INTERNATIONAL STANDARD

ISO 3580

Third edition 2010-03-15

Welding consumables — Covered electrodes for manual metal arc welding of creep-resisting steels — Classification

Produits consommables pour le soudage — Électrodes enrobées pour le soudage manuel à l'arc des aciers résistant au fluage — Classification

Classification

Cido de la consommable pour le soudage — Électrodes enrobées pour le soudage manuel à l'arc des aciers résistant au fluage — Classification

Classification

Cido de la consommable pour le soudage — Électrodes enrobées pour le soudage pour le soudage — Électrodes enrobées pour le soudage pour le

ISO

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

COPYRIGHT PROTECTED DOCUMENT

© ISO 2010

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org

Published in Switzerland

Contents Page

Introduction	Forewo	ord	iv
2 Normative references	Introdu	uction	v
2 Normative references	1	Scope	1
4.1 Symbol for the product/process 3.4.2 Symbol for the chemical composition of all-weld metal 3.4.3 Symbol for the mechanical properties of all-weld metal 3.4.4 Symbol for type of electrode covering 7.4.5 Symbol for nominal electrode efficiency and type of current 8.6.5 Symbol for welding position 8.7 Symbol for hydrogen content of deposited metal 9.4.8 Rounding procedure 10.5 Mechanical tests 10.5 Mechanical test	2	•	
4.1 Symbol for the product/process 3.4.2 Symbol for the chemical composition of all-weld metal 3.4.3 Symbol for the mechanical properties of all-weld metal 3.4.4 Symbol for type of electrode covering 7.4.5 Symbol for nominal electrode efficiency and type of current 8.6.5 Symbol for welding position 8.7 Symbol for hydrogen content of deposited metal 9.4.8 Rounding procedure 10.5 Mechanical tests 10.5 Mechanical test	_	Normative references	1
4.1 Symbol for the product/process 3.4.2 Symbol for the chemical composition of all-weld metal 3.4.3 Symbol for the mechanical properties of all-weld metal 3.4.4 Symbol for type of electrode covering 7.4.5 Symbol for nominal electrode efficiency and type of current 8.6.5 Symbol for welding position 8.7 Symbol for hydrogen content of deposited metal 9.4.8 Rounding procedure 10.5 Mechanical tests 10.5 Mechanical test	3	Classification	2
4.2 Symbol for the chemical composition of all-weld metal	-	Symbols and requirements	3
4.3 Symbol for the mechanical properties of all-weld metal		Symbol for the product/process	3
4.4 Symbol for type of electrode covering		Symbol for the mechanical properties of all-weld metal	ა ვ
4.5 Symbol for nominal electrode efficiency and type of current 4.6 Symbol for welding position 8.7 Symbol for hydrogen content of deposited metal 9.4 Symbol for hydrogen content of deposited metal 9.4 Security of the property of the prop		Symbol for type of electrode covering	7
4.6 Symbol for welding position		Symbol for nominal electrode efficiency and type of current	8
4.8 Rounding procedure	4.6	Symbol for welding position	8
5 Mechanical tests			
5.1 General	4.8		
5.2 Preheating and interpass temperature	5	Mechanical tests	10
5.3 Pass sequence	•	General	10
6 Chemical analysis	_		
7 Fillet weld test	5.3	Pass sequence	10
8 Retests	6		
9 Technical delivery conditions	7	Fillet weld test	11
Annex A (informative) Classification systems	8	Retests	12
Annex A (informative) Classification systems	9		
Annex B (informative) Description of chemical composition designators (classification by chemical composition)	10	Examples of designation	13
chemical composition)	Annex	A (informative) Classification systems	14
Strength and chemical composition)	Annex		16
Annex E (informative) Description of types of electrode covering (classification by tensile strength and chemical composition)	Annex		17
strength and chemical composition)	Annex		18
	Annex		19
Bibliography22	Annex	F (informative) Notes on diffusible hydrogen	21
	Bibliog	ıraphy	22

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 3580 was prepared by Technical Committee ISO/TC 44, Welding and allied processes, Subcommittee SC 3, Welding consumables.

This third edition cancels and replaces the second edition (ISO 3586:2004).

Requests for official interpretations of any aspect of this International Standard should be directed to the Secretariat of ISO/TC 44/SC 3 via your national standards body. A complete listing of these bodies can be found at www.iso.org.

Chick to the Secretariat of ISO/TC 44/SC 3 via your national standards body. A complete listing of these bodies can be found at www.iso.org.

Chick to the Secretariat of ISO/TC 44/SC 3 via your national standards body. A complete listing of these bodies can be found at www.iso.org.

Introduction

This International Standard proposes a method for classification of covered electrodes, in terms of chemical composition of the all-weld metal (system A) and in terms of tensile strength and chemical composition (system B).

The mechanical properties of all-weld metal test specimens used to classify the electrodes vary from those obtained in production joints because of differences in welding procedure such as electrode diameter, width of weave, welding position and material composition.

1. The class of the contraction The classification according to system A is mainly based on EN 1599:1997[1]. The classification according to system B is mainly based upon standards used around the Pacific Rim.

© ISO 2010 - All rights reserved

STANDARDS 50.COM. Click to view the full Part of 150 3580 7010

Welding consumables — Covered electrodes for manual metal arc welding of creep-resisting steels — Classification

1 Scope

This International Standard specifies requirements for classification of covered electrodes based on the all-weld metal in the heat-treated condition, for manual metal arc welding of ferritic and martensitic creepresisting and low alloy elevated temperature steels.

