INTERNATIONAL STANDARD 31/VIII

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION MEЖДУНАРОДНАЯ ОРГАНИЗАЦИЯ ПО СТАНДАРТИЗАЦИИ ORGANISATION INTERNATIONALE DE NORMALISATION

Quantities and units of physical chemistry 31.8. New and molecular physics

First edition – 1973-04-01

STANDARDESO. OM. Click to view the Full Public Standard Stand

UDC 53.081

Ref. No. ISO 31/VIII-1973 (E)

Descriptors: metric system, molecular physics, physical chemistry, units of measurement, symbols.

FOREWORD

ISO (the International Organization for Standardization) is a worldwide federation of national standards institutes (ISO Member Bodies). The work of developing International Standards is carried out through ISO Technical Committees. Every Member Body interested in a subject for which a Technical Committee has been set up has the right to be represented on that Committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.

Draft International Standards adopted by the Technical Committees are circulated to the Member Bodies for approval before their acceptance as International Standards by the ISO Council.

International Standard ISO 31/VIII (originally Draft No. 1777) was drawn up by Technical Committee ISO/TC 12, Quantities, units, symbols, conversion factors and conversion tables.

It was approved in August 1969 by the Member Bodies of the following countries:

Australia Greece Austria Hungary Belgium India Canada Israel Czechoslovakia Japan Denmark

Netherlands Egypt, Arab Rep. of New Zealand

France Norway Poland Germany

South Africa, Rep. of

Spain Sweden Switzerland Thailand

United Kingdom U.S.A.

U.S.S.R.

No Member Body expressed disapproval of the document.

© International Organization for Standardization, 1973 •

Printed in Switzerland

Quantities and units of physical chemistry and molecular physics

INTRODUCTION

General remarks

This document, containing a table of *quantities and units of physical chemistry and molecular physics*, is the eighth part of a more comprehensive publication dealing with quantities and units in various fields of science and technology. The parts of this publication are:

Part 0 : General introduction — General principles concerning quantities, units and symbols. 1)

Part I (2nd edition): Basic quantities and units of the Stand quantities and units of space and time.²⁾

Part II: Quantities and units of periodic and related phenomena.

Part III: Quantities and units of mechanics.

Part IV: Quantities and units of heat.

Part V: Quantities and units of electricity and magnetism.

Part V1: Quantities and units of light and related electromagnetic radiations.

Part VII: Quantities and units of acoustics.

Part VIII : Quantities and units of physical chemistry and molecular physics.

Part IX: Quantities and units of atomic and nuclear physics.

Part X: Quantities and units of nuclear reactions and ionizing radiations.

Part XI: Mathematical signs and symbols for use in the physical sciences and technology.

General information regarding the arrangement of the tables and the symbols and abbreviations used is to be found in the introduction to Part I, where the full definitions of base units are given as an appendix.

The statements in the definition column for quantities are given merely for identification; they are not intended to be complete definitions.

Special remarks

In this document the amount of substance is treated as an independent base quantity. The base unit of this quantity is the mole, defined under item 8-3.a.

Following a decision of the 13th Conférence Générale des Poids et Mesures, the name kelvin and symbol K have been used for the unit of thermodynamic temperature.

For simplicity this document includes only a selection of units, preferably from the International System of Units. Other units can be derived from units given in Parts III, IV and V. Some conversion factors are added for information.

Decimal multiples and submultiples of units are in general not explicitly mentioned in the tables; this does not mean, however, that they are not recommended. General recommendations for decimal multiples and submultiples of units are given in Part 0.

The names and symbols of the chemical elements are given in Appendix I on page 12.

¹⁾ At present at the stage of draft (No. 2180).

²⁾ The title of the first edition of this document was: "Fundamental quantities and units of the MKSA system and quantities and units of space and time".

