENT LAST, ACTIVE_SESSION_FIRST, ACTIVE_SESSION_LA$T,

RSISTENT_FIRST, PERSISTENT_LAST, PLATFORM_PERSISTENT, NV_INDEX_FIR$T,
_INDEX_LAST, PERMANENT_FIRST, PERMANENT_LAST

TE 1 PCRO is architectutally intended to have a handle value of 0.

I the reference implementation, the handle range for sessions starts at the lowest allowed value fo

r a
pre

D

ge
PNt

by

M-HT_PERSISTENT and the t f the range determined by the implementation-dependent valu

MAX_EVICT_OBJECTS.

NO

54

TE 2

of

The values in Table 29 are intended to facilitate the process of making the handle larger than 32 bits in

the future. It is intended that HR_MASK and HR_SHIFT are the only values that need change to resize

the handle space.

© ISO/IEC 2015 — All rights reserv

ed

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

Table 29 — Definition of (TPM_HANDLE) TPM_HC Constants <S>

Name Value Comments

HR_HANDLE_MASK OXO0FFFFFF to mask off the HR

HR_RANGE_MASK 0xFF000000 to mask off the variable
part

HR_SHIFT 24

HR_PCR (TPM_HT_PCR << HR_SHIFT)

HR_AMAC_SESSION (TPM_HT_HMAC_SESSION << HR_SHIFT)

HR POLICY_SESSION (TPM_HT_POLICY_SESSION << HR_SHIFT)

HR_TRANSIENT (TPM_HT_TRANSIENT << HR_SHIFT)

HR PERSISTENT (TPM_HT_PERSISTENT << HR_SHIFT)

HR_NV_INDEX (TPM_HT_NV_INDEX << HR_SHIFT)

HR_PERMANENT (TPM_HT_PERMANENT << HR_SHIFT)

PCR_FIRST (HR_PCR +0) first PCR

PCGR_LAST (PCR_FIRST + IMPLEMENTATION_PCR-1) last PCR

HMAC_SESSION_FIRST |(HR_HMAC_SESSION + 0) first HMAC session

HMAC_SESSION_LAST (HMAC_SESSION_FIRST+MAX_ACTIVE_SESSIONS-1) |last HMAC session

LOADED_SESSION_FIRST [HMAC_SESSION_FIRST used in GetCapability

LOADED_SESSION_LAST |HMAC_SESSION_LAST used in GetCapability

PQLICY_SESSION_FIRST [(HR_POLICY_SESSION + 0) first policy session

POLICY_SESSION_LAST |(POLICY_SESSION_FIRST.\+ MAX_ACTIVE_SESSIONS-1) | last policy session

TRANSIENT_FIRST (HR_TRANSIENT + 0) first transient object

AQTIVE_SESSION_FIRST [POLICY_SESSIONMFIRST used in GetCapability

ACTIVE_SESSION_LAST |POLICY_SESSION_LAST used in GetCapability

TRIANSIENT _LAST (TRANSIENT FIRST+MAX_LOADED_OBJECTS-1) last transient object

PERSISTENT_FIRST (HR_PERSISTENT + 0) first persistent object

PERSISTENT_LAST (PERSISTENT_FIRST + OX00FFFFFF) last persistent object

PLATFORM_PERSISTENT\ (A{PERSISTENT_FIRST + 0x00800000) first platform persistent
object

NV _INDEX FIRST (HR_NV_INDEX + 0) first allowed NV Index

NV INDEX_LAST (NV_INDEX_FIRST + OX00FFFFFF) last allowed NV Index

PERMANENT.YFIRST TPM_RH_FIRST

PERMANENT LAST TPM_RH_LAST

© ISO/IEC 2015 — All rights reserved 55

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

9

Attribute Structures

9.1 Description

Attributes are expressed as bit fields of varying size. An attribute field structure may be 1, 2, or 4 octets in

len

gth.

The bit numbers for an attribute structure are assigned with the number 0 assigned to the least-significant

bit[of the structure and the highest number assigned to the most-significant bit of the structure.
The least significant bit is determined by treating the attribute structure as an integer. The least-significpnt
bitjwould be the bit that is set when the value of the integer is 1.
When any reserved bit in an attribute is SET, the TPM shall return TPM_RC_RESERVED “BITS. This
regponse code is not shown in the tables for attributes.
9.2 TPMA_ALGORITHM
This structure defines the attributes of an algorithm.
Each algorithm has a fundamental attribute: asymmetric, symmetrig¢, “or hash. In some cases (e|g.,
TF]:/I_ALG_RSA or TPM_ALG_AES), this is the only attribute.
A mode, method, or scheme may have an associated asymmetri¢, symmetric, or hash algorithm.
Table 30 — Definition of (UINT32) TRMA_ALGORITHM Bits
Bit | Name Definition
0 asymmetric SET (1): an asymmetric algorithm with public and private portions
CLEAR (0): not.anasymmetric algorithm
1 |symmetric SET (1): a symmetric block cipher
CLEAR (0)7 not a symmetric block cipher
2 |hash SET\(1): a hash algorithm
CLEAR (0): not a hash algorithm
3 object SET (1): an algorithm that may be used as an object type
CLEAR (0): an algorithm that is not used as an object type
T:4 |Reserved
8 signing SET (1): a signing algorithm. The setting of asymmetric, symmetric, and hash
will indicate the type of signing algorithm.
CLEAR (0): not a signing algorithm
9 encrypting SET (1): an encryption/decryption algorithm. The setting of asymmetiic,
symmetric, and hash will indicate the type of encryption/decryption algorithm.
CLEAR (0): not an encryption/decryption algorithm
10 | method SET (1): a method such as a key derivative function (KDF)
CLEAR (0): not a method
31:11 |Reserved

9.3 TPMA_OBJECT (Object Attributes)

9.3.1 Introduction

56

© ISO/IEC 2015 — All rights reserved

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(

E)

This attribute structure indicates an object’s use, its authorization types, and its relationship to other

objects.

The state of the attributes is determined when the object is created and they are never changed by the
TPM. Additionally, the setting of these structures is reflected in the integrity value of the private area of an
object in order to allow the TPM to detect modifications of the Protected Object when stored off the TPM.

9.3.2

Structure Definition

Iable o1 — Dertinition of (UINTsZ) TPFMA_UBJECUT BITS

Bit

Name

Definition

Reserved

shall be zero

fixedTPM

SET (1): The hierarchy of the object, as indicated by its Qualified Name, m|
not change.

CLEAR (0): The hierarchy of the object may change as a.result of this object
an ancestor key being duplicated for use in another hjerarchy.

stClear

SET (1): Previously saved contexts of this object/may not be loaded af
Startup(CLEAR).

CLEAR (0): Saved contexts of this« dbject
Shutdown(STATE) and subsequent Startup().

may be used after

Reserved

shall be zero

fixedParent

SET (1): The parent of the objectmay not change.

CLEAR (0): The parent of\the object may change as the result of
TPM2_Duplicate() of the object.

sensitiveDataOrigin

SET (1): Indicates that\when the object was created with TPM2_Create()
TPM2_CreatePrimary(), the TPM generated all of the sensitive data other th
the authValue.

CLEAR (0): A-portion of the sensitive data, other than the authValue, W
provided by:the caller.

userWithAuth

SET (1) Approval of USER role actions with this object may be with an HMA
sessionv'or with a password using the authValue of the object or a pol
session.

CLEAR (0): Approval of USER role actions with this object may only be do
with a policy session.

adminWithPolicy

SET (1): Approval of ADMIN role actions with this object may only be done w
a policy session.

CLEAR (0): Approval of ADMIN role actions with this object may be with
HMAC session or with a password using the authValue of the object or a pol
session.

Reserved

shall be zero

10

neDA

SET (1): The object is not subject to dictionary attack protections.
CLEAR (0): The object is subject to dictionary attack protections.

encryptedbuplication

SET (I)7 It the object 1S duplicated, then SymmetricAlg shall not
TPM_ALG_NULL and newParentHandle shall not be TPM_RH_NULL.

CLEAR (0): The object may be duplicated without an inner wrapper on t
private portion of the object and the new parent may be TPM_RH_NULL.

e

he

15:12

Reserved

shall be zero

16

restricted

SET (1): Key usage is restricted to manipulate structures of known format; t
parent of this key shall have restricted SET.

CLEAR (0): Key usage is not restricted to use on special formats.

he

© ISO/IEC 2015 — All rights reserved

57

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

Bit |[Name Definition
17 |decrypt SET (1): The private portion of the key may be used to decrypt.
CLEAR (0): The private portion of the key may not be used to decrypt.
18 |sign SET (1): The private portion of the key may be used to sign.
CLEAR (0): The private portion of the key may not be used to sign.
31:19 |Reserved shall be zero

9.3.3 Attribute Descriptions

9.3.3.1 Introduction

The following remaining paragraphs in clause 9.3.3 describe the use and settings (for’ each of the
TRAMA_OBJECT attributes. The description includes checks that are performed on the objectAttribufes

when an object is created, when it is loaded, and when it is imported. In these descriptions:

Creation -

Lojad -

Import

External

NO[TE

For any consistency error of attributes in TPMA_OBJECT, the TPM shall return TPM_RC_ATTRIBUTEE.

9.3.3.2 Bit[1] - fixedTPM

indicates settings for the template parameter 4dn >~ TPM2_Create() |or
TPM2_CreatePrimary()

indicates settings for the inPublic parameter in TPM2_Load()
indicates settings for the objectPublic parameter in TRM2_Import()

indicates settings that apply to the inPublic parameter in TPM2_LoadExternal() if both the
public and sensitive portions of the object are loaded

For TPM2_LoadExternal() when only the public_portion of the object is loaded, the only attribute checks
are the checks in the validation code following-Table 31 and the reserved attributes check.

When SET, the object cannot be duplicated for use on a different TPM, either directly or indirectly and the
Qyalified Name of the object cannet change. When CLEAR, the object’s Qualified Name may changg if

thg object or an ancestor is duplicated.

NQTE 1 This attribute\is/the logical inverse of the migratable attribute in ISO/IEC 11889 (first edition). Tha is,
when this @ttribute is CLEAR, it is the equivalent to an ISO/IEC 11889 (first edition) object with migratgble
SET.

Creation — If<fixedTPM is SET in the object's parent, then fixedTPM and fixedParent shall both [be
sét to the same value in template. If fixedTPM is CLEAR in the parent, this attribute shall
also be CLEAR in template.

NOTE 2 For a Primary Object, the parent is considered to have fixedTPM SET.

Lo&d H-fixed-PM-s-SETnthe-objects—parent—thenfixedFPM-anddixedParent-shal-beth-be
set to the same value. If fixedTPM is CLEAR in the parent, this attribute shall also be
CLEAR.

Import — shall be CLEAR

External — shall be CLEAR if both the public and sensitive portions are loaded or if fixedParent is
CLEAR, otherwise may be SET or CLEAR

58 © ISO/IEC 2015 — All rights reserved

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

9.3.3.3 Bit[2] — stClear

If this attribute is SET, then saved contexts of this object will be invalidated on
TPM2_Startup(TPM_SU_CLEAR). If the attribute is CLEAR, then the TPM shall not invalidate the saved
context if the TPM received TPM2_Shutdown(TPM_SU_STATE). If the saved state is valid when checked
at the next TPM2_Startup(), then the TPM shall continue to be able to use the saved contexts.

Creation — may be SET or CLEAR in template
Load — may be SET or CLEAR
Import — may be SET or CLEAR
External — may be SET or CLEAR

9.3.3.4 Bit[4] — fixedParent

If this attribute is SET, the object’s parent may not be changed. That is, this object maynot be the objpct
of|a TPM2_Duplicate(). If this attribute is CLEAR, then this object may- be the object of| a
TRAM2_Duplicate().

Crpation — may be SET or CLEAR in template

Lopd — may be SET or CLEAR

Import — shall be CLEAR

External — shall be CLEAR if both the public and sensitive)partions are loaded; otherwise it may|be

SET or CLEAR

9.3.3.5 Bit[5] — sensitiveDataOrigin

This attribute is SET for any key that ¢was generated by TPM in TPM2_ Create() |or
TRAM2_CreatePrimary(). If CLEAR, it indicates: that the sensitive part of the object (other than the
objuscation value) was provided by the callet:

NQTE 1 If the fixedTPM attribute i5.SET, then this attribute is authoritative and accurately reflects the sourcg of
the sensitive area data\ Iff the fixedTPM attribute is CLEAR, then validation of this attribute requfres
evaluation of the properties of the ancestor keys.

Creation — If inSensitive.sensitive.data.size is zero, then this attribute shall be SET in the template;
otherwise,.it'shall be CLEAR in the template.

NQ[TE 2 The jnSensitive.sensitive.data.size parameter will be zero for an asymmetric key so sensitiveDataOr|gin
will-be_SET.

NO[TE 3 The inSensitive.sensitive.data.size parameter might not be zero for a data object so sensitiveDataOr|gin
needs to be CLEAR. A data object has type = TPM_ALG_KEYEDHASH and its sign and decrypt attribltes
are CLEAR.

Lopd — may be SET or CLEAR

Import — may be SET or CLEAR

External — may be SET or CLEAR

© ISO/IEC 2015 — All rights reserved 59

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

9.3.3.6

Bit[6] — userWithAuth

If SET, authorization for operations that require USER role authorization may be given if the caller
provides proof of knowledge of the authValue of the object with an HMAC authorization session or a

password.

If this attribute is CLEAR, then HMAC or password authorizations may not be used for USER role

authorizations.

NOTE 1 Regardless of the setting of this attribute, authorizations for operations that require USER role
autharizations can ho prn\lirlnrl with g pnlin\ll session that satisfios tho r\hlionr‘e Qllthnlir‘\ll

NO[TE 2 Regardless of the setting of this attribute, the authValue can be referenced in a policy session er_ used to
provide the bind value in TPM2_StartAuthSession(). However, if userWithAuth is CLEAR, then the oblect
can be used as the bind object in TPM2_StartAuthSession() but the session cannot be used to”authofize
actions on the object. If this were allowed, then the userWithAuth control could be circumyented simply by
using the object as the bind object.

Crpation — may be SET or CLEAR in template

Lopd — may be SET or CLEAR

Import — may be SET or CLEAR

External — may be SET or CLEAR

9.3.3.7 Bit[7] —adminWithPolicy

If CLEAR, authorization for operations that require ADMIN raole:may be given if the caller provides proof of

knpwledge of the authValue of the object with an HMAC authorization session or a password.

If this attribute is SET, then then HMAC or password. authorizations may not be used for ADMIN rple

authorizations.

NQTE 1 Regardless of the setting of this_attribute, operations that require ADMIN role authorization can|be
provided by a policy session thatvsatisfies the object's authPolicy.

NQ[TE 2 This attribute is similar to.userWithAuth but the logic is a bit different. When userWithAuth is CLEAR, |the
authValue cannot be used)for USER mode authorizations. When adminWithPolicy is CLEAR, it megns
that the authValue can be used for ADMIN role. Policy can always be used regardless of the setting of
userWithAuth or adminWithPolicy.

Actions that always require policy (TPM2_Duplicate()) are not affected by the setting of this attribute.

Crpation — may beSET or CLEAR in template

Lofd — maybe SET or CLEAR

Import — «.may be SET or CLEAR

External </ may be SET or CLEAR

9.3.3:8" Bit[10] — noDA

If SET, then authorization failures for the object do not affect the dictionary attack protection logic and
authorization of the object is not blocked if the TPM is in lockout.

Creation

Lo

Import

Ex

60

ad

ternal

may be SET or CLEAR in template
may be SET or CLEAR
may be SET or CLEAR
may be SET or CLEAR

© ISO/IEC 2015 — All rights reserved

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

9.3.3.9

ISO/IEC 11889-2:2015(E)

Bit[11] — encryptedDuplication

If SET, then when the object is duplicated, the sensitive portion of the object is required to be encrypted
with an inner wrapper and the new parent shall be an asymmetric key and not TPM_RH_NULL

NO

TE1

Enforcement of these requirements in TPM2_Duplicate() is by not allowing symmetricAlg to
TPM_ALG_NULL and not allowing newParentHandle to be TPM_RH_NULL.

This attribute shall not be SET in any object that has fixedTPM SET.

be

N

NO

Cr

Lo

Im

EXx

9.3

Th

NO

Cr
Lo

Im

| =v4

TE 3

TE 4

pation

ad

port

ternal

TE

pation
ad
port

EX

ternal

TS TEqUITEMEnt means that encrypredDupiicaton canmnot De SET 1f e ODJect canmot De diTecty
indirectly duplicated.

hn object's parent has fixedTPM SET, and the object is duplicable (fixedParent == CLEAR), th
CryptedDuplication may be SET or CLEAR in the object.

This allows the object at the boundary between duplicable and non-duplicable objects to have eif
setting.

hn object's parent has fixedTPM CLEAR, then the object is required to ©have the same setting
CryptedDuplication as its parent.

This requirement forces all duplicable objects in a duplication group to have the s§g
encryptedDuplication setting.

shall be CLEAR if fixedTPM is SET. If fixedTPM.is CLEAR, then this attribute shall ha
the same value as its parent unless fixedTPM is SET in the object's parent, in wh
case, it may be SET or CLEAR.

shall be CLEAR if fixedTPM is SET. If fixedTPM is CLEAR, then this attribute shall ha
the same value as its parent, unless fixedTPM is SET the parent, in which case, it n
be SET or CLEAR.

if fixedTPM is SET in the object's new parent, then this attribute may be SET or CLEA
otherwise, it shall have the same setting as the new parent.

may be SET or CLEAR;

.3.10 Bit[16] — restricted

s this attribute modifies the’decrypt and sign attributes of an object.

A key.with/this object CLEAR cannot be a parent for another object.

shall be CLEAR in template if neither sign nor decrypt is SET in template.
shall be CLEAR if neither sign nor decrypt is SET in the object
may be SET or CLEAR

or

her

of

me

Ve
ch

lve
ay

Ra

shall be CLEAR

© ISO/IEC 2015 — All rights reserved

61

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

9.3.3.11 Bit[17] — decrypt

When SET, the private portion of this key can be used to decrypt an external blob. If restricted is SET,
then the TPM will return an error if the external decrypted blob is not formatted as appropriate for the
command.