This International Standard is a combined specification for classification utilizing a system based upon the chemical composition of the all-weld metal, with requirements for the yield strength and impact energy of the all-weld metal, or utilizing a system based upon the tensile strength and the chemical composition of the all-weld metal.

- a) Paragraphs and tables which carry the suffix letter "A" are applicable only to electrodes classified to the system based upon chemical composition, with requirements for the yield strength and impact energy of the all-weld metal under this International Standard.
- b) Paragraphs and tables which carry the suffix letter "B" are applicable only to electrodes classified to the system based upon the tensile strength and the chemical composition of all-weld metal under this International Standard.
- c) Paragraphs and tables which do not have either the suffix letter "A" or the suffix letter "B" are applicable to all covered electrodes classified under this International Standard.

For comparison purposes, some tables include requirements for electrodes classified according to both systems, placing individual electrodes from the two systems, which are similar in composition and properties, on adjacent lines in the particular table. In a particular line of the table that is mandatory in one system, the symbol for the similar electrode from the other system is indicated in parentheses. By appropriate restriction of the formulation of a particular electrode, it is often, but not always, possible to produce an electrode that can be classified in both systems, in which case the electrode, and/or its packaging, may be marked with the classification in either or both systems.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 544, Welding consumables — Technical delivery conditions for filler materials and fluxes — Type of product, dimensions, tolerances and markings

ISO 2401, Covered electrodes — Determination of the efficiency, metal recovery and deposition coefficient

ISO 3690, Welding and allied processes — Determination of hydrogen content in arc weld metal

ISO 6847, Welding consumables — Deposition of a weld metal pad for chemical analysis

ISO 6947, Welds — Working positions

ISO 13916, Welding — Guidance on the measurement of preheating temperature, interpass temperature and preheat maintenance temperature

ISO 14344, Welding consumables — Procurement of filler materials and fluxes

ISO 15792-1:2000, Welding consumables — Test methods — Part 1: Test methods for all-weld metal test specimens in steel, nickel and nickel alloys

ISO 15792-3, Welding consumables — Test methods — Part 3: Classification testing of positional capacity and root penetration of welding consumables in a fillet weld

ISO 80000-1:2009, Quantities and units — Part 1: General

3 Classification

Classification designations are based upon two approaches to indicate the composition and properties of the all-weld metal obtained with a given electrode. The two designation approaches include additional designators for some other classification requirements, but not all. In most cases, a given compercial product can be classified in both systems. Then either or both classification designations can be used for the product.

The classification includes all-weld metal properties obtained with a covered electrode as given in 3A and 3B. The classification is based on the electrode size 4,0 mm with the exception of the symbol for welding position which is based on ISO 15792-3.

3A Classification by chemical composition

The classification is divided into six parts:

- 1) the first part gives a symbol indicating the product/process to be identified;
- 2) the second part gives a symbol indicating the chemical composition of the all-weld metal (see Table 1):
- 3) the third part gives a symbol indicating the type of electrode covering (see 4.4A);
- 4) the fourth part gives a symbol indicating the nominal electrode efficiency and type of current (see Table 4A);
- 5) the fifth part gives a symbol indicating the welding position (see Table 5A);
- 6) the sixth part gives a symbol indicating the hydrogen content of the deposited metal (see Table 6).

3B Classification by tensile strength and chemical composition

The classification is divided into five parts:

- 1) the first part gives a symbol indicating the product/process to be identified;
- 2) the second part gives a symbol indicating the strength of the all-weld metal (see Table 2);
- 3) the third part gives a symbol indicating the type of electrode covering, the type of current, and the welding position (see Table 3B);
- 4) the fourth part gives a symbol indicating the chemical composition of all-weld metal (see Table 1);
- 5) the fifth part gives a symbol indicating the hydrogen content of deposited metal (see Table 6).

In order to facilitate the use of this International Standard, the classification is split into two sections:

a) Compulsory section

This section includes the symbols for the type of product, the chemical composition and the type of covering, i.e. the symbols defined in 4.1, 4.2 and 4.4A;

b) Optional section

This section includes the symbols for the nominal electrode efficiency, the type of current, the welding positions for which the electrode is suitable, and the symbol for hydrogen content, i.e. the symbols defined in 4.5A, 4.6A and 4.7.

In order to facilitate the use of this International Standard, the classification is split into two sections:

a) Compulsory section

This section includes the symbols for the type of product, the strength, the type of covering, the type of current, the welding position, and the chemical composition, i.e. the symbols defined in 4.1, 4.2, 4.3B, 4.4B and 4.6B.

b) Optional section

This section includes the symbol for the hydrogen content, i.e. the symbol defined in 4.7.

The full designation (see Clause 10) shall be used on packages and in the manufacturer's literature and data sheets. The designation system is shown in Annex A for both systems.

4 Symbols and requirements

4.1 Symbol for the product/process

The symbol for the covered electrode used in the manual metal arc welding process shall be the letter E.

4.2 Symbol for the chemical composition of all-weld metal

The symbols in Table 1 indicate the chemical composition of all-weld metal determined in accordance with Clause 6. See Annexes B and C for descriptions of the symbols used for chemical composition in system A and in system B, respectively.

4.3 Symbol for the mechanical properties of all-weld metal

4.3A Classification by chemical composition

No symbol shall be used for the mechanical properties of the all-weld metal. The all-weld metal obtained using the covered electrodes listed in Table 1 in accordance with Clause 5 shall also fulfil the mechanical property requirements specified in Table 2.

