International
Standard

ISO 28005-1

Ships a
Electro

Part 1:

nd marine technology —
nic port clearance (EPC) —

Message structures and application

progral

Navires et te(
assistées par

Partie 1: Stru
des applicati

mming interfaces

hnologie maritime — Opérations portuaires
systemes électroniques —

ctures des messages et interfaces de pregrammation
hns

Second edition
2024-12

Reference number

ISO 28005-1

:2024(en)

© ISO 2024

https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

ISO 28005-1:2024(en)

COPYRIGHT PROTECTED DOCUMENT

© 1S0 2024

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on
the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below
or ISO’s member body in the country of the requester.

ISO copyright office

CP 401 o Ch. de Blandonnet 8

CH-1214 Vernier, Geneva

Phone: +41 22 749 01 11

Email: copyright@iso.org

Website: www.iso.org
Published in Switzerland

© IS0 2024 - All rights reserved
ii

https://www.iso.org
https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

Contents

ISO 28005-1:2024(en)

Page
FOT@WOIM........coc e ix
IIIETOMUICEION ... xi
1 SCOPI ...tk 1
2 NOTIATIVE FEEFEI@IICESooco e 1
3 Terms, definitions, and abbreviated terms
31 Terms and definitions ...
3.2 ADDTEVIATEA TEITIIS ..o
4 Structure of XSD data type and object defINITIONS ... feees e 6
4.1 L] 1<) =Y OSSR 48 S ISR 6
4.7 Principles for XML descriptions in the ISO 28005 Series ... b3 o 7
4.2.1 No use of XML attribUtes.
4.2.2 Defaults for minOccurs and maxOccurs...
4.2.3 Signalling empty XML tags. ...
4.2.4 Order of child elements in XSD files...
4.2.5 Character Set...... e
4.2.6 Principles for defining types with code lists. ... G |, 7
4.2.7 XSD name space for general XSD data tyPes ... bt |, 8
4.2.8 1SO 28005 name SPacCeccicsrsirssrss
4.29 Use of Xpath expressions..............
4.; Structure of clauses defining data types
4.3.1 Clause and data type name.........
4.3.2 Definition ...
4.3.3 Type defined as XSD COAE........ s e
4,34 REPTESENEATION ...ooooiiiiieiiieiiiie g e
4.4 Creating valid XSD schema files
44T FIlE STIUCTUTE oo 50ttt
4.4.2 Numbering of XSD files and 'message version code........... o 10
4.4.3 Location of XSD files. ... e
4.1 Reference to data types definied’in ISO 28005-2:2021
5 Adapted XSD data types for ISO 28005 ... 12
5.] GBIIET AL e 12
52 epc:anyURI - Generalzed URLo | e 12
5.2.1 DefinitioRs .7 s
522 Type..CnZ.
5.2.3 Representation
5.3 epc: booléah - Boolean flag
5.3.1 DEfinition ...
700 07/ 1401 OSSOSO
5.3:3>" Representation
5.4 epc:date - General date..
541 DOFIMITION oo
5A.Z TYPC
5.4.3 Representation. ...
5.5 epc:dateTime - Time and date, with time zone
5501 DOFIMITION 1o
TR 0/ 4o <O
5.5.3 Representation
5.6 epc:decimal — decimal MUMDET ...
5061 DEFINMITION cooooo st
5.6.2 Type.,
5.6.3 Representation
5.7 epc:duration - Time duration

LS8 SR D Y=Y i 50 U1 (o) o U000

© IS0 2024 - All rights reserved
iii

https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

5.8

59

5.10

ISO 28005-1:2024(en)

TN 207/ 4 o1
5.7.3 Representation
epc:int - Integer number...
581 DIOFIMIEION e
TR 707/ 4o 1 OSSOSO
5.8.3 Representation
epc:string - General string
591 DIOFIMIEION e
5002 Y D e
59.3 Representation
epc:token - Computer-understandable SEIING
S5.10.1 D@FIIMIEION o

511

6.]
6.2

6.4

Ggneral ISO 28005 data LYPes ...

6.8 é%&“C:CrewDutyType - Duty onboard or on shore..
.8.

5.10.Z Type. ..
5.10.3 Representation
epc:xpath - Identification of an XML data item ...
511.1 Definition ..
5.11.2 Type
5.11.3 RePreSeNntation ...

GOMETAL.eeeeee e [Y
epc: AuthenticatorType - Authenticator of information....... \%
6.2.1 Definition ..o s

6.2.3 Representation........, Q ...
epc:AuthorizationTokenType — Authorization tok%
6.3.1 Definition ... ;\Q ..
6.3.2 Y PO e B
6.3.3 Representation................. S
epc:ContactInfoType - Contact informat@.
6.4.1 Definition ... i\Q&
6.4.2
6.4.3

6.5.1
6.5.2
6.5.3 RePreSenTatiOmimt" oo
epc:CountryCodeCententType - Country identification...........ccc
6.6.1 DefiNitiof . oo
6.6.2 Type
6.6.3 Rep tation
epc:Cou ubdivisionCodeContentType - Country subdivision identification}........... 18
6.7.1 é‘flnition

LY 4 1< TN
c13

REPTESEINEATION ..ot

1 Definition e

6.9

6.10

6.11

6.82 Iype
6.8.3 Representation.........
epc:LocationType - Identification of a location.....
6.9. 1 DIEFIMITION 1o
0.9, 2 T P e
6.9.3 Representation..............

epc:NameType - Name of person
6.10.1 Definition ...

6.10.2 TYPC..oiiiiiciiciricscseeseesscnes

6.10.3 RePreSentation ...

epc:OrganizationType - Description of an organization...........es 22
6. 111 DEFINMITION coocooe s 22

© IS0 2024 - All rights reserved
iv

https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

6.12

6.13

6.14

ISO 28005-1:2024(en)

o700 0/ 14 TS 22
6.11.3 REPIESEIEATIONoooooiiiiiiee e 22
epc:PostalAddressType — A postal mail address..
6.12.1 Definition
0.0 2. 2 T D e e
6.12.3 Representation...............

epc:ShipIDType - Ship identity
6.13. 1 DOFIMITION 1ot
0.1, T D e
6.13.3 Representation
epc:ReportingSystemType - Name of @ reporting SYSTeIML.. ...
6.14. T DOFIMITION 1o

6.15

6.16

6.17

6.18

6.19

ISP 28005 AeSign PriNCIPLESo

6.14.Z Type ..
6.14.3 Representation
epc:AttachmentType - Reference to an attached document
(o700 S0 N D Y 0L) S
6.15.2 Type..cr,
6.15.3 Representation
epc:ReferenceCodeType — General reference code ... ol
6.16.1 Definition ...
6.16.2 Type..c.
6.16.3 Representation
epc:SystemldType - Identity code for a software system
6.17.1 DefiNition ..o e

0.17.2 TP Pttt e et
6.17.3 RePIreSENETATION ..oooooioeiie s i
epc:SignatureCertificateldType - Name of digital'signature holder
o700 < 00 Y 0L) SO
0. 18,2 Y P e e
6.18.3 Representation............g

epc:VersionType - Version code
6.19.1 Definitioniefdn
6.19.2 TYpe..icsiccsircesspimccc,
6.19.3 Representation

7.1 Harmonization with thieIMO reference data model..
7.2 Fully automated machine to machine ...
7.3 Using carrier independent and internet-based protocols
74 General formatofmessage sequence diagramsS. ...
7.5 Sender andgec€iver versus client and server — asynchronous message transfers....|......... 29
7.6 GeNEraliZQBION Of SEIVICE ...
7.7 Different levels of sessions
7.7 LN THT TP SESSION oot
7 T2 SESSION ..otttk
773 Session context ...
7.8 One service per request and session........
79 LINKINg TeCceivVers to Service providers
7.10 Service request States. ...,
7.10.1 Message processing ...
7.10.2 State diagram fOr SEIVICE FEQUESES ...
7.10.3 MESSAGE fUNCEIONS ..o
7.10.4 Specification of request timeout............cccooue.en
7.10.5 Message and service request return values.....
7.11 Send data once only
712 Message CONtEXt ..
7.13 General message structure...................
714 DIGILAL SIGIATUTES ..o
7.15 Secure data transfer

© IS0 2024 - All rights reserved
\%

https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

10

7.16
7.17
7.18
7.19

ISO 28005-1:2024(en)

Additional authorization for acCeSSING APL...........ooi e 40
Message implementation GUIAE ...t 41
Other formats than XML for the message body ...
No explicit service discovery

MesSage €XCHANGE PALLETTIS ...

8.1

General Tules ...,
8.1.1 Application of this specification
8.1.2 Use of reference codes..........cccoonuen.

8.1.3 Use of final flag in message header ...
8.1.4 Use of service timeout or SeSSion CONTEXT €Ncccccovooieeoeoeesieeeeeeeseeeeeee e sssesseees s

LT ST = 1w D EI=1 0 U6 1 o) it o0 Y6 L= o 00N
16 Mnlfiplp senders

USing HTTP multi-part MeSSAZE ... g oot

9.1
9.
9.3
9.4
9.1
9.6
9.7

8.1.7 Interleaving update requests with status messages
SEQUENCE AIAGIAMIS ..o
8.2.1 Pattern 1: Service request and updates
8.2.2 Pattern 2: Status POLL. ..o e
8.2.3 Pattern 3: SIMPle FePOTTt e
8.2.4 Pattern 4: Request information
8.2.5 Pattern 5: Subscribe to service or information

General ...
Example of an ISO 28005-1 multi-part message..
Content-Type: multipart/form-data ...
Content-Encoding: SZiP ... g et e
PTOSE TOXE ..o N
Content-Type: application, image or other ... 557 e
Content-Disposition: form-data; name = namejfilename = file.name;

Dgfinitions related to the message header Part............see | 52

1011
1012

1013

1014

105

L] 1<) U OO X SOOI 52
epc:MessageFunctionCodeContentType — Message function code ..., 52
10.2.1 Definition
T0.2.2 TY Pttt b oo
10.2.3 REPIESENTATION ..o g s
epc:ReplyInformationType - Type of sender response code................

10.3.1 Definition . s

10.3.2 Type.....
10.3.3 Representation
epc:MessageBodyFormatContentType — Format of body data
1041 DEFIIIITION oot
L0, 2 T D8 e
10.4.3 _REPIESENETATION ...
epc:ServiceTypeCodeContentType - Code for identification of service type ... 53
St 1T D 1 () o OSSN RS 53
3 0 14 OSSR S 54
T0.5.3 REPIESENTALION ...ooooiiriireesissesses s | 54

10.7

10.8

epcrServiceCodetomtentType = Code for [dentif ication of @ SeTrvICE MM A BTOUD e 54
T0.6. 1 DEFIMITION 1ot

10.6.2 Type..cri.
10.6.3 Representation
epc:StatusType - General message and service request status and error codes.........ce. 54
10.7.1 Definition
10.7.2 Type.ci,
10.7.3 Representation
epc:Special AttachmentType - Description of special attachment. ..., 55
10.8.1 Definition
10,8, 2 Ty P e

10.8.3 REPTESEITATIONoooiiiriie e 56

© IS0 2024 - All rights reserved
vi

https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

11

12

13
14

15

16

17

18

ISO 28005-1:2024(en)

109 epc:MessageManifestType — Number of MeSSage Parts ... 56
T0.9.T DEIINITION oo
109.2 Type.ine,
10.9.3 Representation
10.10 epc:EPCMessageHeaderType - Standard header for an EPC message ... 56
10.10.1 Definition
10.10.2 Type e
10.10.3 Representation
Definitions related to the message body PATT ... 61
L1 T GEIETAL o8 61
11.2 XML MESSAZE DOAY .ot 61
1121 ppr-PP(‘Mpcczngndy’Typp —the XML bodv data type 61
11.2.2 Structure of message body definition table.....
1113 Encryption of selected content...........cee
1114 UN/EDIFACT message body...........ccccouceee.
1115 UN/EDIFACT StatUsS MESSAZE....ccccoovvoivriivrserisiriseeseesirssisessssiessosesosesisessssosesos sty oo
1206 JSON MeSSAZE DOAY ...oooioiririiiircsscsisessscseessssees s N P
Dgfinitions related to attachment message Parts. ... Zd e
T2T GENETAL e
122 Reference to an attached document in an XML body
Definitions related to X.509 certificate meSSage Parts ... s 64
Definitions related to the digital signature message part - {. ... 64
T €15 4) - 1 OSSO 0 oSSR 64
B ¥ 4) S SIS Y 64
1413 epc:EPCMessageSignatureType - Digital signattites of message parts.......fo 65
5 70 T D 1T 0 () O, OO S 65
T4.3.2 TP Pttt e SN 65
14.3.3 REPTESENTATION ...oooiieiieees 5T e | e 65
Gegneral definitions related to the use Of HTTP ...
1511 Conceptual structure of a receivert............
152 Conceptual structure of a sendet®...........
153 Transmission protocol. ... v e
1514 Avoid use of HTTP redirect and similar mechanisms...
155 Optional use of HTTP ke€p-alive ...
1516 APLACCESS POINE URLL oo
T517 HT TP METROAS - e 5t
158 Different types of’synchronous return values.
15.8.1 General ...
15.8.2 Cofipection error....
15.8.3 _HTFTP error codes
15.84 \Message Status ...
15855 SEIrVICE TEQUESE STATUS ..o
ARI atcess points for asynchronous HTTP communication ... 69
TOLL) GOINETAL ..
16.2 Message patterns to USe.......ee
16.3 No authorization on the sender’s URL
API access point for synchronous HTTP communication..............ose 69
780 R €= 4 V) - 1 S 69
17.2 MeSSAZE PALLEITIS TO LIS ..o 69
Authorization to access API aCCE@SS POINT. ...

18.1 General..s e
18.2 The message pattern
18.3 epc:ServiceAuthorizationType - Type of service authorization
18.3. 1 DefiNItiOn i
18,3, 2 T P

© IS0 2024 - All rights reserved
vii

https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

18

19 Specifications for the message implementation guide (MIG)

19
19
19
19
19

Annex A (normative) EPC request body

Annex B (informative) Message implementation guide for access authorization

ISO 28005-1:2024(en)

18.3.3 REPIESEIEATION ..o 71

4 The MESSAZE DOAY ...

1 General structure Of MIG ..o
.2 MIG Introduction ...,
.3 High level description of use case

4 PrerequiSites. ..

5 MesSage SEQUENCE IAGTAIMS ...

Annex D
Annex E
Annex F
Annex G
Annex H
Annex| (|
AnnexJ (|
Annex K

Bibliogra

normative) Message function codes for XML meSSages..............ecmfomiiiicn.
normative) Message and service request status codes ... O3,
[NOTMAatiVe) SEIVICE COAES......ooiiriiiieissieesnsesssssssssssssesssesssssessguagsne s
(normative) Software system type codes
hormative) Code list for authenticator and contact pointroles..............
hormative) Codes for digital SINAtUIes ... M

(informative) IMO FAL MAPPING ... sccaee frseesiises i
PILY e e

© IS0 2024 - All rights reserved
viii

https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

ISO 28005-1:2024(en)

Foreword

[SO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out through
ISO technical committees. Each member body interested in a subject for which a technical committee
has been established has the right to be represented on that committee. International organizations,
governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely
with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described
in the ISO/IEC Directives, Part 1.In partlcular the different approval criteria needed for the dlfferent types

of ISO dogumen
ISO/IECD

[SO draw
patent(s).
rights in
patent(s)
this may
WWwWWw.iso.

les of the
irectives, Part 2 (see WWW.is0. org/dlrectlves)

5 attention to the possibility that the implementation of this document may involve-the|use of (a)
ISO takes no position concerning the evidence, validity or applicability of ahy claimged patent
respect thereof. As of the date of publication of this document, ISO had not¥eceived ngtice of (a)
which may be required to implement this document. However, implemefiters are cautioned that
hot represent the latest information, which may be obtained from the patent database ayailable at

Any trad{
constitutd

For an ex

related tp conformity assessment, as well as information about ISO's adherence to the Wo

pbrg /patents. ISO shall not be held responsible for identifying any or allystuch patent righty.

e name used in this document is information given for the convenience of users and| does not
e an endorsement.

blanation of the voluntary nature of standards, the meaning of ISO specific terms and e

Organization (WTO) principles in the Technical Barriers to Trade(TBT), see www.iso.org/iso/foreword.html.

This docyment was prepared by Technical Committee ISQ/ATC 8, Ships and marine technology, Subcommittee
SC 11, Int

This seco
revised.

The main

a gen

files 4nd general XML type defimitions, has been added in Clauses 4 to 6;

Clause 7 defining the general design principles for the ISO 28005 series has been added;

brmodal and short sea shipping.

hd edition cancels and replaces the first edition (ISO 28005-1:2013), which has been t¢chnically

changes are as follows:

bral introduction to all documents in the ISO 28005 series, including the structure of XML and XSD

Clauge 8 has added- general message exchange patterns that can be referenced in| message

implgmentation guides;

Clause 9 has added a more general multi-part message structure based on the HTTP multi-part form

struc

fure. This/includes a formalization of how attachments to the XML based message bofly can be

added to the'message. It also includes possibilities for using EDIFACT or JSON as a message hody or as

attac
(deta

hments to the standardized XML message body or adding encrypted message parts as attfachments
ledlin Clauses 11 and 121

the message header has been updated so that it contains sufficient information to do frontend message
processing before forwarding the message to the service specific software modules (see Clause 10);

support for digital signatures has been added in Clause 13. Digital signature certificates can be attached
to a message (see Clause 14);

a definition of a HTTP-based transport protocol has been added in Clauses 15 to 17;

apos

sibility for access authorization has been added in Clause 18;

a definition for the structure of message implementation guides has been added in Clause 19;

© IS0 2024 - All rights reserved
ix

https://www.iso.org/directives-and-policies.html
http://www.iso.org/patents
https://www.iso.org/foreword-supplementary-information.html
https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

ISO 28005-1:2024(en)
— message implementation guides for access authorization have been added in Annex B, and a maritime
single window and mandatory reporting systems have been added in Annex C.
Alist of all parts in the ISO 28005 series can be found on the ISO website.

Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www.iso.org/members.html.

© IS0 2024 - All rights reserved
X

https://www.iso.org/members.html
https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

ISO 28005-1:2024(en)

Introduction

This document contains technical specifications that facilitate an efficient exchange of electronic information
between ships and shore parties for coastal transit or port calls. It defines the general message format,
general message exchange patterns and a message transfer protocol. Other parts of the ISO 28005 series
define data models for various types of message transfers.

The message transfer protocol specified in this document uses HTTP over TLS. While many HTTP type
application program interfaces (API) are built on the representational state transfer (REST) principle, this
document does not use REST. APIs developed according to this document can support physical services such
as ordering tugs or pilots, where state changes cannot be guaranteed to be compliant with REST.

This docyment can be used as a specification of a message format that can be transmitted.dver other
transport protocols than the one defined in this document.

This docyment is aligned with the IMO FAL guidelines on authentication, integrity and\confideptiality in
informatipn exchanges via maritime single windows and related services (IMO FAL.5/Gir¢.46)[1] ar{d the IMO
FAL guiddlines for harmonized communication and electronic exchange of operational-data for poft calls, 31
March 20p3 (IMO FAL.5/Circ.52).[2] The specifications in this document are align'ed with the reqfiirements
in ISO 23807.[3]

© IS0 2024 - All rights reserved
xi

https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

International Standard ISO 28005-1:2024(en)

Ships and marine technology — Electronic port
clearance (EPC) —

Part 1:
Message structures and application programming interfaces

1 Scope

This document defines the principles, methods and requirements for message exchanges between ghips, ship
representfatives, and other shore parties via a peer-to-peer communication system. This document defines
the messdge structure, including how the data content is assembled from other parts-of the ISO 2805 series,
and how figital signatures for authentication, integrity, and confidentiality of the message can Qe used. It
also specifies a transport protocol, the basic message exchange patterns, and_the protocol relatdd roles of
each partly in the message exchange. Furthermore, it specifies how more specific message implefmentation
guides (MIGs) are provided for each type of communication application.

2 Normative references

The folloying documents are referred to in the text in such a way that some or all of their content cpnstitutes
requiremgnts of this document. For dated references, onlythe edition cited applies. For undated rgferences,
the latest|edition of the referenced document (including any amendments) applies.

ISO 316641, Codes for the representation of names of countries and their subdivisions — Part 1: Countyy code

[SO 3166}2, Codes for the representation of nanies of countries and their subdivisions — Part 4: Country
subdivisiop code

ISO 6709,[Standard representation of geographic point location by coordinates
RFC 1952 GZIP file format specification version 4.3

RFC 3986, Uniform resource idéntifier (URI): Generic syntax.