8-1.1.	8-7.1			·
Item No.	Quantity	Symbol	Definition 1)	Remarks 2)
8-1.1	relative atomic mass of an element	$A_{\mathbf{r}}$	The ratio of the average mass per atom of the natural isotopic composition of an element to 1/12 of the mass of an atom of nuclide ¹² C.	These quantities are dimensionless. Example: $A_r(Cl) = 35.453$ Formerly called atomic weight.
8-1.2	relative molecular mass of a substance	$M_{ au}$	The ratio of the average mass per molecule of the natural isotopic composition of a substance to 1/12 of the mass of an atom of nuclide ¹² C.	Formerly called molecular weight. The concept of relative atomic or molecular mass is also applicable to other specified isotopic compositions, but the natural isotopic composition is assumed unless the composition is specified.
8-2.1	number of molecules or particles	N	Number of molecules or particles in a system.	This quantity is dimensionless.
8-3.1	amount of substance	п, (v)	view the full PDF of 19	This quantity is treated in this document as a basic quantity. ν may be used as an alternative to n when n is used for number density of particles, see 8-10.1
8-4.1	Avogadro constant	L, N _A	Number of molecules divided by the amount of substance.	$N_{ m A} = N/n \ N_{ m A} = (6.02252 \pm 0.00028) imes 10^{23}{ m mol}^{-1}$
8-5.1	molar mass	M COM	Mass divided by amount of substance.	M=m/n, where m is the mass of the substance.
8-6.1	molar volume	V _m	Volume divided by amount of substance.	The subscript m is often omitted, or can be replaced by the chemical formula of the substance. $V_{\rm m}=V/n$ The molar volume of an ideal gas under standard conditions (0 °C and 1 atm) is $V_{\rm o}=(22.4136\pm0.0030)\times10^{-3}$ m³/mol For a gas, the "Amagat volume" is defined by $V_{\rm A}=V_{\rm m}/V_{\rm m}^{\rm o}$, where $V_{\rm m}^{\rm o}$ is the molar volume of this gas at 0 °C and 1 atm.
8-7.1	molar internal energy	Um, (Em)	Internal energy divided by amount of substance.	The subscript m is often omitted, or can be replaced by the chemical formula of the substance. $U_m = U/n$ See ISO/R 31/Part IV, item 4-15.1 Similar definitions apply to other molar thermodynamic functions.

The statements in this column are given merely for identification and they are not intended to be complete definitions.
 The numerical values in this column are derived from J.W.M. DuMond and E.R. Cohen, Recommended Values of the Physical Constants — 1963 U.I.P.P.A. Commission on Nuclidic Masses, Doc. MN 632 — Sept. 4. 1963, see also Doc. U.I.P. 11 (1965) of the U.I.P.P.A.

8. Physical chemistry and molecular physics

Units 8-3.a...8-7.a

					0-3.ao-7.a
Item No.	Name of unit and in certain cases abbreviation for this name	International symbol for unit	Definition	Conversion factors	Remarks
					8.013
8-3.a	mole	mol ·	1 mol is the amount of substance of a system which contains as many elementary entities as there are atoms in 0.012 kg (exactly) of ¹² C. When the mole is used, the elementary entities must be specified and may be atoms, molecules, ions, electrons, other particles, or specified groups of such particles.	en the full PDF of IS	The numerical value of the quantity 8-3.1 expressed in moles is also called number of moles.
8-3.b	kilomole	kmol	4	ent	
8-4.a	reciprocal mole	mol −¹	Clickito		The numerical value of the quantity 8-4.1 expressed in mol ⁻¹ is called Avogadro number.
8-5.a	kilogram per mole	kg/mol	COM:		$M=10^{-3} M_{\rm r} \ {\rm kg/mol}$ = $M_{\rm r} \ {\rm kg/kmol}$ = $M_{\rm r} \ {\rm g/mol}$, where $M_{\rm r}$ is the relative mole- cular mass of a substance of
8-5.b	gram per mole	g/mol	.O.		definite chemical composition.
8-6.a	cubic metre per mole	m³/mol			
8-6.b	litre per mole	1/mol		1 i/mol = 10 ⁻³ m ² /mol (exactly)	In 1964 the Conférence Générale des Poids et Mesures rede- fined the litre as 1 l == 1 dm³.
8-7.a	joule per mole	J/mol			For other units of energy, e.g. the calories, see $ SO/R31 /Part $ III 1 cal _{IT} = 4.1868 J (exactly) 1 cal ₁₅ = 4.1840 J (exactly) 1 cal ₁₅ = 4.1855 J