4.3B Classification by tensile strength and chemical composition

The symbol for tensile strength shall be 49 for 490 MPa minimum tensile strength, 52 for 520 MPa minimum tensile strength, 55 for 550 MPa minimum tensile strength or 62 for 620 MPa minimum tensile strength. The complete mechanical property requirements that shall be fulfilled by the various compositions are specified in Table 2.

Table 1 — Symbol for chemical composition of all-weld metal

symbol ^a for o	omposition classification ding to				Chemical	compositi	on , % (by m	nass) ^b		
Chemical composition ISO 3580-A ^c	Tensile strength and chemical composition ISO 3580-B	С	Si	Mn	P	s	Cr	Мо	V	Other elements ^d
Мо	(1M3)	0,10	0,80	0,40 to 1,50	0,030	0,025	0,2	0,40 to 0,70	0,03	
(Mo)	1M3	0,12	0,80	1,00	0,030	0,030	_	0,40 to 0,65	_	9
MoV	_	0,03 to 0,12	0,80	0,40 to 1,50	0,030	0,025	0,30 to 0,60	0,80 to 1,20	0,25 to 0,60	30,-
CrMo0,5	(CM)	0,05 to 0,12	0,80	0,40 to 1,50	0,030	0,025	0,40 to 0,65	0,40 to 0,65	100 J	_
(CrMo0,5)	СМ	0,05 to 0,12	0,80	0,90	0,030	0,030	0,40 to 0,65	0,40 to 0,65		_
_	C1M	0,07 to 0,15	0,30 to 0,60	0,40 to 0,70	0,030	0,030	0,40 to 0,60	1,00 to 1,25	0,05	
CrMo1	(1CM)	0,05 to 0,12	0,80	0,40 to 1,50	0,030	0,025	0,90 to 1,40	0,45 to 0,70	l	
(CrMo1)	1CM	0,05 to 0,12	0,80	0,90	0,030	0,030	1,00 to 1,50	0,40 to 0,65	l	
CrMo1L	(1CML)	0,05	0,80	0,40 to 1,50	0,030	0,025	0,90 to 1,40	0,45 to 0,70	1	_
(CrMo1L)	1CML	0,05	1,00	0,90	0,030	0,030	1,00 to 1,50	0,40 to 0,65	1	
CrMoV1		0,05 to 0,15	0,80	0,70 to 1,50	0,030	0,025	0,90 to 1,30	0,90 to 1,30	0,10 to 0,35	
CrMo2	(2C1M)	0,05 to 0,12	0,80	0,40 to 1,30	0,030	0,025	2,0 to 2,6	0,90 to 1,30	l	
(CrMo2)	2C1M	0,05 to 0,12	1,00	0,90	0,030	0,030	2,00 to 2,50	0,90 to 1,20	1	
CrMo2L	(2C1ML)	0,05	0,80	0,40 to 1,30	0,030	0,025	2,0 to 2,6	0,90 to 1,30		
(CrMo2L)	2C1ML	0,05	1,00	0,90	0,030	0,030	2,00 to 2,50	0,90 to 1,20	_	_
_	2CML	0,05	1,00	0,90	0,030	0,030	1,75 to 2,25	0,40 to 0,65	_	
_	2C1MV	0,05 to 0,15	0,60	0,40 to 1,50	0,030	0,030	2,00 to 2,60	0,90 to 1,20	0,20 to 0,40	Nb 0,010 to 0,050
_	3C1MV	0,05 to 0,15	0,60	0,40 to 1,50	0,030	0,030	2,60 to 3,40	0,90 to 1,20	0,20 to 0,40	Nb 0,010 to 0,050
CrMo5	(5CM)	0,03 to 0,12	0,80	0,40 to 1,50	0,025	0,025	4,0 to 6,0	0,40 to 0,70	_	_
(CrMo5)	5CM	0,05 to 0,10	0,90	1,00	0,030	0,030	4,0 to 6,0	0,45 to 0,65		Ni 0,40
_	5CML	0,05	0,90	1,00	0,030	0,030	4,0 to 6,0	0,45 to 0,65	_	Ni 0,40

Table 1 (continued)

symbol ^a for o	omposition classification ding to	Chemical composition, % (by mass) ^b								
Chemical composition ISO 3580-A ^c	Tensile strength and chemical composition ISO 3580-B	C	Si	Mn	P	S	Cr	Мо	V	Other elements ^d
CrMo9	(9C1M)	0,03 to 0,12	0,60	0,40 to 1,30	0,025	0,025	8,0 to 10,0	0,90 to 1,20	0,15	Ni 1,0
(CrMo9)	9C1M	0,05 to 0,10	0,90	1,00	0,030	0,030	8,0 to 10,5	0,85 to 1,20	-\o	Ni 0,40
_	9C1ML	0,05	0,90	1,00	0,030	0,030	8,0 to 10,5	0,85 to 1,20	÷,	Ni 0,40
CrMo91 ^e	(9C1MV)	0,06 to 0,12	0,60	0,40 to 1,50	0,025	0,025	8,0 to 10,5	0,80 to 1,20	0,15 to 0,30	Ni 0,40 to 1,00 Nb 0,03 to 0,10 N 0,02 to 0,07
(CrMo91)	9C1MV	0,08 to 0,13	0,30	1,25	0,01	0,01 FUII P	8,0 to 10,5	0,85 to 1,20	0,15 to 0,30	Ni 1,0 Mn + Ni = 1,50 max. Cu 0,25 Al 0,04 Nb 0,02 to 0,10 N 0,02 to 0,07
(CrMo91)	9C1MV1 ^e	0,03 to 0,12	0,60	1,00 to 1,80	0,025	0,025	8,0 to 10,5	0,80 to 1,20	0,15 to 0,30	Ni 1,0 Cu 0,25 Al 0,04 Nb 0,02 to 0,10 N 0,02 to 0,07
CrMoWV12	_	0,15 to 0,22	0,80	0,40 to 1,30	0,025	0,025	10,0 to 12,0	0,80 to 1,20	0,20 to 0,40	Ni 0,8 W 0,40 to 0,60
Z	G		\sim	11-	Any of	her agreed	composition	n		