RFC 5246| The transport layer security (TLS) protocol version 1.2

RFC 7578} Returningyadltes from forms: multipart/form-data

RFC 8444, The transport layer security (TLS) Protocol Version 1.3

UN/EDIFACT eode list 3035 - Party function code qualifier, Release D.00A, https://service.unece.org/trade/
untdid/d@QaZtred /tred3035 htm

UN/EDIFACT code list 3139 - Contact function code, Release D.23A, https://service.unece.org/trade/untdid/
latest/tred/tred3139.htm

3 Terms, definitions, and abbreviated terms

3.1 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

© IS0 2024 - All rights reserved
1

https://service.unece.org/trade/untdid/d00a/tred/tred3035.htm
https://service.unece.org/trade/untdid/d00a/tred/tred3035.htm
https://service.unece.org/trade/untdid/latest/tred/tred3139.htm
https://service.unece.org/trade/untdid/latest/tred/tred3139.htm
https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

ISO 28005-1:2024(en)

[SO and IEC maintain terminology databases for use in standardization at the following addresses:

— ISO Online browsing platform: available at https://www.iso.org/obp

— IEC Electropedia: available at https://www.electropedia.org/

3.1.1

HTTP

hypertext transfer protocol

client/server communication protocol used to transfer information in the World Wide Web

Note 1 to entry: HTTP is defined in RFC 20684l as a generic and stateless application-level protocol for distr
collaborative, information systems.

ibuted and

Note 2 to entry: In this document, the term HTTP is used to mean HTTP implemented over transport,lay
(3.1.2),i.e.]JHTTPS (3.1.3), unless otherwise specified.

3.1.2
TLS
transport layer security

protocol for secure communication over the internet

Note 1 to gntry: TLS is defined in RFC 5246 (Version 1.2) and RFC 8446 (Version 1.3):

3.1.3
HTTPS
hypertext transfer protocol secure

HTTP (3.1.1) over transport layer security (TLS) (3.1.2)

Note 1 to ¢ntry: HTTPS is an extension of HTTP used for secure communication and is defined in RFC 281
TLS to encfypt the communication.

Note 2 to ¢ntry: In this document, the term HTTP is used’to mean HTTP implemented over TLS, i.e. HT']
otherwisefspecified.

3.1.4
PKI
public kely infrastructure

set of hardware, software, people, policies and procedures needed to create, manage, distribute,
and revole digital certificates and manage public-key encryption

[SOURCE:ISO 20415:2019, 3.14}

3.1.5
digital signature

data appgnded to, or_Cryptographic transformation of, a data unit that allows a recipient of the d4
prove the[source andfintegrity of the unit and protect against forgery by, for example, the recipien

[SOURCE:ISO 26415:2019, 3.5]

er security

B.[6] It uses

PS, unless

use, store

ta unit to

3.1.6

API

application programming interface

collection of communication methods and associated parameters used by a client (3.1.11) to
information with a server (3.1.12)

exchange

Note 1 to entry: In this document, the term API is used in the meaning of one specific arrow in the sequence diagram

(see Figure 2). Thus, a session will normally require the use of several APIs. This document describes o

ne general

API access point (3.1.17) that can be used by all APIs by changing the number of message components as well as the

contents of one or more message parts.

© IS0 2024 - All rights reserved
2

https://www.iso.org/obp
https://www.electropedia.org/
https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

ISO 28005-1:2024(en)

3.1.7

API access point

application programming interface access point

collection of a specific communication method, one or more general message parts, and related semantics
for formatting the message parts that can be used to realize application programming interfaces (APIs) (3.1.6)

3.1.8
authorization
granting a sender (3.1.9) the right to use one or more application programming interface access points (3.1.7)

3.1.9

sender
party thatinitiates a session (? 1 19.) hy cnnding a-request ('2 141 '-'() toareceiver

[SOURCE:IMO FAL.5/Circ.46:2022, modified — the definition has been shortened.]

3.1.10

receiver
party thdt receives a request (3.1.15) from a sender (3.1.9), executes a service((3-71.14), and feturns a
status m¢ssage

[SOURCE:IMO FAL.5/Circ.46:2022, modified — the definition has been shortened.]

3.1.11
client
unit that $ends a message to a server (3.1.12) and expects a response

Note 1 to gntry: The sender and receiver can be both a server and a client.

3.1.12
server
unit that listens for incoming messages from one or more clients (3.1.11) and responds to them

Note 1 to gntry: The sender and receiver can be both aServer and a client.

3.1.13
message
informatipn payload of an HTTP (3.1.1). request or response between the sender (3.1.9) and receiver (3.1.10)

Note 1 to gntry: Examples of messages.\are request (3.1.15), message status (3.1.16) and service request statu (3.1.17).
Note 2 to gntry: When the full HETP request or response itself is referred to, the term HTTP message will be used.

3.1.14
service
result of a|process performed by a receiver (3.1.10) after a request (3.1.15) has been delivered by a sender (3.1.9)

Note 1 to ¢ntry: In;this document, service is a general term and includes that the receiver unconditionally jaccepts an
incoming lepott'without doing any processing of the content of the report.

3.1.15
request
message sent by a sender (3.1.9) to request a service (3.1.14)

[SOURCE: IMO FAL.5/Circ.46:2022, modified — the definition has been shortened.]

3.1.16
message status
message (3.1.13) sent from a server (3.1.12) to a client (3.1.11) to inform about the status of a received message

Note 1 to entry: A message status can be combined with a service request status (3.1.17) in one message.

© IS0 2024 - All rights reserved
3

https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

ISO 28005-1:2024(en)

Note 2 to entry: A message status will normally only consist of a message header. If the message status is combined
with a service request status, the message can also contain other message parts.

3.1.17
service request status
message (3.1.13) sent from a receiver (3.1.10) to a sender (3.1.9) to inform about the status of a service (3.1.14)

Note 1 to entry: A service request status can be combined with a message status (3.1.16) in one message.

3.1.18
session
sequence of messages (3.1.13) that is related to one and the same initial request (3.1.15)

[SOURCE MO TFAL5/CiTc46:20221

3.1.19
session cpntext
one or mdre sessions (3.1.18) related to the same overarching operation or event

Note 1 to gntry: Session contexts can be nested. As an example, several berth calls can be-individual sessign contexts
nested ins]de a port call session context, which may also be nested inside an entry into national waters sessipn context.

3.1.20
HTTP segsion

hypertext transfer protocol session
message (B.1.13) exchanges that take place between establishment of an HTTP (3.1.1) connection and fits closing

Note 1 to gntry: One HTTP session can include sending more than onerequest (3.1.15).

3.1.21
MIG

message implementation guide
specific requirements to message (3.1.13) exchanges’in conjunction with one or more concrete services
(3.1.14)

3.1.22
EPC
electronic port clearance

services (3.1.14) a ship may request before, during, or after a port call

Note 1 to gntry: EPC is used as a general term for all services a ship may request before, during, or after a pgrt call. It is
not limited to maritime single wihdows and other authority operated systems.

3.1.23
GLN
global lo¢ation number

13-digit decimal number uniquely identifying a geographic position

Note 1 to gntry: The list of registered numbers is maintained by GS1.[17]

3.1.24
UN/LOCODE

United Nations code for trade and transport locations

two or three letter code identifying a country and a trade location within it

Note 1 to entry: The countries have a two-letter code as listed in ISO 3166-1. The locations in the respective countries
have a three-letter code as maintained by UNECE.[13]

© IS0 2024 - All rights reserved
4

https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

ISO 28005-1:2024(en)

3.1.25

MMSI

maritime mobile service identity

nine-digit decimal number uniquely identifying radiocommunication equipment

Note 1 to entry: MMSI is normally assigned by the national telecommunication authorities.

3.1.26
US-ASCII
7-bit character encoding defined in ISO/IEC 646

3.1.27
X.509

digital signature public certificate as defined in RFC 2459(33]

3.2 Abbreviated terms

For the pyrposes of this document, the following abbreviated terms apply.

API application programming interface

DER Distinguished encoding rules: Binary X.509 certificate forniat.

EDIFACT United Nations electronic data interchange for administration, commerce and fransport
(UN/EDIFACT)

EPC Electronic port clearance

GISIS Global integrated shipping information sy$tem[16]

GLN Global location number[17]

GS1 International industry organizatien maintaining code lists for international business pperations

NOTE 1 This includes universal product codes (“bar codes”) and GLN (see https://www

e Security.

.gsl.org/).
HTTP Hypertext transfersprotocol
HTTPS Hypertext transfer protocol secure
IMO International Maritime Organization
ISPS Intepnational ship and port facility security
NOTE 2 Alist of ISPS facility codes is available in GISIS[2élunder the link to Maritim
JSON JavaScript? object notation
MIG Messagetmptermentatiorguide
MIME Multipurpose internet mail extensions (see RFC 2045[Z1)
MMSI Maritime mobile service identity
MRS Mandatory ship reporting system (see IMO A.851(20)(8])
MSW Maritime single window
PCS Port community system

© IS0 2024 - All rights reserved
5

https://www.gs1.org/
https://www.gs1.org/
https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

ISO 28005-1:2024(en)

PKI Public key infrastructure

PMIS Port management information system

REST Representational state transfer

TCP/IP Transfer control protocol over internet protocol (transport protocol for HTTP)
URI Uniform resource identifier

NOTE 3 Inthis document, URI is sometimes used interchangeably with URL. URL normally
refers to a specific URI while an URI is meant as a more generic term for any URL.

URL Uniform resource locator

SMDG Formerly ship messaging design group, now user group for electronic data ifiterchgnge (EDI)
in the maritime container business. Maintaining the SMDG terminal list.$29]

TOS Terminal operating system
TLS Transport layer security
UNECE United Nations Economic Commission for Europe

UN/LOCODE United Nations code for trade and transport locations (see UNECE Recommendation 16[10]
and list of codes[12])

VTIS VTS information system

VTS Vessel traffic services

XML Extensible markup language (see W3C Recommendation XML 1.0[11])

XSD XML schema definition language (defined in W3C recommendations XML schema struc-

tures,[12] and data types[13]};
aJavaScript is a registered trademark of Oracle Corporation. This information is given for the convgnience of

users of this document and does not constitute an endorsement by ISO or IEC.

4 Strufcture of XSD data-type and object definitions

4.1 General

Each mesgage specified in the ISO 28005 series consists of different parts as described in 7.16. Sonje of these
parts are|in XMLKI) format. Each of the XML-formatted parts consist of several XML data obje¢ts with a
correspocu[ding XML data type definition.

The prindiples used in the ISO 28005 series for describing XML data types in XSD code are descrilyed in 4.2.
The structure of the clauses in the ISO 28005 series that contain definitions of XML data types are described
in 4.3. In addition to defining the syntax of the XML data objects in XSD code, 4.3 also describes how these
clauses define the semantics of the data contained in the XML objects.

The XSD code is assembled into an XSD file that can be used for syntactic verification of XML message parts
specified in the ISO 28005 series. In 4.4, the individual XSD code definitions are converted into a valid XSD file.

Data objects defined in ISO 28005-2:2021, which have been reused by definitions in this document are
specified in 4.5.

© IS0 2024 - All rights reserved
6

https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

ISO 28005-1:2024(en)

4.2 Principles for XML descriptions in the ISO 28005 series

o use of XML attributes

The data types defined by this document do not use XML attributes. All information is contained within XML

421 N
start and
NOTE

stop tags.

This makes it easy to create JSON versions from the XSD file defined in 4.4 by replacing XML tag names

with the corresponding JSON object or attribute name.

422 D

efaults for minOccurs and maxOccurs

The XSD
definition
definition
would be

4.2.3 Si

A client o
start and
schema d

4.2.4 Oprder of child elements in XSD files

The XSD {
elements
omitted.

NOTE
type defin

425 C

The chard
7.16) is U]

42.6 P

Enumerat
following

a) Wher
value]

permiitted cede’values will be included in the final XSD file.

b) If the

Spectificationt=defines the defauit vatues for mimoccurs and maxoccurs equat o jone. This
is used in the XSD code described in 4.3.3 to shorten the type specifications in the‘data type
clauses by sometimes omitting 'minOccurs = "1”" and 'maxOccurs = "1”" where these ptherwise
expected to occur.

gnalling empty XML tags

" server can signal that an XML tag is empty (not in use) by not including’any content befween the
end XML tags, or by omitting the tags themselves, if the latter is;allowed by the corr¢sponding
efinition i.e. that “minOccurs=0" is defined for the tag.

emplates use “<xs:sequence>" to list child elements. This means that the XML file shall have child
in exactly the same order as the XSD code. Optional child elements (minOccurs = "(") can be

The XSD code is automatically generated. The order of child elements shown in the XSD parts pf the data
tions are not always logical.

haracter set

cter set used in the XML-formatted parts of the messages specified in the ISO 28005 deries (see
[F-8.

rinciples for defining types with code lists

ed types, i.e. types-that are associated with a fixed set of code values, are defined in ¢ne of the
ways.

the code setds small, defined in this document, and not likely to be extended, the permltted code
s are listed in the definition of the data type as a token with constraints. This meanp that the

ns of the

relev

code set is larger, defined in this document, and likely to be expanded in later editi

mber and

the code set provided in tabular form. The permitted code values will not be included in the final XSD file.

¢) When the code set is not defined in the document but maintained by an organization, the data type is
defined as an unconstrained token or number. There will be a reference to where the code set is defined,
and if necessary, constraints as to how the code set shall be used in the context of the document. The
allowed code values will not be included in the final XSD file.

© IS0 2024 - All rights reserved
7

https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

ISO 28005-1:2024(en)

4.2.7 XSD name space for general XSD data types

All basic data types defined in the XSD data type standard,!14] and which are used in this document, use the
name space “xs”. Thus, the data type name are prefixed with “xs”:.. This corresponds to the header of the XSD
file defined in 4.4 including the following attribute:

<xs:schema ...
xmlns:xs="https://www.w3.0rg/2001/XMLSchema" ...

4.2.8 IS0 28005 name space

All data types defined in the ISO 28005 series are defined in the namespace “epc”. Thus, the data type name

is prefixe

This corr

<xs:schempa ...
xmlns:¢pc="https://standards.iso.org/iso/28005/" ...

4.2.9 Upe of Xpath expressions

The ISO 2

type epc:

EXAMPLE
Senderld/

4.3 Str

431 C

All data t
clause he

The data
a) Thed

NOTE
name

b) Enunj

c¢) This
when

case letter.

d) Then

with “epc”..

esponds to the XSD file header including the following attribute:

kpath (see 5.11) has been defined to hold such expressions whenjused in XML message p

Company”. The full sender identity is “/EPCMessageHeader/Sénderld”.
icture of clauses defining data types

ause and data type name

ypes defined in the ISO 28005 series aresgiven a name that is also included as the first f
nding where the data type is defined,

ata type name shall always.ehd with the string “Type”.

Some data object nadmges can also have the ending “Type”. In that case, the corresponding
will have a trailing “TypeType”.

erated data typenames shall end with “ContentType” instead of only “Type”.

Hocument uses-the “Upper Camel Case” in all core data types, i.e. the first letter is uppen
the tag name consists of a number of concatenated words, each of the words starts with

ame-consists only of characters from the sets (A-Z), (a-z) and, exceptionally, (0-9). The n4g

been

8005 series uses Xpath expressions to identify individual data obje¢ts in XML message parts. The
Xpath exgression syntax is defined in the W3C Recommendation XML Path Tranguage (Xpath).[23

The data
hrts.

Identification of a company name in the message headef Senderld object is “/EPCMessdgeHeader/

art of the

ype name follows the specifications for XML tag names, with the following additional constraints.

data type

case and,
an upper-

mes have

selected to be gpnprqlly understandable in the context of chip-fn-chnrp communication T

he names

use British English spelling without any special characters. Names are in singular form except where
the data element contains a list of items, in which case the tag name is in plural form.

432 D

efinition

Each data type has a definition that is intended to give an unambiguous description of what the data element
shall contain and in what context it is valid. The definition appears in the first subclause after the clause

heading.

© IS0 2024 - All rights reserved
8

https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

ISO 28005-1:2024(en)

4.3.3 Type defined as XSD code

Each data type is defined as a section of XSD code.[14] This section only covers the actual data type definition
and is not a valid XML or XSD document in itself.

See 4.4 for details on how a complete XSD file shall be constructed from the type definitions’ XSD code.

4.3.4 Representation

The representation paragraph consists of additional requirements that define the semantics of the data type.

This can include how the information is coded, e.g. if distances are in km or nautical miles, or references to

code lists

that shall be used for enumerated types

4.4 Crdating valid XSD schema files

441 F

The mini
comment

le structure

mum XSD format for defining the XSD schema file is shown in the below example,
5 starting with “<!-” that separate the different parts of the file from.each other.

<?xml vef¥sion="1.0" encoding="UTF-8"?>
<xs:schefpa targetNamespace="https://www.iso.org/28005-1"

<!--The

<xs:c
<xXs:s

<!--The
<xs:C

</xs:
<xs:c

</xs:
<xs:c

</xs:
<!--The

<xs:e

<xs:e

<xs:e

</xs:schy

xmlns:xs="https://www.w3.0rg/2001/XMLSchema"
xmlns:epc="https://www.iso.org/28005">

efinition of individual data types>

mplexType name ="DataElementlType"> ... </xs:cComplexType>
mpleType name ="DataElement2Type"> ... </xs¥simpleType>

efinition of the message part types>
mplexType name ="EPCMessageHeaderType'>

omplexType>
mplexType name ="EPCMessageBodyIype">

omplexType>
mplexType name ="EPCMessageSignatureType">

omplexType>

nstantiation of (he’message parts>

ement name="EECMessageHeader"
type#BPCMessageHeaderTypeType" />

ement namegVEPCMessageBody" type="EPCMessageBodyType"/>

ement name="EPCMessageSignature"

Lype="EPCMessageSignatureType" />

P& >

including

The first four lines is the general preamble in an XSD file. This specifies encoding and any name-spaces
being used. UTF-8 encoding shall be used (see also 9.5).

The subsequent lines define the different individual data types. All data types which are defined in this
document, as well as in the data definition clauses of other parts of the ISO 28005 series, are expected to be
included here.

The next lines define the three different message parts. Currently, these are the ones listed in Table 1.

© IS0 2024 - All rights reserved
9

https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

ISO 28005-1:2024(en)

Table 1 — Message parts defined in the XSD file

Part Clause Message part
EPCMessageHeader 10.10 The message header
EPCMessageBody 11.2 The message body part
EPCMessageSignature 14.3 The message signature part
The final part is the definitions related to the instantiation of the message parts.

4.4.2 Numbering of XSD files and message version code

Each par

of the ISO 28005 series can contain definitions that change the structure of the XSD f

le. In this

case, the
illustrate

Each XSD
that are y
all follow
with is sp|

NOTE
together d

The mess
two or th
the follow

1. Thef

this d

Felevant part of the ISO 28005 series is expected to be associated with a new XSD filé\n
] in Figure 1.

file contains definitions for all message parts listed in Table 1 as well as all nécessary

ng XSD file numbers. The first XSD file number that each partin the ISO 28005 series is g
ecified in Annex A of that part. See 11.2.2 for more details.

Figure 1 is for illustration only. The actual assignment of XSD file numbers-is determined by the
bfine the related XSD file.

[SO 28005 parts 1 to i

is028005-1.xsd

is028005-2.xsd
IS028005 XSD files -file number 1 to n

is028005-n.xsd

Figure 1~—Structure of XSD files related to the ISO 28005 series

hge version gode is a mandatory part of the message header (see 10.10). It is a string cof]
‘ee integer'numbers separated by a full stop (see 6.19). These numbers, from left to right
ing values:

umber as

data type

sed by those message parts. Definitions from one part of the ISO 28005 series will be included in

ssociated

parts that

sisting of
thall have

rstaimber shall be ‘2’. This corresponds to the protocol and message specifications co
oeliment.

Ttained in

The second number shall correspond to the XSD file number to which the XML message is designed to

be conformant. The data elements listed in ISO 28005-2:2021, Annex A as well as the elements listed in
Annex A shall all be included in file number 1.

ISO 28005 series. See 11.2 for a description of this mechanism.

The optional third number can be used for local variants of the XSD file that are not defined by the

The structure of the message header and body is defined so that clients that are designed to understand a
specific XSD file number, safely can validate XML messages with the same or lower file number by using the
XSD file. Lower numbered XSD files cannot be used to validate higher numbered XML messages.