Quantities 8-8.1...8-19.1

Item No.	Quantity	Symbol	Definition 1)	Remarks 2)
8-8.1	molar heat capacity	C _m	Heat capacity divided by amount of substance.	The subscript m is often omitted, or can be replaced by the chemical formula of the substance. $C_{\rm m} = C/n$ See ISO/R 31/Part IV, item 4-10.1
8-9.1	molar entropy	S _m	Entropy divided by amount of substance.	The subscript m is often omitted, or can be replaced by the chemical formula of the substance. $S_{\rm m}=S/n$ See ISO/R 31/Part IV, item 4-13.1
8-10.1	number density of mole- cules (or particles)	n	The number of molecules or particles divided by volume.	$n=N/V$ The number density of an ideal gas under standard conditions (0 °C and 1 atm) is $n_0=N_A/V_0=(2.6870\pm0.0003)\times10^{25} {\rm m}^{-3}$, this constant is called Loschmidt constant. See 8.4.1 and 8-6.1
8-10.2	molecular concentration of component B	$C_{ m B}$	The number of molecules of component B divided by volume of mixture.	SO
8-11.1	density	Q	Mass divided by volume.	The dimensionless quantity $\varrho_{\rm A}=1/V_{\rm A}$ is called "Amagat density", see 8-6.1
8-11.2	mass concentration of component B	$\varrho_{ m B}$	Mass of component B divided by volume of the mixture.	
8-12.1	mass fraction of compo- nent B	w_{B}	Ratio of the mass of component B to the mass of the mixture	This quantity is dimensionless.
8-13.1	concentration of compo- nent B, amount of sub- stance concentration of component B	$c_{ m B}$	Amount of substance of component B divided by volume of the mixture.	Formerly also called molarity of component B In chemistry also indicated as [B]
8-14.1	mole fraction of compo- nent B	x_{B}	Ratio of the amount of substance of component B to the amount of substance of the mixture.	These quantities are dimensionless.
8-14.2	mole ratio of solute component B	r _B COM	Ratio of the amount of substance of solute component B to the amount of substance of the solvent.	For a one-solute solution $r=x/(1-x)$
8-15.1	molality of solute component B	OF BENEFIT OF THE PERSON OF TH	The amount of substance of solute component B in a solution divided by the mass of the solvent.	·
8-16.1	chemical potential of component B	μ_{B}	For a mixture with components B, C,, $\mu_{\rm B} = (\partial G/\partial n_{\rm B}) \ T, p, n_{\rm C}, \ldots,$ where $n_{\rm B}$ is the amount of substance of component B and G is the Gibbs function.	For a pure substance $\mu=G/n=G_{\rm m}$ where $G_{\rm m}$ is the molar Gibbs function. The symbol μ is also used for the quantity $G_{\rm m}/N_{\rm A}$, where $N_{\rm A}$ is the Avogadro constant.
8-17.1	absolute activity of component B	$\lambda_{_{\mathbf{B}}}$	$\lambda_{\mathrm{B}} = \exp \left[\mu_{\mathrm{B}}/RT\right]$	This quantity is dimensionless. For R and T , see 8-33.1
8-18.1	partial pressure of com- ponent B (in a gaseous mixture)	p_{B}	For a gaseous mixture, $p_{\rm B} = x_{\rm B} \cdot p$ where p is the pressure.	
8-19.1	fugacity of component B (in a gaseous mixture)	f_{B} , p_{B}^*	For a gaseous mixture, $f_{\rm B}$ is proportional to the absolute activity $\lambda_{\rm B}$, the proportionality factor, which is a function of temperature only, being determined by the condition that at constant temperature and composition $f_{\rm B}/p_{\rm B}$ tends to 1 for an infinitely dilute gas.	$\begin{array}{l} f_{\rm B} = \lambda_{\rm B} \cdot \lim \; (x_{\rm B} p/\lambda_{\rm B}) \\ p \to 0 \\ \text{For a pure gas} \\ p^* = \lambda \cdot \lim \; (p/\lambda) \\ p \to 0 \\ \text{where } \lambda \text{ is the absolute activity.} \\ \text{(For the symbol, see also 8-20.1)} \end{array}$