A designation in parentheses [e.g., (CrMo1) or (1CM)] indicates a near match in the other designation system, but not an exact match. The correct designation for a given composition range is the one without parentheses. A given product may, by having a more restricted chemical composition which fulfils both sets of designation requirements, be assigned both designations independently, provided that the mechanical property requirements of Table 2 are also satisfied.

5

b Single values shown in the table are maximum values.

If not specified, contents are: Ni < 0,3 % (by mass), Cu < 0,3 % (by mass), Nb < 0,01 % (by mass).

d Elements listed without specified values shall be reported, if intentionally added. The total of these unspecified elements and all other elements found in the course of routine chemical analysis shall not exceed 0,50 % (by mass).

The combination of Ni+Mn tends to lower the Ac1 temperature to the point where the PWHT temperature required for proper tempering may approach or exceed the Ac1 of the weld metal.

Table 2 — Mechanical properties of all-weld metal

symbol ^a for	composition classification rding to	Minimum	Minimumu		Impact of J at +2		Heat treatr	ment of all-weld	metal
Chemical composition ISO 3580-A	Tensile strength and chemical composition	yield strength ^c	tensile strength	elongation	Minimum average from three test	Minimum single value ^e	Preheat and interpass temperature	Post-weld treatment of assemb	of test oly
100 0000-A	ISO 3580-B ^b	MPa	MPa	%	specimens	value	°C	Temperature ^f °C	Time min
Мо	(1M3)	355	510	22	47	38	< 200	570 to 620	60 ± 10
(Mo)	49XX-1M3	390	490	22	_	_	90 to 110	605 to 645	60 ⁺¹⁰ g
(Mo)	49YY-1M3	390	490	20	_	_	90 to 110	605 to 645	60 ⁺¹⁰ g
MoV		355	510	18	47	38	200 to 300	690 to 730	60 ± 10
CrMo0,5	(55XX-CM)	355	510	22	47	38	100 to 200	600 to 650	60 ± 10
(CrMo0,5)	55XX-CM	460	550	17	_	_	160 to 190	675 to 705	60 ₀ ⁺¹⁰ _g
	55XX-C1M	460	550	17	_	_	160 to 190	675 to 705	60 ₀ ⁺¹⁰ _g
CrMo1	(55XX-1CM) (5513-1CM)	355	510	20	47	38	150 to 250	660 to 700	60 ± 10
(CrMo1)	55XX-1CM	460	550	17	_	التء	160 to 190	675 to 705	60 ⁺¹⁰ g
(CrMo1)	5513-1CM	460	550	14	<u></u>	e-	160 to 190	675 to 705	60 ⁺¹⁰ g
CrMo1L	(52XX-1CML)	355	510	20	47.0	38	150 to 250	660 to 700	60 ± 10
(CrMo1L)	52XX-1CML	390	520	17	0 1/2	_	160 to 190	675 to 705	60 ⁺¹⁰ g
CrMoV1		435	590	15	24	19	200 to 300	680 to 730	60 ± 10
CrMo2	(62XX-2C1M) (6213-2C1M)	400	500	- C18/	47	38	200 to 300	690 to 750	60 ± 10
(CrMo2)	62XX-2C1M	530	620	15	_	_	160 to 190	675 to 705	60 ⁺¹⁰ g
(CrMo2)	6213-2C1M	530	620	12	_	_	160 to 190	675 to 705	60 ⁺¹⁰ g
CrMo2L	(55XX-2C1ML)	400	500	18	47	38	200 to 300	690 to 750	60 ± 10
(CrMo2L)	55XX-2C1ML	460	550	15	_	_	160 to 190	675 to 705	60 ⁺¹⁰ g
	55XX-2CML	460	550	15	_	_	160 to 190	675 to 705	60 ⁺¹⁰ g
	62XX-2C1MV	530	620	15	_	_	160 to 190	725 to 755	60 ± 10
	62XX-3C1MV	530	620	15	_	_	160 to 190	725 to 755	60 ₀ ⁺¹⁰ _g
CrMo5	(55XX-5CM)	400	590	17	47	38	200 to 300	730 to 760	60 ± 10
(CrMo5)	55XX-5CM	460	550	17	_	_	175 to 230	725 to 755	60 ⁺¹⁰ g
	55XX-5CML	460	550	17	_	_	175 to 230	725 to 755	60 ⁺¹⁰ g
CrMo9	(62XX-9C1M)	435	590	18	34	27	200 to 300	740 to 780	120 ± 10
(CrMo9)	62XX-9C1M	530	620	15	_	_	205 to 260	725 to 755	60 ⁺¹⁰ g
	62XX-9C1ML	530	620	15	_	_	205 to 260	725 to 755	60 ⁺¹⁰ g
CrMo91	(62XX-9C1MV)	415	585	17	47	38	200 to 315	745 to 775	120 to 180