© IS0 2024 - All rights reserved
10

https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

ISO 28005-1:2024(en)

If the client's parser is constructed to only look for the tags in one version of an XSD file, a client can safely
parse also higher numbered XML files if unknown tags are discarded. A client that is designed to understand a
higher number XSD file than indicated by an incoming message version code can parse the incoming message,
but shall in that case parse the message in accordance with the XSD file number that the incoming message
version code specifies, i.e. it shall not look for tags that are only defined in higher numbered XSD files.

NOTE This capability is ensured by only adding new data objects or attributes. Data objects or attributes will not
be deleted from definitions, but some objects or attributes can be depreciated in other parts of the ISO 28005 series.

Itis always possible to validate local variants with the correspondingly numbered XSD file. However, this will
not check the syntax of any additional elements in the local variant. To do this, the XSD file corresponding to
the local variant is required.

4.4.3 Lpcation of XSD files

The XSD files can be found an address patterned after the following: https://standards.iso.org/iso/28005/
-n/ed-m/dn/. This applies to all parts of the ISO 28005 series, where the desired part humber|(“n”) and
edition (“n”) is replaced with the relevant numbers in the URL.

EXAMPLE The XSD file corresponding to the definitions in ISO 28005-2:2021 is avaitable on https://standards.iso
.org/iso/28005/-2/ed-2/en/.

4.5 Reference to data types defined in ISO 28005-2:2021

All adapted XSD data types defined in ISO 28005-2:2021, Clause 5 have'been reproduced in Clause|5. Several
general djta types in ISO 28005-2:2021.

Some of the definitions from ISO 28005-2:2021 have been exténded in this document. A summjry of the
changes if listed in Table 2. Definitions in ISO 28005-2:2014% remain valid but the old data typeg listed in
Table 2 njay have been depreciated by newer definitions\in this document, which should be used for new
implemerjtations.

Table 2 — Data types modified from ISO 28005-2:2021

Definitioniin’' |Definition in |Changes made

Data type I1SO 28005- this docu-
2:2021 ment
epc:AuthenticatorType 726 6.2 Changed authenticator role code list.
epc:ContlctInfoType 6.3 6.4 Added URL attribute
epc:LocajtionType 7.10 6.9 Added GLN and MRN attributes.
epc:PostlplAddressType 6.11 6.12 Changed PostCodeCode to PostCode
epc:EPCMessageHeadefIype 7.2.2 10 Redefined (including all sub-types)
epc: EPCREquestREIY Type Annex A 11.21 Redefined and changed to
EPCMessageBodyType
7.9.22 6.16 Changed type name to
epc:JourhalNumberType epc:ReferenceCodeType (Ship stay|refer-
ence)
7.7.2,7.7.3 10 Replaced by
epc:MessageFunctionCodeContentType
epc:MessageTypeContentType :
) epc:ServiceTypeCodeContentType and
epc:0therServiceRequestType \
epc:ServiceCodeContentType
New code values have been defined in Annex G.
epc:RequestStatusType 7.7.4 10 Replaced by epc:StatusType

1) Withdrawn.

© IS0 2024 - All rights reserved
11

https://standards.iso.org/iso/28005/-n/ed-m/en/
https://standards.iso.org/iso/28005/-n/ed-m/en/
https://standards.iso.org/iso/28005/-2/ed-2/en/
https://standards.iso.org/iso/28005/-2/ed-2/en/
https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

ISO 28005-1:2024(en)

5 Adapted XSD data types for ISO 28005

5.1 General

The adapted XSD data types used in the ISO 28005 series are based on the standard XML types defined in
XML Schema Part 2.[13]

5.2 epc:anyURI - Generalized URI

52.1 D

efinition

AR A

This data
name, pre

5.2.2 T

<xs:simp
<XS:r4
</xs:simy

523 R

All geners
restricted

NOTE

5.3 ep¢

5.3.1 Diefinition

This data

532 T

<xs:simp
<XS:r{
</xs:simy

53.3 R

All flag v
used in c(
“yes” whi

4 s 1.l 1. 1 La nh P 1 IL1DL Lo 3.1 L[) L[
Ly PT LUIILAIILS d VdIlU gTICTHAIIZTU UL TIHIS 1IIdy DT da UNNL, PITITATU Uy 1ItLp . Ul ItLps

fixed by “file”:.

ype

eType name="anyURI">
bstriction base="xs:anyURI"/>
leType>

epresentation

1lized URIs are permitted in this document. To ensure conmipatibility with older systems,
to use only the ASCII character set.

The “file”: type URI is used to refer to message attachments as described in 12.2.

: boolean - Boolean flag

type contains a flag that can have thelogical values true or false.
ype
eType name="boolean">

bstriction base="xs:bgdlean"/>
leType>

epresentation

hlues allowed in the XSD standard are also allowed in this document. When the boole
ntexts'where the value represents an answer to a yes/no question, the true value shall
e the false value shall represent “no”.

;, or a file

URLs are

n type is
represent

5.4 epc:date - General date

541 D

This data

efinition

type contains a date without additional time of day or time zone information.

5.4.2 Type

<xs:simpleType name="date">
<xs :restriction base="xs:date"/>
</xs:simpleType>

© IS0 2024 - All rights reserved
12

https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

ISO 28005-1:2024(en)

5.4.3 Representation

This is a date in the standard XSD format, without any time zone code in the value.
EXAMPLE “2002-09-10” (10th of September 2002).

Senders of date information should not include time zone information. Receivers should be prepared to
accept a time zone code, but it shall be disregarded in further processing of the data.

5.5 epc:dateTime - Time and date, with time zone

5.5.1 Definition

This dataftype contains a date with additional time of day and time zone information.

5.5.2 Type
<xs:simpleType name="dateTime">

<xs:regtriction base="xs:dateTime"/>
</xs:simpleType>

5.5.3 Representation
This is a date and time in the standard XSD format, with a time zonetode in the value.

Senders df date and time information shall include time zone infermation. Receivers should be prjepared to
accept values without time zone codes. In this case, the time<zone is undefined and proper actions should
be taken py the systems processing this data to ensure that’this does not cause problems for thg intended
operation|

EXAMPLE[lL “2012-02-03T23:00:00+02:00” (3 February 2012, local time 23:00 hours in time zone UTC plus fwo hours).
EXAMPLEZ “2012-02-03T21:00Z” (same time as Example 1 but transmitted as being in UTC).

NOTE The hour field can be 24 if minutessand seconds are zero. The seconds field can sometimes dontain the
value 60 (When leap seconds occur). Seconds can contain a decimal part followed by a period (“.”).

5.6 epq¢:decimal - decimal number

5.6.1 Definition
This dataftype is used taspécify a quantity.

5.6.2 Type

<xs:simpleTypername="decimal">
<xs:r¢striction base="xs:decimal"/>
</xs:simplelype>

5.6.3 Representation

The decimal type represents a subset of the real numbers, which can be represented by decimal numerals.
The value space of the decimal is the set of numbers that can be obtained by multiplying an integer i by a
non-positive power n of 10, i.e. expressible as i x 10" where i and n are integers and n > 0. Precision is not
reflected in this value space; the number 2.0 is not distinct from the number 2.00.

The decimal has a lexical representation consisting of a finite-length sequence of decimal digits separated by

wn «,n

a period (“”) as a decimal indicator. An optional leading sign is allowed. If the sign is omitted, “+” is assumed.

© IS0 2024 - All rights reserved
13

https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

ISO 28005-1:2024(en)

Leading and trailing zeros are optional. If the fractional part is zero, the period and following zeros can be
omitted.

EXAMPLE -1.23,12678967.543233, +100000.00, and 210 are all valid decimal numbers

«n

NOTE The XSD format used in this document requires the use of the period (“.”) as the decimal sign.
5.7 epc:duration - Time duration

5.7.1 Definition

This data type is used to specify a duration in time.

5.7.2 Type

<xs:simpleType name="duration">
<xs:regtriction base="xs:duration"/>
</xs:simpleType>

5.7.3 Representation

This typg can specify a time period. The general format is “[-][PnYnMunDTnHnMn[.n]S”, where| [-] is an
optional minus sign, n is a positive integer number, and [.n] is an optional decimal field for secpnds. The
number nfahead of Y, M, D, H and M, respectively, indicates the length'of the duration in years, morjths, days,
hours and minutes. If n is zero, it can be omitted together with the\etter it precedes.

EXAMPLE P3DT10H30M is three days, 10 hours and 30 minutes;<P120D is a negative duration of 120 days.
5.8 epg¢:int - Integer number

5.8.1 Diefinition

This dataftype is used to specify an integer quantity.

5.8.2 Type

<xs:simpleType name="int">
<xs:reg¢triction base="xs:int'"V/>
</xs:simpleType>

5.8.3 Representation

The integpr type is airinteger in the range from -2147483648 to 2147483647 (inclusive).

5.9 ep¢:string - General string

5.9.1 Definition

This data type contains a general string that is mainly intended to be read by humans. There are no
restrictions on the format of the string. See epc:token for a string type that is intended for computer use.

5.9.2 Type

<xs:simpleType name="string">
<xs:restriction base="xs:string"/>
</xs:simpleType>

© IS0 2024 - All rights reserved
14

https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

ISO 28005-1:2024(en)

5.9.3 Representation
This is an UTF-8 character string where white space (space, tab, line feed etc.) is preserved.

Applications can put length constraints on the string. The server should be prepared to accept longer strings
than what is specified by the application, but longer strings can be truncated. Thus, the client cannot rely on
longer strings being fully processed or displayed.

5.10 epc:token - Computer-understandable string

5.10.1 Definition

The toker] data type is normally used for a text string that is mainly meant to be interpreted by a fomputer.
This inclydes enumerated codes as well as other structured strings.

5.10.2 Type

<xs:simpleType name="token">
<xs:reg¢triction base="xs:token"/>
</xs:simpleType>

5.10.3 Representation

This is rgpresented as a text string that can consist of letters or numbers or both, no leading ¢r trailing
spaces anld only single spaces inside the string. The use of this datatype will also require the definition of
the legal okens or code values.

5.11 epg¢:xpath - Identification of an XML data item

5.11.1 Diefinition

The xpath data type is used to identify an XML object in one of the message parts.

5.11.2 Type

<xs:simpleType name="xpath">
<xs:regtriction base="xs:tokemY>
</xs:simpleType>

5.11.3 Representation

This dataftype is used to.identify an XML data object by use of Xpath expressions (see 4.2.9 for the definition
of the Xpdth format)s

6 General ISO 28005 data types

6.1 General
This clause defines a number of general data types that is used both in the message header and message body.

NOTE Some of these definitions can also be found in ISO 28005-2:2021. See 4.5 for an overview.
6.2 epc: AuthenticatorType - Authenticator of information

6.2.1 Definition

This type contains information about the party attesting to the validity of the transmitted information.

© IS0 2024 - All rights reserved
15

https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

ISO 28005-1:2024(en)

6.2.2 Type

<xs:complexType name="AuthenticatorType">
<xs:complexContent>
<xs:extension base="epc:ContactInfoType">
<xXs:sequence>

<xs:element name="AuthenticationDate" type="epc:dateTime"
minOccurs"0"/>

<xs:element name="AuthenticatorLocation"
type="epc:LocationType" minOccurs="0"/>

</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>

6.23 R

The elem
elements:

— Authd
— Authd

The “Aut
ContactIy

The “Auth
part of th

6.3 epc

6.3.1 Definition

This type

632 T

<xs:sify
<xXs:
</xs:s

6.3.3 R

The toker
Clause 18
scramble

epresentation

bnt is an extension of the general contact information type and shall contain the addit

nticationDate: This is the date and time of the authentication.
nticatorLocation: This is the location of the person when submittingthe information.

henticator party identification code” (IMO 0017 in [14]) ,usé the companyId attribu
L foType part of the definition. The code values that shall be-used are defined in Annex I.

enticator role, coded” (IMO 0128 in [14]) use the contactType attribute in the contaci
b definition. The code values that shall be used are defined in Annex I.

:AuthorizationTokenType - Authorization-token

is used to send an authorization token-between the sender and receiver.
ype
pleType name="Authorizai*onTokenType">

estriction base="epc(token"/>
mpleType>

epresentation

is used tojauthorize access to the service API. It is retrieved through a special API as de
The teken is a text string that only has meaning for the receiver. It should be long and
1 toaniake it highly unlikely for other parties to replicate it.

NOTE

onal data

te in the

InfoType

scribed in
randomly

Tk ADRL Lot o and-th thoxizots P2 HTTD oo d

33 & friarza oaad 33 2 2N 33 PEETY PPN 3
TTHe-rrrac S HSearoferr e veahitSeht it attnorZac o€ oae SHSe-Secutre-rrrrrr—aita15asst

med to be

very difficult to eavesdrop on for hostile third parties. However, the sender and receiver are expected to take measures

as necessa

ry to protect the authorization code from third parties.

6.4 epc:ContactinfoType - Contact information

64.1 D

efinition

This data type contains contact information for either a person or a company. A person's name can be

included i

f the contact information is for a company.

© IS0 2024 - All rights reserved
16

https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

ISO 28005-1:2024(en)

6.4.2 Type

<xs:simp
<xs:re

leType name="ContactTypeContentCode">
striction base="xs:token"/>

</xs:simpleType>

<xs:comp
<xs:se
<xXs:
<xXS:
<xs:

<xSs:

<xXs:
<xS:

</xs:
</xs:c

6.4.3 Representation

This is information about a company or person that can be physically contactedi"*Common infory
both pergons and companies are addresses and contact numbers. Companies and persons diff]
companiegs have one name in a string, while persons can have a given name, family name and midd
person's jame can be submitted for a company contact point, but not vicé€ versa.

The attriljutes are:
— compdny: This is the official name of a company.
— compdny1d: The recognized identification number of the.ecompany, if defined.

NOTE CompanyIdisnormally a business-related. Jt:¢an be a tax identification number or a local idsg
number e.g. used in a specific port.

— ContdctNumbers: Telephone, telefax or other communication channel information.

— contdctType: The role of the contact point. This attribute may be required in conjunction with g

good
from

Table|1.1.
— Ppersdn: The name of the person.

— Addrdss: The postal address of person or company.
6.5 ep¢:CommunicationNumberType - Communication number information

6.5.1 Diefinition

Th d t FEIY Bacifl a—cantact s odod coi o ol ol oo ot o oo oo
1S data Cy PCSpPeCmItSa CoTrtattTpoTITT v ra cCrCproTTC—OT OtIICT IICarrSs

lexType name="ContactInfoType">

quence>

element name="Company" type="epc:string" minOccurs="0"/>

element name="CompanyId" type="epc:string" minOccurs="0"/>

element name="ContactNumbers"
type="epc:CommunicationNumberType" minOccurs="0"/>

element name="ContactType" type="epc:ContactTypeContentCode"
minOccurs="0"/>

element name="Person" type="epc:NameType" minOccurs="0"/>

element name="2Addre " f\p@:"opr‘-Dn ftalzaddre T po"

minOccurs="0"/>
equence>
mplexType>

reporting or when the contact point is used as authenticator (see 6.2). The code shal
UN/EDIFACT code lists 3035.0r 3139. Codes with a defined meaning in this document ar

hation for
br in that
e name. A

ntification

angerous
be taken
e listed in

6.5.2 Type

<xs:comp
<xs:se
<Xs:

<xs:
<xSs
<xXS:
<xs

<xS:

lexType name="CommunicationNumberType">

quence>

element name="BusinessTelephone" type="epc:string"
minOccurs="0"/>

element name="ContactURL" type="epc:anyURI" minOccurs="0"/>

:element name="EMail" type="epc:anyURI" minOccurs="0"/>

element name="HomeTelephone" type="epc:string" minOccurs="0"/>

:element name="MobileTelephone" type="epc:string"

minOccurs="0"/>
element name="Telefax" type="epc:string" minOccurs="0"/>

© IS0 2024 - All rights reserved
17

https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

ISO 28005-1:2024(en)

</xs:sequence>
</xs:complexType>

6.5.3 Representation

This element contains a list of contact points for a person or organization. Telephone numbers shall be
specified with an international prefix code in the format “+it” where i is the international prefix and t the
telephone number without any spaces between or inside either.

The attributes are:

— BusinessTelephone: Daytime telephone number.

— cContdctUrL: A web page where information about the party can be obtained.
— EMail: Email address as UR], i.e. prefixed with “mailto”:.

— HomeTelephone: Home telephone number.

— MobilleTelephone: Telephone number for access outside office.

— Teleflax: Telefax number.
6.6 ep¢:CountryCodeContentType - Country identification

6.6.1 Deefinition
This dataftype gives a unique and coded representation of a country identity.

6.6.2 Type

<xs:simpleType name="CountryCodeContentType">
<xs:r¢striction base="xs:token">
<xs|length value="2"/>
</xs:festriction>
</xs:simpleType>

6.6.3 Representation

The contdnt of the country code-element shall be the two-letter country code defined in ISO 3166-1.
6.7 epq:CountrySubdivisionCodeContentType - Country subdivision identification

6.7.1 Definition

This dataftype gives a unique and coded representation of a country subdivision identity.

6.7.2 Type

<xs:simpleType name="CountrySubdivisionCodeContentType">
<xs:restriction base="xs:token"/>
</xs:simpleType>

© IS0 2024 - All rights reserved
18

https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

ISO 28005-1:2024(en)

6.7.3 Representation

The country subdivision code is the final characters of the ISO 3166-2 country subdivision code, following
the initial two-letter country code and the hyphen-minus.

NOTE The definition of the subdivision code is a length of maximum six characters where the two first are the
country code followed by a hyphen-minus (see ISO 3166-2).

If no code is defined in ISO 3166-2 for the subdivision in question, it is permitted to use a commonly agreed
code between the sender and receiver.

6.8 epc:CrewDutyType - Duty onboard or on shore

6.8.1 Dlefinition

This dataftype specifies the duty of a person.

6.8.2 Type

<xs:simpleType name="CrewDutyCodeContentType">
<xs:reg$triction base="epc:token">
</xs:ré¢striction>
</xs:simpleType>
<xs:complexType name="CrewDutyType">
<xs:sedquence>
<xs:¢lement name="Code" type="epc:CrewDutyCodeContentType"/
minOccurs="0" />
<xs:¢lement name="Text" type="epc:string” minOccurs="0" />
</xXs:s¢quence>
</xs:complexType>

6.8.3 Representation
The two fjelds shall be used as follows:

— cCode:| This is the crew duty type inCoded representation. The code list is maintained in] the IMO
Compendium[14] under IMO object'code IMO0043.

— Text:[This is the crew duty i free text. It is mandatory only if a valid coded value is not suppligd.

If theq text-field is inclided and if the crew duty has a code corresponding to a code ir] the IMO
Compendium, the textfield should contain the same textual description as in the IMO Compendium.

6.9 epq:LocationType - Identification of a location

6.9.1 Deefinition

ThlS data t}ypn idantifiac r\vny]r\n'\f\nn’ wihich mf\}r alca ha gnren A Nnama T]’}AS dafﬁ\ fxrpn 1S nr\vm'\”x used in a
specific context to define what type of location this is.