NOTE 1 Since TPM-generated keys and sealed data will contain a hash and a structure tag, the TPM can ens
that it is not being used to improperly decrypt and return sensitive data that ought not be returned. The
only type of data that can be returned after decryption is a Sealed Data Object (a keyedHash object with

decrypt and sign CLEAR).

Wi||en restricted is CLEAR, there are no restrictions on the use of the private portion of the key

de
the

NO|
If g
Xd
Cr
Lo
Im

Ex

9.3

Cryption and the key may be used to decrypt and return any structure encrypted by the public portior]
key.
TE 2 A key with this attribute SET can be a parent for another object if restricted is SET and-sigh is CLEAR.
ecrypt is SET on an object with type set to TPM_ALG_KEYEDHASH, it indicates.that the object is
R encryption key.
pation — may be SET or CLEAR in template
ad — may be SET or CLEAR
port — may be SET or CLEAR
ternal — may be SET or CLEAR

.3.12 Bit[18] — sign

When this attribute is SET, the private portion of this'key may be used to sign a digest. If restricted

SH
ke

T, then the key may only be used to sign a digestithat was computed by the TPM. A restricted sign
may be used to sigh a TPM-generated digestdf a structure is generated by the TPM, it will begin w

ure

for
of

an

is
ng
ith

TAM_GENERATED_VALUE and the TPM may sign the digest of that structure. If the data is externally

su
thd

ex

NO

If 4
HN

NO

Cr
Lo

bplied and has TPM_GENERATED_VALUE as its first octets, then the TPM will not sign a digest
t data with a restricted signing key.

If rlestricted is CLEAR, then the key may be used to sign any digest, whether generated by the TPM
e

rnally provided.

TE 1 Some asymmetric algorithms might not support both sign and decrypt being SET in the same key.

ign is SET on an gbject with type set to TPM_ALG_KEYEDHASH, it indicates that the object is

of

or

an

Im
Ex

62

IAC key.
TE 2 A Key with this attribute SET cannot be a parent for another object.
pation<—=" shall not be SET if decrypt and restricted are both SET
ad — shall not be SET if decrypt and restricted are both SET
port— = staftmotbe SET if decryptand Testricted are potiT SET
ternal — shall not be SET if decrypt and restricted are both SET
© ISO/IEC 2015 — All rights reserved

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

9.4 TPMA_SESSION (Session Attributes)

This octet in each session is used to identify the session type, indicate its relationship to any handles in
the command, and indicate its use in parameter encryption.

Table 32 — Definition of (UINT8) TPMA_SESSION Bits <IN/OUT>

Bit | Name Meaning

0 continueSession SET (1): In a command, this setting indicates that the session is to remain active
after successfutcompteti - —t—rTo
session is still active. If SET in the command, this attribute shall be SET ,in/t
response.

CLEAR (0): In a command, this setting indicates that the TPM should close the
session and flush any related context when the command completes successfully. In
a response, it indicates that the session is closed and the context is po-longer active.

This attribute has no meaning for a password authorization and ‘the” TPM will allgw
any setting of the attribute in the command and SET the attribute in the response.

This attribute will only be CLEAR in one response for a logi¢alysession. If the attribufe
is CLEAR, the context associated with the session is nodehger in use and the spage
is available. A session created after another session-is, ended may have the sane
handle but logically is not the same session.

This attribute has no effect if the command does.not complete successfully.

1 auditExclusive SET (1): In a command, this setting indi¢ates that the command should only e
executed if the session is exclusive at theystart of the command. In a response,|it
indicates that the session is exclusive. This setting is only allowed if the audlit
attribute is SET.

CLEAR (0): If audit is CLEARy“then this field is reserved but the error |is
TPM_RC_ATTRIBUTES rather.than TPM_RC_RESERVED_BITS.

See ISO/IEC 11889-1, clause*20.2, "Exclusive Audit Sessions".

D auditReset SET (1): In a command{this setting indicates that the audit digest of the sessign
should be initialized and the exclusive status of the session SET.

CLEAR (0): If audit is CLEAR, then this field is reserved but the error [is
TPM_RC_ATTRIBUTES rather than TPM_RC_RESERVED_BITS. This setting [is
always used\for'a response.

4:3 | Reserved shall he CLEAR

b decrypt SET\(1): In a command, this setting indicates that the first parameter in the command

iS symmetrically encrypted using the parameter encryption scheme specified |n
ISO/IEC 11889-1. The TPM will decrypt the parameter after performing any HMAC
computations and before unmarshaling the parameter. In a response, the attribute [is
copied from the request but has no effect on the response.
CLEAR (0): Session not used for encryption.

For a password authorization, this attribute will be CLEAR in both the command and
response.

This attribute may only be SET in one session per command.

This attribute may be SET in a session that is not associated with a commard
handle. Such a session is provided for purposes of encrypting a parameter and n'Fyt

£, +ha H +a
This attribute may be SET in combination with any other session attributes.

This attribute may only be SET if the first parameter of the command is a sized buffer
(TPM2B_).

© ISO/IEC 2015 — All rights reserved 63

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

Bit | Name

Meaning

6 encrypt

SET (1): In a command, this setting indicates that the TPM should use this session to
encrypt the first parameter in the response. In a response, it indicates that the
attribute was set in the command and that the TPM used the session to encrypt the
first parameter in the response using the parameter encryption scheme specified in
ISO/IEC 11889-1.

CLEAR (0): Session not used for encryption.

For a password authorization, this attribute will be CLEAR in both the command and
response.

ThiS atribute may only be SET I one session per commanda. ’l

This attribute may be SET in a session that is not associated with a command
handle. Such a session is provided for purposes of encrypting a parameter and npt
for authorization.
This attribute may only be SET if the first parameter of a response isya Sized buffer
(TPM2B_).

7 audit

and that auditExclusive and auditReset have meaning. This session may also
used for authorization, encryption, or decryption. The encrypted and encrypt fiel
may be SET or CLEAR.

CLEAR (0): Session is not used for audit.

This attribute may only be SET in one session per,command or response. If SET [n
the command, then this attribute will be SET inthe response.

SET (1): In a command or response, this setting indicates that thesession is for auiit

9.% TPMA_LOCALITY (Locality Attribute)

In A TPMS_CREATION_DATA structure, this structure is used to indicate the locality of the command that

c

=

w

gated the object. No more than one of the locality,attributes shall be set in the creation data.

Wmen used in TPM2_PolicyLocality(), this structure indicates which localities are approved by the policy.
en a policy is started, all localities are @allowed. If TPM2_PolicyLocality() is executed, it indicates that
thg command may only be executed at:specific localities. More than one locality may be selected.

EXAMPLE 1 TPM_LOC_TWO would indicate that only locality 2 is authorized.

EXAMPLE 2 TPM_LOC_ONE.+/TPM_LOC_TWO would indicate that locality 1 or 2 is authorized.

EXAMPLE 3 TPM_LOC_FOUR + TPM_LOC_THREE would indicate that localities 3 or 4 are authorized.

EXAMPLE 4 A value of 21,5 would represent a locality of 33.

NQITE Kocality values of 5 through 31 are not selectable.

64 © ISO/IEC 2015 — All rights reserved

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

If Extended is non-zero, then an extended locality is indicated and the TPMA _LOCALITY contains an
integer value.

Table 33 — Definition of (UINT8) TPMA_LOCALITY Bits <IN/OUT>

Bit |Name Definition
0 |TPM_LOC_ZERO
1 |TPM_LOC_ONE
—FPMTOE—TWO
3 |TPM_LOC THREE
4 |TPM_LOC_FOUR
1:5 |Extended If any of these bits is set, an extended locality is indicated
9.6 TPMA_PERMANENT

The attributes in this structure are persistent and are not changed as a tYesult of _TPM_lInit or g

C
T

pabilities. This structure may be read using TPM2 GetCapability(capability

TgMZ_Startup(). Some of the attributes in this structure may change as.the’result of specific Protec
M_CAP_TPM_PROPERTIES, property = TPM_PT_PERMANENT);

Table 34 — Definition of (UINT32) TPMA_PERMANENT Bits <OUT>

iny
ed

attribute.

Bit |Parameter Description
D | ownerAuthSet SET (1): TPM2_HierarchyChangeAuth() with ownerAuth has been executed since
the last TPM2_Clear().
CLEAR (0): ownerAuth-has not been changed since TPM2_Clear().
1l | endorsementAuthSet |SET (1): TPM2_HierarchyChangeAuth() with endorsementAuth has been executed
since the last TPM2_Clear().
CLEAR (0): @ndorsementAuth has not been changed since TPM2_Clear().
P | lockoutAuthSet SET (1)\TPM2_HierarchyChangeAuth() with lockoutAuth has been executed since
the last TPM2_Clear().
CLEAR (0): lockoutAuth has not been changed since TPM2_Clear().
71:3 |Reserved
B |disableClear SET (1): TPM2_Clear() is disabled.
CLEAR (0): TPM2_Clear() is enabled.
D | inLockout SET (1): The TPM is in lockout and commands that require authorization with other
than Platform Authorization or Lockout Authorization will not succeed.
10 |[tpmGeneratedEPS SET (1): The EPS was created by the TPM.
CLEAR (0): The EPS was created outside of the TPM using a manufacturer-
specific process.
31:11 | Reserved
NOTE See ISO/IEC 11889-3, clause 25.7, “TPM2_ClearControl” for details on changing the disableClear

© ISO/IEC 2015 — All rights reserved

65

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

9.7 TPMA_STARTUP_CLEAR

These attributes are set to their default state on reset on each TPM Reset or TPM Restart. The attributes
are preserved on TPM Resume.

On each TPM2_Startup(TPM_SU_CLEAR), the TPM will set these attributes to their indicated defaults.

This structure may be read using TPM2_GetCapability(capability = TPM_CAP_TPM_PROPERTIES,
property = TPM_PT_STARTUP_CLEAR).

Some of attributes may be changed as the result of specific Protected Capabilities.

Table 35 — Definition of (UINT32) TPMA_STARTUP_CLEAR Bits <OUT>

Bit |Parameter Description

D [phEnable SET (1): The platform hierarchy is enabled and platformAuth or platformPolicy may
be used for authorization.

CLEAR (0): platformAuth and platformPolicy may not be used for authorizatiofs,
and objects in the platform hierarchy, including persistent©bjects, cannot be used|.

[l [shEnable SET (1): The Storage hierarchy is enabled and ownerAuth or ownerPolicy may pe
used for authorization. NV indices defined Using owner authorization 3gre
accessible.

CLEAR (0): ownerAuth and ownerPolicy may\not be used for authorizations, and
objects in the Storage hierarchy, persistent objects, and NV indices defined usihg
owner authorization cannot be used.

P | ehEnable SET (1): The EPS hierarchy is enabled and Endorsement Authorization may pe
used to authorize commands.

CLEAR (0): Endorsement Authorization may not be used for authorizations, and
objects in the endorsementhierarchy, including persistent objects, cannot be used.

3 | phEnableNV SET (1): NV indices that have TPMA_PLATFORM_CREATE SET may be read|or
written. The platform Can create define and undefine indices.

CLEAR (0): NV indices that have TPMA_PLATFORM_CREATE SET may not pe

read or written (TPM_RC_HANDLE). The platform cannot defipe
(TPM_RC_.HIERARCHY) or undefined (TPM_RC_HANDLE) indices.

30:4 |Reserved shall be'zero

31 |orderly SET\(1): The TPM received a TPM2_Shutdown() and a matching TPM2_Startup(].

CLEAR (0): TPM2_Startup(TPM_SU_CLEAR) was not preceded by |a
TPM2_Shutdown() of any type.

NQTE 1 Regarding phEnable, shEnable, ehEnable, and phEnableNV see ISO/IEC 11889-3, clause 252,
“TRM2_HierarchyControl” for details on changing these attributes.

NOQTE 2 Regarding phEnableNV, read refers to these commands: TPM2_NV_Read, TPM2_NV_ReadPublic,
TPM_NV_Certify and TPM2_PolicyNV.

NOQTE 3 Regarding phEnableNV, write refers to these commands: TPM2_NV_Write, TPM2_NV_Incremept,
TPM2_NV_Extend and TPM2_NV_SetBits.

NOTE 4 Regarding phEnableNV, the TPM needs to query the index TPMA_PLATFORM_CREATE attribute to
determine whether phEnableNV is applicable. Since the TPM will return TPM_RC_HANDLE if the index
does not exist, it also returns this error code if the index is disabled. Otherwise, the TPM would leak the
existence of an index even when disabled.

NOTE 5 Regarding orderly, a shutdown is orderly if the TPM receives a TPM2_Shutdown() of any type followed
by a TPM2_Startup() of any type. However, the TPM will return an error if
TPM2_Startup(TPM_SU_STATE) was not preceded by TPM2_State_Save(TPM_SU_STATE).

66 © ISO/IEC 2015 — All rights reserved

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

9.8 TPMA_MEMORY

This structure of this attribute is used to report the memory management method used by the TPM for
transient objects and authorization sessions. This structure may be read using
TPM2_GetCapability(capability = TPM_CAP_TPM_PROPERTIES, property = TPM_PT_MEMORY).

If the RAM memory is shared, then context save of a session may make it possible to load an additional
transient object.

Table 36 — Definition of (UINT32) TPMA MEMORY Bits <Qut>

Bif Name Definition

0 sharedRAM SET (1): indicates that the RAM memory used for authorization ,Sessipn
contexts is shared with the memory used for transient objects

CLEAR (0): indicates that the memory used for authorizatign-sessions is ot
shared with memory used for transient objects

1 sharedNV SET (1): indicates that the NV memory used for persistent objects is sharged
with the NV memory used for NV Index values
CLEAR (0): indicates that the persistent objectshand NV Index values gre
allocated from separate sections of NV

2 objectCopiedToRam SET (1): indicates that the TPM copies persistent objects to a transient-objéct
slot in RAM when the persistent object is,referenced in a command. The TRM
is required to make sure that an object slot is available.

CLEAR (0): indicates that the TPM/does not use transient-object slots when
persistent objects are referenced

313 |Reserved shall be zero

© ISO/IEC 2015 — All rights reserved 67

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

9.9

9.9.1

Introduction

TPMA_CC (Command Code Attributes)

This structure defines the attributes of a command from a context management perspective. The fields of
the structure indicate to the TPM Resource Manager (TRM) the number of resources required by a
command and how the command affects the TPM’s resources.

This structure is only used in a list returned by the TPM in response to TPM2_GetCapability(capability =
TPM_CAP_COMMANDS)

Fof a command to the TPM, only the commandindex field and V attribute are allowed to be non-zero.
9.9.2 Structure Definition
Table 37 — Definition of (TPM_CC) TPMA_CC Bits <OUT>
Bit | Name Definition
15:0 | commandindex indicates the command being selected
21:16 |Reserved shall be zero
P2 | nv SET (1): indicates that the command may-write to NV
CLEAR (0): indicates that the command does not write to NV
P3 | extensive SET (1): This command could flush any number of loaded contexts.
CLEAR (0): no additional changes other than indicated by the flushed attributg
P4 | flushed SET (1): The context assegciated with any transient handle in the command will
be flushed when this corimand completes.
CLEAR (0): No context is flushed as a side effect of this command.
271:25 | cHandles indicates the number of the handles in the handle area for this command
P8 | rHandle SET (1): indicates the presence of the handle area in the response
P9 |V SET (I):indicates that the command is vendor-specific
CLEAR (0): indicates that the command is defined in ISO/IEC 11889
31:30 |Res allocated for software; shall be zero
9.9.3 Field Descriptions
9.9.3.1 Bits[1¥5:0] - commandIndex
Thjs is the eommand index of the command in the set of commands. The two sets are defined by thg V
attfibute. #\'is zero, then the commandindex shall be in the set of commands defined in ISO/IEC 11889.
If Y is,one, then the meaning of commandIindex is as determined by the TPM vendor.
9.9.3.2 Bit[22] — nv

If this attribute is SET, then the TPM may perform an NV write as part of the command actions. This write
is independent of any write that may occur as a result of dictionary attack protection. If this attribute is
CLEAR, then the TPM shall not perform an NV write as part of the command actions.

9.9.3.3

68

Bit[23] — extensive

© ISO/IEC 2015 — All rights reserved

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

If this attribute is SET, then the TPM may flush many transient objects as a side effect of this command.
In ISO/IEC 11889-3, a command that has this attribute is indicated by using a “{E}" decoration in the
“Description” column of the commandCode parameter.

EXAMPLE See ISO/IEC 11889-3, clause 25.6, “TPM2_Clear”.

NO

TE The “{E}" decoration can be combined with other decorations such as “{NV}" in which case the decoration

would be “{NV E}.”

9.9.3.4 Bit[24] — flushed

If tLis attribute is SET, then the TPM will flush transient objects as a side effect of this command. A

tra
as

NO

NO

If this attribute is SET for a command, and the handle of the command-is associated with a hierarq

(TH
ing
Th
co
In

“D

EX

9.4

Th
TR

9.4

If this attribute is SET (then the response to this command has a handle area. This area will contain

md
res

NO

hsient objects listed in the handle area of the command will be flushed from TPM memory) Hand
bociated with persistent objects, sessions, PCR, or other fixed TPM resources are not flushed:

TE 1 The TRM is expected to use this value to determine how many objects are loaded.into transient T
memory.

TE 2 The “{F}" decoration can be combined with other decorations such as “{NV}"\in which case the decora
would be “{NV F}.”

PM_RH_PLATFORM, TPM_RH_OWNER, or TPM_RH_ENDORSEMENT), all loaded objects in
icated hierarchy are flushed.

e TRM is expected to know the behaviour of TPM2_ContextSave(), and sessions are flushed wh
ntext saved, but objects are not. The flushed attribute for that'command shall be CLEAR.

ISO/IEC 11889-3, a command that has this attribute_is"indicated by using a “{F}" decoration in

bscription” column of the commandCode parameter:
ANMPLE See ISO/IEC 11889-3, clause 18.5, “TPM2: SequenceComplete”.
.3.5 Bits[27:25] — cHandles

s field indicates the number of handles in the handle area of the command. This nhumber allows
M to enumerate the handles in the handle area and find the position of the authorizations (if any).