Table 2 (continued)

symbol ^a for	composition classification ding to	Minimum yield	Minimum tensile	M inimum ^d	Impact of J at +2		Heat treatment of all-weld met		d metal
Chemical composition ISO 3580-A	Tensile strength and chemical composition ISO 3580-B ^b	strength ^c MPa	strength MPa	elongation %	Minimum average from three test specimens	Minimum single value ^e	Preheat and interpass temperature °C	Post-weld treatment assem Temperature	of test
(CrMo91)	62XX-9C1MV	530	620	15	_		200 to 315	745 to 775	120 ₀ ⁺¹⁰ _g
(CrMo91)	62XX-9C1MV1	530	620	15	_	_	205 to 260	725 to 755	60 ⁺¹⁰ g
CrMoWV12		550	690	15	34	27	250 to 350 ^h or 400 to 500 ^h	740 to 780	120 ± 10
Z	G		·	As ag	reed between	purchaser a	and supplier		

A designation in parentheses [e.g., (CrMo1) or (1CM)] indicates a near match in the other designation system, but not an exact match. The correct designation for a given composition range is the one without parentheses. A given product may, by having a more restricted chemical composition that fulfils both sets of mechanical property requirements, be classified in both systems independently, provided that the chemical composition requirements of Table 1 are also satisfied.

- b XX stands for covering types 15, 16 or 18. YY stands for covering types 10, 11, 19, 20 or 27. See Table 3B.
- For yield strength, the lower yield strength, $R_{\text{pl.}}$, shall be used when yielding occurs; otherwise the 0,2 % proof strength, $R_{\text{p0.2}}$, shall be used.
- d Gauge length is equal to five times the test specimen diameter.
- e Only one single value lower than the minimum average is permitted.
- f The test assembly shall be cooled in the furnace to 300 °C at a rate not exceeding 200 °C/h.
- The heating rate in the furnace shall be 85 °C/h to 275 °C/h.
- h Immediately after welding, allow the specimen to cool to 120 °C to 100 °C and maintain at this temperature for at least 1 h.

4.4 Symbol for type of electrode covering

The type of covering of the electrodes determines, to a large extent, the usability characteristics of the electrode and properties of the weld metal.

4.4A Classification by chemical composition

Two symbols are used to denote the type of covering:

R rutile covering

B basic covering

NOTE A description of the characteristics of each of the types of covering is given in Annex D.

4.4B Classification by tensile strength and chemical composition

The type of covering of a covered electrode depends substantially on the type of slag-forming components. The type of covering also determines the positions suitable for welding and the type of current, according to Table 3B.

NOTE A description of the characteristics of each of the types of covering is given in Annex E.

Table 3B — Symbol for type of covering (Classification by tensile strength and chemical composition)

Symbol	Type of covering	Welding positions ^a	Type of current ^b
10 ^c	Cellulosic	All	d.c. (+)
11 ^c	Cellulosic	All	a.c. or d.c. (+)
13	Rutile	All ^d	a.c. or d.c. (±)
15	Basic	All ^d	d.c. (+)
16	Basic	All ^d	a.c. or d.c. (+)
18	Basic + metal powders	All except PG	a.c. or d.c. (+)
19 ^c	Ilmenite	Alld	a.c. or d.c. (±)
20 ^c	Iron oxide	PA, PB	a.c. or d.c. (-)
27 ^c	Iron oxide + iron powder	PA, PB	a.c. or d.c. (-)

^a Positions are defined in ISO 6947. PA = flat, PB = horizontal vertical fillet, PG = vertical down.

4.5 Symbol for nominal electrode efficiency and type of current

4.5A Classification by chemical composition

The symbols in Table 4A indicate nominal electrode efficiency determined in accordance with ISO 2401, with the type of current shown in Table 4A.

4.6 Symbol for welding position

4.6A Classification by chemical composition

The symbols in Table 5A indicate the positions for which the electrode is tested in accordance with ISO 15792-3.

4.5B Classification by tensile strength and chemical composition

There is no specific symbol for nominal electrode efficiency and type of current. Type of current is included in the symbol for type of covering (see Table 3B). Nominal electrode efficiency is not addressed.

4.6B Classification by tensile strength and chemical composition

There is no specific symbol for welding position. The welding position requirements are included with the symbol for type of covering (see Table 3B).

a.c. means alternating current; d.c. means direct current.

c Composition designator 1M3 only.

d All positions may or may not include vertical down welding. This shall be specified in the manufacturer's trade literature.

Table 4A — Symbol for nominal electrode efficiency and type of current

(Classification by chemical composition)

Symbol	Nominal electrode efficiency, η %	Type of current ^{a,b}
1	<i>η</i> ≤ 105	a.c. and d.c.
2	η ≤ 105	d.c.
3	105 < η ≤ 125	a.c. and d.c.
4	105 < η ≤ 1125	d.c.

a.c. means alternating current; d.c. means direct current.