6.9.2 Type

<xs:simpleType name="FacilityNameType">
<xs:list itemType="epc:token"/>
</xs:simpleType>

<xs:simpleType name="GLNCodeContentType">
<xs:restriction base="epc:token"/>

</xs:simpleType>

<xs:simpleType name="GISISCodeContentType">

© IS0 2024 - All rights reserved
19

https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

ISO 28005-1:2024(en)

<xs:restriction base="xs:token"/>
</xs:simpleType>

<xs:complexType name="PositionType">
<xs:sequence>
<xs:element name="Latitude" type="epc:LatitudeType"/>
<xs:element name="Longitude" type="epc:LongitudeType"/>
</xs:sequence>
</xs:complexType>

<xs:simpleType name="LatitudeType">
<xs:restriction base="epc:decimal">
<xs:minInclusive value="-90"/>
<xs:maxInclusive value="90"/>
</xs:restriction>

</xs:simy

<xs:simp

<xs:re
<xs:
<X
</xs:rd
</xs:simy

<xs:simp
<xXs:re
<Xs:
</xs:r4{
</xs:simj
<xs:simp
<xs:re
</xs:r{
</xs:simj

<xs:simp
<xs:re

</Xs:r4
</xs:simy

<xs:comp
<xs:se
<xs:4

<XS:4

<xS:4
<xS:4
<xS:4
<xS:4

<xS:4
<XS:4

leType>

eType name="LongitudeType">
triction base="epc:decimal">

inInclusive value="-180"/>
axInclusive value="180"/>
bstriction>

leType>

eType name="UNLoCodeContentType">
triction base="epc:token">

ength value="3"/>

bstriction>

leType>

eType name="MRNCodeContentType">
triction base="epc:token">
bstriction>

leType>

eType name="SMDGTerminalCodeContentType">
triction base="epc:token">

bstriction>

leType>

exType name="LocationType">

fluence>

tlement name="CountryCode" type="epc:CountryCodeContentType"
minOccurs="0"/>

blement name="CountrySubdivisionCode"
type="epc:CowttrySubdivisionCodeContentType"
minOccurs=".0" /*

blement name="FacihifyCode" type="epc:GISISCodeContentType"
minOccurs="0"/>

blement name=""FdgdilityName" type="epc:FacilityNameType"
minQgeurs="0"/>

blement nameS"GLN" type="epc:GLNCodeContentType"
mifOccurs="0"/>

bl ement \dadme="MRN" type="epc:MRNCodeContentType"
minOccurs="0"/>

bleffent name="Name" type="xs:string" minOccurs="0"/>

b leflent name="NauticalMilesToDestination" type="epc:decimal"

<xs:element

minoccurs="0U

<xs:element name="SMDGTerminalCode"

type="epc:SMDGTerminalCodeContentType" minOccurs="0"/>

<xs:element name="UNLoCode" type="epc:UNLoCodeContentType"

minOccurs="0"/>

<xs:element name="VisualPosition" type="epc:VisualPositionType"

minOccurs="0"/>

</xs:sequence>
</xs:complexType>

© IS0 2024 - All rights reserved
20

name="Position" type="epc:PositionType" minOccurs="0"/>

https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

ISO 28005-1:2024(en)

6.9.3 Representation

The location type allows the user to specify a location by one or more of the following attributes:

— CountryCode. Two-letter country code defined in ISO 3166-1.

— CountrySubdivisionCode. Country subdivision code defined in ISO 3166-2 (see 6.7 for code values).

— FacilityCode: The port facility 4-digit code defined in GISIS.[18] Not all facilities are listed in GISIS. In
these cases, the facility name field shall be used instead.

— FacilityName: ThenameofanISPSfacilityinaportorterminal. Thisfieldismandatoryifthe FacilityCode
is not provided.

— cun: (lobal location number of the position.[17]

— MrN: Mlarine Resource Name - a text string that identifies a specific marine resource, including po4

— Name:
optio

— NauticalMilesToDestination: As given by name.

— Positfion: Geographic position specifying the latitude and longitude. The latitude and longi

be re

latitude and { + }ddd.dd for longitude, where “+” (plus) indicates.horth or east and “~”(minus)
soutl or west. The “+” (plus) sign can be omitted.

— sMDGYerminalCode: A terminal code defined by SMDG andgudintained in their code list.[29]
— UNLodode: Three letter national location code for a portds defined in UN/LOCODE.[13]

— visudlPosition: A free text description of location relative to landmarks that can be seen
repoited position.

6.10 ep¢:NameType - Name of person

6.10.1 Deefinition

This is a free text name that can be used either as an alternative to the othércode type
hal name on the location.

presented using the degrees and decimal degree format specified by ISO 6709, i.e. { +]

“«,n

itions.[28]

S Or as an

fude shall
dd.dd for
indicates

from the

This dataftype contains the full name’ of a person.
6.10.2 Type
<xs:complexType name="NameType">
<xs:sedquence>
<xs:¢lement name="FamilyName" type="epc:string" minOccurs="0" />
<xs:¢lement Qpame="GivenName" type="epc:string” minOccurs="0" />
<xs:¢lementhame="MiddleName" type="epc:string" minOccurs="0" />
</xs:f$equernce>
</xs:complexType>
6.10.3 Representation

This shall be represented as three text strings. Strings are in free text and possibly not suitable for computer-
based comparisons.

NOTE

Users of this data element can impose additional restrictions on the data type, e.g. by requiring the spelling
to be identical to that used in an electronically readable identification document.

© IS0 2024 - All rights reserved
21

https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

ISO 28005-1:2024(en)

6.11 epc:OrganizationType - Description of an organization

6.11.1 Definition

This data type is used to give details of an organized body such as a business, government body, department
or charity.

6.11.2 Type

<xs:complexType name="OrganizationType">
<xs:sequence>
<xs:element name="Name" type="epc:string" minOccurs="0"/>

<Xs:edement—hname="RocistrationbDatas" tyuno="ono-dotae" minQcoccours="0"
= T T

<xs:¢lement name="TaxIdentifier" type="epc:string"

minOccurs="0" maxOccurs="unbounded"/>

<xs:¢lement name="RegistrationCountryCode"

type="epc:CountryCodeContentType" minOccurs="0"/>

<xs:¢lement name="RegistrationLocationCode"

type="epc:UNLoCodeContentType" minOccurs="0"/>
</xs:s¢quence>

</xs:complexType>

6.11.3 Representation
The attriljutes define the following data elements:
— Name:|Official name of organization.

— Facilitycode: The port facility 4-digit code defined in &ISIS.[16] Not all facilities are listed i GISIS. In
these| cases, the facility name field shall be used instead:

— RegidtrationDate: Date of registration of the organization.

— TaxIdentifier: The taxidentification code, e.g)value added tax (VAT) code, goods and services|tax (GST)
code pr similar.

— RegidtrationCountryCode: The two-letter country code (see 6.6).

— RegidtrationLocationCode: Thelthree-letter port code, if the organization is located in a port[see 6.9).
6.12 epq:PostalAddressType - A postal mail address

6.12.1 Definition

This is the postal address for a person or organization.

6.12.2 Type

<xs:complexType name="PostalAddressType'">
<xs:sequence>
<xs:element name="CityName" type="epc:string" minOccurs="0" />
<xs:element name="CountrySubdivisionCode"
type="epc:CountrySubdivisionCodeContentType"
minOccurs="0" />
<xs:element name="LineFive" type="epc:string" minOccurs="0" />
<xs:element name="LineFour" type="epc:string" minOccurs="0" />
<xs:element name="LineOne" type="epc:string" minOccurs="0" />
<xs:element name="LineThree" type="epc:string" minOccurs="0" />
<xs:element name="LineTwo" type="epc:string" minOccurs="0" />
<xs:element name="PostCode" type="epc:token"
minOccurs="0" />
<xs:element name="PostOfficeBox" type="epc:string"
minOccurs="0" />

© IS0 2024 - All rights reserved
22

https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

ISO 28005-1:2024(en)

<xs:element name="StreetName" type="epc:string" minOccurs="0" />
<xs:element name="StreetNumber" type="epc:string"

minOccurs="0" />

<xs:element name="CountryCode" type="epc:CountryCodeContentType"

minOccurs="0"/>

</xs:sequence>
</xs:complexType>

6.12.3 Representation

This is the description of a postal address. Most fields are intended to be read by humans and are free format,
except for the country and country subdivision codes:

— CityN\

— Counf{

[SO 3
— LineN
— Postd
— Postd
— Streq
— Streq
— Count

The Line
printable

NOTE

6.13 epc

ame: Name of city.

rySubdivisionCode: This code shall follow national code lists for country sub-divisiens a
166-2 (see 6.7 for code values).

: Postal address lines, used if street name and street number are not sufficient.

ode: Post code of location.

fficeBox: Post box number if in use.

tName: Name of street.

tNumber: Street number.

ryCode: This code shall follow national code lists foricountries as defined by ISO 3166-1.

ne to LineFive tags can be used for various contact address information and should in g
one tag data on one line.

The ordering of address lines in the XSD is alphabetic as the XSD is generated automatically.

:ShipIDType - Ship identity

6.13.1 Deefinition

This com
structure

6.13.2 T

<xs:comp
<xs:se
<XS:4
<XS:4

<XS 14
<XS:4

posite element containg~data that can be used to identify the ship. Different users of

require different mipimtm information elements.
ype
exType nameE"ShipIDType">

fluence>

blement \ndme="CallSign" type="epc:token" minOccurs="0" />
b lement s name="Comment" type="epc:string" minOccurs="0" />
b lefent name="IMONumber" type="epc:token" minOccurs="0" />

s listed in

eneral be

this data

b lefient name="MMSINumber" type="epc:token" minOccurs="0" />

<xs:€lement name="sShipNamen CType—"epC:String T minuUccurs="u

<xs:element name="RegistrationPort" type="epc:LocationType"

minOccurs="0" />

</xs:sequence>
</xs:complexType>

6.13.3 Representation

The shipIpType is represented with one or more of the following attributes.

— callsign: This is the call sign for the ship. The call sign is at least four characters long and can consist of
both letters and numbers.

© IS0 2024 - All rights reserved
23

https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

ISO 28005-1:2024(en)
— comment : Any other information related to ship identity. For example, this can be used if an identity field
is requested by a certain receiver, but is not available for this ship.

— 1MoNumber: This token consists of the string “IMO” followed by the seven-digit IMO number without any
embedded separator character.

— MMsINumber: This token consists of the nine-digit MMSI number without any separator character.

— shipName: This is the name of the ship. This is in human-readable form and no special restrictions are
enforced.

— RegistrationPort: Thisisthe portof registration for the ship. It contains the country code and port code
for the port of registration. The port name in human-readable format may also be included.

6.14 epq:ReportingSystemType - Name of a reporting system

6.14.1 Definition

This type|contains the name of a reporting system.

6.14.2 Type

<xs:simpleType name="ReportingSystemType">
<xs:reg$triction base="epc:string"/>
</xs:simpleType>

6.14.3 Representation

ReportingSystem is the name of the reporting system to which the message is sent, if appropriate. This is
used for gll messages of the MRS type. The name isthe official name given in the relevant IMQ| approval
documents. Alternatively, one can use the three-digit codes defined in the IMO compendium for [MO 0322
(Ship repgrting system, coded).[14]

EXAMPLE Some examples of reporting systém names are “REEFREP”, “BALTREP”, and “GIBREP".
6.15 epq¢:AttachmentType - Reference to an attached document

6.15.1 Diefinition

This type|contains a description of and a reference to an attached document.

6.15.2 Type

<xs:complexTypesname="AttachmentType">
<xs:sedquence>
<xslelém&nt name="Description" type="epc:string" minOccurs="0"/>
<xs|&lenent name="URI" type="epc:anyURI" minOccurs="0"/>
</ %3 : efoen
</xs:complexType>

6.15.3 Representation
The following attributes can be used:

— Description: This attribute can give a human-readable description of the attached file or it can contain
the attached information itself. I[f a URI is supplied, the bescriptionis for information only and cannot be
usefully read by a computer-based client. If the URI is empty or does not exist, the Description field shall
contain the attached information.

© IS0 2024 - All rights reserved
24

https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

ISO 28005-1:2024(en)

— ur1I: This attribute shall contain a valid URI as defined in RFC 3986. The data element can be used in
two ways:

1) It can use the URI prefix “file”: as in “file:xxx.yyy”, to point to an attached file with the name “xxx.
yyy”. In this case, the receiver shall find the attached file in the message attachments as described
in Clause 12.

2) Alternatively, the URI can point to a resource available remotely.

6.16 epc:ReferenceCodeType - General reference code

6.16.1 D

efinition

The refer
data obje

6.16.2 T
<xs:simp

<xs:re
</xs:simy

6.16.3 R

This is an

NOTE
number, n
object and

6.17 epd

ence code type is an arbitrary token that is generated by a party for later reference to 'a
't managed by that party. See 7.13 for an overview of some reference code types.

ype

eType name="ReferenceCodeType">

triction base="epc:token"/>
leType>

epresentation
arbitrary string of printable characters.
The universally unique identifier (UUID - see Reference [18]) can be used for this purpose,i.e.a 1

rmally encoded as a 36 character long string. However$in most cases the reference is to a locall
a shorter and more functional local code can be mare-convenient.

:SystemldType - Identity code for a software system

6.17.1 Definition

This elemlent identifies a specific software system on land.

6.17.2 T

<xs:simp
<xs:re
</xs:simj

<xs:comp
<xs:se
<XS:4
<XS:4

ype

eType name="SystemlypeContentType">
triction base="epe:token"/>
leType>

exType names"SystemIdType">

fluence>

b lement \ddme="Name" type="epc:string" minOccurs="0" />

b lementy name="Type" type="epc:SystemTypeContentType"
minOccurs="0" />

service or

28 bitlong
y managed

<xS:4

b 'eent name="Location" type="epc:LocationType"

minOccurs="0"

</xs:sequence>
</xs:complexType>

6.17.3 Representation

The following elements are used as follows:

— Name:

— Type:

Name of the system. A text string that shall be unique within location parameter.

Type of system. Table H.1 defines the codes that shall be used.

© IS0 2024 - All rights reserved
25

https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

ISO 28005-1:2024(en)

— Location: Physical place where the system resides.
6.18 epc:SignatureCertificateldType - Name of digital signature holder

6.18.1 Definition
When digital signatures are used, the identity code entered in the public key certificate shall exactly match

that of the person, ship, software system, or the company that signs the message. The certificate identity
type is used to refer to this identity code.

6.18.2 Type

<xs:complexType name="SignatureCertificateIdType">
<xs:sequence>
<xs:¢lement name="CommonName" type="epc:string" minOccurs="0" />
<xs:¢lement name="CountryCode" type="epc:CountryCodeContentType"
minOccurs="0" />
<xs:¢lement name="Organization" type="epc:string" minOccurs="0" />
</xs:s¢quence>
</xs:complexType>

6.18.3 Representation
The following elements are part of the certificate identity:

— commdnName: This string shall be identical to the common name (“CN=") that is part of the X.309 public
key certificate. It can be up to 64 bytes long. Internationakeharacter codes from UTF8 are allowed.

— count{rycode: The flag state of the ship or country oflegal residence of the identified party. [Chis shall
match the country code in the X.509 certificate (“C=¥).

— Orgarlization: The organization name that shall match the organization name field in the X.509
certifficate (“0=").

This docyment does not prescribe any spetific content or format for these three fields. The fieldss that are
supplied ghall exactly match the text in the-corresponding X.509 certificate field.

Any standlard format of the X.509 fields should be defined in conjunction with the selection of public key
infrastru¢tures for the international’shipping sector.

NOTE See Reference [19] for a discussion of these general issues. Also see IEC 63173-2 for specific upe of these
data fields

6.19 epq:VersionType - Version code

6.19.1 Definition

This type|contains a version code that is used in the message header (see 10.10) to inform the server about
the version code used by the client to format the XML parts of its message.

6.19.2 Type

<xs:simpleType name="VersionType">
<xs:restriction base="epc:token" />
</xs:simpleType>

© IS0 2024 - All rights reserved
26

https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

ISO 28005-1:2024(en)

6.19.3 Representation

The version token contains a version code in the format “M.N” or “M.N.P” where M, N, and P are positive
integers, without leading zeros. The client and server shall use the following rules to determine if the server
is able to process the information in a received message.

a) Ifthe “M” code is different from what the server can understand, the server shall not try to process the
information.

b) If the “N” code is higher than what the server is designed to understands, the server shall process the
information it understands. There can be additional enumeration codes or tags in the message that shall
be discarded.

c) Ifthe
mess
can o

d) The
many
imple
that g

NOTE
validation

The recei
sender's

returned,
to the ser

Both the s

7 ISO]

7.1 Hal

The data
reference
documenf
website, [

7.2 Fully automated machine to machine

The aim ¢

involved in a ship's\port call, i.e. fully automated machine-to-machine communication. This requir

of digital
informati

“N” code sent is lower than what the server understands, it can safely read all informat
hge. The server can reject the message if important functions in the server rely on inform
nly be transmitted by the higher version code.

P” code shall be ignored by the server if it is not configured to understand;it. It can b
facturers to internally identify different revisions of sending systems or o indicate sp
mentations functions. The server can reject the message if important fun€tions rely on in
an only be transmitted by the correct local variant code.

See 4.4.2 for more details on the specific meaning of these version\eodes and the caveats
of incoming XML messages with XSD schema in cases b) and c).

ode is acceptable, this shall be returned. If not, the minimum acceptable version cod
If the message was rejected, the sender can retry sending the message with formatting cd
vers reported version code.

ender and receiver shall use the initially accepted version code throughout a session.

28005 design principles

‘monization with the IMO reference data model

elements defined in the 1SO\28005 series are harmonized with the IMO Compendiu
data model.[24] Table K.1 C€ontains the cross-references between the data elements defin
and the data elements in the IMO reference data model. This mapping can also be found o
1 where mappings from other international standards to the IMO Compendium also are

f the 1SO-28005 series is to enable fully automated exchange of information between t}

signdtures for automatic authentication of the parties as well as for ensuring the integ
pr-transmitted.

ion in the
tion that

e used by
pcial local
formation

related to

ver shall in all cases return a message status with the réceiver's acceptable version cgde. If the

b shall be
nformant

m and its
ed in this
n the IMO
nvailable.

e parties
bs the use
[ity of the

Automatic service discovery is not defined by this document, so API access points must be determined by
other means (see 7.19). The MIG specifies how the API access points shall be used (see 7.17).

This document assumes that human interventions will be required for more complex error situations. Thus,
error message formats are defined as being for human attention, with the following exceptions:

1. Rejected messages due to mismatch in version codes may be automatically corrected by senders by
changing the format of the message and resending it (see 6.19).

2. Rejected messages due to missing data ("rejected incomplete"” in Table 3) may be automatically corrected
by senders by adding missing data and resending the service request.

Both thes

e cases are signalled to the sender by special message status codes (see 7.10.1).

© IS0 2024 - All rights reserved
27

https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

ISO 28005-1:2024(en)

7.3 Using carrier independent and internet-based protocols

This document is based on internet protocols and is not dependent on any particular physical carrier as
long as the capacity and latency of the carrier is suitable for internet protocols. Suitable carriers are most
satellite systems as well as mobile and fixed digital data connections.

NOTE The proposed VHF Data Exchange System (VDES) will not be suitable for direct implementation of
ISO 28005 message exchanges. However, by using the IMO Compendium as basis for defining VDES-specific data
messages, interoperability with other data exchanges within the ISO 28005 series can be ensured.

This document includes provisions for supporting communication to and from ships as described in 7.5.
Asynchronous message transfers can be used to cater for situations where the ship may be off-line for
shorter or longer periods. It also allows the ship to specify an API access point for returned status messages
that can be in the cloud or in a land location. This avoids ships having to provide a continuously| available
API access point, which can create problems for cyber security, maintaining connection availability, and
bandwidth use.

7.4 General format of message sequence diagrams

This docyment uses message sequence diagrams following the format shown in Eigure 2. Each diggram can
include sdveral messages exchanged between several different parties. In this €xample, the diagrarh includes
four mesdages exchanged between two parties.

Party 1 Party 2
o Message A :-\J
| 1
:‘_/—} Reply B
1

e L_/——: Message C
1

|
Reply D :\,:

Key
party 1, pafty 2 name of communicating parties

message A| message C name of messages initiating a synchronous message exchange

reply B, reply D name of messages that are responses in the synchronous message exchange

I timeline for communicating parties. Time starts at top and goes downwards.

e labels forlightly shaded parts of the message exchange, referred to as sequence 1 anfl sequence
2 in theyexplanatory text

sylichronous processing by timeline party

Figure 2 — Example of message sequence diagram

Each vertjcalydashed line represents a timeline for messages sent to or received by one specific pgrty to the
communication. T he name of the party 15 placed above each vertical dashed 1ne.

In the diagram, time starts from the top and travels downwards. While the diagram specifies the
chronological ordering of messages, it does not specify any absolute or relative measure of time.

The arrows in Figure 2 show the messages being exchanged between parties and the communication
direction. The message is sent from the party at the start of the arrow to the party at the end of the arrow.
The label at the start of the arrow specifies the name of the message.

The dark shaded vertical rectangle on the timeline for one party defines a synchronous process whereby
other messages will be actively received or sent by the party within a short interval. The absence of a dark

© IS0 2024 - All rights reserved
28

https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

ISO 28005-1:2024(en)
rectangle between messages means that the party is passively waiting for new events, such as an internal
event or a new incoming message before new actions are taken.

NOTE Specifically, a synchronous process can mean that other messages can be sent or received during the same
HTTP session (see 7.7.3).

The large lightly shaded rectangles show different and possibly optional parts of the message exchange.
The numbers inside circles are used as reference to this part of the message exchange in the corresponding
textual description.