.3.6 Bit[28] — rHandle

re than one handle." This field is necessary to allow the TRM to locate the parameterSize field in
ponse, which.is.then used to locate the authorizations.

TE The TRM is expected to “virtualize” the handle value for any returned handle.

ny
es

PM

ion

hy
he

en

he

he

no
he

© ISO/IEC 2015 — All rights reserved

69

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)
A TPM command is only allowed to have one handle in the session area.

9.9.3.7 Bit[29] - V

When this attribute is SET, it indicates that the command operation is defined by the TPM vendor. When
CLEAR, it indicates that the command is defined by ISO/IEC 11889.

9.9.3.8 Bits[31:30] — Res

Thys field is reserved for system software. This field is required to be zero for a command to the TPM;

70 © ISO/IEC 2015 — All rights reserved

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

10 Interface Types

10.1 Introduction

Clause 10 contains definitions for interface types. An interface type is type checked when it is
unmarshaled. These types are based on an underlying type that is indicated in the table title by the value
in parentheses. When an interface type is used, the base type is unmarshaled and then checked to see if
it has one of the allowed values.

102 TPMI_YES_NO

—
QD

Thjs interface type is used in place of a Boolean type in order to eliminate ambiguity in the handling g
octet that conveys a single bit of information. This type only has two allowed values, YES(1)and NO (Q).

~

NQITE This list is not used as input to the TPM.

Table 38 — Definition of (BYTE) TPMI_YES_NO Type

Vplue Description
NP a value of 0
YES a value of 1
#TPM_RC_VALUE

10{3 TPMI_DH_OBJECT

The TPMI_DH_OBJECT interface type is a handle“that references a loaded object. The handles in this
sef are used to refer to either transient or persistent object. The range of these values would charjge
acgording to the TPM implementation.

(@]

NQITE These interface types not'supposed to be used by system software to qualify the keys produced by |the
TPM. The value returned by the TPM will be used to reference the object.

Table 39 —(Definition of (TPM_HANDLE) TPMI_DH_OBJECT Type

Vglues Comments
{TRANSIENT_FIRST:-TRANSIENT_LAST} allowed range for transient objects
{PERSISTENT_FIRST:PERSISTENT_LAST} allowed range for persistent objects
+TPM_RH_NULL the conditional value
#TPM_RC._VALUE

© ISO/IEC 2015 — All rights reserved 71

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

10.4 TPMI_DH_PERSISTENT

The TPMI_DH_PERSISTENT interface type is a handle that references a location for a transient object.
This type is used in TPM2_EvictControl() to indicate the handle to be assigned to the persistent object.

Table 40 — Definition of (TPM_HANDLE) TPMI_DH_PERSISTENT Type

Values

Comments

{PERSISTENT_FIRST:PERSISTENT_LAST}

allowed range for persistent objects

#TPM_RC_VALUE

10{5 TPMI_DH_ENTITY

The TPMI_DH_ENTITY interface type is TPM-defined values that are used to indicate'that the hand
refers to an authValue. The range of these values would change according to the TRM implementation.

Table 41 — Definition of (TPM_HANDLE) TPMI_DH_ENTITY¥-Type <IN>

e

Vdlues

Comments

TRM_RH_OWNER

TRM_RH_ENDORSEMENT

TRM_RH_PLATFORM

TRM_RH_LOCKOUT

{TRANSIENT_FIRST : TRANSIENT_LAST}

range of object handles

{PERSISTENT_FIRST : PERSISTENT_LAST}

{NIV_INDEX_FIRST : NV_INDEX_LAST}

{PCR_FIRST : PCR_LAST}

{TPM_RH_AUTH_00 : TPM_RH_AUTH_FF}

range of vendor-specific authorization values

+TPM_RH_NULL

conditional value

#TPM_RC_VALUE

72

© ISO/IEC 2015 — All rights reserved

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

10.6 TPMI_DH_PCR

ISO/IEC 11889-2:2015(E)

This interface type consists of the handles that may be used as PCR references. The upper end of this
range of values would change according to the TPM implementation.

NOTE 1 Typically, the 0™ PCR will have a handle value of zero.
NOTE 2 The handle range for PCR is defined to be the same as the handle range for PCR in ISO/IEC 11889 (first
edition).

Table 42 — Definition of (TPM_HANDLE) TPMI_DH_PCR Type <IN>

Values

Comments

{PCR_FIRST:PCR_LAST}

+TPM_RH_NULL

conditional value

#TPM_RC_VALUE

10[7 TPMI_SH_AUTH_SESSION

The TPMI_SH_AUTH_SESSION interface type is TPM-defined values that are used to indicate that the
hapdle refers to an authorization session.
Table 43 — Definition of (TPM_HANDLE) TPMI_SH ‘AUTH_SESSION Type <IN/OUT>
Values Comments
{HMAC_SESSION_FIRST : HMAC_SESSION_LAST} range of HMAC authorization session handles
{PPLICY_SESSION_FIRST: POLICY_SESSION_LASTY} range of policy authorization session handles
+TPM_RS_PW a password authorization
#TPM_RC_VALUE error returned if the handle is out of range
10,8 TPMI_SH_HMAC
This interface type is used for(@n authorization handle when the authorization session uses an HMAC.
Table 44 Definition of (TPM_HANDLE) TPMI_SH_HMAC Type <IN/OUT>
Values Comments
{HMAC_SESSION_FIRST: HMAC_SESSION_LAST} range of HMAC authorization session handles
#1PM_RC -VALUE error returned if the handle is out of range
10,92 TPMI SH POLICY
This interface type is used for a policy handle when it appears in a policy command.
Table 45 — Definition of (TPM_HANDLE) TPMI_SH_POLICY Type <IN/OUT>
Values Comments
{POLICY_SESSION_FIRST: POLICY_SESSION_LAST} range of policy authorization session handles
#TPM_RC_VALUE error returned if the handle is out of range
© ISO/IEC 2015 — All rights reserved 73

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

10.10 TPMI_DH_CONTEXT

This type defines the handle values that may be used in TPM2_ContextSave() or TPM2_Flush().

Table 46 — Definition of (TPM_HANDLE) TPMI_DH_CONTEXT Type

Values

Comments

{HMAC_SESSION_FIRST : HMAC_SESSION_LAST}

{POLICY SESSION_FIRST:POLICY SESSION_LAST}

{TRANSIENT_FIRST:TRANSIENT_LAST}

#TPM_RC_VALUE

10{11 TPMI_RH_HIERARCHY

is tequired to be one of the hierarghy or NV enables.

Table 48 —.Definition of (TPM_HANDLE) TPMI_RH_ENABLES Type

The TPMI_RH_HIERARCHY interface type is used as the type of a handle in~a command when the
hapdle is required to be one of the hierarchy selectors.
Table 47 — Definition of (TPM_HANDLE) TPMI_RH_HIERARCHY Type
Values Comments
TRM_RH_OWNER Storage hierarchy
TRM_RH_PLATFORM Platform hierarchy
TRM_RH_ENDORSEMENT Endorsement hierarchy
+TPM_RH_NULL no hierarchy
#1PM_RC_VALUE response code retirned when the unmarshaling of this type fails
10{12 TPMI_RH_ENABLES
The TPMI_RH_ENABLES interface type is used as the type of a handle in a command when the hanfle

V3alues

Comments

TRM_RH_OWNER

Storage hierarchy

TRM_RH_PLATEFORM

Platform hierarchy

TRM_RH_ENDORSEMENT

Endorsement hierarchy

TRM_RH/PLATFORM_NV

Platform NV

+TPM/RH NULL

no hierarchy

#TPM_RC_VALUE

response code returned when the unmarshaling of this type fails

74

© ISO/IEC 2015 — All rights reserved

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

10.13TPMI_RH_HIERARCHY_AUTH

ISO/IEC 11889-2:2015(E)

This interface type is used as the type of a handle in a command when the handle is required to be one of

the hierarchy selectors or the Lockout Authorization.

Table 49 — Definition of (TPM_HANDLE) TPMI_RH_HIERARCHY_AUTH Type <IN>

Values Comments

TPM_RH_OWNER Storage hierarchy

TRM_RH_PLATFORM Platform hierarchy

TRM_RH_ENDORSEMENT Endorsement hierarchy

TRM_RH_LOCKOUT Lockout Authorization

#TPM_RC_VALUE response code returned when the unmarshaling of this type fails

10{14 TPMI_RH_PLATFORM

The TPMI_RH_PLATFORM interface type is used as the type of a handle(inja command when the oply

allpwed handle is TPM_RH_PLATFORM indicating that Platform Authorization is required.

Table 50 — Definition of (TPM_HANDLE) TPMI_RH<PLATFORM Type <IN>

Vglues Comments
TRM_RH_PLATFORM Platform hierarchy
#TPM_RC_VALUE response code returnedwhen the unmarshaling of this type fails

10{15 TPMI_RH_OWNER

Thjs interface type is used as the type 6f a handle in a command when the only allowed handlg is

TAM_RH_OWNER indicating that Owner-Authorization is required.

Table 51 — Definition of (TPM_HANDLE) TPMI_RH_OWNER Type <IN>

Vglues Comments

TRM_RH_OWNER Owner hierarchy

+TPM_RH_NULL may allow the null handle

#TPM_RC_VALWE response code returned when the unmarshaling of this type fails

© ISO/IEC 2015 — All rights reserved

75

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

10.

16 TPMI_RH_ENDORSEMENT

This interface type is used as the type of a handle in a command when the only allowed handle is
TPM_RH_ENDORSEMENT indicating that Endorsement Authorization is required.

Table 52 — Definition of (TPM_HANDLE) TPMI_RH_ENDORSEMENT Type <IN>

Values Comments

TPM_RH_ENDORSEMENT Endorsement hierarchy

+TPM_RH_NULL may allow the null handle

#1PM_RC_VALUE response code returned when the unmarshaling of this type fails
10{17 TPMI_RH_PROVISION

The TPMI_RH_PROVISION interface type is used as the type of the handle in a command when the o
allpwed handles are either TPM_RH_OWNER or TPM_RH_PLATFORM indicating that either Platfg
Authorization or Owner Authorization are allowed.

conmands used for management of the resources of the TPM and this«nterface type will be used.

most cases, either Platform Authorization or Owner Authorization may be used to authorize

Table 53 — Definition of (TPM_HANDLE) TPMI_RH, PROVISION Type <IN>

nly

m

he

Value Comments

TRM_RH_OWNER handle for Owner Authorization

TRM_RH_PLATFORM handle for Platform Authorization

#TPM_RC_VALUE response code retarned when the unmarshaling of this type fails
10[18 TPMI_RH_CLEAR

The TPMI_RH_CLEAR interface type-is used as the type of the handle in a command when the ohly

allpwed handles are either TPM_‘RH_LOCKOUT or TPM_RH_PLATFORM indicating that either Platfg
Authorization or Lockout Authorization are allowed.

Th

s interface type is normally’'used for performing or controlling TPM2_Clear().

Tabfe’54 — Definition of (TPM_HANDLE) TPMI_RH_CLEAR Type <IN>

rm

Value Comments

TRM_RH_LOCKOUT handle for Lockout Authorization

TRM_RH>PLATFORM handle for Platform Authorization

#T|PM) RC_VALUE response code returned when the unmarshaling of this type fails

76 © ISO/IEC 2015 — All rights reserved

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

10.19 TPMI_RH_NV_AUTH

This interface type is used to identify the source of the authorization for access to an NV location. The
handle value of a TPMI_RH_NV_AUTH shall indicate that the authorization value is either Platform
Authorization, Owner Authorization, or the authValue. This type is used in the commands that access an
NV Index (commands of the form TPM2_NV_xxx) other than TPM2_NV_DefineSpace() and
TPM2_NV_UndefineSpace().

Table 55 — Definition of (TPM_HANDLE) TPMI_RH_NV_AUTH Type <IN>

Value Comments
TRM_RH_PLATFORM Platform Authorization is allowed
TRM_RH_OWNER Owner Authorization is allowed

{N\V_INDEX_FIRST:NV_INDEX_LAST} range for NV locations

#1PM_RC_VALUE response code returned when unmarshaling of this\type fails

10{20 TPMI_RH_LOCKOUT

The TPMI_RH_LOCKOUT interface type is used as the type of a handle”in a command when the oply
allpwed handle is TPM_RH_LOCKOUT indicating that Lockout Authorization is required.

Table 56 — Definition of (TPM_HANDLE) TPMI<RH_LOCKOUT Type <IN>

Value Comments
TRM_RH_LOCKOUT handle for Lockout Authiorization
#TPM_RC_VALUE response code retuthed when the unmarshaling of this type fails

10/21 TPMI_RH_NV_INDEX

Thjs interface type is used to identify @n*NV location. This type is used in the NV commands.

Table 57 — Definition of (TPM_HANDLE) TPMI_RH_NV_INDEX Type <IN/OUT>

Value Comments
{N\V_INDEX_FIRST:NV.‘INDEX_LAST} Range of NV Indexes
#TPM_RC_VALUE error returned if the handle is out of range

© ISO/IEC 2015 — All rights reserved 77

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

10.22 TPMI_ALG_HASH

A TPMI_ALG_HASH is an interface type of all the hash algorithms implemented on a specific TPM. Table
58 is a list of the hash algorithms that have an algorithm ID assigned by the TCG and does not indicate

the algorithms that will be accepted by a TPM.

NOTE An implementation would modify this table according to the implemented algorithms, changing the values
that are accepted as hash algorithms.
Table 58 — Definition of (TPM Al G ID) TPMI Al G HASH Type
Vglues Comments
TRM_ALG_SHA1l example
TRM_ALG_SHA256 example
TRM_ALG_SM3_256 example
TRM_ALG_SHA384 example
TRM_ALG_SHA512 example
+TPM_ALG_NULL
#1PM_RC_HASH
10{23 TPMI_ALG_ASYM (Asymmetric Algorithms)

A TPMI_ALG_ASYM is an interface type of all the asymmeétric algorithms implemented on a specific THM.

Taple 59 lists each of the asymmetric algorithms that have an algorithm ID assigned by the TCG.

Table 59 — Definition of (TPNY;ALG_ID) TPMI_ALG_ASYM Type

lues

Comments

TH

M_ALG_RSA

TH

M_ALG_ECC

+T

PM_ALG_NULL

#1

PM_RC_ASYMMETRIC

78

© ISO/IEC 2015 — All rights reserved

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

10.24 TPMI_ALG_SYM (Symmetric Algorithms)

A TPMI_ALG_SYM is an interface type of all the symmetric algorithms that have an algorithm ID assigned
by the TCG and are implemented on the TPM.

The list in the table below is illustrative and will change according to the implementation. The validation
code will only accept the subset of algorithms implemented on a TPM.

NOTE The validation code produced by an example script will produce a CASE statement with a case for each of
the values in the “Values” column. The case for a value is delimited by a #ifdef/#endif pair so that if the
algorithm is not implemented on the TPM, then the case for the algorithm is not generated, and use of the
algorithm will cause a TPM error (TPM_RC_SYMMETRIC).

Table 60 — Definition of (TPM_ALG_ID) TPMI_ALG_SYM Type

Vglues Comments

TRM_ALG_AES example

TRM_ALG_SM4 example

TRM_ALG_CAMELLIA example

TRM_ALG_XOR example

+TPM_ALG_NULL required to be present in all versions of:this table
#TPM_RC_SYMMETRIC

10{25 TPMI_ALG_SYM_OBJECT

A TPMI_ALG_SYM_OBJECT is an interface type of all\the TCG-defined symmetric algorithms that may
belused as companion symmetric encryption algorithm for an asymmetric object. All algorithms in this [list
shall be block ciphers usable in Cipher Feedback (CFB).

Taple 61 is illustrative. It would be modified ta-indicate the algorithms of the TPM.

NOITE TPM_ALG_XOR cannot bein this list.

Table 61 — Definition of (TPM_ALG_ID) TPMI_ALG_SYM_OBJECT Type

Vglues Comments

TRM_ALG_AES example

TRM_ALG_SM4 example

TRM_ALG_CAMELLIA example

+TPM_ALG_NULL required to be present in all versions of this table
#TPM_RCISYMMETRIC

© ISO/IEC 2015 — All rights reserved 79

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

10.26 TPMI_ALG_SYM_MODE

A TPMI_ALG_SYM_MODE is an interface type of all the TCG-defined block-cipher modes of operation.

This version of the table is not expected to be the table checked by the validation code. Rather, the table
would be replaced by one containing the algorithms implemented on the TPM and the values in that table
would be checked by the input validation code.

Table 62 — Definition of (TPM_ALG_ID) TPMI_ALG_SYM_MODE Type

Vdiues comments

TRM_ALG_CTR IV will be determined by use.

If the outside provides the nonce and initial counter, then the'caller cpn
know what IV to provide for chaining.

TRM_ALG_OFB XOR last cipher text block with last plaintext to create 1V forinéxt block

TRM_ALG_CBC IV will be determined by use.
indefinite chaining using previous output block as [V for next block

TRM_ALG_CFB shall be implemented in all TPM compliant with \SO/IEC 11889
IV will be determined by use.
indefinite chaining using previous cipher text as IV

TRM_ALG_ECB no IV or chaining value required

+TPM_ALG_NULL

#1PM_RC_MODE

Implementation of TPM_ALG_CFB is mandatory. CFBrs-specified ISO/IEC 10116:2006, making ISO/IEC
10[L16:2006 indispensable for an implementation of this’ International Standard.

10{27 TPMI_ALG_KDF (Key and Mask Generation Functions)

A TPMI_ALG_KDF is an interface type-of all the key derivation functions implemented on a specific THM.
Taple 63 is exemplary and would change based on the algorithms implemented in a TPM.