Table 5A — Symbol for welding position

	, ,		
3	105 < η ≤ 125	a.c. and d.c.	
4	105 < η ≤ 1125	d.c.	2/2
a a.c. mean	s alternating current; d.c. m	eans direct current.	3.70
	o demonstrate operability on a no load voltage no highe	•	3580:2010
	A — Symbol for weld		of of 150
Symbo		positions in with ISO 6947	withe full PD.
1	PA, PB, PC,	PD, PE, PF, PG	"Lo
2	PA, PB, P	C, PD, PE, PF	N
3	P	A, PB	V.
4	PA,	PB, PG	

4.7 Symbol for hydrogen content of deposited metal

The symbols in Table 6 indicate the hydrogen content as determined in deposited metal from an electrode of size 4,0 mm in accordance with the method described in ISO 3690. The current used shall be 70 % to 90 % of the maximum value recommended by the manufacturer. Electrodes recommended for use with a.c. shall be tested using a.c., electrodes recommended for d.c. only shall be tested using d.c. with electrode positive.

The manufacturer shall provide information on the recommended type of current and drying conditions for achieving the hydrogen levels.

Table 6 — Symbol for hydrogen content of deposited metal

Symbol	Hydrogen content ml/100 g of deposited weld metal, maximum
H5	5
H10	10
H15	15

See Annex F for additional information about diffusible hydrogen.

9 © ISO 2010 - All rights reserved

In order to demonstrate operability on a.c., tests shall be carried out with a no load voltage no higher than 65 V.

4.8 Rounding procedure

For purposes of determining compliance with the requirements of this International Standard, the actual test values obtained shall be subject to ISO 80000-1:2009, B.3, Rule A. If the measured values are obtained by equipment calibrated in units other than those of this International Standard, the measured values shall be converted to the units of this International Standard before rounding. If an arithmetic average value is to be compared to the requirements of this International Standard, rounding shall be done only after calculating the arithmetic average. If the test method cited in Clause 2 contains instructions for rounding that conflict with the instructions of this International Standard, the rounding-requirements of the test method standard shall apply. The rounded results shall fulfil the requirements of the appropriate table for the classification under test.

5 Mechanical tests

5.1 General

Tensile and impact tests shall be carried out in the post-weld heat-treated condition specified in Table 2, using an all-weld metal test assembly type 1.3 in accordance with ISO 15792-1:2000 with 4,0 mm electrodes and welding conditions as described below in 5.2 and 5.3.

5.2 Preheating and interpass temperature

Preheating and interpass temperatures shall be selected for the appropriate type of weld metal as listed in Table 2.

The interpass temperature shall be measured using temperature indicator crayons, surface thermometers or thermocouples (see ISO 13916).

The interpass temperature shall not exceed the maximum temperature indicated in Table 2 when deposition of any pass begins. If, after any pass, the interpass temperature is exceeded, the test assembly shall be cooled in air to within the limits of the interpass temperature.

5.3 Pass sequence

The pass sequence shall be as indicated in Table 7.

The direction of welding to complete a pass shall not vary. Each pass shall be executed with a welding current of 70 % to 90 % of the maximum current recommended by the manufacturer. Regardless of the type of covering, welding shall be performed with a.c. when both a.c. and d.c. are recommended and with d.c. using the recommended polarity when only d.c. is recommended.

Table 7 — Pass sequence

Electrode diameter		Split weave					
mm	Layer number	Passes per layer	Number of layers				
4,0	1 to top	2 ^a	7 to 9				
a The top two layers may b	e completed with three p	asses per layer.					

6 Chemical analysis

Chemical analysis may be performed on any suitable all-weld metal test piece, but in cases of dispute, specimens in accordance with ISO 6847 shall be used. Any analytical technique may be used, but in cases of dispute, reference shall be made to established published methods. The results of the chemical analysis shall fulfil the requirements of Table 1.

7 Fillet weld test

The fillet weld test assembly shall be as shown in ISO 15792-3.

7A Classification by chemical composition

The plate material shall be selected from the range of materials for which the electrode is recommended by the manufacturer, or shall be unalloyed steel of 0,30 % (by mass) C maximum. The surface shall be free of scale, rust, and other contaminants. The plate thickness, t, shall be 10 mm to 12 mm, the width, w, shall be 75 mm minimum, and the length, t, shall be 300 mm minimum. The electrode sizes to be tested for each covering type, the test positions, and the required test results are given in Table 8A.

7B Classification by tensile strength and chemical composition

The plate material shall be unalloyed steel of 0,30 % (by mass) C maximum. The surfaces to be welded shall be clean. The test plate thickness, t, width, w, and length, l, the test positions for each covering type, and the required test results are given in Table 8B.

Table 8A — Test requirements for fillet welds (Classification by chemical composition)

Dimensions in millimetres

Symbol of position for classification	Type of covering	Test position	Electrode size ^a	Fillet theoretical throat	Leg length difference	Convexity
1 or 2	R or B	PB	6,0	5,0 min.	2,0 max.	3,0 max.
4	RO B	PB	6,0 5,0	4,5 min.	1,5 max.	2,5 max.
1 or 2	R B	PF	4,0	4,5 max. 5,5 max.	NS ^b	2,0 max.
1, 2 or 4	R B	PD	4,0	4,5 max. 5,5 max.	1,5 max. 2,0 max.	2,5 max. 3,0 max.
AN	В	PG	4,0	5,0 min.	NS ^b	1,5 max ^c

Where the largest size claimed for positional welding is smaller than that specified, use the largest size and adjust criteria pro rata. Otherwise, electrode sizes not shown are not required to be tested.

© ISO 2010 – All rights reserved

b Not specified.

c Maximum concavity.