See footnote 1 on page 2.
 See footnote 2 on page 2.

8. Physical chemistry and molecular physics (continued)

Units 8-8.a...8-19.a

					8-8.a8-19
Item No.	Name of unit and in certain cases abbreviation for this name	International symbol for unit	Definition	Conversion factors	Remarks
8-8.a	joule per mole kelvin	J/(mol·K)			
8-9.a	joule per mole kelvin	J/(mol·K)			
8-10.a	reciprocal cubic metre	m-3			31,8:1,913
8-11.a	kilogram per cubic metre	kg/m³		of the Port of 150	
				FULL	
8-13.a	mole per cubic metre	mol/m³	• 1	Nill	
8-13.Ь	mole per litre	mol/I	i vi	1 mol/l = 103 mol/m³ (exactly)	A solution with the concentration y mol/l is called a y molar solution.
			COM: Click to vi		
8-15.a	mole per kilo- gram	mol/kg	0.		
8-16.a	joule per mole	Jimol			
	9				
8-18.a	pascal	Pa	$1 \text{ Pa} = 1 \text{ N/m}^2$		For other units of pressure, see ISO/R 31/Part III, in particular 1 atm = 101325 Pa (exactly)
8-19.a	pascal	Pa			See 8-18.a
					and place and the second secon