Table 63 &~ Definition of (TPM_ALG_ID) TPMI_ALG_KDF Type

Vdlues Comments

TRM_ALG_MGF1
TRM_ALG_KDF1_SP800_108
TRM_ALG_KDF1.SP800_56a
TRM_ALG_KPF2

+TPMLALG_NULL

#1PM/ RC_KDE

80 © ISO/IEC 2015 — All rights reserved

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

10.28 TPMI_ALG_SIG_SCHEME

This is the definition of the interface type for a signature scheme. This table would change according to
the algorithms implemented on the TPM.

Table 64 — Definition of (TPM_ALG_ID) TPMI_ALG_SIG_SCHEME Type

Values

Comments

TPM_ALG_RSASSA

requires that RSA be implemented

TRM_ALG_RSAPSS

requires that RSA be implemented

TRM_ALG_ECDSA

requires that ECC be implemented

TRM_ALG_ECDAA

requires that ECC and ECDAA be implemented

TRM_ALG_ECSCHNORR

TRM_ALG_SM?2

requires that ECC be implemented

TRM_ALG_HMAC

present on all TPM

+TPM_ALG_NULL

#1PM_RC_SCHEME

response code when a signature scheme is'not correct

Implementation of TPM_ALG_HMAC is mandatory. HMAC is specified ISO/IEC 9797-2, making ISO/IEC

97p7-2 indispensable for an implementation of this International Standard.

10129 TPMI_ECC_KEY_EXCHANGE

Thjs is the definition of the interface type for an ECE€\key exchange scheme. This table would charjge

acgording to the algorithms implemented on the TR\
Table 65 — Definition of (TPM(ALG_ID) TPMI_ECC_KEY_EXCHANGE Type
Vglues Commeénts

TRM_ALG_ECDH

used-for single and two phase key exchange

TRM_ALG_ECMQV

TRM_ALG_SM?2

requires that ECC be implemented

+TPM_ALG_NULL

#TPM_RC_SCHEME

response code when a key exchange scheme is not correct

10{30 TPMIZST_COMMAND_TAG

Thjs interface type is used for the command tags.

The_response code for a bad command tag has the same value as the ISO/IEC 11889 (first editibn)

response code (TPM_BAD_TAG). This value is used in case the software is not compatible with ISO/IEC
11889 and an unexpected response code might have unexpected side effects.

Table 66 — Definition of (TPM_ST) TPMI_ST_COMMAND_TAG Type

Values

Comments

TPM_ST_NO_SESSIONS

TPM_ST_SESSIONS

© ISO/IEC 2015 — All rights reserved 81

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

Values

Comments

#TPM_RC_BAD_TAG

82

© ISO/IEC 2015 — All rights reserved

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

11 Structure Definitions

11.1 TPMS_EMPTY

This structure is used as a placeholder. In some cases, a union will have a selector value with no data to
unmarshal when that type is selected. Rather than leave the entry empty, TPMS_EMPTY may be

selected. Alternatively, a more descriptive value may be created as a type of TPMS_EMPTY (such as,
TPMS_SCHEME_RSAES)

NO[TE The tool chain will special case this structure and create the marshaling and unmarshaling code for fhis
structure but not create a type definition. The unmarshaling code for this structure/"will refurn
TPM_RC_SUCCESS and the marshaling code will return 0.

Table 67 — Definition of TPMS_EMPTY Structure <IN/OUT>

Pqrameter Type Description

a structure with no membaer

1112 TPMS_ALGORITHM_DESCRIPTION

Thjs structure is a return value for a TPM2_GetCapability() that reads the installed algorithms.

Table 68 — Definition of TPMS_ALGORITHM_DESCRIPTION Structure <OUT>

Pqrameter Type Description
alg TPM_ALG_ID an algorithm
atfributes TPMA_ALGORITHM the attributes of the algorithm

© ISO/IEC 2015 — All rights reserved 83

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

11.

3 Hash/Digest Structures

11.3.1 TPMU_HA (Hash)

A TPMU_HA is a union of all the hash algorithms implemented on a TPM. Table 69 is exemplary and
would change based on the algorithms implemented in a TPM.

NOTE If processed by an automated tool, each entry of the table ought to be qualified (with #ifdef/#endif) so that
if the hash algorithm is not implemented on the TPM, the parameter associated with that hash is not
ggasﬁnt. This will keep the union from being larger than the largest digest of a hash implemented on that

Table 69 — Definition of TPMU_HA Union <IN/OUT, S>
Pgrameter Type Selector Description

shial [SHA1_DIGEST_SIZE] BYTE TPM_ALG_SHAl

shia256 [SHA256_DIGEST_SIZE] BYTE TPM_ALG_SHA256

sni3_256 [SM3_256_DIGEST_SIZE] BYTE TPM_ALG_SM3_256

shia384 [SHA384_DIGEST_SIZE] BYTE TPM_ALG_SHA384

sha512 [SHA512_DIGEST_SIZE] BYTE TPM_ALG_SHA512

nyll TPM_ALG_NULL
11{3.2 TPMT_HA

Taple 70 shows the basic hash-agile structure used~in ISO/IEC 11889. To handle hash agility, this

structure uses the hashAlg parameter to indicate_the algorithm used to compute the digest and, [by
implication, the size of the digest.
When transmitted, only the number of octets indicated by hashAlg is sent.
NQITE In the reference code, when & TPMT_HA is allocated, the digest field is large enough to support [the
largest hash algorithm in/the TPMU_HA union.
Table Z0=- Definition of TPMT_HA Structure <IN/OUT>
Parameter Type Description
hgshAlg +TPMI,;ALG_HASH selector of the hash contained in the digest that implies the
size of the digest
[h@shAlg] digest TPMU_HA the digest data
NOTE The leading “+” on the type indicates that this structure ought to pass an indication to the unmarshaling
function for TPMI_ALG_HASH so that TPM_ALG_NULL will be allowed if a use of a TPMT_HA allofvs
TPM_ALG_NULL.
84 © ISO/IEC 2015 — All rights reserved

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

11

11

ISO/IEC 11889-2:2015(E)

.4 Sized Buffers

4.1 Introduction

The “TPM2B_" prefix is used for a structure that has a size field followed by a data buffer with the
indicated number of octets. The size field is 16 bits.

When the type of the second parameter in a TPM2B_ structure is BYTE, the TPM shall unmarshal the
indicated number of octets, which may be zero.

IR} r i B STIUCIUre 1S Not B Y Ne valle of the SiZe

eld

shall either be zero indicating that no structure is to be unmarshaled; or it shall be identical to the number

of pctets unmarshaled for the second parameter.

NQTE 1 If the TPM2B_ defines a structure and not an array of octets, then the structure is self-describing and [the
TPM will be able to determine how many octets are in the structure when it is unmarshalged. If that number
of octets is not equal to the size parameter, then it is an error.

NQ[TE 2 The reason that a structure can be put into a TPM2B__ is that the parts of thesstructure can be handleq as
separate opaque blocks by the application/system software. Rather than require that all of the structures
in a command or response be marshaled or unmarshaled sequentiallyj.the size field facilitates [the
structure to be manipulated as an opaque block. Placing a structure in"a\TPM2B_ also makes it poss|ble
to use parameter encryption on the structure.

If @ TPM2B_ is encrypted, the TPM will encrypt/decrypt the data field of the TPM2B_ but not the sjze

pafameter. The TPM will encrypt/decrypt the number of octets indicated by the size field.

NQTE 3 In the reference implementation, a TPM2B type is defined that is a 16-bit size field followed by a sir|gle
byte of data. The TPM2B_ is then defined as a union'that contains a TPM2B (union member ‘b’) and [the
structure in the definition table (union member ‘t’).NThis union is used for internally generated structyres
so that there is a way to define a structure of.the‘¢orrect size (forced by the ‘t" member) while giving a Way
to pass the structure generically as a ‘b’. Most function calls use the 't member so that the compiler |will
generate a warning if there is a type errare(a TPM2B_ of the wrong type). Having the type checked hglps
avoid many issues with buffer overflow, Caused by a too small buffer being passed to a function.

1114.2 TPM2B_DIGEST

Thjs structure is used for a sized buffer that cannot be larger than the largest digest produced by gny

hagh algorithm implemented on the TPM.

As|with all sized buffers, the size'is checked to see if it is within the prescribed range. If not, the response

cofle is TPM_RC_SIZE.

NQITE For any'structure, like the one below, that contains an implied size check, it is implied that TPM_RC_S|ZE
is a pessible response code and the response code will not be listed in the table.

Table 71 — Definition of TPM2B_DIGEST Structure
Parameter. Type Description

sige UINT16 size in octets of the buffer field; may be 0

buffer{size{-sizeof{TPMU_HA)} BYTE he pufferarea that can be no larger than a aigest

© ISO/IEC 2015 — All rights reserved 85

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

11.4.3 TPM2B_DATA

This structure is used for a data buffer that is required to be no larger than the size of the Name of an
object. This size limit includes the algorithm ID of the hash and the hash data.

Table 72 — Definition of TPM2B_DATA Structure

Parameter Type Description

size UINT16 size in octets of the buffer field; may be 0

buffer[size]{:sizeof(TPMT_HA)} BYTE the buffer area that contains the algorithm ID and-the
digest

1114.4 TPM2B_NONCE

Table 73 — Definition of Types for TPM2B_NONCE

Type Name Description

TRM2B_DIGEST TPM2B_NONCE size limited to the same’as'the digest structure

11{4.5 TPM2B_AUTH

Thjs structure is used for an authorization value and limits an authValue to being no larger than the
largest digest produced by a TPM. In order to ensure consistency within an object, the authValue may|be
no|larger than the size of the digest produced by the object’'s nameAlg. This ensures that any TPM that
cah load the object will be able to handle the authValue-0f'the object.

o

Table 74 — Definition@f Types for TPM2B_AUTH

Type Name Description

TRM2B_DIGEST TPM2B_AUTH size limited to the same as the digest structure

11{4.6 TPM2B_OPERAND

This type is a sized buffer that can hold an operand for a comparison with an NV Index location. The
mgximum size of the operand is implementation dependent but a TPM is required to support an opergnd
size that is at least as‘hig as the digest produced by any of the hash algorithms implemented on the TPM.

Table 75 — Definition of Types for TPM2B_OPERAND

Type Name Description

TRM2B_DIGEST TPM2B_OPERAND size limited to the same as the digest structure

86 © ISO/IEC 2015 — All rights reserved

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

11

Th

ISO/IEC 11889-2:2015(E)

4.7 TPM2B_EVENT

is type is a sized buffer that can hold event data.

Table 76 — Definition of TPM2B_EVENT Structure

Parameter Type Description

size UINT16 size of the operand buffer

buffer [size] {:1024} BYTE the operand

1114.8 TPM2B_MAX_BUFFER

This type is a sized buffer that can hold a maximally sized buffer for commands that usé/a large data
buffer.

EXAMPLE Examples of commands that might use large data buffers are TPM2_PER_Event(), TPM2_Hash(),

TPM2_SequenceUpdate(), or TPM2_FieldUpgradeData().
NOTE The list above is not comprehensive and other commands may use thi§ buffer type.
Table 77 — Definition of TPM2B_MAX_BUFFER Structure

Pqrameter Type Description

size UINT16 size of the buffer

buffer [size] {{MAX_DIGEST_BUFFER} |BYTE the operand

NOQTE MAX_DIGEST_BUFFER is TPM-dependent but is required to be at least 1,024.

1114.9 TPM2B_MAX_NV_BUFFER
Thjs type is a sized buffer that can hold/a maximally sized buffer for NV data commands.

EXAMPLE Examples of NV data‘commands are TPM2_NV_Read(), TPM2_NV_Write(), and TPM2_NV_Certify().

Table 78 — Definition of TPM2B_MAX_NV_BUFFER Structure

Pgrameter Type Description

size UINT16 size of the buffer

buffer [size] HMAX_NV_BUFFER_SIZE} |BYTE the operand

NPTE MAX_NV_BUFFER_SIZE is TPM-dependent.

© ISO/IEC 2015 — All rights reserved

87

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

11.4.10 TPM2B_TIMEOUT

This TPM-dependent structure is used to provide the timeout value for an authorization.

Table 79 — Definition of TPM2B_TIMEOUT Structure <IN/OUT>

Parameter Type Description

size UINT16 size of the timeout value
This value is fixed for a TPM implementation.

buffer [size] {:sizeof(UINT64)} BYTE the timeout value

11{4.11 TPM2B_IV

Thjs structure is used for passing an initial value for a symmetric block cipher to or ffom’ the TPM. T

S

ize is set to be the largest block size of any implemented symmetric cipher implemented on the TPM.

Table 80 — Definition of TPM2B_ IV Structure <IN/OUT>

he

Pgrameter Type Description

sige UINT16 size of the timeout value
This valueis fixed for a TPM implementation.

buffer [size] {{MAX_SYM_BLOCK_SIZE} |BYTE the timeout value

1115 Names

1115.1 Introduction

The Name of an entity is used in place of\the handle in authorization computations. The substitut

ocgurs in cpHash and policyHash computations.

Fof an entity that is defined by a public’area (objects and NV Indexes), the Name is the hash of the pul

structure that defines the entity. The hash is done using the nameAlg of the entity.
NOTE For an objectya~FPMT_PUBLIC defines the entity. For an NV Index, a TPMS_NV_PUBLIC defines
entity.

For entities not defined.by a public area, the Name is the handle that is used to refer to the entity.

1115.2 TPMU-NAME

Table 81 — Definition of TPMU_NAME Union <>

on

blic

the

Parameter Type Selector |Description
digest TPMT_HA when the Name is a digest
handle TPM_HANDLE when the Name is a handle

88 © ISO/IEC 2015 — All rights reserved

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

11.5.3 TPM2B_NAME

This buffer holds a Name for any entity type.

The type of Name in the structure is determined by context and the size parameter. If size is four, then
the Name is a handle. If size is zero, then no Name is present. Otherwise, the size shall be the size of a

TPM_ALG_ID plus the size of the digest produced by the indicated hash algorithm.

Table 82 — Definition of TPM2B_NAME Structure

Pdrameter Type Description
size UINT16 size of the Name structure
ngdme[size{:sizeof(TPMU_NAME)} BYTE the Name structure

1116 PCR Structures

1116.1 TPMS_PCR_SELECT

This structure provides a standard method of specifying a list of PCR.

PJR numbering starts at zero.

pciSelect is an array of octets. The octet containing the bit corresponding to a specific PCR is found

dividing the PCR number by 8.

EXAMPLE 1 The bit in pcrSelect corresponding to PCR 19 is inpcrSelect [2] (19/8 = 2).

The least significant bit in a octet is bit number 0. *The bit in the octet associated with a PCR is
remhainder after division by 8.

EXAMPLE 2 The bit in pcrSelect [2] corresponding to PCR 19 is bit 3 (19 mod 8). If sizeofSelect is 3, then
pcrSelect array that would specif$, PCR 19 and no other PCR is 00 00 08s.

Each bit in pcrSelect indicates whethenthe corresponding PCR is selected (1) or not (0). If the pcrSel

is @ll zero bits, then no PCR is selected.

sizeofSelect indicates the number of octets in pcrSelect. The allowable values for sizeofSelect

determined by the numbersof~PCR required by the applicable platform-specific specification and
number of PCR implemented’in the TPM. The minimum value for sizeofSelect is:

PCR_SELECT_MIN := (PLATFORM_PCR +7)/8
where

PLATFORM-PCR the number of PCR required by the platform-specific specification

The maximum value for sizeofSelect is:
PCR_SELECT_MAX := (IMPLEMENTATION_PCR +7) / 8

by

he

the

ect

is
he

(1)

(2)

where
IMPLEMENTATION_PCR the number of PCR implemented on the TPM

© ISO/IEC 2015 — All rights reserved

89

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

If the TPM implements more PCR than there are bits in pcrSelect, the additional PCR are not selected.

EXAMPLE 3 If the applicable platform-specific specification requires that the TPM have a minimum of 24 PCR but the
TPM implements 32, then a PCR select of 3 octets would imply that PCR 24-31 are not selected.

Table 83 — Definition of TPMS_PCR_SELECT Structure

Parameter Type Description

sizeofSelect {PCR_SELECT_MIN:} UINT8 the size in octets of the pcrSelect array
pdrSelect [SiZzeotseleci] {.PCR_SELECT_MAX] [BYTE the bit map of selecied PCR
#1PM_RC_VALUE

1116.2 TPMS_PCR_SELECTION

Table 84 — Definition of TPMS_PCR_SELECTION Structure

Pgrameter Type Description

hash TPMI_ALG_HASH the hash algorithm associated with the
selection

sizeofSelect {PCR_SELECT_MIN:} UINT8 thie size in octets of the pcrSelect arraly

pdrSelect [sizeofSelect] {{PCR_SELECT_MAX} [BYTE the bit map of selected PCR

#1PM_RC_VALUE

1117 Tickets

1117.1 Introduction

Tigkets are evidence that the TPM has previously processed some information. A ticket is an HMAC oyer
thg data using a secret key known only.to the TPM. A ticket is a way to expand the state memory of the

TRM. A ticket is only usable by the TRM that produced it.

The formulations for tickets shownin clause 11.7 are to be used by a TPM that is compliant with ISO/IEC
11889.

The method of creating the\ticket data is:

HMAC oneexaig(proof, (ticketType || param { || param {...})) (3)
where
HMACoitexaig() an HMAC using the hash used for context integrity
proef. a TPM secret value (depends on hierarchy)
ticketType a value to differentiate the tickets
param one or more values that were checked by the TPM

90 © ISO/IEC 2015 — All rights reserved

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

The proof value used for each hierarchy is shown in Table 85.

Table 85 — Values for proof Used in Tickets

Hierarchy proof Description

None Empty Buffer

Platform phProof a value that changes with each change of the PPS

Owner shProof a value that changes with each change of the SPS

Endorsement ehProof a value that changes with each change of either the EPS or SPS
The format for a ticket is shown in Table 86. This is a template for the tickets shown in the remaindel of

cla

use 11.7.

Table 86 — General Format of a Ticket

Pgrameter Type Description

tag TPM_ST structure tag indicating thé type of the ticket
higrarchy TPMI_RH_HIERARCHY+ the hierarchy of the proefvalue

digest TPM2B_DIGEST the HMAC over the ticket-specific data
1117.2 A NULL Ticket

Wi
sh

regponse indicates that a ticket is returned, the TPM may return a NULL Ticket.