Table 8B — Test requirements for fillet welds

(Classification by tensile strength and chemical composition)

Dimensions in millimetres

Type of covering	Current and polarity	Electrode size ^a	Test position	Plate thickness	Plate width	Minimum plate length ^b	Fillet weld size	Maximum leg length difference	Maximum convexity
				t	w	l			
10	d.c. (+)	5,0 6,0	PF, PD PB	10 12	75	300 400	8,0 max. 6,5 min.	3,5 2,5	1,5 2,0
11	a.c.	5,0 6,0	PF, PD PB	10 12	75	300 400	8,0 max. 6,5 min.	3,5 2,5	2,5 2,0
13	a.c.	5,0 6,0	PF, PD PB	12 12	75	300 400	10,0 max. 8,0 min.	2,00	1,5 2,0
15	d.c. (+)	4,0 6,0	PF, PD PB	10 12	75	300 400	8,0 max. 8,0 min.	3,5 3,5	2,0 2,0
16	a.c.	4,0 6,0	PF, PD PB	10 12	75	300 400	8,0 max. 8,0 min.	3,5 3,5	2,0 2,0
18	a.c.	4,0 6,0	PF, PD PB	10 12	75	300 400	8,0 max. 8,0 min.	3,5 3,5	2,0 2,0
19	a.c.	5,0 6,0	PF, PD PB	12 12	75	300 400	10,0 max. 8,0 min.	2,0 3,5	1,5 2,0
20	a.c.	6,0	PB	12	750	400	8,0 min.	3,5	2,0
27	a.c.	6,0	РВ	12	75	400 or 650 ^c	8,0 min.	3,5	2,0

Where the largest size recommended for positional welding is smaller than that specified, use the largest size and adjust criteria pro rata. Otherwise, electrode sizes not shown are not required to be tested.

8 Retests

If any test fails to meet the requirement, that test shall be repeated twice. The results of both retests shall meet the requirement. Specimens for the retest may be taken from the original test assembly or from a new test assembly. For chemical analysis, retesting need only be for those specific elements that failed to meet their testing requirement. If the results of one or both retests fail to meet the requirement, the material under test shall be considered as not meeting the requirements of this specification for that classification.

In the event that, during preparation or after completion of any test, it is clearly determined that prescribed or proper procedures were not followed in preparing the weld test assembly or test specimen(s), or in conducting the tests, the test shall be considered invalid, without regard to whether the test was actually completed, or whether the test results met, or failed to meet, the requirements. That test shall be repeated, following proper prescribed procedures. In this case, the requirement for doubling the number of test specimens does not apply.

9 Technical delivery conditions

Technical delivery conditions shall meet the requirements in ISO 544 and in ISO 14344.

b For 300 mm electrode length, / shall be 250 mm minimum; for 350 mm electrode length, / shall be 300 mm minimum.

For 450 mm electrode length, / shall be 400 mm minimum; for 700 mm electrode length, / shall be 650 mm minimum.

10 Examples of designation

The designation of the covered electrode shall follow the principles given in the examples below:

10A Classification by chemical composition

The designation of the covered electrode is indicated by the suffix letter A given after the number of this International Standard and shall follow the principle given in the example below.

EXAMPLE 1A

A covered electrode for manual metal arc welding deposits weld metal with a chemical composition of 1,1 % (by mass) Cr and 0,6 % (by mass) Mo, i.e. chemical composition symbol CrMo1 in accordance with Table 1. The electrode has a basic covering (B) and can be used with direct current and with a nominal electrode efficiency of 120 % (4) in flat butt and flat fillet welds (4). Hydrogen is determined in accordance with ISO 3690 and does not exceed 5 ml/100 g deposited metal (H5).

The designation is:

ISO 3580-A - E CrMo1 B 4 4 H5

Compulsory section:

ISO 3580-A - E CrMo1 B

where

ISO 3580-A = the number of this International Standard and classification by chemical composition;

E = covered electrode/manual metal arc welding (see 4.1);

CrMo1 = chemical composition of all-weld metal (see Table 1);

B = type of electrode covering (see 4.4A);

4 = recovery and type of current (see Table 4A);

4 = welding position (see 4.6A);

H5 = hydrogen content (see Table 6).

10B Classification by tensile strength and chemical composition

The designation of the covered electrode is indicated by the suffix letter B given after the number of this International Standard and shall follow the principle given in the example below.

EXAMPLE 1B

A covered electrode for manual metal arc welding deposits weld metal with a chemical composition of 1,1 % (by mass) Cr and 0,6 % (by mass) Mo, i.e. chemical composition symbol 1CM in accordance with Table 1. The post-weld heat-treated deposit tensile strength exceeds 550 MPa (55). The electrode has a basic covering containing iron powder and can be used with direct current or alternating current (18) in all positions except vertical down. Hydrogen is determined in accordance with ISO 3690 and does not exceed 5 ml/100 g deposited metal (H5).