Quantities

8-20.1...8-30.1

	6-30.1			
Item No.	Quantity	Symbol	Definition 1)	Remarks 2)
8-20.1	activity coefficient of com- ponent B (in a liquid or a solid mix- ture)	$f_{ m B}$	For a liquid mixture $f_{\rm B}=\lambda_{\rm B}/\big(\lambda_{\rm B}^{\circ}x_{\rm B}\big),$ where $\lambda_{\rm B}^{\circ}$ is the absolute activity of the pure substance B at the same temperature and pressure.	This quantity is dimensionless.
8-21.1	activity of solute component B, relative activity of solute component B (especially in a dilute liquid solution)	$a_{\mathrm{B}}, a_{m,\mathrm{R}}$	For a solution, $a_{\rm B}$ is proportional to the absolute activity $\lambda_{\rm B}$, the proportionality factor, which is a function of temperature and pressure only, being determined by the condition that at constant temperature and pressure $a_{\rm B}$ divided by the molality ratio $m_{\rm B}/m^{\rm e}$ tends to 1 for infinite dilution; $m^{\rm e}$ is a reference molality, usually 1 mol/kg	This quantity is dimensionless. $a_{\rm B} = \lambda_{\rm B} \cdot \lim_{\sum m_{\rm B} \to 0} \frac{m_{\rm B}/m^{\rm o}}{\lambda_{\rm B}}$ The quantity $a_{\rm c,B}$ similarly defined in terms of the concentration ratio $c_{\rm B}/c^{\rm o}$ is also called: activity or relative activity of solute component B; $c^{\rm o}$ is a reference molarity, usually 1 mol/l $a_{\rm c,B} = \lambda_{\rm B} \cdot \sum_{c_{\rm B} \to 0} \frac{c_{\rm B}/c^{\rm o}}{\lambda_{\rm B}}$ The subscript c in $a_{\rm c,B}$ is often omitted.
8-22.1	activity coefficient of solute component B (especially in a dilute liquid solution)	γ_{B}	For a solution, $\gamma_{\rm B} = \frac{a_{\rm B}}{m_{\rm B}/m^{\rm e}}$	This quantity is dimensionless. The name activity coefficient of solute component B is also used for the quantity $\gamma_{\rm B}$, defined as $\gamma_{\rm B} = \frac{a_{c,\rm B}}{c_{\rm B}/c^{\rm e}}$ See item 8-21.1
8-23.1	osmotic coefficient of a solution	g, q	The ratio of the difference between the chemical potential of the pure solvent and that of the solvent in solution to the corresponding difference for an ideal dilute solution.	This quantity is dimensionless.
8-24.1	osmotic pressure	п	The excess pressure required to maintain osmotic equilibrium between a solution and the pure solvent separated by a membrane, permeable only to the solvent.	
8-25.1	stoichiometric number of component B	P _B COM	The integers or simple fractions occurring in the standard expression for a chemical reaction: $0 = \Sigma \nu_{\rm B} B$, where the symbol B indicates the molecules or atoms involved in the reaction.	This quantity is dimensionless. In the present formulation the stoichiometric numbers for reactants are negative and those for products are positive.
8-26.1	affinity	A	$A = -\Sigma \nu_{\rm B} \mu_{\rm B}$	
8-27.1	equilibrium constant	K_p	For gaseous reactions, K_p is the equilibrium value of the product $\Pi_{ m R} \left(p_{ m B}^*\right)^{m{v}_{ m B}}$	K_p is a function of temperature. Instead of fugacities (or partial pressures), concentrations, mole fractions or molalities are also used to define equilibrium constants. These constants are denoted by K_c , K_x and K_m .
8-28.1	mass of molecule	m		$m := M_r \cdot m_u$ where m_u is the (unified) atomic mass constant, see ISO/R 31/Part IX.
8-29.1	electric dipole moment of molecule	ρ. μ	The electric dipole moment is a vector quantity, the vector product of which with the electric field strength is equal to the torque.	The subscripts e and m may be used to distinguish between electric and magnetic moment.
8-30.1	electric polarizability of a molecule	α	Induced electric dipole moment divided by electric field strength.	γ is also used.

¹⁾ See footnote 1 on page 2.
2) See footnote 2 on page 2.

8. Physical chemistry and molecular physics (continued)

Units 8-24.a...8-30.a

Item No.	Name of unit and in certain cases abbreviation for this name	International symbol for unit	Definition	Conversion factors	Remarks
					Co.
				C	37.8: 1913
				en the full PDF of le	
			i de la companya de l	en the	
8-24.a	pascal	Pa	Clickton		·
		Ç	o. Com		
8-26.a	joule per mole	J/mol	:		:
8-27.a	pascal raised to the power $\Sigma v_{\rm p}$	Pa ²² R			
8-28.a	kilogram	kg			For (unified) atomic mass unit, 1 $u = m$ (12 C)/12 see ISO/R 31/Part IX
8-29.a	coulomb metre	C·m			The electrostatic CGS unit of electric dipole moment of a molecule corresponds to 3.335 63 × 10 ⁻¹² C·m
8-30.a	coulomb metre squared per volt	C · m²/V			The electrostatic CGS unit of polarizability of a molecule equal to 1 cm ³ , corresponds to 1.112 65 × 10 ⁻¹⁶ C·m ² /V