W:Len a command requires a ticket and no ticket is available, the caller is required to provide a structy
a ticket tag that is correct for the context. The hierarchy shall be set to TPM_RH_NULL, and digpest

il be the Empty Buffer (a buffer with a size field*of zero). This construct is the NULL Ticket. When

re

a

NOITE Because each use of a ticketneeds for the structure tag for the ticket be appropriate for the use, therg is

have a structure type thatiis\appropriate for the context.

©

ISO/IEC 2015 — All rights reserved

no single representation of-a(NULL Ticket that will work in all circumstances. Minimally, a NULL ticket |will

91

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

11.7.3 TPMT_TK_CREATION

This ticket is produced by TPM2_Create() or TPM2_CreatePrimary(). It is used to bind the creation data
to the object to which it applies. The ticket is computed by

HMA Ceontextaig(proof, (TPM_ST_CREATION || name || Hnameaiy(TPMS_CREATION_DATA))) (4)

where
HMA Ceontextaig() an HMAC using the context integrity hash algorithm
proof- aTFRM-seeretralue-associated-with-the-hierarehy-assectated-with-Aarm
TPM_ST _CREATION a value used to ensure that the ticket is properly used
name the Name of the object to which the creation data is to be associated
Hiameaig() hash using the nameAlg of the created object

TPMS_CREATION_DATA the creation data structure associated with name

Table 87 — Definition of TPMT_TK_CREATION Structure

Parameter Type Description

tag {TPM_ST_CREATION} TPM_ST ticket structure tag

#TPM_RC_TAG error returnéd when tag is not TPM_ST_CREATION

higrarchy TPMI_RH_HIERARCHY+ [the hierarchy containing name

digest TPM2B_DIGEST This-shall be the HMAC produced using a proof value
of, hierarchy.

EXAMPLE A NULL Creation Ticket is the tuple <TPMAST_CREATION, TPM_RH_NULL, 0x0000>.

92 © ISO/IEC 2015 — All rights reserved

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

11.7.4 TPMT_TK_VERIFIED

This ticket is produced by TPM2_VerifySignature(). This formulation is used for multiple ticket uses. The
ticket provides evidence that the TPM has validated that a digest was signed by a key with the Name of
keyName. The ticket is computed by

HMACCconcextaig(proof, (TPM_ST_VERIFIED || digest || keyName)) (5)
where
HMA Ceoncextaig() an HMAC using the context integrity hash
proof a TPM secret value associated with the hierarchy associatedvwith
keyName
TPM_ST_VERIFIED a value used to ensure that the ticket is properly used
digest the signed digest
keyName Name of the key that signed digest
Table 88 — Definition of TPMT_TK_VERIFIED Structure
Parameter Type Description
tag {TPM_ST_VERIFIED} TPM_ST ticket structurectag
#TPM_RC_TAG error returned when tag is not TPM_ST_VERIFIED
higrarchy TPMI_RH_HIERARCHY+ [the hierarchy containing keyName
digest TPM2B_DIGEST This-shall be the HMAC produced using a proof value
of hierarchy.
EXAMPLE A NULL Verified Ticket is the tuple <TPM:ST_VERIFIED, TPM_RH_NULL, 0x0000>.

© ISO/IEC 2015 — All rights reserved 93

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

11.7.5 TPMT_TK_AUTH

This ticket is produced by TPM2_PolicySigned() and TPM2_PolicySecret() when the authorization has an
expiration time. The ticket is computed by

HMAC ontextaig(proof, (TPM_ST_AUTH_xxx || timeout || cpHash || policyRef || authName)) (6)

where
HMA Ceontextaig() an HMAC using the context integrity hash
Bnraat. A TDM caocrn t aliin S~ A 7202 BERV VT I 2N 1 2V 2 PV -V PN 2V WEP-X S 1 ~ V-~ -t nt
Hl UUJ A LILI LAAl [ejwap v Ry y vaaTuee UoIVULvTAUALCU VAALYEL) uarne TImCTAArolI I.y T uare \JUJ ~

associated with authName

TPM_ST_AUTH_xxx either TPM_ST_AUTH_SIGNED or TPM_ST_AUTH_SECRET; ‘used| to
ensure that the ticket is properly used

timeout implementation-specific value indicating when the authofization expires
cpHash optional hash of the authorized command

policyRef optional reference to a policy value

authName Name of the object that signed the authorization

Table 89 — Definition of TPMT_TK_AUTHStructure

Pgrameter Type Description

tag {TPM_ST_AUTH_SIGNED, TPM_ST_AUTH_SECRET} | TPMST ticket structure tag

#TIPM_RC_TAG error returned when tag|is
not TPM_ST_AUTH

higrarchy TPMI_RH_HIERARCHY+ [the hierarchy of the objg¢ct

used to produce the ticket

digest TPM2B_DIGEST This shall be the HMAC
produced using a prgof
value of hierarchy.

EXAMPLE A NULL Auth Ticket is the tuple <TPM_ST_AUTH_SIGNED, TPM_RH_NULL, 0x0000> or the tple
<TPM_ST_AUTH_SIGNED, TPM_RH_NULL, 0x0000>

94 © ISO/IEC 2015 — All rights reserved

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

11.7.6 TPMT_TK_HASHCHECK

This ticket is produced by TPM2_SequenceComplete() when the message that was digested did not start
with TPM_GENERATED_VALUE. The ticket is computed by

HMAC ontexag(proof, (TPM_ST_HASHCHECK || digest)) @)
where
HMA Ceontexarg () an HMAC using the context integrity hash
proof a—PM—seeret—valve—assocated—with—the—herarchy—ndieated—by—ihe
command

TPM_ST HASHCHECK a value used to ensure that the ticket is properly used
digest the digest of the data

Table 90 — Definition of TPMT_TK_HASHCHECK Structure

Pqrameter Type Description

tag {TPM_ST_HASHCHECK} TPM_ST ticket structure tag

#TPM_RC_TAG error returned when(is not TPM_ST_HASHCHECK

higrarchy TPMI_RH_HIERARCHY+ [the hierarchy

digest TPM2B_DIGEST This shall’ be*the HMAC produced using a proof value
of hierarchy.

11}8 Property Structures

1118.1 TPMS_ALG_PROPERTY

Thjs structure is used to report the properties of an algorithm identifier. It is returned in response t¢ a
TRAM2_GetCapability() with capability = TPM_CAP_ALG.

Table 91 — Definition of TPMS_ALG_PROPERTY Structure <OUT>

Pgrameter Type Description
algl] TPMALG_ID an algorithm identifier
aItl;Properties TRMA_ALGORITHM the attributes of the algorithm

1118.2 TPMS~TAGGED_PROPERTY

This structure is used to report the properties that are UINT32 values. It is returned in response t¢ a
TPIMZ_GetCapabiIity().

Table 92 — Definition of TPMS_TAGGED_PROPERTY Structure <OUT>

Parameter Type Description
property TPM_PT a property identifier
value UINT32 the value of the property

© ISO/IEC 2015 — All rights reserved 95

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

11.8.3 TPMS_TAGGED_PCR_SELECT

This structure is used in TPM2_GetCapability() to return the attributes of the PCR.

Table 93 — Definition of TPMS_TAGGED_PCR_SELECT Structure <OUT>

Parameter Type Description

tag TPM_PT the property identifier

sizeofSelect {PCR_SELECT MIN:} UINTS8 the size in octets of the pcrSelect array
pdrSelect [sizeofSelect] {{PCR_SELECT_MAX} [BYTE the bit map of PCR with the identified property
1119 Lists

1119.1 TPML_CC

A list of command codes may be input to the TPM or returned by the TPM dependirig on the command

Table 94 — Definition of TPML_CC Structure

Pgrameter Type Description

count UINT32 number)of commands in the commandCode list;
maybe 0

commandCodes[count]{:MAX_CAP_CC} TPM_CC alist of command codes

The maximum only applies to a command cofe
list in a command. The response size is limited
only by the size of the parameter buffer.

#1PM_RC_SIZE response code when count is greater than the
maximum allowed list size

96 © ISO/IEC 2015 — All rights reserved

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

11.9.2 TPML_CCA

ISO/IEC 11889-2:2015(E)

This list is only used in TPM2_GetCapability(capability = TPM_CAP_COMMANDS).

The values in the list are returned in commandindex order with vendor-specific commands returned after
other commands. Because of the other attributes, the commands may not be returned in strict numerical

order. They will be in commandindex order.

Table 95 — Definition of TPML_CCA Structure <OUT>

Pdrameter Type Description

count UINT32 number of values in the commandAttributes list;
may be 0

commandAttributes[count]{:MAX_CAP_CC} TPMA_CC a list of command codes attributes

1119.3 TPML_ALG

This list is returned by TPM2_IncrementalSelfTest().

Table 96 — Definition of TPML_ALG Structure

Parameter Type Descriptioh
count UINT32 numben of algorithms in the algorithms list; may be 0
algorithms[count]{:MAX_ALG_LIST_SIZE} TPM_ALG_ID | a list.of algorithm IDs
The maximum only applies to an algorithm list in a
command. The response size is limited only by the

size of the parameter buffer.

#1PM_RC_SIZE

response code when count is greater than
maximum allowed list size

11{9.4 TPML_HANDLE

This structure is used when the TPM returns a list of loaded handles when the capability| in
TRAM2_GetCapability() is TPM_ GAP_HANDLE.
NQITE This list is(not used as input to the TPM.
Table 97 — Definition of TPML_HANDLE Structure <OUT>
Name Type Description
coyint UINT32 the number of handles in the list
may have a value of 0
handiefcount]{: MAX_CAP_HANDLES} | TPM_HANDLE | an array of handles
#TPM_RC_SIZE response code when count is greater than the
maximum allowed list size
97

© ISO/IEC 2015 — All rights reserved

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

11.9.5 TPML_

DIGEST

This list is used to convey a list of digest values. This type is used in TPM2_PolicyOR() and in
TPM2_PCR_Read().

Table 98 — Definition of TPML_DIGEST Structure

Parameter

Type

Description

count {2:}

UINT32

number of digests in the list, minimum is two for

FPME—PUlTyORE:

d'tl;ests[count]{:S}

TPM2B_DIGEST

a list of digests
For TPM2_PolicyOR(), all digests will Have begn
computed using the digest of the policy’ session. Hor
TPM2_PCR_Read(), each digest will bgthe size of the
digest for the bank containing the PCR:

#TPM_RC_SIZE

is

response code when count ismot at least two or
greater than eight

11{9.6 TPML_DIGEST_VALUES

Thjs list is used to convey a list of digest values. This type is)returned by TPM2_Event() gnd

TRAM2_SequenceComplete() and is an input for TPM2_PCR_Extend)().

This construct limits the number of hashes in the list to*the number of digests implemented in the TPM

NOTE 1
rather than the number of PCR banks. This\‘allows extra values to appear in a call| to
TPM2_PCR_Extend().

NQTE 2 The digest for an unimplemented hash algoerithm might not be in a list because the TPM might |not
recognize the algorithm as being a hash and it may not know the digest size.

Table 99 — Definitionof TPML_DIGEST_VALUES Structure

Pgrameter Type Description

count UINT32 number of digests in the list

digests[count]{:HASH_COUNT} TPMT_HA a list of tagged digests

#1PM_RC_SIZE

response code when count is greater than the possilple
number of banks

1119.7 TPM2B_DIGEST_VALUES

D

Table 100 — Definition of TPM2B_DIGEST_VALUES Structure

igest list inraSized buffer. This list is returned by TPM2_PCR_SequenceComplete().

Parameter Type Description
size UINT16 size of the operand buffer
buffer [size] {:sizeof(TPML_DIGEST_VALUES)} [BYTE the operand

98

© ISO/IEC 2015 — All rights reserved

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

11.

ISO/IEC 11889-2:2015(

9.8 TPML_PCR_SELECTION

E)

This list is used to indicate the PCR that are included in a selection when more than one PCR value may
be selected.

This structure is an input parameter to TPM2_PolicyPCR() to indicate the PCR that will be included in the
digest of PCR for the authorization. The structure is used in TPM2_PCR_Read() command to indicate the
PCR values to be returned and in the response to indicate which PCR are included in the list of returned
digests. The structure is an output parameter from TPM2_Create() and indicates the PCR used in the
digest of the PCR state when the object was created. The structure is also contained in the attestation

str[ictare of TPMZ_Quote().

When this structure is used to select PCR to be included in a digest, the selected PCR are concatena
to |create a “message” containing all of the PCR, and then the message is hashed using the contg
specific hash algorithm.

Table 101 — Definition of TPML_PCR_SELECTION Structure

ed
Xt-

Pgrameter Type Description

count UINT32 number of seléction structures
A value of-zero is allowed.

pdrSelections[count]{:HASH_COUNT} TPMS_PCR_SELECTION | list.of selections

#1PM_RC_SIZE response code when count is greafer
than the possible number of banks

1119.9 TPML_ALG_PROPERTY

This list is used to report on a list of algorithm attributes. It is returned in a TPM2_GetCapability().

Table 102 — Definition of TBML_ALG_PROPERTY Structure <OUT>
Pgrameter Type Description
count UINT32 number of algorithm properties structures

A value of zero is allowed.

algProperties[count]{:MAX_CAP\ALGS} TPMS_ALG_PROPERTY |list of properties

11{9.10 TPML_TAGGED_TPM_PROPERTY
This list is used)toe’ report on a list of properties that are TPMS_TAGGED_PROPERTY values. If is
returned by a TPM2_GetCapability().

Table 103 — Definition of TPML_TAGGED_TPM_PROPERTY Structure <OUT>
Parameter Type Description
count UINT32 number of properties

A value of zero is allowed.

tpmProperty[count]{:MAX_TPM_PROPERTIES} | TPMS_TAGGED_PROPERTY an array of tagged properties
© ISO/IEC 2015 — All rights reserved 99

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

11.9.11 TPML_TAGGED_PCR_PROPERTY

This list is used to report on a list of properties that are TPMS_PCR_SELECT values. It is returned by a
TPM2_GetCapability().

Table 104 — Definition of TPML_TAGGED_PCR_PROPERTY Structure <OUT>

Parameter Type Description

count UINT32 number of properties
A value of zero is allowed,

pdrProperty[count]{:MAX_PCR_PROPERTIES} [TPMS_TAGGED_PCR_SELECT |atagged PCR selection

11{9.12 TPML_ECC_CURVE

Thjs list is used to report the ECC curve ID values supported by the TPM.nltNis returned by a
TRAM2_GetCapability().

Table 105 — Definition of {ECC} TPML_ECC_CURVE Structure <OUT>

Pgrameter Type Description

count UINT32 number of curves
A value of zero is allowed.

edcCurves[count]{:MAX_ECC_CURVES} TPM_ECC_CURVE array of ECC curve identifiers

11110 Capabilities Structures

11{10.1 TPMU_CAPABILITIES

Table 106 — Definition of TPMU_CAPABILITIES Union <OUT>

Pgrameter Type Selector Description
algorithms TPML_ALG_PROPERTY TPM_CAP_ALGS

hgndles TPML_HANDLE TPM_CAP_HANDLES

command TPMLE_CCA TPM_CAP_COMMANDS

pgCommands JFPML_CC TPM_CAP_PP_COMMANDS
ayditCommands<{TPML_CC TPM_CAP_AUDIT_COMMANDS

assignedPCR TPML_PCR_SELECTION TPM_CAP_PCRS

tpinProperties TPML_TAGGED_TPM_PROPERTY |TPM_CAP_TPM_PROPERTIES

pofProperties TPML_TAGGED_PCR_PROPERTY |TPM_CAP_PCR_PROPERTIES

eccCurves TPML_ECC_CURVE TPM_CAP_ECC_CURVES TPM_ALG_ECC

100 © ISO/IEC 2015 — All rights reserved

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

11.10.2 TPMS_CAPABILITY_DATA

This data area is returned in response to a TPM2_GetCapalbility().

Table 107 — Definition of TPMS_CAPABILITY_DATA Structure <OUT>

Parameter Type Description
capability TPM_CAP the capability
[capability]data TPMU_CAPABILITIES |the capability data

11111 Clock/Counter Structures

11111.1 TPMS_CLOCK_INFO

This structure is used in each of the attestation commands.

Table 108 — Definition of TPMS_CLOCK_INFO Strugcture

Parameter Type Description

clgck UINT64 time in milliseconds during which the TPM has been powered
This structure element is\tsed to report on the TPM's Clock valug.

The value of Clock‘shall be recorded in non-volatile memory ho
less often than once per 2% milliseconds (~69.9 minutes) of TRM
operation. Thexreference for the millisecond timer is the TRM
oscillator.

This value\is reset to zero when the Storage Primary Seed|is
changed:(TPM2_Clear()).

This\value may be advanced by TPM2_AdvanceClock().

regetCount UINT32 number of occurrences of TPM Reset since the last TPM2_Clear()

regtartCount UINT32 number of times that TPM2_Shutdown() or _TPM_Hash_Start hayve
occurred since the last TPM Reset or TPM2_Clear().

safe TPMI_YES.NO no value of Clock greater than the current value of Clock has been
previously reported by the TPM. Set to YES on TPM2_Clear().

11]11.2 Clock

Clock is a monotanically increasing counter that advances whenever power is applied to the TPM. The
value of Clock.may be set forward with TPM2_ClockSet() if Owner Authorization or Platform Authorizatjon
is provided./The value of Clock is incremented each millisecond.

TRAM2_Clear() will set Clock to zero.

Clock-will be non-volatile but may have a volatile component that is updated every millisecond with the
nor- i . i ' i ; n-
volatile component shall be updated no less frequently than every 2°% milliseconds (~69.9 minutes). The
update rate of the non-volatile portion of Clock shall be reported by a TPM2_GetCapability() with
capability = TPM_CAP_TPM_PROPERTIES and property = TPM_PT_CLOCK_UPDATE.

11.11.3 ResetCount

This counter shall increment on each TPM Reset. This counter shall be reset to zero by TPM2_Clear().