7.5 Sender and receiver versus client and server — asynchronous message transfers

This docuwmentfollows the conventionsfrom IMQ FA] ':I/Firr 46111 I+ uses the term sender to r present a

requestel] of a service. This will normally be the ship, its agent or another representative for.thg ship, e.g.
owner or charterer. The provider of the service will be called a receiver.

As servige requests can take a significant amount of time to be executed, this document dllows for
asynchrohous notification of service completion. This can be done in one of two ways:

1. By polling from the sender to the receiver on the status of the service request. This is illuptrated in
sequénces 1 and 3 of Figure 3 where the sender is always the client. The teehiiical requiremenits for this
mechpnism are specified in Clause 17. This principle does not support thie;exchange in sequenge 2.

2. By thle sender specifying a call-back API for the receiver to use when informing the sender fabout the
outcdme of the service execution. This is illustrated in sequences¥ and 2 of Figure 3 where the receiver
and the sender change roles as client and server. The technicabrequirements for this mechanism are
specified in Clause 16. This principle allows the sender to pell the receiver as is shown in sequence 3.

Sender Ree¢elver
client server

1) Request f— &
| 1

:‘_//—l Message status
|

server cli(lant

e k_’//: Service request status
|
Message status *_’,

| |
| |

1 1
client server

e Status poll :\>:
L_/——= Service request status
|

Key
See Figure|2 forkey references.

lient 1 : 1 £al 1 1 : IS RO 1.cc 4
client, servet CIraltgHIg Tore- o e Sehaetratra receverretireeairereire sequeirces

Figure 3 — Sender/receiver versus client/server

Sequence 1 of Figure 3 shows an initial request from the sender, where the sender also acts as a client.
The receiver, acting as a server, receives the request, schedules it for execution, and immediately returns a
message status message to the sender, in the same HTTP session.

The request will at some time be completed by the receiver, at which time the receiver, acting as a client,
returns a service request status to the sender. The sender, acting as a server, immediately returns a message
status to the receiver (see sequence 2 of Figure 3). This will happen only if the sender has informed the
receiver about what API access point the receiver shall use when returning the service request status.

© IS0 2024 - All rights reserved
29

https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

ISO 28005-1:2024(en)

Sequence 3 shows the sender-initiated status poll. This is always allowed, even if the sender has specified an
API access point for return calls.

7.6 Generalization of service

This document generalizes any request or information message sent by the sender to the receiver to be a
service request.

EXAMPLE Examples of service types can be the authorities' electronic port clearance, mandatory ship reporting,
requests for arrival times in port or berth, ordering ship supplies, or services directly related to the ship arrival or
departure, such as tugs and linesmen, etc.

| ServiceTypeCode |

All services 250 -Crew List

I
All MSW reports ,— 833 -CargoDeclaration
FAL Convention & Statutory reports

ServiceCode |

Mandatory Ship Reporting
Just In Time
Other Ship Services

SP -Sailing Plan
PR -Position Repent

CASV -Carge Survey
PILO -Pilots

Figure 4 — Examples of service type codes and service codes

A referenice to a specific service code is done through ‘a)two-level service identification code located in
the messdge header as illustrated in Figure 4. serviceTypecode identifies the type of service, e.g. an MSW
report, MRS report or other types of ship services, while servicecode contains the description of the specific
service, efg. an MSW crew list or an MSW cargo deelaration.

NOTE The grouping of services into servicetypes is done to facilitate the use of a mix of numeric and alphanumeric
code lists.

7.7 Different levels of sessions

7.7.1 HTTP session

The lowe$t level of a mesSage exchange session is the HTTP session. An example is illustrated in| Figure 5,
where twp different HETP sessions are shown respectively sequence 1 and sequence 2.

© IS0 2024 - All rights reserved
30

https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

ISO 28005-1:2024(en)

Client Server
(i) HTTP Request A }-\J
' \ HTTP Response A

|

e HTTP Request 1
HTTP Request 2

HTTP Request 3

"
T ———»
L—/JI HTTP Response 1
Iﬂ’/-l HTTP Response 2
1
I\J

Key
See Figure

Sequence
a respons
in this ty
response

Sequence
requests

(responss
sender ha

To keep tlhe HTTP session open as in sequence 2, it shall be requested from the client by using the |}

flag in the

772 S

Figure 6
getting a
receiver {
receiver &

The sessi
possible s

DD 2
T RECSPUIIST O

2 for key references.
Figure 5 — HTTP session examples

1 in Figure 5 shows the most common HTTP session where one HTTP request is replie
e, and then the HTTP connection is closed. The server and cliemnt can be either sender o
be of session. The minimum HTTP session includes the inconing message from the clie
from the server. The latter will be a message status or a setvice request status message.

from the client. The HTTP connection and the session is not closed before the final
3) has been sent from the server. This can only-be the case when the client is a sende
s several service requests to send to the same receiver.

HTTP header (see 15.4).

bssion

Ehows a simple session. ThiSiconsists of a sender requesting a service from a receiver
message status back, indicating that the service request will be processed. After some]
vill send a service requést status to the sender to notify the final status of the service rec
nswers with a messdge status.

on may also beCmore complex, with more than one sender, with service request up
ervice cancellations as described in Clause 8.

Sender Receiver

. | |
c Service request I Y
| 1

d to with
receiver
t and the

2 in Figure 5 shows a legal, but less common case, whéte the HTTP session is used to seid several

response
r, and the

ceep-alive

and then
time, the
juest. The

lates and

Key

:‘_/——: Message status
| |

Service request status

|
|
e Message status :—\’:
| |

See Figure 2 for key references.

Figure 6 — Simple session example

© IS0 2024 - All rights reserved
31

https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

ISO 28005-1:2024(en)

Each session will be related to the request and execution of one service, e.g. MSW clearance, just-in-time
arrival negotiation, or ordering tugs for a port arrival. The duration of a service session is dependent on
the service requested. The serviceBookingNumber element in the header will identify the relevant service
instance and associated service session. The rinal data element in the header is used to signal the end of the
service session by setting the flag to true. The receiver can also signal that the final status message is sent
by setting the rina1 flag in the status message.

In this example, each of sequence 1 and 2 is one HTTP session. The same result can be achieved in an
asynchronous message exchange by using sequences 1 and 3 from Figure 3.

7.7.3 Session context

At the togofthesessiomtevels s thesessiom context, as ittustrated i Figure 7 This s atommom fontext to
several different but related service requests sessions. The context can be the stay in territonial|waters, a
port or tefminal call, or a transit through a ship reporting area.

Sender Receiver 1 Receiver 2
0 Service request 1 :
Message status
Service request status

Message status

)

g Service request

Message status

Service request status

Message status

TR
k--L--.%

dl

g Service request
Message status

Service request status

Message status

Key
See Figure|2 for key references.

Figure 7 — Session context example

Figure 7 $hows three{sessions that are connected through a common session context. There cafj be more
than one [sender, but@lways related to the same entity, normally a ship. Other senders can in thjs case be
the ship ajgent orship manager, operating on behalf of the ship (see 7.9). There can be one or more [receivers,
depending on which receiver supplies which service. Figure 7 shows two receivers. The shipStaykeference
data elemfent.in the message header is used to identify the session context.

NOTE The session context can be used to signal to the sender that the submitted data can be reused (see 7.11).
It can be used by the receiver to clean up uncompleted requests and other information related to the session context
when the session context terminates.

The following requirements apply to the session context:

1. All receivers that use the shipstayReference to maintain session contexts shall coordinate the use of
the codes. This includes rules for assigning codes when nested session contexts are in use, e.g. between
national clearance, port operations and terminal operations. The rules shall be described in the
respective MIG documents. These rules shall define when the outermost session context starts and ends.

EXAMPLE The shipStayReference code so that the lower level session contexts are signalled by adding
extensions to the previous level, e.g. “OuterSession.Levell.Level2” etc.

© IS0 2024 - All rights reserved
32

https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

ISO 28005-1:2024(en)

2. A sender shall use an empty shipStayReference code when requesting a new service from outside any
outmost session context. If inside the outmost session context, the sender shall use the last received

Ships

tayReference code when requesting a new service.

3. Thereceiver can define a new or reuse an old shipstayReference code in the message status from a new
service request. This code shall be used in all subsequent messages related to this service session.

4. It is possible that the receiver does not return a shipstayReference. If no session context code is
returned, the sender shall not include a shipstayrReference in any message related to that service.

5. The sender shall clear its last used shipStayReference code when the outermost session context

termi

nates as defined by the MIG documents.

7.8 On

Each serv
than one

NOTE
requests W

7.9 Linking receivers to service providers

The comiy
services fi

e service per request and session

ice request and session is associated with exactly one service. It is not possible'to Teq
bervice in a single request.

It is possible however, to send a number of different service requests in one HTTP session. Ea
ill be associated with a different service session (see 7.7.1).

rom one or more of the receivers as illustrated in Figure 8¢

> Sender 1 » Receiver1 > Service 1

|

. Sender 2 Receiver2 > Service 2
Service 3

Figure 8 — General,communication system topology

where di
and char
senders s
specifics

This docqment allows more than one.,sender to be involved in one session to cater for situations, for

Each rece
associate

One and {
associate

ferent parties represent the' same ship. This can be the case when the ship itself, its
erers cooperate to provide information to the port or order services to the ship. In this
nall communicate interrally to provide the correct reference codes for the session conte
pSsion.

iver can provideé one or more services. Each service requested from the same receive
l with a separate session.

he same*physical service can be provided through different receivers, but each sessio
[l with/only one of these receivers throughout the duration of the session.

lest more

th of these

hunication system consists of any number of senders and receivers, where senders cajn request

example,
ort agent
case, the
kKt and the

r shall be

h shall be

7.10 Service request states

7.10.1 Message processing

Many changes in service requests states are triggered by incoming messages from the sender. The principle
for the initial processing of these messages is shown in Figure 9.

© IS0 2024 - All rights reserved
33

https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

ISO 28005-1:2024(en)

Message?

No Valid version ?

O |
Message status
(version mismatch) b

Yes

Valid message ?

O) |

Message status (rejected)®

Yes

Can request be completed now?

No

Message status (accepted)®
Go to service request state diagram

btarting point for state diagram

Key

bnd point for state diagram
fransfer to state diagram in Figure 10

h test to direct further processing

Hoee

a h message to the receiver
b h message to the sender

Figure 9 — Message processingto service request states

If the megsage has an unacceptable version code (See 6.19) the receiver shall return the version mismatch
status codle and insert its minimum acceptable version code in the message header.

If the megsage cannot be processed due te“errors in format or content, the sender is notified immediately
with a m¢ssage status response. The status, missing and error fields in that message contain information
about thelerror.

Then it isfassessed if the further processing of the request can be done within the same HTTP sespion. If so,
the procepsing is transferred diyectly to the state transition diagram in Figure 10 where a servide request
status cap be sent in the existing HTTP session. In this case, the message accepted status will b¢ included
with the fequest status.

[f the reqyiest cannotbeé processed in the same HTTP session, a message status response is sent to fhe sender
with information about the pending processing of the service request, i.e. an accepted message gtatus and
an empty|service;status.

7.10.2 State diagram for service requests

Once the message is accepted for processing, a service request goes through states as shown in Figure 10.
This can be in the same HTTP session (see 7.10.1) or as an asynchronous service status notification process.
In both cases, the first status message returned to the sender shall include both a message accepted status
and the appropriate service status field in the message header. Further status messages should not include a
message status field unless when a new status message is the result of a message from the sender.

© IS0 2024 - All rights reserved
34

https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

ISO 28005-1:2024(en)

Request (F) b

<

P <€

Valid request?

Update request

Yes

Y

Complete request?

No
Yes

Allowed?

Update request

(I

Key

See Figure|9 for key references.

©

TO

[imeout

bptional end point for state diagram (timeout)

a h message with final flag set

b h message that may have final flag set

c nternal event, e.g. service error or execution

A service
wait untill
terminate

When thd
to the se

If the final flag was'Set by the sender (indicated as an "F" in the incoming message) or the service i
bt be Fepeated, e.g. delivering a report or a physical service such as tug or linesmen assist
to sender with the flnal flag set (Accepted F’) and the service descrlptlon can be rem¢ved. If no

that cann
is notified
final flag

Figure 10 — Service states

request from the sender, if yalid, can create a service description. If incomplete, the state
more data are forthcoming)(“Created, incomplete”). Receivers are allowed to not use this
the request immediatelyywith an “Rejected incomplete” error code.

description is coniplete, the service is scheduled for execution, and response informati
der. If the service'can be immediately executed, the response is “Accepted”, if not the
is “Conditionally accepted”. In the latter case the service request will stay in the “Created, resulf]
state untill such timeas.the service is completed where the “Accepted” message is sent to the sendg

v | No
Rejected/Not available _,(Created Conditionally accepted
|0 result pending Yes Rejected incomplete
y Cancelled | Cancel —
@ Cancelled Service complete € b
v Update request (F)
Final == true? -
i Incomplete
| Yes NoO v
Accepted -F /Cancelled Created,
v @ incomplete
4 ’: Accepted A —
Cancelled | _______ _> -
Cancel Cancel/Error, ¢ A zo Ted If :
Cancelled |Cancelled Completed, ancefle | I
waiting _><:> —all_— .
Executed ¢ 2;:2: request
Accepted

will be to
state but

on is sent
response
pending”
I.

5 of a type
ance, this

tructions

from the sender or service provider. If the service provider executes the service agam (“Executed”), the
sender is notified with a new “Accepted” message.

Senders and receivers can also specify a timeout for the service request which will apply to any of the
waiting states as described in 7.11. Similarly, the sender can normally cancel a service request at any time.
Finally, internal errors in execution may also terminate the service. The response from the receiver in these
cases shall be a “Cancel” message.

The sender shall at any time be able to send a “Status request” message to the receiver, which shall respond
with a “Status” message to the sender.

© IS0 2024 - All rights reserved

35

https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

7.10.3 M

ISO 28005-1:2024(en)

essage functions

The different message types and service codes used are listed in Table 3. Column 1 shows the message
function codes as used in Figure 9 and Figure 10. Annex E defines the values that shall be used for the
message function codes. These codes go into the MessageFunctionCode attribute in the message header.

Table 3 — Messages associated with message and service state changes

Message 2 Type Message description
Request R General service request
Authorization request b R Access authorization request
Updaterequest R Serviceregquestinformationis-updated

f
4

THereroTrro—trperereeer

Lancel R A previous service request is cancelled
Statyis request R Query status on a previous service or message request
Indomplete S Request is missing information, provide update
Conditiohally accepted S Service request accepted; result is forthcoming
REejected S Request rejected, error in request information
Rejected incomplete S Request rejected, missing request information
Not|available S Request rejected; service does not exist
Cqncelled S The service request has been cancelled
Agcepted S The result of a service request
Authprization ¢ S The result of an authorization reqaest
Timeout S A service request timed out
btatus S Status on service request returned
Mesdage status M Status on incoming message returned
Key
R Request message from sender to receiver
S Response from the receiver on a service-related request
M Message status from Figure 9
a AsinFHigure 9 and 10, see also Annex E for more details on code values.
b This message codes is functionally "Request", but is used for access authorization (Clause 18).
¢ This mlessage codes is functionally("A¢cepted”, but is used for access authorization (Clause 18).
7.10.4 Specification of requeést timeout
The sendg¢r can use theRequestvalidityEnd attribute in the header to define a time-out for its request. This
timeout chn be redefined by subsequent request updates.
The receiyer camralso define an internal timeout for completion of service requests after which the gervice or
itsrequedtis€ancelled. This internal timeout shall be returned to the sender through the RequestvalidityEnd
attribute jr-the response to the service request, if the receiver’s timeout is shorter than the sender| specified
timeout.

The receiver side timeout can be used as a mechanism to clean up requests that for an unknown reason are
never completed or cancelled. The end of a session context can also be used to clean up any uncompleted
requests (see 7.7.1). Thus, it is recommended that a timeout is defined by the receiver if not supplied by
sender. It is possible that the timeout is not needed if external physical events, e.g. end of session context,
can be used to clean up internal states.

The sender shall be informed about a timeout or any other cancellation initiated by the receiver or associated
service provider.

© IS0 2024 - All rights reserved
36

https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

ISO 28005-1:2024(en)

7.10.5 Message and service request return values

The message header (see 10.10) contains one Messagestatus and one RequestStatus data object. These shall
respectively contain the message and the service request status codes. The following rules apply:

1. The sender, when returning a message status to the receiver, shall only use the message status fields.
The service request fields shall be empty. The sender shall only return a message status message when
itacts as a client (see 7.5).

2. A message and/or service status message shall be sent by the receiver whenever a service changes
states or as a response to any incoming message from the sender.

3. Ifareceiver's response is caused by a message from the sender, the receiver shall include the message

statu

4, Thes
the st

5. If the
shall
6. Then
be se
statu
7. Then
and t
8. The s
statu
The mess
described

7.11 Ser

5 fields in the response.

ervice request status part shall not be filled in if the receiver has no immediate informat
atus of the requested service (see 7.10.1).

sender has not yet received a service booking number (see 7.12), any message from th
rontain the message status fields related to the sender's initial service request.

eceiver shall not send a separate message status message if a service request status me
ht in the same HTTP session (see 7.10.1). In this case, both the m¥éssage and the servig
5 fields shall be included in the same message.

hessage status fields, if included, shall as a minimum containrthe client's message referenc
he status code.

ervice status fields, if included, shall as a minimum<¢ontain the service booking numbe
5 code.

hge function code gives the general informatign of the status of the message or service 1
in Table 3. See 8.1.5 for additional details o1status, missing data fields and error codes.

|d data once only

As the shlip can request several services.during a session context, and as each service session

process o
service re
receiver.]

The sendd
remains {]
shall be d

7.12 Me

Figure 11
to interpy

he service, the receiver should store the data already submitted so that these can be reug
quests and service sessions'without the sender having to resubmit data already submit]
[his data can be deleted when the session context terminates.

r may assume thatSubmitted data can be reused as long as the session context (shipStayr
he same value (see 7.7.3). The details of the relationship between session context and d
pfined in the MIG.

5sage context

shows the main object classes that are involved in determining the context of a messag
et’dontents and determine what process shall handle a specific message. The main objg

ion about

b receiver

ssage will
e request

e number

r and the

equest as

can only
ed in new
ted to the

aference)
ata reuse

P, i.e. how
ct classes

are the se

nder, the receiver, the message, the service provider, and the specific service requested.

Identity information comprises attributes in the main object classes that identify one instance of the class,
i.e.an actual party or one of the service provider’s actual services. The exception is the authenticator (top left
of Figure 11), which is an object in itself but associated to the sender as the person who has confirmed the
validity of the message content. The sender and receiver may be a person or organization but may instead,
or in addition, be identified as the ship itself or a software system, e.g. a port community system.

Thus, there can be different types of party identities, including:

1. The ship itself, e.g. through a software system on the ship (epc:shipIdType).

© IS0 2024 - All rights reserved
37

https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

ISO 28005-1:2024(en)

2. Aperson (epc:NameType). This can be onboard crew or a shore-based person. This party can be relevant,
e.g. when the authenticator attribute is used in the message header.

3. An organization, e.g. ship agent or charterer (epc:ContactInfoType or derived types).

4. Asoftware front-end system on shore, e.g. MSW or PCS (epc:SystemIdType).

5. Aservice provider name as an organization (epc:ContactInfoType or derived types).

Ke

<

AN

Authenticator g . . Service booking
—p) identity Ship st/ay reference | < Session context Session -» namber”
I I ‘
Sender < > Message < > Receiver » Service Provider > Service
Sender identity 'Message reference Receiver identity Provider name Servicecode{name
Ship identity System identity
A Y
A 4
Message digital
signature(s)

main object classes that are used or referenced in a communication sessioh
identification attribute(s) for main object classes, used to identify~dne specific instance
data items that are used to reference a specific instance of the‘main object classes

digital signatures for one or more parts of the messagewith link to the signer’s identity

Figure 11 — Main objects uséd in a communication session

Digital signatures can be linked to the differerit identities. These signatures are used to verify aufhenticity

and integ

The servi
with digit

Fity of the content of different parts.of the message.

provider that signs the message.

Figure 11
includes

receivers

A referen

to be differentfhom service providers, as discussed in 7.6.

used to ke¢ep trackef the process flows in the communication session. The session itself is referen

service b
tolinkas

ession to the session context. The shown reference codes are:

ce is identified by a free forimat name or a code (epc:serviceCodedType), but are not gssociated
al signatures. If a digital signature is needed in conjunction with a service, it will be the service

generalizes the concept of service to any request that the sender will make from a recgiver. This
MSW clearance, herth allocation, maritime or commercial services. The diagram also allows

Ce code (hashed rectangles in Figure 11) is assigned to each instance of the main objects and are

red by the

pokingrriumber (ServiceBookingNumber). The ship stay reference (shipstayrReference) cdn be used

— The message reference, which is assigned to all messages by the client. This is used to report errors in
the message as detected by a server. It is also used to link a new service booking number to the request
message when this is not done in the first HTTP session (see 7.10.5).