The designation is:

ISO 3580-B - E5518-1CM H5

Compulsory section:

ISO 3580-B - E5518-1CM

where

ISO 3580-B = the number of this International Standard and classification by tensile strength and chemical composition:

E = covered electrode/manual metal arc welding (see 4.1);

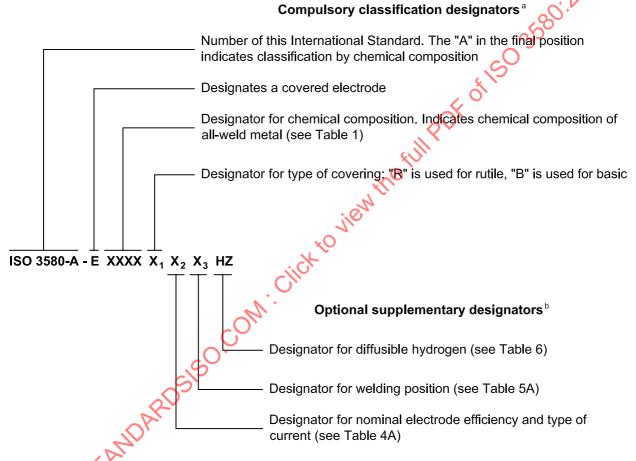
55 = deposited weld metal tensile strength (see 4.3B and Table 2);

18 = type of covering (see 4.4B and Table 3B);

1CM = chemical composition of all-weld metal (see Table 1);

H5 = hydrogen content (see Table 6).

© ISO 2010 – All rights reserved


Annex A

(informative)

Classification systems

A.1 ISO 3580-A

The ISO 3580 classification system for covered electrodes based upon chemical composition is shown in Figure A.1.

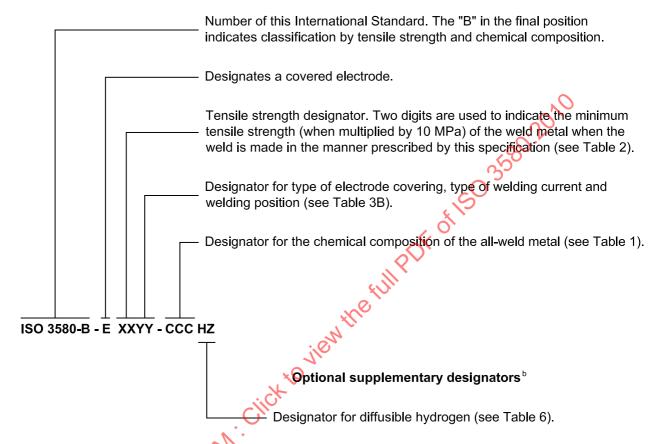

- ^a The combination of these designators constitutes the covered electrode classification.
- b These designators are optional and do not constitute a part of the covered electrode classification.

Figure A.1 — ISO 3580-A designation of covered electrodes for creep-resisting steels (Classification by chemical composition)

A.2 ISO 3580-B

The ISO 3580 classification system for covered electrodes based upon tensile strength and chemical composition is shown in Figure A.2.

Compulsory classification designators^a

- The combination of these designators constitutes the covered electrode classification.
- b These designators are optional and do not constitute a part of the covered electrode classification.

Figure A.2 — ISO3580-B designation of covered electrodes for creep-resisting steels (Classification by tensile strength and chemical composition)

© ISO 2010 – All rights reserved

Annex B

(informative)

Description of chemical composition designators (classification by chemical composition)

The designation lists the principal alloying elements using the chemical symbols Cr (chromium), Mo (molybdenum), V (vanadium), and W (tungsten). For chromium-containing alloys, this is followed by the numbers 1, 2, 5, 9 or 12 to indicate the nominal percentage by mass of chromium present. In the particular case of the "modified 9 % (by mass) Cr" alloy, CrMo91, the suffix "1" is added to indicate the additional complex alloying compared to CrMo9.

Low carbon grades are identified by a suffix "L" indicating a maximum carbon content of 0.05% (by mass).

Annex C (informative)

Description of chemical composition designators (classification by tensile strength and chemical composition)

C.1 1M3 type

For electrodes containing Mo (molybdenum) as the only alloying element which differentiates it from unalloyed steel electrodes, the designation consists of an integer approximately equal to twice the nominal Mn (manganese) content, followed by the letter "M" to indicate molybdenum, and a digit to indicate the nominal Mo level, as follows:

3 = about 0,5 % (by mass) Mo = high Mo

C.2 XCXMX type

20k of 150 For chromium-molybdenum steels, the designation consists of "C" preceded by an integer to indicate the nominal Cr (chromium) level, and "M" preceded by an integer to indicate the nominal Mo level. For either chromium or molybdenum, if the nominal level is appreciably less than 1 % (by mass), there is no preceding integer. If tungsten and/or vanadium is added, the corresponding letter "W" and/or "V", in that order, would be added after the chromium and molybdenum symbols. Deliberately high carbon would be indicated by "H" at sition click the end of the designation, while deliberately low carbon would be indicated by "L" at the end of the designation. Variations of a basic composition would be indicated by an arbitrary integer following the last letter.

17 © ISO 2010 - All rights reserved

Annex D

(informative)

Description of types of electrode covering (classification by chemical composition)

D.1 Rutile covered electrodes

The covering of this type contains, as an essential component, titanium dioxide, usually as rutile, together with silicates and carbonates.

Electrodes of this type give a smooth droplet transfer, which ensures that these electrodes are suitable for welding in all positions except the vertical down position.

D.2 Basic covered electrodes

The covering of this type contains large quantities of alkaline-earth carbonates and fluorspar (calcium fluoride). These electrodes are capable of giving low hydrogen content deposits when used in accordance with the manufacturer's instructions.

Electrodes with basic covering are usually suitable only for direct current, electrode positive.

Basic electrodes are preferred for the welding of thick sections and for joints with gaps. The arc should be kept as short as possible.