© ISO/IEC 2015 — All rights reserved 101

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

11

.11.4 RestartCount

This counter shall increment by one for each TPM Restart or TPM Resume. The restartCount shall be
reset to zero on a TPM Reset or TPM2_Clear().

11

.11.5 Safe

This parameter is set to YES when the value reported in Clock is guaranteed to be unique for the current
Owner. It is set to NO when the value of Clock may have been reported in a previous attestation or

ac

Th
co
en

If

TAMS_CLOCK_INFO.clock shall always be zero.

Th

11

Th

Th
res
val

CEeSS.

s parameter will be YES if a TPM2_Startup() was preceded by TPM2_Shutdown() with no intetven
mmands. It will also be YES after an update of the non-volatile bits of Clock have been updated at
H of an update interval.

a TPM implementation does not implement Clock, Safe shall always*Obe NO ¢

s parameter will be set to YES by TPM2_Clear().

11.6 TPMS_TIME_INFO

s structure is used in the TPM2_TICK attestation.

e Time value reported in this structure is reset whenever the TPM is reset. An implementation n
et the value of Time any time after _TPM_Init and before the TPM returns after TPM2_Startup(). T
ue of Time shall increment continuously while power is applied to the TPM.

Table 109 — Definition of TRMS_TIME_INFO Structure

ng
he

nd

ay
he

Pgrameter Type Description

time UINT64 time in milliseconds since the last _TPM_Init() or TPM2_Startup(
This structure element is used to report on the TPM's Time value

clgckinfo TPMS_CLOCK_INFO a structure containing the clock information

102 © ISO/IEC 2015 — All rights reserved

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

11.12 TPM Attestation Structures

11.12.1 Introduction

ISO/IEC 11889-2:2015(E)

Clause 11.12 describes the structures that are used when a TPM creates a structure to be signed. The

signing structures follow a standard format TPM2B_ATTEST with case-specific information embedded.

11.12.2 TPMS_TIME_ATTEST_INFO

Thjs structure is used when the TPM performs TPM2_GetClock.

Table 110 — Definition of TPMS_TIME_ATTEST_INFO Structure <OUT>

Pqrameter

Type

Description

tinhe

TPMS_TIME_INFO

the Time, clock, resetCount, restartCount, ahd-Safe indicator

i

=

mwareVersion UINT64

a vendor-specific value indicating the" yersion number of
firmware

the

11112.3 TPMS_CERTIFY_INFO

Thjs is the attested data for TPM2_Certify().

Table 111 — Definition of TPMS_CERTIEY.: INFO Structure <OUT>

Parameter Type Descriptioq
ngme TPM2B_NAME Name_of the certified object
gyalifiedName TPM2B_NAME Quadlified Name of the certified object

11

12.1 TPMS_QUOTE_INFO

Thjs is the attested data for TPM2_Quote().

Table 112 — Definition of TPMS_QUOTE_INFO Structure <OUT>

Pgrameter Type Description
pgrSelect TPML_PCR_SELECTION [information on algID, PCR selected and digest
pdrDigest TPM2B_DIGEST digest of the selected PCR using the hash of the signing key

© ISO/IEC 2015 — All rights reserved

103

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

11.12.2 TPMS_COMMAND_AUDIT_INFO

This is the attested data for TPM2_GetCommandAuditDigest().

Table 113 — Definition of TPMS_COMMAND_AUDIT_INFO Structure <OUT>

Parameter Type Description

auditCounter UINT64 the monotonic audit counter

digestAlg TPM_ALG_ID hash algorithm used for the command audit

auditDigest TPM2B_DIGEST the current value of the audit digest

commandDigest TPM2B_DIGEST digest of the command codes being audited using digeStAlg

11

Th

12.3 TPMS_SESSION_AUDIT_INFO

s is the attested data for TPM2_GetSessionAuditDigest().

Table 114 — Definition of TPMS_SESSION_AUDIT_INFO Structure <OUT>

P3g

rameter

Type

Description

eXx

clusiveSession

TPMI_YES_NO

current exclusive status’ of the session

TRUE if all of the commands recorded in the sessionDigest were
executed without any intervening TPM command that did not use
this transport session

S€

ssionDigest

TPM2B_DIGEST

the currentalue of the session audit digest

11

Th

12.4 TPMS_CREATION_INFO

s is the attested data for TPM2_CertifyCreation().

Table 115 — Definition of TPMS_CREATION_INFO Structure <OUT>

Parameter Type Description
ohjjectName TPM2B_NAME Name of the object
cre¢ationHash TPM2B) DIGEST creationHash
11112.5 TPMSANV_CERTIFY_INFO

Th

TAM2_NVA Certify().

s structtre contains the Name and contents of the selected NV Index that is certified |by

Fabte-tt6—"Defintttonrof TPMSNV—CERTFYINFO-Structure<OUT
Parameter Type Description
indexName TPM2B_NAME Name of the NV Index
offset UINT16 the offset parameter of TPM2_NV_Certify()
nvContents TPM2B_MAX_NV_BUFFER |contents of the NV Index
104 © ISO/IEC 2015 — All rights reserved

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

11.12.6 TPMI_ST_ATTEST

Table 117 — Definition of (TPM_ST) TPMI_ST_ATTEST Type <OUT>

ISO/IEC 11889-2:2015(E)

Value

Description

TPM_ST_ATTEST_CERTIFY

generated by TPM2_Certify()

TPM_ST_ATTEST_QUOTE

generated by TPM2_Quote()

TPM_ST_ATTEST_SESSION_AUDIT

generated by TPM2_GetSessionAuditDigest()

THM_ST_ATTEST_COMMAND_AUDIT

generated by TPM2_GetCommandAuditDigest()

TRM_ST_ATTEST_TIME

generated by TPM2_GetTime()

TRM_ST_ATTEST_CREATION

generated by TPM2_CertifyCreation()

TRM_ST_ATTEST_NV

generated by TPM2_NV_Certify()

11112.7 TPMU_ATTEST

Table 118 — Definition of TPMU_ATTEST Union.<QUT>

Pqrameter Type Selector

ceftify TPMS_CERTIFY_INFO TPM_ST_ATTEST,CERTIFY
cr¢ation TPMS_CREATION_INFO TPM_ST_ATTEST_CREATION
quote TPMS_QUOTE_INFO TPM_ST_ATFTEST _QUOTE

commandAudit

TPMS_COMMAND_AUDIT_INFO [TPM_ST_ATTEST_COMMAND_AUDIT

selssionAudit

TPMS_SESSION_AUDIT_INFO

TRPM ST _ATTEST_SESSION_AUDIT

tinhe

TPMS_TIME_ATTEST_INFO

TPM_ST_ATTEST_TIME

nv

TPMS_NV_CERTIFY_INFO

TPM_ST_ATTEST_NV

11112.8 TPMS_ATTEST

Thjs structure is used on each*TPM-generated signed structure. The signature is over this structure.

When the structure is signed by a key in the Storage hierarchy, the values of clockinfo.resetCoynt,

clgckinfo.restartCount, and/firmwareVersion are obfuscated with a per-key obfuscation value.

Table 119 — Definition of TPMS_ATTEST Structure <OUT>

Pgrameter Type Description

magic TPM_GENERATED the indication that this structure was created by a TPM (always
TPM_GENERATED_VALUE)

tyje TPMI_ST _ATTEST type of the attestation structure

qualifiedSigner TPM2B_NAME Qualified Name of the signing key

extraData TPM2B_DATA external information supplied by caller

clockinfo TPMS_CLOCK_INFO Clock, resetCount, restartCount, and Safe

firmwareVersion UINT64 TPM-vendor-specific field identifying the firmware on the TPM

[type]attested

TPMU_ATTEST

the type-specific attestation information

NOTE

Regarding extraData, a TPM2B_DATA structure provides room for a digest and a method indicator to

© ISO/IEC 2015 — All rights reserved

105

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

indicate the components of the digest. The definition of this method indicator is outside the scope of
ISO/IEC 11889.

11.12.9 TPM2B_ATTEST

This sized buffer to contain the signed structure. The attestationData is the signed portion of the structure.
The size parameter is not signed.

Table 120 — Definition of TPM2B_ATTEST Structure <OUT>

Pgrameter Type Description
size UINT16 size of the attestationData structure
atlestationData[size]{:sizeof(TPMS_ATTEST)} |[BYTE the signed structure

11113 Authorization Structures

11/13.1 Introduction

The structures in clause 11.13 are used for all authorizations. One ot more of these structures will |be
présent in a command or response that has a tag of TPM_ST_SESSIONS.

11{13.2 TPMS_AUTH_COMMAND

This is the format used for each of the authorizations in-thé session area of a command.

Table 121 — Definition of TPMS& AUTH_COMMAND Structure <IN>

Pgrameter Type Description

sessionHandle TPMI_SH_AUTH_SESSION+ |the session handle

ngnce TPM2B_NONCE the session nonce, may be the Empty Buffer
seissionAttributes TPMA_SESSION the session attributes

hmac TPM2B- AUTH either an HMAC, a password, or an EmptyAuth

11{13.3 TPMS_AUTH"RESPONSE

Thjs is the formatfor each of the authorizations in the session area of the response. If the TPM retufns
TRAM_RC_SUCCESS, then the session area of the response contains the same number of authorizatigns
as|the command and the authorizations are in the same order.

Table 122 — Definition of TPMS AUTH RESPONSE Structure <OQUT>

Parameter Type Description

nonce TPM2B_NONCE the session nonce, may be the Empty Buffer
sessionAttributes TPMA_SESSION the session attributes

Hmac TPM2B_AUTH either an HMAC, a password, or an EmptyAuth

106 © ISO/IEC 2015 — All rights reserved

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

12 Algorithm Parameters and Structures
12.1 Symmetric

12.1.1 Introduction

Clause 12.1 defines the parameters and structures for describing symmetric algorithms.

12|1.2 TPMI_AES_KEY_BITS

Thjs interface type defines the supported sizes for an AES key. This type is used to,allow the
unmarshaling routine to generate the proper validation code for the supportedokey sizes. |An
implementation that supports different key sizes would have a different set of selections:

>

When used in TPM2_StartAuthSession(), the mode parameter shall be TPM_ALG-CFB.

NO[TE 1 Key size is expressed in bits.

NQ[TE 2 The definition for AES_KEY_SIZES_BITS used in the reference impl€mentation is found in Annex B

Table 123 — Definition of {AES} (TPM_KEY_BITS) TRMI_AES_KEY_BITS Type

Pgrameter Description
$AES_KEY_SIZES BITS number of bits in the key
#1PM_RC_VALUE error when key size is not\supported

12[1.3 TPMI_SM4_KEY_BITS

Thjs interface type defines the supportéd sizes for an SM4 key. This type is used to allow the
unmarshaling routine to generate _the- proper validation code for the supported key sizes. |An
implementation that supports different.key sizes would have a different set of selections.

>

NQITE SM4 only supports,akey size of 128 bits.

Table 124 — Définition of {SM4} (TPM_KEY_BITS) TPMI_SM4_KEY_BITS Type

Pgrameter Description

$9M4_KEY_SIZES_BITS number of bits in the key

#1PM_RC_VALUE

© ISO/IEC 2015 — All rights reserved 107

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

12.1.4 TPMI_CAMELLIA KEY_BITS
This interface type defines the supported sizes for a CAMELLIA key. This type is used to allow the

unmarshaling routine to generate the proper validation code for the supported key sizes. An
implementation that supports different key sizes would have a different set of selections.

Table 125 — Definition of {CAMELLIA} (TPM_KEY_BITS) TPMI_CAMELLIA_KEY_BITS Type

Parameter Description

$GAVMELLIA_KEY_SIZES_BITS [number of biis 1n the key

#TPM_RC_VALUE

12|1.5 TPMU_SYM_KEY_BITS

Thjs union is used to collect the symmetric encryption key sizes.

The xor entry is a hash algorithms selector and not a key size in bits. This overload is used in ordel to
avpid an additional level of indirection with another union and another set of sel€etors.

The xor entry is only selected in a TPMT_SYM_DEF, which is used to select the parameter encryptjon
value.

Table 126 — Definition of TPMU_SYM_KEY_BITS Union

Parameter Type Selector Description

ads TPMI_AES_KEY_BITS TPM_ALG-AES

S\ TPMI_SM4_KEY_BITS TPM_ALG_SM4

CAMELLIA TPMI_CAMELLIA_KEY_BITS TRM_ALG_CAMELLIA

sym TPM_KEY_BITS when selector may be any of the
symmetric block ciphers

X0 TPMI_ALG_HASH TPM_ALG_XOR overload for using xor

nyil TPM_ALG_NULL

12{1.6 TPMU_SYM_MODBE

Thjs union allows the.njode value in a TPMT_SYM_DEF or TPMT_SYM_DEF_OBJECT to be empty.

Table 127 — Definition of TPMU_SYM_MODE Union

Pgrameter Type Selector Description

ads TPMI_ALG_SYM_MODE |TPM_ALG_AES

snm4 TPMLALG SYM MODE |TPM ALG SM4

CAMELLIA TPMI_ALG_SYM_MODE TPM_ALG_CAMELLIA

sym TPMI_ALG_SYM_MODE when selector may be any of the
symmetric block ciphers

xor TPM_ALG_XOR no mode selector

null TPM_ALG_NULL no mode selector

108 © ISO/IEC 2015 — All rights reserved

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

12.1.7 TPMU_SYM_DETAILS

ISO/IEC 11889-2:2015(E)

This union allows additional parameters to be added for a symmetric cipher. Currently, no additional
parameters are required for any of the symmetric algorithms.

NOTE The “x” character in the table title will suppress generation of this type as the parser is not, at this time,
able to generate the proper values (a union of all empty data types). When an algorithm is added that
requires additional parameterization, the Type column will contain a value and the “x” may be removed.

Table 128 —xDefinition of TPMU SYM DETAILS Union

Parameter Type Selector Description

ads TPM_ALG_AES

SW4 TPM_ALG_SM4

CAMELLIA TPM_ALG_CAMELLIA

sym when selectornmay be any of the
symmetric(block ciphers

Xof TPM_ALG_XOR

ndll TPM_ALG_NULL

12[1.8 TPMT_SYM_DEF

The TPMT_SYM_DEF structure is used to select an algorithm to be

thgse cases when different symmetric algorithms may be selected.

Table 129 — Definition of TPMT_SYM_DEF Structure

used for parameter encryption

n

Pqrameter Type Description

algorithm +TPMI_ALG_SYM indicates a symmetric algorithm

[algorithm]keyBits TPMU_SYM_KEY.BITS a supported key size

[algorithm]mode TPMU_SYM_MODE the mode for the key

/[[algorithm]details TPMU_SY¥YM DETAILS contains additional algorithm details

NOTE [algorithmidetails is commented out at this time as the parser might not produce the proper code fof a

union if-nene of the selectors produces any data.

© ISO/IEC 2015 — All rights reserved

109

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

12.1.9 TPMT_SYM_DEF_OBJECT

This structure is used when different symmetric block cipher (not XOR) algorithms may be selected.

Table 130 — Definition of TPMT_SYM_DEF_OBJECT Structure

Parameter Type Description

algorithm +TPMI_ALG_SYM_OBJECT selects a symmetric block cipher

[algorithm]keyBits TPMU_SYM_KEY_BITS the key size

[algorithm]mode TPMU_SYM_MODE default mode

/[[@lgorithm]details TPMU_SYM_DETAILS contains the additional algorithm details, if any

NOTE [algorithm]details is commented out at this time as the parser might not produce thesproper code fof a
union if none of the selectors produces any data.

12[1.10 TPM2B_SYM_KEY

Thjs structure is used to hold a symmetric key in the sensitive area of an\asymmetric object.

The number of bits in the key is in keyBits in the public area. When keyBits is not an even multiple of 8
bitg, the unused bits of buffer will be the most significant bits of buffer[0] and size will be rounded ug to
thg number of octets required to hold all bits of the key.

Table 131 — Definition of TPM2B*SYM_KEY Structure

Pgrameter Type Description

sige UINT16 size, in octets, of the buffer containing the key; may pe
zero

buffer [size] {MAX_SYM_KEY_BYTES} |BYTE the key

121.11 TPMS_SYMCIPHER_PARMS

This structure contains the parameters for a symmetric block cipher object.

Table 132 — Definition of TPMS_SYMCIPHER_PARMS Structure

Parameter Type Description

sym TPMT_SYM_DEF_OBJECT a symmetric block cipher

12|1.22 TPM2B_SENSITIVE_DATA

Thisbuffer holds the secret data of a data object. Tt can hold as much as 128 octets of dafa.

MAX_SYM_DATA shall be 128.

NOTE A named value rather than a numeric is used to make coding clearer. A numeric value does not indicate
the reason that it has the specific value that is has.

110 © ISO/IEC 2015 — All rights reserved

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(

Table 133 — Definition of TPM2B_SENSITIVE_DATA Structure

E)

Parameter Type Description

size UINT16

buffer[size[{: MAX_SYM_DATA} BYTE the keyed hash private data structure

12.1.13 TPMS_SENSITIVE_CREATE
This—struettre-defines-the-valtes-to-be-placetH-thesensitivearea—of-aereatet-objeet—Fhis—Sstraeture is
only used within a TPM2B_SENSITIVE_CREATE structure.

NQITE When sent to the TPM or unsealed, data is usually encrypted using parameter encryption.

If data.size is not zero, and the object is not a keyedHash, data.size must match the sizeyindicated in the

keySize of public.parameters. If the object is a keyedHash, data.size may be any({value up to the

mgximum allowed in a TPM2B_SENSITIVE_DATA.

For an asymmetric object, data shall be an Empty Buffer and sensitiveDataOrigify shall be SET.

Table 134 — Definition of TPMS_SENSITIVE_CREATE-Structure <IN>

Pgrameter Type Description

usgerAuth TPM2B_AUTH the USER auth)secret value

data TPM2B_SENSITIVE_DATA data to be sealed

12{1.14 TPM2B_SENSITIVE_CREATE

Thjs structure contains the sensitive creation datain a sized buffer. This structure is defined so that bpth
thg userAuth and data values of the TPMS_SENSITIVE_CREATE may be passed as a single parameter
for|parameter encryption purposes.