— Theservice booking number, which is assigned to all service requests by the receiver. Itis used by both sender
and receiver to refer to that specific service request and defines the communication session (see 7.7.2).

— The ship stay reference is a special reference code that is assigned by the receiver, which defines a session
context, e.g. by an MSW or a port authority. It is used to uniquely identify the session context, e.g. a stay
in territorial waters or a ship’s stay in a specific port (see 7.7.3).

© IS0 2024 - All rights reserved
38

https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

ISO 28005-1:2024(en)

The message should be digitally signed by one or more parties. The MIG can define which parties’ signatures

that should be used.

7.13 General message structure

The general message structure is illustrated in Figure 12. It is in a standard multi-part format as defined in

Clause 9.
Message header (XML)
Sender identity Receiver identity Message header
Message reference Service provider name Always one
Sent time Service name

Message body (XML, JSON, EDIFACT ...)

Add for data content

Data required to implement the requested service as defined in 7610 or one

the ISO 28005 series.

Attachments (PDF, PNG, JPG, XML ...) Attachiments

Zero Or more

Attachments referenced in the message body or header

X.509 certificates (PEM) Public key certificates

Zero or more

X.509 certificate for signatories

Digital signature (XML) Digital signatures

Zero or one

Authentication, Integrity, Non-repudiation ...

Figure 12 — General.imessage structure

The messhge consists of:

— astandardized message header;

— astandardized message body (optional);

— one of more attachments (optional);

— publif key certificates (optional);

— astandardized set of.digital signatures (optional).

The mesdage header-includes the information that is needed to determine the further process
message. [[he detdils of the header data fields are described in Clause 10.

The XML paséd{message body is defined by one XSD covering all possible data elements it can co
11.2). Moptoof these elements are optional as the required data content differs between service

ng of the

htain (see
APIs. The

data requirements will be described 1n the MIGs.

This document describes the format of the header, body and signature as XML files. This document allows
the body structure to be in other formats, e.g. JSON, ISO 19848 or EDIFACT. The body format is specified in

the header as well as by the HTTP directives described in Clause 9.

NOTE1 EDIFACT messages like BAPLIE (Bayplan/stowage plan occupied and empty locations message) and
VERMAS (Verified gross mass message) are widely used in the transport and logistics industry. These messages are
currently exchanged in ways not covered in this document. The specifications in this document are intended to be

complementary to the ways that the industry currently exchanges EDIFACT messages.

© IS0 2024 - All rights reserved
39

https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

ISO 28005-1:2024(en)

If attachments are included, they should be referred to in other parts of the message (e.g. see 11.2). The
attachments can be in any file format supported by HTTP. Further details are given in Clause 12.

EXAMPLE Examples of attachments can be special cargo safety sheets, e.g. in PDF, copies of certain non-digital
ship or crew certificates, or pictures of stowaways.

The public key certificates are X.509 certificates in binary format as described in Clause 13. The certificates
can be included in the message if there is no agreed-on public key infrastructure (PKI) that can be used to
retrieve certificates. These message parts can also be used if the certificate is not available from the agreed-
on PKI. Each certificate is a separate message part.

The digital signature message part shall be added if any of the other message parts are signed. 7.19 gives
more information on the digital signature. The format of the digital signature message part is defined in
Clause 14

NOTE 2 |The content of each message block shown in Figure 12 is for illustration only and does-iot refresent the
full contents nor the actual field names. The formal definitions can be found in Clauses 10, 11, 12,,13 ahd 14

7.14 Digital signatures

The messpging system allows for the use of a public-private key digital signature system. Each pafty has its
own secret private key and publishes the corresponding public key. The sending party can use the private
key to digitally sign outgoing messages. The receiving party uses the¢sender's public key to verify the
signature

The digitdl signatures are used for the following purposes:

1. Integfity: A signature can be attached to a message part.to,verify that no information in thaf message
part has been tampered with.

2. Authéntication: The authenticity of the specified sendér or authenticator can be verified.

3. Non-repudiation: Both the sender and receivercan store the signed version of a message and its
ackngwledgement. The signed message and.its acknowledgement can be used by both partief to prove
that 4 message was sent and received, andiwhat information it contained.

4. Confidentiality: When sending information through general reporting portals as an MSW orj:CS, it can
be nefcessary to encrypt some infarmation. This is to ensure the protection of personal information, i.e.
sensitive health information or-passenger list details from unauthorized access. This can bg done by
encrypting the corresponding part of the message and inserting it as an attachment. See 10.4 and 12.2
for a flescription of the eneryption process.

It is not necessary to encrypt data for general protection from external parties, as the use of the secure
HTTPS transport proto€o)is a requirement (see 7.15 and Clause 15).

Clause 14{specifies-getieral requirements to the signature, the public key certificates and the PKI.

7.15 Sedure data transfer

This docummentuses TP overtEStoemnsure confidentiatity of message contentwitirrespectto parties
which are not part of the message exchange (see Clause 15).

7.16 Additional authorization for accessing API

Asadigital signature can be added to all message parts, itis not in general necessary to require authorization
when accessing an API, as the identity of the sender can be determined from the signature. However, it
will in some cases be necessary to authorize access to the API access point as this can reduce protocol and
processing overhead. Clause 18 defines how this shall be done, if implemented.

If authorization is used, it should not be solely rely on as a replacement for digital signatures. Confidentiality
and integrity can to some degree be replaced using HTTPS, and authenticity can to some degree be replaced

© IS0 2024 - All rights reserved
40

https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

ISO 28005-1:2024(en)

by authentication. Non-repudiation requires proving the integrity and actual content of each individual
message at both the sender's and receiver's side and that requires digital signatures for all messages.

7.17 Message implementation guide

This document defines the general message exchange systems. To provide the information that is necessary
to implement a specific application’s requirements, a message implementation guide (MIG) shall be provided
for each service. Requirements for the MIG are defined in Clause 19.

Annex B contains a MIG for the access authorization service. Annex C contains a MIG for the maritime single

window a

NOTE

nd for mandatory ship reporting systems.

TL MIC |

ata set in

ISO 28005

7.18 Oth

This docu
specifies
message t

1 £ H 1 ot id lat ot L 43 £ Laiclk +
TIICSCTasSt oy OTvToS prov ot preCTcatro S uraCs T CratCttoO—tvw O—a pptatroTTs TOT vy I o

L2 has been developed.

ler formats than XML for the message body

ment defines XML as the default message syntax for the message header, bédy and signg
how other file formats, e.g. ISO 19848, JSON or EDIFACT, can be specifiedyas the ones u
ody. 11.4 and 11.5 describes how EDIFACT can be used in the message body and as status

and 11.6 dlescribes how JSON can be used. 11.7 defines how ISO 19848 can be-used as message bod

If other f
applicatig
7.19 No
This docu
of receive
1. Then
call.]
NOTE
2. E-nay
suital
NOTE
3. Indep
NOTE
4. The 4
authd
8 Mes

brmats than default XML is accepted by an application, the MIG shall specify what fo
n accepts. This may also include other formats than the ones’listed in 10.4.

explicit service discovery

ment does not specify how senders determine which URL to use for accessing the API ac
rs. There are several mechanisms that can be used for this purpose:

elevant URLSs for a port can be published together with other information needed to pla
'his can be, for example, the port information book or guide.

igation maritime service 4 (PortSupport Services) can be used to publish this informatio
ble digital communication setvices.

2 See the e-navigation/implementation plan.[22]
endent service diseovery mechanism can also be available.
3 IEC 63173-2centains an example of such a service.

ccess authorization request (see Clause 18) can return a list of available services. Give
rization'URL is known, this can serve as a local service discovery.

sage exchange patterns

1 Such guides or books are published'by many ports. See also the port information manual.[2]l

ture. 10.4
sed in the
messages,

.

‘mats the

Cess point

h the port

h through

h that the

8.1 General rules

8.1.1 Application of this specification

This clause specifies how messages can be exchanged between the sender and receiver for several different
data exchange scenarios. The MIG will specify what pattern is used in a specific application, and Clauses 16
and 17 will define how these exchanges are implemented in an API.

Message names and general patterns are based on IMO FAL.5/Circ.46.[1] However, there are some differences

as to how

the message names and patterns are implemented, as described in Table 4.

© IS0 2024 - All rights reserved
41

https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

ISO 28005-1:2024(en)

Table 4 — Message names and general patterns: mapping between this document and IMO

FAL.5/Circ.46

Cross-reference in IMO FAL.5/Circ.46 Implementation in this document

Figure 1 : Simple information distribution Implemented in pattern 3 (8.2.3).

Figure 2 : Simple request Implemented in pattern 4 (8.2.4).

Figure 3 : Basic sequence Implemented in pattern 1 (8.2.1)

Figure 4 : Updated request Implemented in pattern 1 (8.2.1).

Figure 5 : Several senders See 8.1.6 for implementation in this document.

Figure 6 : Through MSW Implementation specific, not covered by this document.

Figure 7 nlfip]n rnripinnfe Imp]nmnhfnfinn cpnrifir, not covered hy this document

n/a

Pattern 5 (8.2.4) has been added to allow subscription:

n/a

Pattern 2 (8.2.2) has been added as implied in the'circu

ar.

The speciffic rules for message exchanges in 8.1.2 to 8.1.7 make references to data elements in thd
header. The message header is defined in Clause 10 and an overview of the structureiof the headej
in Table 9

8.1.2

An overview of reference codes is shown in Figure 11 and the corresponding context is discussed

The ship§tayReference is associated with the session context (see“Z7.3) and contains a receiver
reference|code. 7.7.3 defines how this reference code shall be used.

The serviceBookingNumber is associated with the service session (see 7.7.2), and contains a receiver
reference|code.

The Messdgereference is defined by the client as a reference to the outgoing message itself. It is uj
server in fthe Messagestatus fields to give feedback-on processing of the message. 7.10.5 specifie
code shal| be used.

8.1.3

The use df the final flag depends to some degree on the application. The general principle is tha
flag shall pe used to order or signalthe completion of a service as defined in 7.10. This requires sonj
behaviour from the parties:

1. The 1eceiver shall always set the final flag in the status message that marks the terminat
servife. Termination-Can mean that: errors in the request make it impossible to fulfil the servid
the s¢rvice timedut; the session context ended or the service was completed.

NOTE|1 This.cah mean that the receiver clears all or some service session related information.

2. The receiver shall always send a final status message when the service terminated. This also
servig¢esterminated due to termination of the session context, a timeout, or any other server-initia

NOTE 2

Ulse of reference codes

Use of final flag in message header

P message
is shown

n 7.7.

specified

specified

ed by the
how this

F the final
e specific

on of the
e request,

applies to

fed action.

It is not always possible to complete this step if the service was requested by a synchronous sender.

3. The sender can set the final flag if the sender wants the service to end. The receiver shall immediately
terminate the service when the message is received and return a status message to the sender indicating
the final status of the service by having the final flag set.

NOTE 3

that the service terminates with an error.

If insufficient data for the relevant service had been provided when the final flag was sent, this means

4. A cancellation message from the sender (see 8.2.1) shall imply that the final flag is set, and the receiver
shall return a set final flag in the corresponding service status message.

© IS0 2024 - All rights reserved
42

https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

ISO 28005-1:2024(en)

The final flag is not indicated in the sequence diagrams shown in 8.2.1 to 8.2.5, but the above rules are
implied.

8.1.4 Use of service timeout or session context end

The sender can specify a timeout for the request and the receiver can also have an internal timeout, unless
the session context provides the rules for when requests can be terminated. The latter can also indirectly be
the case if the session context has a natural ending point. See 7.11 for more details.

Rules 1 and 2 in 8.1.3 apply to the receiver when the service is terminated due to timeout or session context end.

Timeout or session context end is not shown in the sequence diagrams shown in 8.2.1 to 8.2.5. Rules 1 and 2
in Clause 8-1-3-areimplied-

8.1.5 Status and error codes

As shown in Figure 13 on the left, the message header contains three elements that together spg¢cifies the
status of § received message and of a requested service.

The messpge and service status elements have no meaning in a sender’s message,unless that megssage is a
response [to an asynchronous service request update from the receiver. In that'case, the message sfatus field
can be filled in, e.g. to signal an error in the message from the receiver.

7.10.5 deflnes the rules that apply to the use of the status code fields.

| Final (boolean) | Accepted
Rejected (incomplete)
Version mismatch

MessageStatus
StatusCode Accepted
Error Conditionally accepted
Missing Rejected (incomplete)
Reference Not available
Incomplete
Cancelled
RequestStatus
StatusCode Cancelled by sender
RequestCanicelCode Final flag set by sender
Error \A Timeout from sender
Missing Timeout from receiver
Referénce Session context ended

Figure 13 — Status codes in message header

The final flag\is'used by the sender to signal to the receiver that a service request shall be terminpted after
the procegsing of the message, or by the receiver to signal that a service request has been terminated. If the
receiver does not set the flag, the service request is still active (see 8.1.3).

Annex F contains the definition of the code values that shall be returned in message or service status fields.
All codes are taken from the same code set but are used differently in the message status and the service
status messages.

The message status will give the status of the last received message. Table 5 lists the relevant codes for the
message status (see also 7.10.1).

© IS0 2024 - All rights reserved
43

https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

ISO 28005-1:2024(en)

Table 5 — Message status codes

Status code Message status code meaning
Rejected incomplete 2 Information is missing, see Missing field - message is rejected
Rejected @ Message was rejected due to errors in the message, see Error field
Accepted The message was accepted, see request status for information on service
Version mismatch 2 Sender's version code not supported by receiver

Key
a These codes, if returned as a response to the sender's initial request, mean that the service was not created. If the service
was already created, the codes mean that the message was ignored and no change to the service was done.

If the seryice was created, possibly as a result of the Sender s Message, the message header can aijo contain
a service|request status code. If the service request status field is empty, it means that thestafus of the
service rgquest will be returned later or shall be polled for (see 7.10.1). The message reference cpde in the
message ptatus element of the request status, when polled or delivered, will refer to the*sendgr’s initial

request njessage.

If and when the service request status is provided by the receiver, Table 6 contains:the relevant dodes. The
code valyes “Rejected incomplete” and “Rejected” has the same meaning as_for the message sfatus and
additional] information shall be available in the Error or Missing data fields of the service request gtatus. See

7.10.2 for|details of the service request state transitions.

Table 6 — Service status codes

Status code Service status code meaning
Accepted Service has been executed and canbe executed again if the Final flag is n¢t set.
Condjtionally accepted Service request accepted and\service execution is pending.
Rejected @ Service request rejected due to errors, see "Error" field.
Rejefted incomplete @ Service request rejectedidue to missing data, see "Missing" field.
Not available 2 This service does ndpexist in this system.
ncomplete b Service created;data are missing for the service to be started. See "Missipg" field.
Cancelled Service wag cancelled by sender or receiver, see request cancel code.
a2 These fodes means that the service was not created.
b This cqde means that the service was(cteated, but the execution is pending until additional data are provided.

If the status code is “Cancelled”, the Requestcancelcode field will contain additional information as
illustratedl in Figure 13. The(ode values are listed in Table F.2.

8.1.6 Multiple senders

The sequpnce diagrams in 8.2 only show one sender. However, this document allows multiple senders
to participate {dn.the message exchange. If this principle is used, it requires that the different senders
synchronjze‘the exchange between themselves as indicated in Figure 14. This can involve more|than two
senders ap iflustrated in Figure 14, in which case all senders are required to synchronize request information

with all other senders.

© IS0 2024 - All rights reserved
44

https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

ISO 28005-1:2024(en)

Senderl Sender2 Receiver

Request :~ : J

I I —»
|:| ; J= Request status

Synchronization :_’: :

I [I

Request update : Ir*
| L/_/l Request status

Synchronization I : :

|

Key
See Figure

The exact
minimum

2 for key references.

Figure 14 — Synchronization of different senders

the receiver and the serviceBookingNumber shall be known to all sénders.

8.1.7 Interleaving update requests with status messages

In genera
to the pr¢
service re

8.2 Sed

8.2.1 P

The mess
in Figure
message

request n

In its simj
service reg
means th
code for t

, the sender is allowed to send new update requests withefit waiting for the status messa
vious update request. This does not apply to the initial request where it is necessary to

uence diagrams

httern 1: Service request and updates

age exchange pattern that is the mdst general and expected to be the most common

body, and getting a reply from the receiver, also possibly including data in a message
ay be updated by the sender‘in which case the receiver shall send a new request status.

quest is returned immediately from the receiver as a message and service request status
ht sequence 1 is the-only part of the message pattern that is used if the receiver return
he initial request:

information required to synchronize depends on the application and role of each sepder. As a

be related
wait for a

quest status message with a valid serviceBookingNumber before new update requests cajn be sent.

is shown

15. This is used to send a request.from the sender to the receiver, normally including| data in a

body. The

blest form, the message €xchange pattern will only consist of sequence 1 where the respojnse to the

This also
b an error

© IS0 2024 - All rights reserved
45

https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

ISO 28005-1:2024(en)

Sender Receiver
1 |

Request I‘\»l
| 1

Message/Service request status

Update request

Message/Service request status

Service request status

Message status

Ll

Statusrequest j——

© ©o © ©

1

Message/Service request status

|

Repeated zero or more time$

@E®
e Cancel

f

Message/Servicelrequest status

|

Key
See Figure|2 for key references.
@ sequences 1 to 5, which are defined by the corresponding lightly shaded areas of the message exdhange

® sequences 2, 3 and 4, which can be repeated zero or morg.tifties at this point in the message exchainge

Figure 15 — Message exchange pattern for service requests and updates

The key feferences 1, 2, 3, 4, 5 and the corresponding shaded areas in Figure 11 represent different and
possibly dptional sequences of the message exchange:

1. The initial request is issued by the sender and can result in a complete service execution, in which case
the r¢ceiver will return a service request status. This may include the Final flag being set, in which case
the s¢rvice has completed. If ng'service status is returned, the service status will be sent lateif or polled
for (see sequence 3) and only(amessage status is returned.

2. The dender can in someleases update a request, even if it the service was already completefl once. In
this dase, the same type‘of return messages as in case 1 will be generated by the receiver. This may be
repedted several titnes. This sequence can also be repeated after sequence 3.

3. Ifthe[service execution was not completed in sequences 1 or 2, the service request status will pe sent as
an asynchronoets message by the receiver, when the service is completed or otherwise terminpted. This
is thenoxmal scenario for asynchronous communication as described in Clause 16. The updat¢d service
requgststatus shall be resent after each update request in sequence 2.

4. Atany time, the sender can query the receiver for the status of the service request. This sequence is also
used in synchronous polling as described in Clause 17.

5. The sender can cancel the service at any time, also after a service request status has been received. It is
possible that a cancel has no effect on the service if a successful request status was already transmitted.

The implementor of a sender should note that there is a possible race condition where the receiver has sent
a service request status, but that this has not been received by the sender before the request update is sent.
In this case, the sender will get the service request status on the previous message after the last update
message was sent. The message reference codes in the header of the status messages will show what request
or update message they refer to.

© IS0 2024 - All rights reserved
46

https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

ISO 28005-1:2024(en)

The receiver isrequired to send a service request status after each request or request update from the sender.

8.2.2 Pattern 2: Status poll

The sender can at any time perform a status poll to check the status on an ongoing service request or a
previously sent message. This can be used in a setting where the sender has the responsibility for checking
the service status itself as described in Clause 17, but can also be used in asynchronous message exchanges
(sequence 4 in Figure 15). The message pattern is shown in Figure 16.