Quantities

8-31.1...8-44.1

Item No.	Quantity	Symbol	Definition 1)	Remarks 2)
8-31.1	partition function	Q, Z	The sum of the quantitities $\exp(-E_1/kT)$ over all quantum states i, where E_1 is the energy of state i.	This quantity is dimensionless. For k see 8-34.1 Z is used for the total partition function.
8-32.1	statistical weight	g	Multiplicity of quantum state.	This quantity is dimensionless.
8-33.1	molar gas constant	R	The universal constant of proportionality in the ideal gas law: $pV_{\mathbf{m}} = RT$	$R = (8.3143 \pm 0.0012) \text{ J/(mol·K)}$
8-34.1	Boltzmann constant	k	$k = R/N_A$	$k = (1.38054 \oplus 0.00018) \times 10^{-23} \text{ J/K}$ β is used for $1/kT$, where T is the thermodynamic temperature.
8-35.1	mean free path	Ι, λ	For a molecule, the average distance between two successive collisions.	3
8-36.1	diffusion coefficient	D	$n_{\rm B}\langle v_{\rm B}\rangle = -D{\rm grad}n_{\rm B},$ where $n_{\rm B}$ is the local number density of component B in the mixture and $\langle v_{\rm B}\rangle$ is the local average velocity of the component.	
8-37.1 8-37.2	thermal diffusion ratio	k_T	In the stationary state of a binary mixture in which thermal diffusion occurs: grad $x_{\rm B}=-(k_T/T){\rm grad}T$, where $x_{\rm B}$ is the local mole fraction of the heavier component B and T is the local temperature. $\alpha_T=k_T/x_{\rm A}x_{\rm B}$,	These quantities are dimensionless.
			where $x_{\rm A}$ and $x_{\rm B}$ are the local mole tractions of the two components.	
8-38.1	thermal diffusion coefficient	D_T	$D_T = k_T \cdot D$	
8-39.1	atomic number	Z	The number of electrons in a neutral atom.	This quantity is dimensionless.
8-40.1	elementary charge		The electric charge of a proton.	The magnitude of the electric charge of an electron is equal to e . $e=(1.60210\pm0.00007)\times10^{-19}\mathrm{C}$
8-41.1	charge number of ion	Z	The ratio of the charge of the ion to the elementary charge.	This quantity is dimensionless. This quantity is negative for a negative ion.
8-42.1	Faraday constant	F	$F = N_A e$	$F = (9.64870 \pm 0.00016) \times 10^4 \text{C/mol}$
8-43.1	ionic strength	I	The ionic strength of a solution is defined as $I=\frac{1}{2}\Sigma z_1^2m_1$, where the summation is carried out over all ions with molalities m_1 .	
8-44.1	degree of dissociation	α	The ratio of the number of dissociated molecules to the total number of molecules.	This quantity is dimensionless.

¹⁾ See footnote 1 on page 2. 2) See footnote 2 on page 2.

8. Physical chemistry and molecular physics (continued)

Units 8-33.a...8-43.a

	Name of unit				8-33.a8-43.
Item No.	and in certain cases abbreviation for this name	International symbol for unit	Definition	Conversion factors	Remarks
	1				
8-33.a	joule per mole kelvin	J/(mol·K)			
8-34.a	joule per kelvin	J/K			. 1913
8-35.a	metre	m			31.20.
8-36.a	square metre per second	m²/s		a POF of 15	
			*0	lew the full PDF of 150	
8-38.a	square metre per second	m²/s	ON. Clic.		
8-40.a	coulomb	c RDS	.O.		:
	SIR	DIA			;
8-42.a	coulomb per mole	C/mol			
8-43.a	mole per kilo- gram	mol/kg			

8-45.1...8-47.1 Item Quantity Symbol Definition 1) Remarks 2) No. This quantity was formerly called spe-8-45.1 electrolytic conductivity The electrolytic current density divided γ, κ, κ, σ by the electric field strength. cific conductance. $\Lambda_{\rm m}$ 8-46.1 molar conductivity Conductivity divided by concentration STANDARD SO. COM. Chick to view the full Political Standard So. Com. Chick to view the full Political Standard So. Com. Chick to view the full Political Standard So. Com. Chick to view the full Political Standard So. Com. Chick to view the full Political Standard So. Com. Chick to view the full Political So. Ch The ratio of the current carried by a specified kind of ions to the total current. 8-47.1 t This quantity is dimensionless. transport number

¹⁾ See footnote 1 on page 2.

²⁾ See footnote 2 on page 2.