Table 135 — Definition.of TPM2B_SENSITIVE_CREATE Structure <IN, S>

Parameter Type Description

size= UINT16 size of sensitive in octets (may not be zero)

sensitive TPMS_SENSITIVE_CREATE data to be sealed or a symmetric key value.

NOTE TheyuserAuth and data parameters in this buffer might both be zero length but the minimum size of the
size parameter will be the sum of the size fields of the two parameters of the
TPMS_SENSITIVE_CREATE.

© ISO/IEC 2015 — All rights reserved 111

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

12.1.15 TPMS_SCHEME_SIGHASH

This structure is the scheme data for schemes that only require a hash to complete the scheme definition.

Table 136 — Definition of TPMS_SCHEME_SIGHASH Structure

Parameter Type Description

hashAlg TPMI_ALG_HASH the hash algorithm used to digest the message

12{1.16 TPMI_ALG_HASH_SCHEME

Thjs is the list of values that may appear in a keyedHash as the scheme parameter.

Table 137 — Definition of (TPM_ALG_ID) TPMI_ALG_KEYEDHASH_SCHEME Type

Values Comments
TRM_ALG_HMAC the "signing" scheme
TRM_ALG_XOR the "obfuscation" scheme

+TPM_ALG_NULL

#1PM_RC_VALUE

1211.17 HMAC_SIG_SCHEME

Table 138 — Definition of Types'for HMAC_SIG_SCHEME

Type Name Description

TRMS_SCHEME_SIGHASH TPMS_SCHEME_HMAC

112 © ISO/IEC 2015 — All rights reserved

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

12.1.18 TPMS_SCHEME_XOR

ISO/IEC 11889-2:2015(E)

This structure is for the XOR encryption scheme.

Table 139 — Definition of TPMS_SCHEME_XOR Structure

Parameter Type Description
hashAlg +TPMI_ALG_HASH the hash algorithm used to digest the message
k TPMI_ALG_KDFE the key derivation function

121.19 TPMU_SCHEME_HMAC

Table 140 — Definition of TPMU_SCHEME_KEYEDHASH Union <IN/OUT, S>

Pgrameter |Type Selector Description
hmac TPMS_SCHEME_HMAC TPM_ALG_HMAC the t'signing” scheme
Xor TPMS_SCHEME_XOR TPM_ALG_XOR the "obfuscation” scheme

nyll

TPM_ALG_NULL

12{1.20 TPMT_KEYEDHASH_SCHEME

Thjs structure is used for a hash signing object.

Table 141 — Definition of TPMF-KEYEDHASH_SCHEME Structure

Parameter Type Description
scheme +TPMI_ALG_KEYEDHASH_SCHEME |selects the scheme
[s¢heme]details TPMU_SCHEME_KEYEDHASH the scheme parameters

© ISO/IEC 2015 — All rights reserved

113

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

12.2 Asymmetric

12.2.1 Signing Schemes

12.2.1.1 Introduction

These structures are used to define the method in which the signature is to be created. These schemes

wqutdappear i an Object’s pubiic area and i commands Where the Signing Scheme 15 varabte.

Every scheme is required to indicate a hash that is used in digesting the message.

12|2.1.2 RSA_SIG_SCHEMES

These are the RSA schemes that only need a hash algorithm as a scheme parameter!

For the TPM_ALG_RSAPSS signing scheme, the same hash algorithm is uSed for digesting THM-

geherated data (an attestation structure) and in the KDF used for the masking‘@peration. The salt size
alyays the largest salt value that will fit into the available space.

Table 142 — Definition of {RSA} Types for RSA (SIG_SCHEMES

S

Type

Name Description

TRMS_SCHEME_SIGHASH

TPMS_SCHEME_RSASSA

TRMS_SCHEME_SIGHASH

TPMS_SCHEME_RSAPSS

12{2.1.3 ECC_SIG_SCHEMES

These are the ECC schemes that only need athash algorithm as a controlling parameter.

Table 143 — Definition of {ECC} Types for ECC_SIG_SCHEMES

Type

Name Description

TRMS_SCHEME_SIGHASH

TPMS_SCHEME_ECDSA

TRMS_SCHEME_SIGHASH

TPMS_SCHEME_SM2

TRMS_SCHEME_SIGHASH

TPMS_SCHEME_ECSCHNORR

12{2.1.4 TPMS: SCHEME_ECDAA

Table 144 — Definition of {ECC} TPMS_SCHEME_ECDAA Structure

Pagrameter Type Description

hashAlg TPMI_ALG_HASH |the hash algorithm used to digest the message

count UINT16 the counter value that is used between TPM2_Commit() and the sign
operation

114 © ISO/IEC 2015 — All rights reserved

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

12.2.1.5 TPMU_SIG_SCHEME

ISO/IEC 11889-2:2015(E)

Table 145 — Definition of TPMU_SIG_SCHEME Union <IN/OUT, S>

Parameter |Type Selector Description

rsassa TPMS_SCHEME_RSASSA TPM_ALG_RSASSA the RSASSA-PKCS1vl 5
scheme

rsapss TPMS_SCHEME_RSAPSS TPM_ALG_RSAPSS the RSASSA-PSS scheme

ecdsa FHRMS—SCHEME—ECBSA FRM—AEC—ECBSA the EFCBSA-seheme

sm2 TPMS_SCHEME_SM2 TPM_ALG_SM2 ECDSA from SM2

eqdaa TPMS_SCHEME_ECDAA TPM_ALG_ECDAA the ECDAA scheme

edSchnorr TPMS_SCHEME_ECSCHNORR |TPM_ALG_ECSCHNORR the EC Schnorr

hmac TPMS_SCHEME_HMAC TPM_ALG_HMAC the HMAC scheime

any TPMS_SCHEME_SIGHASH selector_ that allows access (to
digest for)any signing scheme

nyll TPM_ALG_NULL ne.scheme or default

12|2.1.6 TPMT_SIG_SCHEME

Table 146 — Definition of TPMT_SIG_SCHEME Structure

Parameter Type Deseription
scheme +TPMI_ALG_SIG_SCHEME scheme selector
[s¢heme]details | TPMU_SIG_SCHEME scheme parameters

© ISO/IEC 2015 — All rights reserved

115

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

12.2.2 Encryption Schemes

12.2.2.1 Introduction

These structures are used to indicate the hash algorithm used for the encrypting process. These
schemes would appear in an object’s public area.

12.2.2.2 TPMS_SCHEME_OAEP

Table 147 — Definition of {RSA} TPMS_SCHEME_OAEP Structure

Pgrameter Type Description
hgshAlg TPMI_ALG_HASH the hash algorithm used to digest the message
1212.2.3 TPMS_SCHEME_ECDH

Fof ECDH, KDFe is used for the key derivation function that so only a hash”algorithm is needed
conplete the definition.

Table 148 — Definition of {ECC} TPMS_SCHEME(ECDH Structure

Pgrameter Type Description

hgshAlg TPMI_ALG_HASH the hash:algorithm used in the KDF
122.3 Key Derivation Schemes

12}2.3.1 Introduction

These structures are used to define the“key derivation for symmetric secret sharing using asymme

me

Th
sC

Eal

12

thods. A secret sharing scheme isrequired in any asymmetric key with the decrypt attribute SET.

pse schemes would appear in_an object’s public area and in commands where the secret shar
heme is variable.

ch scheme includes a symmetric algorithm and a KDF selection.

2.3.2 TPMS_SCHEME_MGF1

Table 149 — Definition of TPMS_SCHEME_MGF1 Structure

fric

Pgrameter; Type Description
hgshAlg TPMI_ALG_HASH the hash algorithm used in the KDF
12.2.3.3 TPMS_SCHEME_KDF1_SP800_56a
Table 150 — Definition of {ECC} TPMS_SCHEME_KDF1_SP800_56a Structure
Parameter Type Description
hashAlg TPMI_ALG_HASH the hash algorithm used in the KDF
116 © ISO/IEC 2015 — All rights reserved

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

12.2.3.4 TPMS_SCHEME_KDF2

Table 151 — Definition of TPMS_SCHEME_KDF2 Structure

Parameter Type Description

hashAlg TPMI_ALG_HASH the hash algorithm used in the KDF

12.2.3.5 TPMS_SCHEME_KDF1_SP800_108

Table 152 — Definition of TPMS_SCHEME_KDF1_SP800_108 Structure

Parameter Type Description

hgshAlg TPMI_ALG_HASH the hash algorithm used in the KDF

12[2.3.6 TPMU_KDF_SCHEME

Table 153 — Definition of TPMU_KDF_SCHEME Union KIN/OUT, S>

Parameter Type Selector Description
mgfl TPMS_SCHEME_MGF1 TPM_ALG_MGF1

kdfl_SP800_56a | TPMS_SCHEME_KDF1_SP800 56a |TPM_ALGyKDF1 SP800_56a

kdlf2 TPMS_SCHEME_KDF2 TPM_ALG_KDF2

kdfl_sp800_108 |TPMS_SCHEME_KDF1_SP800_108 |TPM_ALG_KDF1_SP800_108

nyll TPM_ALG_NULL

12{2.3.7 TPMT_KDF_SCHEME

Table 154 — Definition of TPMT_KDF_SCHEME Structure

Pgrameter Type Description
scheme +TPMI_ALG_(KDF scheme selector
[s¢heme]details | TPMU_KBDE_SCHEME scheme parameters

© ISO/IEC 2015 — All rights reserved 117

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

12.2.3.8 TPMI_ALG_ASYM_SCHEME

List of all of the scheme types for any asymmetric algorithm. This is used to define the
TPMT_ASYM_SCHEME.

Table 155 — Definition of (TPM_ALG_ID) TPMI_ALG_ASYM_SCHEME Type <>

Values

Comments

TPM_ALG_RSASSA

list of the allowed values

TRM_ALG_RSAPSS

TRM_ALG_RSAES

TRM_ALG_OAEP

TRM_ALG_ECDSA

TRM_ALG_SM?2

TRM_ALG_ECDAA

TRM_ALG_ECDH

+TPM_ALG_NULL

#TPM_RC_VALUE

12

Thjs union of all asymmetric schemes is used in each of,the asymmetric scheme structures. The act
scheme structure is defined by the interface type used:for the selector.

2.3.9 TPMU_ASYM_SCHEME

bal

EXAMPLE The TPMT_RSA_SCHEME structure*uses the TPMU_ASYM_SCHEME union but the selector typg is
TPMI_ALG_RSA_SCHEME. This means that the only elements of the union that can be selected for [the
TPMT_RSA_SCHEME are those,that are in TPMI_RSA_SCHEME.

Table 156 — Ppefinition of TPMU_ASYM_SCHEME Union

Pgrameter |Type Selector Description

rsqgssa TPMS_SCHEME_RSASSA TPM_ALG_RSASSA the RSASSA-PKCS1-v1l_5 scheme

rsapss TPMS_SCHEME, RSAPSS TPM_ALG_RSAPSS the RSASSA-PSS scheme

rsqes TPM_ALG_RSAES the RSAES-PKCS1-vl_5 scheme

ogep TPMS_SCHEME_OAEP TPM_ALG_OAEP the RSAES_OAEP scheme

eqdsa TRPMS_SCHEME_ECDSA TPM_ALG_ECDSA an ECDSA scheme

sm2 TPMS_SCHEME_SM2 TPM_ALG_SM2 sign or key exchange from SM2

eqdaa TPMS_SCHEME_ECDAA TPM_ALG_ECDAA an ECDAA scheme

edSchnorr TDI\/IQ_Q{“I—IEM,;_EPQPI—H\IHDD TDI\/I_AI (‘_E("Q("I—II\I(\DD nllipfir‘ curnve Schnorr cignntnrn

ecdh TPMS_SCHEME_ECDH TPM_ALG_ECDH

anySig TPMS_SCHEME_SIGHASH

null TPM_ALG_NULL no scheme or default
This selects the NULL Signature.
118 © ISO/IEC 2015 — All rights reserved

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

12.2.3.10 TPMT_ASYM_SCHEME

This structure is defined to allow overlay of all of the schemes for any asymmetric object. This structure is
not sent on the interface.

Table 157 — Definition of TPMT_ASYM_SCHEME Structure <>

Parameter Type Description
scheme +TPMI_ALG_ASYM_SCHEME scheme selector
[s¢heme]details TPMU_ASYM_SCHEME scheme parameters
1212.4 RSA

1212.4.1 TPMI_ALG_RSA_SCHEME

The list of values that may appear in the scheme parameter of a TPMS_RSA_PARMS structure.

Table 158 — Definition of (TPM_ALG_ID) {RSA} TPMI_ALG RSA_SCHEME Type

Values Comments

TRM_ALG_RSASSA list of the allowed values

TRM_ALG_RSAPSS

TRM_ALG_RSAES
TRM_ALG_OAEP
+TPM_ALG_NULL

#TPM_RC_VALUE

12{2.4.2 TPMT_RSA_SCHEME

Table 159 —Definition of {RSA} TPMT_RSA_SCHEME Structure

Pgrameter Type Description
scheme +TPMI_ALG_RSA_ SCHEME scheme selector
[s¢heme]details TPMU_ASYM_SCHEME scheme parameters

© ISO/IEC 2015 — All rights reserved 119

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

12.2.4.3 TPMI_ALG_RSA_DECRYPT

The list of values that are allowed in a decryption scheme selection as used in TPM2_RSA_Encrypt() and
TPM2_RSA_Decrypt().

Table 160 — Definition of (TPM_ALG_ID) {RSA} TPMI_ALG_RSA_DECRYPT Type

Values Comments

TPM_ALG_RSAES
TRM_ALG_OAEP
+TPM_ALG_NULL

#TPM_RC_VALUE

12{2.4.4 TPMT_RSA_DECRYPT

Table 161 — Definition of {RSA} TPMT_RSA_DECRYPT Stfucture

Pgrameter Type Deseription
scheme +TPMI_ALG_RSA_DECRYPT scheme selector
[s¢heme]details TPMU_ASYM_SCHEME scheme parameters

12[2.4.5 TPM2B_PUBLIC_KEY_RSA

Thijs sized buffer holds the largest RSA public key supported by the TPM.

NQITE The reference implementation only supports key sizes of 1,024 and 2,048 bits.

Table 162 — Definition of {RSA} TPM2B_PUBLIC_KEY_RSA Structure

Pgrameter Type Description

size UINT16 size of the buffer
The value of zero is only valid for create.

buffer[size] {: MAX_RSA_KEY\BYTES} BYTE Value

12{2.4.6 TPMI_RSA_KEY_BITS

This holds the'Walue that is the maximum size allowed for an RSA key.

NQTE 1 An implementation is can provide limited support for smaller RSA key sizes. That is, a TPM might be gble
to accept a smaller RSA key size in TPM2_LoadExternal() when only the public area is loaded but [not
accept that smaller key size in any command that loads both the public and private portions of an HSA
I(n\]/ This would let the TPM to validate cignnfllrne ||Qing the smaller l(ny but would prevent the TPM flom

using the smaller key size for any other purpose.

NOTE 2 The definition for RSA_KEY_SIZES BITS used in the reference implementation is found in Annex B

120 © ISO/IEC 2015 — All rights reserved

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

Table 163 — Definition of {RSA} (TPM_KEY_BITS) TPMI_RSA_KEY_BITS Type

ISO/IEC 11889-2:2015(E)

Parameter Description

$RSA_KEY_SIZES_BITS

the number of bits in the supported key

#TPM_RC_VALUE

error when key size is not supported

12.2.4.7 TPM2B_PRIVATE_KEY_RSA

+h

RCA P PRI 2N
e TToTTYg

PSR -O-E P20 [“CWaE 1 28 T DA
CTSUpPpPOtCO— oy arc—T T 1vi.

TI.-‘ izadl b —hkald [P2y + B
IS STIZC U OUIMCT TTOTUS T TATY T ST TN O Pt

NQITE All primes need to have exactly half the number of significant bits as the public modulus, and the squ
of each prime needs to have the same number of significant bits as the public modulus.

Table 164 — Definition of {RSA} TPM2B_PRIVATE_KEY_RSA Structutre

Pqrameter Type

Description

sige UINT16

byffer[size]:MAX_RSA_KEY BYTES/2} |BYTE

© ISO/IEC 2015 — All rights reserved

121

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

12.2.5 ECC

12.2.5.1 TPM2B_ECC_PARAMETER

This sized buffer holds the largest ECC parameter (coordinate) supported by the TPM.

Table 165 — Definition of {ECC} TPM2B_ECC_PARAMETER Structure

Pdrameter Type

Description

sige UINT16

size of buffer

byffer[size] {{MAX_ECC_KEY_BYTES} |BYTE

the parameter data

1212.5.2 TPMS_ECC_POINT

This structure holds two ECC coordinates that, together, make up an ECC point;

Table 166 — Definition of {ECC} TPMS_ECC_POINT Structure

Parameter Type Description
X TPM2B_ECC_PARAMETER X coordinate
y TPM2B_ECC_PARAMETER Y coordinate

12{2.5.3 TPM2B_ECC_POINT

Thjs structure is defined to allow a point to be a single sized parameter so that it may be encrypted.

NOITE If the point is to be omitted, the " X"and Y coordinates need to be individually set to Empty Buffers. The

of marshaling the structure)

Table 167 Definition of {ECC} TPM2B_ECC_POINT Structure

minimum value for size will befour. It is checked indirectly by unmarshaling of the TPMS_ECC_POINT. If
the type of point were BYTE\then size could have been zero. However, this would complicate the process

Parameter Type Description
sige= UINT16 size of the remainder of this structure
pgint TPMS_ECC_POINT coordinates

#1PM_RC_SIZE

is

error returned if the unmarshaled size of point

not exactly equal to size

122

© ISO/IEC 2015 — All rights reserved

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)
12.2.5.4 TPMI_ALG_ECC_SCHEME

Table 168 — Definition of (TPM_ALG_ID) {ECC} TPMI_ALG_ECC_SCHEME Type

Values Comments

TPM_ALG_ECDSA these are the selections allowed for an ECC key

TPM_ALG_SM2
TPM_ALG_ECDAA

TRM_ALG_ECSCHNORR
TRM_ALG_ECDH
+TPM_ALG_NULL

#TPM_RC_SCHEME

12{2.5.5 TPMI_ECC_CURVE

The ECC curves implemented by the TPM.