Sender Receiver

Status request '\’:

Message /Service request status
[« T

Key
See Figure

The sendg¢

There ard

1. It cap be used to check the status of a service request before’/a service booking number

retur
mess
statu

2. lItcan
num}i

The retun
if the sery
available,

To be abld

-
s

2 for key references.
Figure 16 — Message exchange for status poll

r is not allowed to include a message body for this type of request(

two different ways this pattern can be used:

ned by the receiver. In this case, the sender sends the message reference for the initi:

5 is returned if the service booking number has beén assigned.

be used to check the status of a service where:the receiver already has returned a servic
er. In this case the receiver will return a commbined message and service status.

n value from the receiver will be the ctirrent status of the service or the message, or an ¢
rice or message does not exist. If a service status is returned, the receiver can, if it is rel
also return a message body thathas been created as a result of the service execution.

to return a message status,\thé receiver shall keep a record of received service reques

has been
] request

hge and expects either only a message status or a sepvice and message status back. The service

e booking

rror code
bvant and

's and the

corresponding message references(The record of messages can be deleted when the corresponding session

context tqg

The recei
changes s
is necessd

8.2.3 P

This patt

rminates.

ver frontend (see. 15:1) or corresponding part of a receiver shall keep track of all serv
o that a message-or'status request can be answered synchronously in the same HTTP seq
ry for the implementation of synchronous API senders (see Clause 17).

httern 3:Simple report

brivis'shown in Figure 17 and involves one single request from the sender that shall b

ice status
sion. This

e directly

answered

with a message and service status from the receiver. This is similar to sequence 1 in |}

Figure 15.

This pattern can be used for simple types of reports that do not require any significant processing by the
service provider or receiver for acceptance.

© IS0 2024 - All rights reserved
47

https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

Key

ISO 28005-1:2024(en)

Sender Receiver

Request :\J
| 1 .
k—/—"[Message/Service request status
|

See Figure 2 for key references.

Figure 17 — Message exchange pattern for simple report

The service descriptor (see 7.10.2) will be deleted immediately after the status message has been sent. This

service ceinnot usefully be polled or cancelled, and the client cannot update the request. Any cancel
request shall get a negative message status return (not available).

824 P

This patt
answered
in sequen
service rg

Key
See Figure

The servi
process ¢
or update

825 P

The patte

httern 4: Request information

brn is shown in Figure 18 and involves one single request from the sender-that may b

with the requested data from the receiver as shown in sequence 1, orydsynchronously
ce 2. Any service data that is included in the message body will in beth cases be accomp
quest status in the message header.

Sender Receiver

c Request :\’:

1 .
Iﬂ/ Message/Service request status
|
| |
9 :‘_/‘: Message/Service request status

Message status : H
1

I——

2 for key references.
sequences 1 and 2, which are defined-by the corresponding lightly shaded areas of the message

Figure 18 — Message exchange pattern for information requests

Ce descriptor (see 720:2) will be deleted immediately after the status message have been
hinnot usefully bépolled or cancelled, and the client cannot usefully update the request. A
request shall.get a negative message status return (not available).

httern 5:Subscribe to service or information

r-shown in Figure 19 is mainly intended for subscribing to information updates from ¢

or update

e directly
as shown
inied by a

exchange

sent. This
ny cancel

he server

but may allsgiinvolve execution of other, e.g. physical services.

© IS0 2024 - All rights reserved
48

https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

ISO 28005-1:2024(en)

Sender Receiver

c Request :—\J
| 1

Message/Service request status

Message/Service request status

Message status

Service status

Service status

Key
See Figure

Sequence
identical 1

Sequence
status me

body. Thi
status as

Sequence
message {

NOTE
received b

Terminat
side. This

Message status

|
i ——h
— |
Message status :\b:
-
T——
i

e Cancel
k//‘l Message/Service request stdtus
1

2 for key references.
sequences 1 to 4, which are defined by the corresponding lightly shaded areas of the message e

Figure 19 — Message exchange pattern for,subscription
1 and 2 in Figure 19 shows the normal, possibly asynchronous, response to a reque
o sequence 1 and 2 in Figure 15 (pattern 1) in 8.2¢1,

3 in Figure 19 shows the subscription phase.where the receiver will send a sequence

5 is described in the MIG. The messages‘from the receiver, except the first, do not contain
Fhey are not related to an action by the sender.

4 shows a sender-initiated cancellation of the subscription. This is replied to by a se
tatus.

Due to race conditions béfore a cancellation takes effect, it is still possible that a service data
y the client after the caficel was accepted by the server.

on can also be initiated by the receiver, e.g. because of a time-out or other events on th
shall be signalled by a service status message from the receiver.

kchange

bt. This is

pf service

ssages, each presumably with different information in the message body. The time infterval for
the retrapsmission of data are determined by the sender or may be specified as service data in th

P Inessage
 [nessage

rvice and

message is

b receiver

It is not permitted~to send a request update. If it is necessary to change a subscription, it shafl first be

cancelled

and then'd new request shall be sent.

9 Using HTTP mnlti-pnrt message

9.1 General

This clause gives an overview of the HTTP multi-part/form-data message structure (see RFC 7578). The
media type multipart/form-data follows the multipart MIME media type definitions (see RFC 2046), which
means that the data body of the media type multipart/form-data consists of multiple parts separated by a
fixed boundary.

© IS0 2024 - All rights reserved
49

https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

ISO 28005-1:2024(en)

9.2 Example of an ISO 28005-1 multi-part message

The messages exchanged between sender and receiver contain different message parts as described in
7.13. The message will use the multi-part format to distinguish the different parts from each other and for
transferring information about the content of each part. An example of the format is shown in Figure 20.

Content-Type: multipart/form-data; boundary="r4ndOm"
Content-Encoding: gzip

Prose text: This is an electronic message in the ISO 28005-1 format.
The attachments contain the different parts of the message.

--r4ndOm
Content-Type: application/xml; charset=utf-8
Content-Disposition: form-data; name=header;

[XML, header goes here]

--r4ndOm

Content-Type: application/xml; charset=utf-8
Content-Disposition: form-data; name=body;

[XML body goes here - zero or one of this block]

--r4ndOm

Content-Type: application/pdf

Content-Disposition: form-data; name=attachl; “Milename=filel.xxx;

[attachment data goes here - zero or more~of these blocks]
--r4ndOm

Content-Type: application/pkix-cert;

Content-Disposition: form-data; name=certl; filename=certl.cer;

[A DER encoded X.509 certificate goes here - zero or more]
--r4ndOm

Content-Type: application/xml; charset=utf-8
Content-Disposition: formzdata; name=signature;

[XML signature goesghere — zero or one of this block]
--r4ndOm--
NOTE An almost identical format can be used for email transfer by using the MIME specifications diredtly.

Figure 20 — Example of multi-part message layout

9.3 to 9.7 lexplainithe use of important directives and other components of the message shown in Figure 20.
Titles of ¢lauses contain copied and unique text from the example, which is in general organized from the
top to thq bottom. Some clauses describe directives that are repeated in different parts of the message. In
these cases, the clause will explain the use of the corresponding directive in all parts.

The example in Figure 20 is a minimum valid message. HTTP supports several other directives that may be
used by a client, but which do not have any special meaning in this document. All valid HTTP directives shall
be accepted by the server and they shall be processed according to rules in RFC 7578.

9.3 Content-Type: multipart/form-data
EXAMPLE Content-Type: multipart/form-data; boundary = "r4ndOm”

“Content-Type: multipart/form-data” is the first-line directive in a multipart message with different
encodings in the different parts. The attribute “voundary=random” specifies the pattern (prefixed with“-")

© IS0 2024 - All rights reserved
50

https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

ISO 28005-1:2024(en)

that is used to separate the message parts. It is the client’s responsibility to make sure that this pattern is
unique in the whole multi-part message. The final boundary is terminated by an additional“-” at the end of
the string.

The boundary pattern should be long and complicated enough so that it is not confused with a randomly
occurring string in any of the message parts. One common solution is to use an UUID pattern.[18]

9.4 Content-Encoding: gzip
EXAMPLE Content-Encoding: gzip

The optional Content—encodlng directive can be used to spec1fy compresswn of a message by specifying the
content epcoding . 3

Both senders and receivers shall accept the gzip file format as defined in RFC 1952.

The Cont¢nt-Encoding directive shall not be used by the client in any message part in accordance|with RFC
7578, which specifies that this directive used in message parts should be discarded by tlie server.

9.5 Prgse text
EXAMPLE Prose text: This is an electronic message in the ...

The prosg text can be used if there is a possibility that a message is read(directly by a human opeyator. This
text is nof required.

9.6 Content-Type: application, image or other
EXAMPLE Content-Type: application/xml; charset = utf-8

In the difflerent message parts, this directive specifies tlie document format of the message part. THe formats
currently|specified for the digitalized and coded message parts in this document are:

1. application/xml: This specifies XML encoding. It is recommended to specify the character sef used, e.g.
UTF-8 as shown in the example (see 4.4).

2. appli¢ation/json: This specifies a message part encoded in JSON. It is not necessary to specify the
chardcter set here as the defaultis\UTF-8 for JSON.

application/EDIFACT: This specifies a message partin EDIFACT.
application/pkix-cert&DER encoded X.509 certificate.

applilcation/gzip;:GZIP compressed part of a body message (see 12.1).

AN -

application/gefet-stream: Any other type specified, e.g. in special attachment entries. This shall be
used for encryzpted parts of the message body (see 10.8).

If none offthe above codes can be used, the attachment parts can use any recognized format. The|body and
signaturelpart can also use another recognized format A list of recagnized formats is maintained by the
Internet Assigned Numbers Authority.[22] The formats that can be used, if different from the ones specified
in this document, shall be documented by the MIG.

NOTE Some examples of formats that can be used in attachments are “application/pdf” for PDF files or “image/
pgn” for PGN-encoded pictures.

9.7 Content-Disposition: form-data; name = name; filename = file.name;
EXAMPLE1 Content-Disposition: form-data; name = header;

EXAMPLE 2 Content-Disposition: form-data; name = attach1; filename = filel.xxx;;

© IS0 2024 - All rights reserved
51

https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

ISO 28005-1:2024(en)

The content disposition directive shall be used in all message parts. It is used to assign a name to each part
of the message and to assign a file name to attachments. The file name defines a name for the attachment
which is used as reference in the message body (see 12.1), or in the message header (see 10.8).

The client shall use the names “header”, “body” and “signature” in the name fields for the corresponding
parts of the message. It shall use “attachN” for attachment number N and “certN” for certificate number
N. The implementor shall rely on the fixed ordering of parts as defined in 7.13 and the MessageManifest
element in the message header (see 10.10) to recognize these parts.

The name and the file name shall use US-ASCII encoding. The structure of the filename is not specified by
this document. Each attachment part shall have a file name that is unique within the message.

10 Defi

10.1 General

The mess
context o
of the me

10.2 to 1d
data elem

The mess
the HTTP|
details.

10.2 epc

10.2.1 Diefinition

The mess

10.2.2 T

<xs:simp
<xs:re

hitions related to the message header part

age header structure defined in 10.10 is intended to allow a front-end server to dete
the message and to select the service provider to be invoked, so as to allew’the further p
bsage (see 15.1), without reading the body part of the message.

.9 define the data types that are specifically used in the message header structure. Oth
ents that are used in the header are defined in Clauses 5 and 6.

multi-part message. The corresponding content type shall'be application/xm1. See Cl

:MessageFunctionCodeContentType - MesSage function code

hge function code specifies the type of message, e.g. request, acknowledgement etc.

ype

eType name="MessageFunctionCodeContentType">
triction base="epc:toKken"/>

‘mine the
rocessing

e general

hge header as defined in 10.10 shall be inserted as an XMLsext file and as the first messdge part in

huse 9 for

the code

</xs:simpleType>

10.2.3 Representation

The code$ are defined-by UNECE data element 1225, Message function code.[26] Annex E define{
values that shall be supported by users of this document.

10.3 epq¢:ReplyInformationType - Type of sender response code

10.3.1 Definition

This element identifies the type of requested response and, if necessary, the URL of the receiver API.

10.3.2 Type

<xs:complexType name="ReplyInformationType">
<xs:sequence>
<xs:element name="ReplyType" type="epc:int"/>
<xs:element name="ReplyURI" type="epc:anyURI" minOccurs="0"/>
</xs:sequence>
</xs:complexType>

© IS0 2024 - All rights reserved
52

https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

ISO 28005-1:2024(en)

10.3.3 Representation
The following elements are used as follows:
— ReplyType: How to reply to this message. Table 7 defines the allowable codes.

— ReplyURT: Avalid URL for a reply if needed, i.e. if Rep1yType code 2 is used.

NOTE A valid URL is a HTTP URL, e.g. “https://iso.org/iso-280057service=5". The example shows the use of
additional codes after the question mark. The question mark and codes can be omitted or there can be more codes,
dependent on the receiver’s requirements.

Table 7 — Reply type codes

Code Reply type
1 The sender will poll the receiver’s advertised URL for replies.
2 The sender specifies a HTTPS URL for replies in the attribute Rep1yURL.

10.4 ep¢:MessageBodyFormatContentType - Format of body data

10.4.1 Iﬁnition
This elemlent identifies the format of the message body.

10.4.2 Type

<xs:simpleType name="MessageBodyFormatContentType!>

<xs:reg$triction base="epc:token"/>
</xs:simpleType>

10.4.3 Representation

The formit codes are defined in Table 8.

Table 8 — Body format codes

Code Body format

0 No message bodg isincluded. This has the same function as omitting the attribute from the messgqge header.
XML as defimed.in 11.2.

UN/EDIEACT message body as defined in 11.4.

UN/EBRIFACT status message as defined in 11.5.

JSON'message body as defined in 11.6.

ISO 19848 message in XML format as defined in 1SO 19848:2024, A.2
ISO 19848 message in J[SON format as defined in ISO 19848:2024, A.3

9 Service specific format. Format will be defined in the corresponding MIG. Any code value from 100 and
above can be used for this. The code value to use may be specified in the MIG.

O || |W [N |-

10.5 epc:ServiceTypeCodeContentType - Code for identification of service type

10.5.1 Definition

This data item contains a code that identifies a group of electronic port clearance services, reporting
requirements or maritime services. This code is used to allow different code lists for different types of
services (see 10.6).

© IS0 2024 - All rights reserved
53

https://iso.org/iso-28005?service=5
https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

ISO 28005-1:2024(en)

10.5.2 Type

<xs:simpleType name="ServiceTypeCodeContentType">
<xs:restriction base="epc:token"/>
</xs:simpleType>

10.5.3 Representation

This data item contains a service type group code as defined in Table G.1. Annex G defines the code values
that shall be used.

10.6 epr-Qnrvirn(‘ndp(‘nnfpnf'l‘ypn = Code foridentification of a service in a group

10.6.1 Diefinition

This datalitem contains a code that identifies a specific electronic port clearance seryice within|
type group as referenced to in 10.5.

10.6.2 Type
<xs:simp

<xs:re
</xs:simpleType>

10.6.3 Representation

This datalitem contains a service code. The code values tob¢’used are defined in Annex G. Tables
contain the groups of service codes for the types of services referenced in 10.5 and in Table G.1.

NOTE

10.7 epgq:StatusType - General messageand service request status and error codes

10.7.1 Deefinition

This dataltype defines status and.érvor codes related to the receipt of a message or execution of
This covefs various errors or omissions in the message header and signature, general formatting
the messdge body, as well aserror codes related to the service execution.

This data
required

10.7.2 Type

<xs:simp
<xs:re

eType name="ServiceCodeContentType">
triction base="epc:token"/>

a service

G.2 to G.5

Service codes can be numeric or alphanumerig.

fo check the zeturn codes for errors on protocol level (see Clause 15).

eType name="StatusCodeContentType">

a service.
errors in

object refers tg@ sent message or a service request. The client that sends the messajge is also

tfldction base="xs:token"/>

</xs:simpleType>

<xs:simpleType name="RequestCancelCodeContentType">
<xs:restriction base="xs:token"/>
</xs:simpleType>

<xs:complexType name="StatusType">
<xs:sequence>

<xs:
relement name="Missing" type="epc:xpath" minOccurs="0"

<xs

<xS:

<xs:
relement name="RequestCancelCode"

<xXs

element name="Error" type="epc:string" minOccurs="0"/>

maxOccurs="unbounded" />

element name="StatusCode"
type="epc:StatusCodeContentType" />

element name="Reference" type="epc:ReferenceCodeType"/>

© IS0 2024 - All rights reserved
54

https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

ISO 28005-1:2024(en)

type="epc:RequestCancelCodeContentType" minOccurs="0"/>

</xs:sequence>
</xs:complexType>

10.7.3 Representation

The data elements are as follows:

— Error: This a text string meant for human consumption. It shall be used when the message or request
contains errors that cannot be automatically corrected by the sending computer. If the Error field is
included and non-empty, corrective actions normally require human intervention. See the "Missing"
attribute for machine correctable errors.

— Miss]

correccted by the sending computer, these attributes will identify the missing information”el

Xpat}

— Staty
consg

for fulrther discussions on the use of this code.

— Refeq
objec

— Requd
was
cancd
insta

10.8 epc

10.8.1 Diefinition

[t is poss

encryptign (see 11.3). It can also be useful te'send parts of the message body in other formats thar

UN/EDIF4
shall then
data obje

This docyiment does not require a receiver to accept other formats than the plain message |

structure
an explan
may be re

10.8.2 T

<xs:simp

ng: If there were missing information elements in the message, and this can be aute

notation (see 4.2.9).

sCode: This is the status of the message or request. Status codes are taken’ from UN
lidated code list 1373.13Z] The codes used in this document are defined im:Jable F.1. See

ence: Thereference code for the message or service booking numbef;to which the statusin
L relates.

stCancelCode: If the status code is “Cancelled”, i.e. the status applies to a service rec
erminated for other reasons than an error, this code shall be used to explain why the re
lled. The codes are listed in Table F.2. This field shallNonly be used in the service requ
hce.

:SpecialAttachmentType - Description of special attachment

ible that parts of the message. body require protection from unauthorized access

ACT for passenger or cargo lists..Such message parts can be included as attachments (see
be listed in the special attachments data object. If a message part is listed here, the corre
'ts shall not be includedrin-the general message body structure.

so use of this feature is dependent on the published capabilities of the receiver. See Cla|
ation of how this“can be described in the MIG. Instructions related to encrypting mesg
turned fronithe access authorization function as described in Clause 18.

ype

eType name="AttatchmentTypeContentType">

trdction base="xs:token"

matically
bments in

EDIFACT
also 8.1.5

formation

juest that
fjuest was
pst status

by using
XML, e.g.
7.13) and
sponding

ody XML
ise 19 for
age parts

<xs:re

<xs:length value="2"/>
</xs:restriction>
</xs:simpleType>

<xs:complexType name="SpecialAttachmentType">
<xs:sequence>
<xs:element name="AttachmentType"

type="epc:AttatchmentTypeContentType" minOccurs="0"/>

<xs:element name="DataElementName" type="epc:xpath" minOccurs="0"/>
<xs:element name="FileName" type="epc:string" minOccurs="0"/>
</xs:sequence>
</xs:complexType>

© IS0 2024 - All rights reserved
55

https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

ISO 28005-1:2024(en)

10.8.3 Representation

The attributes have the following contents:

— AttachmentType: This is the type of special attachment. Code values are listed in Table D.1.

— DataFElementName: This is the Xpath name of the component of the body that has been encrypted (see 4.2.9).

— FileName: This is the name of the attachment file as defined in 9.7.
10.9 epc:MessageManifestType - Number of message parts

10.9.1 Definitionr

This data|block contains the number of different types of message parts.

10.9.2 Type
<xs:complexType name="MessageManifestType">
<xs:sedquence>
<xs:¢lement name="HasAttachments" type="epc:int" minOccurs="0"/>
<xs:¢lement name="HasBody" type="epc:int" minOccurs="0"/>
<xs:¢lement name="HasCertificates" type="epc:int" minOccurs=}0Us,>

<xs:¢lement name="HasSignature" type="epc:int" minOccurs="0"74>
</xs:s¢quence>

10.9.3 Representation

This datalstructure contains the number of message parts.of each type. The values for each attribute are
from zerd and higher. If an attribute is omitted or empty, the corresponding value shall be undgrstood as
zero. Thefattributes are as follows:

— HasBddy: Value zero or one to indicate presence of a body part.
— HasAftachments: Value zero or higher te:¢ount number of attachments.
— HasCqdrtificates: Value zero or higher to count number of X.509 certificates.

— HasSignature: Value zero or one to indicate presence of a signature part.
10.10 epc:EPCMessageHeaderType - Standard header for an EPC message

10.10.1Diefinition

This datafblock cofitains the definition of the message header structure. The same message structure is used
by both the sender and receiver, and independently of whether they are acting as client or server] Different
attributeg will be used in the different cases. This will be described in the relevant MIG.

10.10.2 Type

The formal XSD description follows below. It is complemented by Table 9 to make the description of the
attribute elements easier to understand.