NOITE The definition of ECC_CURVES used in the reference implementation is found in Annex B

Table 169 — Definition of {ECC} (TPM_ECC_CURVE) TPMI_ECC_CURVE Type

Parameter Description
$HCC_CURVES the list of implemented curves
#TPM_RC_CURVE error when curve is not supported

12{2.5.6 TPMT_ECC_SCHEME

Table 170 — Definition of (TPMI."SIG_SCHEME) {ECC} TPMT_ECC_SCHEME Structure

Pafameter Type Description
scheme +TPMI_ALG_ECC_SCHEME scheme selector
[scheme]details TPMU_ASYM_SCHEME scheme parameters

© ISO/IEC 2015 — All rights reserved 123

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

ISO/IEC 11889-2:2015(E)

12.2.5.7 TPMS_ALGORITHM_DETAIL_ECC

This structure is used to report on the curve parameters of an ECC curve. It is returned by
TPM2_ECC_Parameters().

Table 171 — Definition of {ECC} TPMS_ALGORITHM_DETAIL_ECC Structure <OUT>

Parameter Type Description

curvelD TPM_ECC_CURVE identifier for the curve

kelySize UINT16 Size in bits of the key

kdf TPMT_KDF_SCHEME the default KDF and hash algorithm used in sectet _sharipg
operations

sign TPMT_ECC_SCHEME+ If not TPM_ALG_NULL, this is the mandatory signatyre
scheme that is required to be used with this curve.

p TPM2B_ECC_PARAMETER Fp (the modulus)

a TPM2B_ECC_PARAMETER coefficient of the linear term in the’ curve equation

b TPM2B_ECC_PARAMETER constant term for curve equation

oX TPM2B_ECC_PARAMETER x coordinate of base pointG

gy TPM2B_ECC_PARAMETER y coordinate of base point G

n TPM2B_ECC_PARAMETER order of G

h TPM2B_ECC_PARAMETER cofactor (a size of zero indicates a cofactor of 1)

12{3 Signatures

1213.1 TPMS_SIGNATURE_RSASSA

Table 172 — Definition of {RSA} TPMS_SIGNATURE_RSASSA Structure

Pqrameter Type Description

hgsh TPMI_ALG) HASH the hash algorithm used to digest the message
TPM_ALG_NULL is not allowed.

Sig TPM2B_PUBLIC_KEY_RSA The signature is the size of a public key.

1213.2 TPMS_SIGNATURE_RSAPSS

When the TPM generates a PSS signature, the salt size is the largest size allowed by the key and hgsh
combination:

EXAMPLE For a 2,048-bit public modulus key and SHA1 hash, the salt size is 256 — 20 — 2 = 234 octets.

NOTE While this is significantly larger than needed from a security perspective, it avoids issues of whether a
particular size of salt value is sufficient.

124 © ISO/IEC 2015 — All rights reserved

https://standardsiso.com/api/?name=af71c8bd4ad6fb5af3c4f493636cc1ab

	1 Scope
	2 Normative references
	3 Terms and definitions
	4 Symbols and abbreviated terms
	5 Notation
	5.1 Introduction
	5.2 Named Constants
	5.3 Data Type Aliases (typedefs)
	5.4 Enumerations
	5.5 Interface Type
	5.6 Arrays
	5.7 Structure Definitions
	5.8 Conditional Types
	5.9 Unions
	5.9.1 Introduction
	5.9.2 Union Definition
	5.9.3 Union Instance
	5.9.4 Union Selector Definition

	5.10 Bit Field Definitions
	5.11 Parameter Limits
	5.12 Enumeration Macro
	5.13 Size Checking
	5.14 Data Direction
	5.15 Structure Validations
	5.16 Name Prefix Convention
	5.17 Data Alignment
	5.18 Parameter Unmarshaling Errors

	6 Base Types
	6.1 Primitive Types
	6.2 Miscellaneous Types

	7 Constants
	7.1 TPM_SPEC (Specification Version Values)
	7.2 TPM_GENERATED
	7.3 TPM_ALG_ID
	7.4 TPM_ECC_CURVE
	7.5 TPM_CC (Command Codes)
	7.5.1 Format
	7.5.2 Description
	7.5.3 TPM_CC Listing

	7.6 TPM_RC (Response Codes)
	7.6.1 Description
	7.6.2 Response Code Formats
	7.6.3 TPM_RC Values

	7.7 TPM_CLOCK_ADJUST
	7.8 TPM_EO (EA Arithmetic Operands)
	7.9 TPM_ST (Structure Tags)
	7.10 TPM_SU (Startup Type)
	7.11 TPM_SE (Session Type)
	7.12 TPM_CAP (Capabilities)
	7.13 TPM_PT (Property Tag)
	7.14 TPM_PT_PCR (PCR Property Tag)
	7.15 TPM_PS (Platform Specific)

	8 Handles
	8.1 Introduction
	8.2 TPM_HT (Handle Types)
	8.3 Persistent Handle Sub-ranges
	8.4 TPM_RH (Permanent Handles)
	8.5 TPM_HC (Handle Value Constants)

	9 Attribute Structures
	9.1 Description
	9.2 TPMA_ALGORITHM
	9.3 TPMA_OBJECT (Object Attributes)
	9.3.1 Introduction
	9.3.2 Structure Definition
	9.3.3 Attribute Descriptions
	9.3.3.1 Introduction
	9.3.3.2 Bit[1] – fixedTPM
	9.3.3.3 Bit[2] – stClear
	9.3.3.4 Bit[4] – fixedParent
	9.3.3.5 Bit[5] – sensitiveDataOrigin
	9.3.3.6 Bit[6] – userWithAuth
	9.3.3.7 Bit[7] – adminWithPolicy
	9.3.3.8 Bit[10] – noDA
	9.3.3.9 Bit[11] – encryptedDuplication
	9.3.3.10 Bit[16] – restricted
	9.3.3.11 Bit[17] – decrypt
	9.3.3.12 Bit[18] – sign

	9.4 TPMA_SESSION (Session Attributes)
	9.5 TPMA_LOCALITY (Locality Attribute)
	9.6 TPMA_PERMANENT
	9.7 TPMA_STARTUP_CLEAR
	9.8 TPMA_MEMORY
	9.9 TPMA_CC (Command Code Attributes)
	9.9.1 Introduction
	9.9.2 Structure Definition
	9.9.3 Field Descriptions
	9.9.3.1 Bits[15:0] – commandIndex
	9.9.3.2 Bit[22] – nv
	9.9.3.3 Bit[23] – extensive
	9.9.3.4 Bit[24] – flushed
	9.9.3.5 Bits[27:25] – cHandles
	9.9.3.6 Bit[28] – rHandle
	9.9.3.7 Bit[29] – V
	9.9.3.8 Bits[31:30] – Res

	10 Interface Types
	10.1 Introduction
	10.2 TPMI_YES_NO
	10.3 TPMI_DH_OBJECT
	10.4 TPMI_DH_PERSISTENT
	10.5 TPMI_DH_ENTITY
	10.6 TPMI_DH_PCR
	10.7 TPMI_SH_AUTH_SESSION
	10.8 TPMI_SH_HMAC
	10.9 TPMI_SH_POLICY
	10.10 TPMI_DH_CONTEXT
	10.11 TPMI_RH_HIERARCHY
	10.12 TPMI_RH_ENABLES
	10.13 TPMI_RH_HIERARCHY_AUTH
	10.14 TPMI_RH_PLATFORM
	10.15 TPMI_RH_OWNER
	10.16 TPMI_RH_ENDORSEMENT
	10.17 TPMI_RH_PROVISION
	10.18 TPMI_RH_CLEAR
	10.19 TPMI_RH_NV_AUTH
	10.20 TPMI_RH_LOCKOUT
	10.21 TPMI_RH_NV_INDEX
	10.22 TPMI_ALG_HASH
	10.23 TPMI_ALG_ASYM (Asymmetric Algorithms)
	10.24 TPMI_ALG_SYM (Symmetric Algorithms)
	10.25 TPMI_ALG_SYM_OBJECT
	10.26 TPMI_ALG_SYM_MODE
	10.27 TPMI_ALG_KDF (Key and Mask Generation Functions)
	10.28 TPMI_ALG_SIG_SCHEME
	10.29 TPMI_ECC_KEY_EXCHANGE
	10.30 TPMI_ST_COMMAND_TAG

	11 Structure Definitions
	11.1 TPMS_EMPTY
	11.2 TPMS_ALGORITHM_DESCRIPTION
	11.3 Hash/Digest Structures
	11.3.1 TPMU_HA (Hash)
	11.3.2 TPMT_HA

	11.4 Sized Buffers
	11.4.1 Introduction
	11.4.2 TPM2B_DIGEST
	11.4.3 TPM2B_DATA
	11.4.4 TPM2B_NONCE
	11.4.5 TPM2B_AUTH
	11.4.6 TPM2B_OPERAND
	11.4.7 TPM2B_EVENT
	11.4.8 TPM2B_MAX_BUFFER
	11.4.9 TPM2B_MAX_NV_BUFFER
	11.4.10 TPM2B_TIMEOUT
	11.4.11 TPM2B_IV

	11.5 Names
	11.5.1 Introduction
	11.5.2 TPMU_NAME
	11.5.3 TPM2B_NAME

	11.6 PCR Structures
	11.6.1 TPMS_PCR_SELECT
	11.6.2 TPMS_PCR_SELECTION

	11.7 Tickets
	11.7.1 Introduction
	11.7.2 A NULL Ticket
	11.7.3 TPMT_TK_CREATION
	11.7.4 TPMT_TK_VERIFIED
	11.7.5 TPMT_TK_AUTH
	11.7.6 TPMT_TK_HASHCHECK

	11.8 Property Structures
	11.8.1 TPMS_ALG_PROPERTY
	11.8.2 TPMS_TAGGED_PROPERTY
	11.8.3 TPMS_TAGGED_PCR_SELECT

	11.9 Lists
	11.9.1 TPML_CC
	11.9.2 TPML_CCA
	11.9.3 TPML_ALG
	11.9.4 TPML_HANDLE
	11.9.5 TPML_DIGEST
	11.9.6 TPML_DIGEST_VALUES
	11.9.7 TPM2B_DIGEST_VALUES
	11.9.8 TPML_PCR_SELECTION
	11.9.9 TPML_ALG_PROPERTY
	11.9.10 TPML_TAGGED_TPM_PROPERTY
	11.9.11 TPML_TAGGED_PCR_PROPERTY
	11.9.12 TPML_ECC_CURVE

	11.10 Capabilities Structures
	11.10.1 TPMU_CAPABILITIES
	11.10.2 TPMS_CAPABILITY_DATA

	11.11 Clock/Counter Structures
	11.11.1 TPMS_CLOCK_INFO
	11.11.2 Clock
	11.11.3 ResetCount
	11.11.4 RestartCount
	11.11.5 Safe
	11.11.6 TPMS_TIME_INFO

	11.12 TPM Attestation Structures
	11.12.1 Introduction
	11.12.2 TPMS_TIME_ATTEST_INFO
	11.12.3 TPMS_CERTIFY_INFO
	11.12.1 TPMS_QUOTE_INFO
	11.12.2 TPMS_COMMAND_AUDIT_INFO
	11.12.3 TPMS_SESSION_AUDIT_INFO
	11.12.4 TPMS_CREATION_INFO
	11.12.5 TPMS_NV_CERTIFY_INFO
	11.12.6 TPMI_ST_ATTEST
	11.12.7 TPMU_ATTEST
	11.12.8 TPMS_ATTEST
	11.12.9 TPM2B_ATTEST

	11.13 Authorization Structures
	11.13.1 Introduction
	11.13.2 TPMS_AUTH_COMMAND
	11.13.3 TPMS_AUTH_RESPONSE

	12 Algorithm Parameters and Structures
	12.1 Symmetric
	12.1.1 Introduction
	12.1.2 TPMI_AES_KEY_BITS
	12.1.3 TPMI_SM4_KEY_BITS
	12.1.4 TPMI_CAMELLIA KEY_BITS
	12.1.5 TPMU_SYM_KEY_BITS
	12.1.6 TPMU_SYM_MODE
	12.1.7 TPMU_SYM_DETAILS
	12.1.8 TPMT_SYM_DEF
	12.1.9 TPMT_SYM_DEF_OBJECT
	12.1.10 TPM2B_SYM_KEY
	12.1.11 TPMS_SYMCIPHER_PARMS
	12.1.12 TPM2B_SENSITIVE_DATA
	12.1.13 TPMS_SENSITIVE_CREATE
	12.1.14 TPM2B_SENSITIVE_CREATE
	12.1.15 TPMS_SCHEME_SIGHASH
	12.1.16 TPMI_ALG_HASH_SCHEME
	12.1.17 HMAC_SIG_SCHEME
	12.1.18 TPMS_SCHEME_XOR
	12.1.19 TPMU_SCHEME_HMAC
	12.1.20 TPMT_KEYEDHASH_SCHEME

	12.2 Asymmetric
	12.2.1 Signing Schemes
	12.2.1.1 Introduction
	12.2.1.2 RSA_SIG_SCHEMES
	12.2.1.3 ECC_SIG_SCHEMES
	12.2.1.4 TPMS_SCHEME_ECDAA
	12.2.1.5 TPMU_SIG_SCHEME
	12.2.1.6 TPMT_SIG_SCHEME

	12.2.2 Encryption Schemes
	12.2.2.1 Introduction
	12.2.2.2 TPMS_SCHEME_OAEP
	12.2.2.3 TPMS_SCHEME_ECDH

	12.2.3 Key Derivation Schemes
	12.2.3.1 Introduction
	12.2.3.2 TPMS_SCHEME_MGF1
	12.2.3.3 TPMS_SCHEME_KDF1_SP800_56a
	12.2.3.4 TPMS_SCHEME_KDF2
	12.2.3.5 TPMS_SCHEME_KDF1_SP800_108
	12.2.3.6 TPMU_KDF_SCHEME
	12.2.3.7 TPMT_KDF_SCHEME
	12.2.3.8 TPMI_ALG_ASYM_SCHEME
	12.2.3.9 TPMU_ASYM_SCHEME
	12.2.3.10 TPMT_ASYM_SCHEME

	12.2.4 RSA
	12.2.4.1 TPMI_ALG_RSA_SCHEME
	12.2.4.2 TPMT_RSA_SCHEME
	12.2.4.3 TPMI_ALG_RSA_DECRYPT
	12.2.4.4 TPMT_RSA_DECRYPT
	12.2.4.5 TPM2B_PUBLIC_KEY_RSA
	12.2.4.6 TPMI_RSA_KEY_BITS
	12.2.4.7 TPM2B_PRIVATE_KEY_RSA

	12.2.5 ECC
	12.2.5.1 TPM2B_ECC_PARAMETER
	12.2.5.2 TPMS_ECC_POINT
	12.2.5.3 TPM2B_ECC_POINT
	12.2.5.4 TPMI_ALG_ECC_SCHEME
	12.2.5.5 TPMI_ECC_CURVE
	12.2.5.6 TPMT_ECC_SCHEME
	12.2.5.7 TPMS_ALGORITHM_DETAIL_ECC

	12.3 Signatures
	12.3.1 TPMS_SIGNATURE_RSASSA
	12.3.2 TPMS_SIGNATURE_RSAPSS
	12.3.3 TPMS_SIGNATURE_ECDSA
	12.3.4 TPMU_SIGNATURE
	12.3.5 TPMT_SIGNATURE

	12.4 Key/Secret Exchange
	12.4.1 Introduction
	12.4.2 TPMU_ENCRYPTED_SECRET
	12.4.3 TPM2B_ENCRYPTED_SECRET

	13 Key/Object Complex
	13.1 Introduction
	13.2 Public Area Structures
	13.2.1 Description
	13.2.2 TPMI_ALG_PUBLIC
	13.2.3 Type-Specific Parameters
	13.2.3.1 Description
	13.2.3.2 TPMU_PUBLIC_ID
	13.2.3.3 TPMS_KEYEDHASH_PARMS
	13.2.3.4 TPMS_ASYM_PARMS
	13.2.3.5 TPMS_RSA_PARMS
	13.2.3.6 TPMS_ECC_PARMS
	13.2.3.7 TPMU_PUBLIC_PARMS
	13.2.3.8 TPMT_PUBLIC_PARMS

	13.2.4 TPMT_PUBLIC
	13.2.5 TPM2B_PUBLIC

	13.3 Private Area Structures
	13.3.1 Introduction
	13.3.2 Sensitive Data Structures
	13.3.2.1 Introduction
	13.3.2.2 TPM2B_PRIVATE_VENDOR_SPECIFIC
	13.3.2.3 TPMU_SENSITIVE_COMPOSITE
	13.3.2.4 TPMT_SENSITIVE

	13.3.3 TPM2B_SENSITIVE
	13.3.4 Encryption
	13.3.5 Integrity
	13.3.6 _PRIVATE
	13.3.7 TPM2B_PRIVATE

	13.4 Identity Object
	13.4.1 Description
	13.4.2 _ID_OBJECT
	13.4.3 TPM2B_ID_OBJECT

	14 NV Storage Structures
	14.1 TPM_NV_INDEX
	14.2 TPMA_NV (NV Index Attributes)
	14.3 TPMS_NV_PUBLIC
	14.4 TPM2B_NV_PUBLIC

	15 Context Data
	15.1 Introduction
	15.2 TPM2B_CONTEXT_SENSITIVE
	15.3 TPMS_CONTEXT_DATA
	15.4 TPM2B_CONTEXT_DATA
	15.5 TPMS_CONTEXT
	15.6 Parameters of TPMS_CONTEXT
	15.6.1 sequence
	15.6.2 savedHandle
	15.6.3 hierarchy

	15.7 Context Protection
	15.7.1 Context Integrity
	15.7.2 Context Confidentiality

	16 Creation Data
	16.1 TPMS_CREATION_DATA
	16.2 TPM2B_CREATION_DATA