<xs:complexType name="EPCMessageHeaderType">
<xs:sequence>
<xs:element name="Final" type="epc:boolean" minOccurs="0"/>
<xs:element name="MessageCreatedTime" type="xs:dateTime"
minOccurs="0"/>
<xs:element name="ReceiverId" type="epc:ContactInfoType"
minOccurs="0"/>
<xs:element name="RequestValidityEnd" type="epc:dateTime"
minOccurs="0"/>

© IS0 2024 - All rights reserved
56

https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

ISO 28005-1:2024(en)

<xs:element name="SenderId" type="epc:ContactInfoType"

minOccurs="0"/>

<xs:element name="SentTime" type="epc:dateTime" />
<xs:element name="ServiceName" type="epc:string" minOccurs="0"/>
<xs:element name="ServiceProviderName" type="epc:ContactInfoType"

minOccurs="0"/>

<xs:element name="ShipId" type="epc:ShipIDType" minOccurs="0"/>
<xs:element name="ArrivalDeparture" type="epc:ArrivalDepartureType"

minOccurs="0"/>

<xs:element name="Authenticator" type="epc:AuthenticatorType"

minOccurs="0"/>

<xs:element name="AuthorizationToken"

type="epc:AuthorizationTokenType" minOccurs="0"/>

<xs:element name="MessageBodyFormat"

type="epc:MessageBodyFormatContentType" minOccurs="0"/>

<xs:els
<xs:elg
<xs:els
<xs:elg
<xs:els
<xs:elg
<xs:elg

<xs:ele

<xs:elg
<xs:ele
<xs:elg
<xs:ele
<xs:elg
<xs:ele
<xs:ele
</xs:se

</xs:comj
<xs:comp

<xs:elemd

While thd
element i
detailed €

bment name="MessageFunctionCode"
type="epc:MessageFunctionCodeContentType" minOccurs="0"/>
bment name="MessageManifest" type="epc:MessageManifestType"
minOccurs="0"/>

bment name="MessageReference" type="epc:ReferenceCodeType"
minOccurs="0"/>

bment name="ServiceBookingNumber" type="epc:ReferenceCodeType"
minOccurs="0"/>

bment name="ShipStayReference" type="epc:ReferenceCodeType"
minOccurs="0"/>

bment name="RequestReplyMethod" type="epc:ReplyInformationType"
minOccurs="0"/>

bment name="ReportingSystem" type="epc:ReportingSystenType"
minOccurs="0"/>

bment name="RelayReportingSystem"
type="epc:ReportingSystemType" minOccurs="0Q"
maxOccurs="unbounded" />

bment name="ServiceCode" type="epc:ServiceCodetontentType"
minOccurs="0"/>

bment name="ServiceTypeCode"
type="epc:ServiceTypeCodeContentTypa" minOccurs="0"/>
bment name="SpecialAttachment" type="epcsSpecialAttachmentType"
minOccurs="0" maxOccurs="unbounded" />

tment name="MessageStatus" type="epC)StatusType"
minOccurs="0"/>

kment name="RequestStatus" type£'epc:StatusType"
minOccurs="0"/>

tment name="SystemId" type='epc:SystemIdType" minOccurs="0"/>
bment name="Version" type=tepc:VersionType" />

fluence>

lexType>

exType name="EPCMessddeSignatureType">

Ent name="EPCMessageHeader" type="EPCMessageHeaderType"/>

xplanations that can be found in the table footer.

XSD fellows generated order, Table 9 is organized by function. The Party column spec
b relevant for either a sender (S), or a receiver (R), or both (SR). Column 4 (Notes) prov

© IS0 2024 - All rights reserved
57

fies if the
des more

https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

ISO 28005-1:2024(en)

Table 9 — Functional overview of the EPC header structure

Attribute | Type Party Note

Sender information
SenderId epc:ContactInfoType S
ShipId epc:ShipIdType S
Authenticator epc:AuthenticatorType S
RequestReplyMethod epc:ReplyInformationType S
AuthorizationToken epc:AuthorizationTokenType S

Receiver information
SystemId] cpTTSyStemTatype R N
Receiverfld epc:ContactInfoType R ~ w

Message information (']>)
SentTime epc:dateTime (ASR‘.
Message(CjreatedTime epc:dateTime (\Q‘JS
MessageReference epc:ReferenceCodeType [a) b\J SR
MessageFjunctionCode epc:MessageFunctionCodeContentType ‘O SR
Final epc:boolean . \‘0 SR
MessageBpdyFormat epc:MessageBodyFormatContentType/ O\ SR
SpecialAjfttachments epc:SpecialAttachmentType <\\< SR a
MessageManifest epc:MessageManifestType ‘\Qv SR
Version epc:VersionType g\&\ SR

Service request il\fp@ﬂ&tion
ArrivalDeparture epc:ArrivalDeparture&hﬂ\e S
ServiceTlypeCode epc:ServiceTypeCo\@)ntentType N
Service(Clpde epc:ServiceCog?g?}ltentType S b
ServiceNgame epc:string ﬁ\l‘\ S b
ServiceProviderName epc:Com'(a\;t&YnfoType S
ServiceBpokingNumber epc:R“efg\r'énceCodeType S ¢
ShipStayReference ep/;\@ferenceCodeType SR d
RequestVhlidityEnd @f\':/dateTime SR e
ReportingSystem ,.C)épc:ReportingSystemType
RelayRepprtingSystem \VJ epc:ReportingSystemType S a
A = Message and request status information

MessageSftatus Av:(‘ epc:StatusType SR
RequestSftatus A\)‘ epc:StatusType R

Key ?”\
S sender é

Rreceiver

SR sender and receiver
a This element can be repeated zero or more times.
b These two attributes are mutually exclusive, only one shall be used.

¢ This attribute shall only be used by the sender and only when it has been defined by the receiver. The receiver returns this
code in the RequestStatus fields as a service request status.

d This attribute is returned by the receiver to show the session context that is valid for the service request status, if any is
returned. The sender shall use this field as defined in 7.7.3.

¢ This attribute can be set by sender and returned by receiver. Its use is defined in 7.10.4.

© IS0 2024 - All rights reserved
58

https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

ISO 28005-1:2024(en)
10.10.3Representation

10.10.3.1 General

This data structure contains the information required to process an incoming message and to determine
the service provider, without looking into the message body. The attributes are described in 10.10.3.2 to
10.10.3.6, where each attribute is listed in the same order as Table 9. The subclauses have the same title as
the lightly shaded sub-header rows in Table 9.

10.10.3.2 Sender information

The following attributes are related to the identification of the sender, sender capabilities and parties
associatefl with the sender.

— senddr1d: This is the identification of the sender when the sender is an organization ora.perqon. When
the s¢nder is an automated system on a ship, the Shipld attribute shall be used instead of, or in addition
to, the Senderld.

— shipld: This is the identifier of the sender when the sender is an automated system on the ship. When
agentls or other persons or organizations are responsible for the message, Senderld shall be used instead.

— Authdnticator: Thisis the identity of the person attesting to the validity0f the transmitted information,
if any. The element also contains information about the associated organization, the locatjon where
authgntication was provided and the role of the authenticator.

— RequdstReplyMethod: This is the instruction for the receiver on’how to respond to the sender'qy request.

— AuthdrizationToken: Thisisthe security code used to authorize access to API (see Clause 18), iffrequired.

10.10.3.3 Receiver information

The folloyving attributes are related to the identification of the receiver and software systems gssociated
with the fleceiver.

— systdm1d: The identification of an automated message reception system on shore. If the receiver is
operdted by a specific person or an orgdnization, Receiver1d can also be used.

— Receilver1d: Thisis the identification'of the receiver when the receiver is a specific organization of a person.

10.10.3.4 Message information

The following attributes afe related to the outgoing message. The values are set by the client.
— sentqime: This is the date and time when this message was sent from the client.

— MessdgeCreatedTime: The time and date at which the message body content was assembled.

— MessdgeRaference: A client defined code that can be used by the server to refer to this specifiqgmessage.

— MessageFunctionCode: The general function of the message, e.g. if it is a request, an acknowledgement of
receipt or a status message.

— Final: True if this message signals the end of a service session.
— MessageBodyFormat: How the message body is formatted, e.g. in XML or UN/EDIFACT.
— SpecialAttachments: Thisisalist of attachment message parts thatare not referenced in the message body.

These special attachments can be encrypted parts of the message body, see 11.3 or alternatively coded
parts of the message body (see 10.8). Attachments that are referenced in the message body, e.g. pictures
of stowaways or dangerous material product sheets shall not be listed here (see 12.2).

© IS0 2024 - All rights reserved
59

https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

ISO 28005-1:2024(en)

— MessageManifest: Asummary of message partsin this transmission. The data element counts the number

of me

ssage parts of each type.

— version: This is the version code the sender used when formatting the message. See 4.4.2 and 11.2.1 for
information on how the version code shall be used. The receiver shall use the same version code as the
sender and format messages in accordance with the restrictions that the sender’s version code imply.

10.10.3.5 Service request information

The following attributes are related to the service that has been requested by the sender:

— ArrivalDeparture: This element specifies if the message refers to an arrival, departure or another type

of ev

Some
cases
prece

EXAM
declaj

— Servi

the st

— Servi

the st

— Servi
servi

— Servi
is refi

— Servi

to refer to the specific service instance onge it has been confirmed ordered by the receiver.

— Ship§
thep

NOTE
of the

— Requsg
byas
a rec
(see §

— Repoq]
used

Bt

service codes refer to services that are directly associated with arrival or departure
this flag is redundant and should be omitted. If it is not omitted, the servicé |code
dence over this flag.

PLE Examples of such service codes are the MSW services conveyance arrivalor departure
ation on arrival or departure.

ceTypeCode: Thisisacode identifying the service type to which the message refers. Table (§
andard code values. Each of the legal codes will refer to a detailed'service code in Tables

ceCode: This is a code identifying the service to which the message refers. Tables G.2 to
andard code values. The service type code determines wlich'table is relevant to use.

ceName: This is the name of the service that can be used if there is no code defined to r4
Ce.

ceProviderName: This is the name and identity,ofthe organization that provides the sery
erred to.

ceBookingNumber: This is the referencecode for a service. It is defined by the receiver a

brt call or another physical eyent (see 7.7.3 and 8.1.2).

This can be assigned. by the maritime single window when related to the public authorities
vessel or by the harbour ma’ster when related to the port call itself.

stvalidityEnd: Thigis the date and time when the validity of this request expires. This ca
ender to limit thefime window in which a receiver shall respond to a request. It can also I
biver to notify)the sender of the server’s corresponding timeout if different from that of]
1.4).

for-allkmessages of the MRS type. Annex C provides details for the use of this attribute.

. In these
thall take

and cargo
.1 defines
5.2 to G.5.
5.5 define
fer to the

ice which

nd is used

tayReference: This data element, if included, contains a reference code for the session cdntext, e.g.

clearance

n be used
e used by
he sender

tingsyetem: Name of reporting system to which the message should be sent, if appropridte. This is

— Relay

Reportingsystem INAIE Of TepOrting SyStenT the Message 1S Semnt to, WITelT the messa

e is to be

relayed to Reportingsystem. This can be used for messages of the MRS type. Annex C provides details for
the use of this attribute.

10.10.3.6 Message and request status information

These attributes are related to the status of received messages and service requests. It is set by the server.
See 8.1.5 for details.

— MessageStatus: A server’s status on the processing of a client’s message.

— RequestStatus: A receiver’s status on the processing of a sender’s service request.

© IS0 2024 - All rights reserved
60

https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

ISO 28005-1:2024(en)

11 Definitions related to the message body part

11.1 General
This clause describes how the body part of the EPC message shall be constructed.

— The format of the XML data package is described in 11.2. See 11.3 for a description of how parts of the
body can be encrypted.

— Some rules for inclusion of UN/EDIFACT data packages are described in 11.4 and 11.5.

— Some principles for generating JSON data packages are described in 11.6.

Alternatiye formatting of the message body is specified in the MessageBodyFormat attribute in th¢ message
header (1P.4). Encryption of parts of the message body is specified in the specialaAttachment @ttrifute in the
message header (10.8).

If the recgiving application do not accept alternative formatting of the message body, airérror mesjsage shall
be returngd. The error code Rejected in the service status field shall be used (see 8.1:5].

The headgr part of the message will always be XML as described in Clause 10. THe status and error codes
will be in|the XML header for both]SON and XML data packages. UN/EDIFACT-may use its own fqrmats for
the statug and error code part of the header (see 11.5).

The messhge body as defined in 11.2 shall be inserted as an XML text{ile and as the second messalge part in
the HTTP|multi-part message. The corresponding content type shallbe application/xm1. See Clpuse 9 for
details.

11.2 XM[L message body
11.2.1 epc:EPCMessageBodyType - the XML body data type

11.2.1.1 |Definition

This dataftype defines the structure of the XML body part of the EPC message. The body will be conposed of
data elemlents defined in the ISO 28005 series. The data elements that are required to be part of th¢ message
body are |nserted into the data package:

11.2.1.2 |Type

<xs:complexType name="DataPackageType">
<xs:sedquence>

. list of gléments
</xs:s¢quence>

</xs:seqglence>

<xs:complexType name="EPCMessageBodyType">
<xs:sequenee>
<xs:¢lement name="DataPackage" type="epc:DataPackageType">
<xs:any minOccurs="0" maxOccurs="unbounded" />
<xs:sequence/>
</xs:complexType>

<xs:element name="EPCMessageBody" type="EPCMessageBodyType" />

11.2.1.3 Representation

The data elements in DataPackage are assembled from the list of data elements defined in Annex A of each
part of the ISO 28005 series, as defined in 4.4.2.

© IS0 2024 - All rights reserved
61

https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

ISO 28005-1:2024(en)

The following rules apply:

1. Annex A of each part of the ISO 28005 series specifies the file number in which its data elements are
designed to be included.

2. Elements are taken from Annex A of each relevant part of the ISO 28005 series and inserted in
alphabetical order in the data package of the XSD file. Relevant parts of the ISO 28005 series are those

parts

NOTE

that have a specified file number lower than or equal to the XSD file number.

This means that new data elements are inserted in between older data elements in higher

XSD files. This can be handled by validation and parsers as discussed in 4.4.2.

3. Thed

ata elements in ISO 28005-2:2021, Table A.1 shall be assigned file number 1.

4, All e

minOjccurs="0" to the XSD definition. This makes all elements optional, and a valid XML fiiess4
constiructed by selecting only the elements that are needed for the message's specific purpose

5. Elements shall have a maximum cardinality of n, which is defined in Annex A of allparts of the |
. This shall be added in the XSD file as the attribute maxOccurs="n". If the\maximum carflinality is

series
one (

Additiond
variants

11.2.2 Sfructure of message body definition table

[tis exped
columns:

NOTE

1. Core

2. Type]Thisis the type of the data object.
EXAMPLE In this document, Clauses5;6 and 10 contain data type definitions.
3. Card; Thisis the cardinality of the'attribute in the form “0..n” where 0 means that the element i

and n
The f

4. Descl

In additio
series is a

11.3 Eng

ements shall be defined with a minimum cardinality of zero (“0”) by adding the

1”) the maxOccurs="1" statement can be omitted.

f message body formats as discussed in 4.4.2.

ted that each part of the ISO 28005 series contains an.annex with a table consisting of the

In this document, the table is Table A.1. It can also be-found in ISO 28005-2:2021, Table A.1.

blement: This is the name of the data objectas it occurs in the message body.

defines the maximum numper of occurrences. This can be "*" if there is no bound on th
rst number is always zéro (see list item 4 in 11.2.1).

iption: This is a fréetext brief description of the data object.

n, this annex i§ expected to specify the file number with which this relevant part of the |
ssociated.

ryption of selected content

numbered

attribute
ge can be

SO 28005

| data elements or packages can be added before or instead oftthe “any” tag to support local

following

s optional
e number.

SO 28005

As messa

bés specified in this document can be sent through intermediate systems, such as mariti

me single

windows or port community systems, that are not the final receiver, it can be necessary to encrypt some of
the information so that it is cannot be understood by the intermediate party.

NOTE 1

In Europe, the General Data Protection Regulation (GDPR)[24] can require sensitive informa

persons, such as passenger lists, crew lists, crew effects, and health information to be encrypted.

tion about

In such cases, the sensitive information is formatted as a separate message body, using the conventional
epc:MessageBodyType XSD format (see 11.2). This part is then encrypted and added to the message as an
attachment. The name of the attachment is added to the message header as described in 10.8.

© IS0 2024 - All rights reserved
62

https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

ISO 28005-1:2024(en)

The encryption key can be the final receiver’s public key (asymmetric encryption). The final receiver may be
specified in the response from an authorization request (see 11.3). Other mechanisms not specified in this
document can also be used. In the latter case, the MIG shall specify what mechanism to use.

NOTE 2

Symmetric encryption can be used as it is more efficient than asymmetric encryption, but it requ

to a shared encryption and decryption key.

11.4 UN/EDIFACT message body

ires access

This document allows an UN/EDIFACT message to be used as the message body. In this case, the message
body content is one UN/EDIFACT message with a format as specified in relevant UN/EDIFACT standards.

The corr

11.5 UN

This docfiment allows an UN/EDIFACT error or acknowledgement message to be included ag

message
acknowle

NOTE

11.6]SO

This doct
requirem

The corrd

12 Defi

12.1 General

Any file ¢
be transn
type (see

SpecialAf

The apprgpriate HTTP directites shall be used (see Clause 9).

12.2 Reference to an(attached document in an XML body

The data
refer to a

The rules

snonding HTTP content-tune directive shall he “annlication /EDIFACT” (see 9 §)
r l=) J rr 4 AS —J

EDIFACT status message

nstead of the normal status fields in the message header (see 10.2). The{UN/EDIFAC]
dgement message shall be inserted in the message body as described in 11:4.

The most relevant status message is the application error and acknowledgement message APER

N message body

ment allows a JSON to be used as an XML message body,/This document does not s
ents to the JSON data object, and processing of the information will be application depen

sponding HTTP content-type directive shall be “application/json” (see 9.5).

hitions related to attachment message parts

an be included as an attachment in the HTTP message. If it is a large compressible file
hitted in compressed form, ifthe compressed application type can be specified by th

tachment data item in the header as defined in 10.8.

Lype “eposattachmentType” is defined in 6.15. It can be used in other parts of ISO 28001
specificattachment, e.g. an image or a printable data sheet.

for referring to an attachment are:

a status
" error or

\K.

ecify any
lent.

it should
e content

9.6). The attachment shall be\referenced from the message body as defined in 12.2 or thirough the

series to

1. The attachment message part shall have the HTTP Content-Disposition directive defined and shall have

afile

name (see 9.7).

EXAMPLE1 “Content-Disposition: form-data; name=attachN; filename=data.pdf;”

2. The relevant attachment tag in the message body or the special attachment data item shall refer to this
filename through a “file:” URL

EXAMPLE 2 The value for the URI for example 1 would be “file:data.pdf”.

3. The message part shall have a content-type field that is recognized by the receiver as specified in the
MIG (see 9.6) and, if relevant, as listed in Table D.1.

© IS0 2024 - All rights reserved
63

https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

ISO 28005-1:2024(en)

The file name has no other inherent meaning in this document and can be any legal HTTP directive string.

13 Definitions related to X.509 certificate message parts

Each of these parts contain one X-509 public key certificate in binary format, encoded according to
Distinguished Encoding Rules (DER) as defined in ITU Recommendation X.690.

These certificates can be included in the message in case there is no agreed PKI in use or when the signing

party is n

ot listed in the PKI.

The certificates are inserted in the multi-part message after the message body. No particular ordering of the
certificate parts is defined. The content type shall be application/pkix-cert. See Clause 9 for details.

The publ
informati

c key certificate shall specify the identity of the subject so it is compatible withth
pn defined in 6.18.

The certificate itself should be signed by a party that is trusted by the server.

14 Defi

hitions related to the digital signature message part

14.1 General

The digit
the signe

signaturefs:

h] signature is an XML structure containing a reference tothe message part and the i
[, as well as the signature itself. In this document, the fellowing rules apply to the use

1. Aslomgas atleast one message partis signed by the originator of the message, the signature c3
to verify the authenticity of the whole message.

2. Signi
requi

g one part of the message guarantees thezintegrity of that part only. Integrity guara
Ired to enforce non-repudiation of message.eéxchanges. All message parts that can be thg

non-rlepudiation conflicts should be signed.

NOTE

1 Theuse of HTTPS will protect theimessage parts from modification by third parties, but HT’

be usg¢d for non-repudiation purposes. For this, a digital signature is expected to be used.

3. Encrypted body parts (see 10.8)%or attachments that contain digital signatures themselves s

be ad

ditionally signed in the signature part of the message.

4. Itis permitted to use different certificates to sign different parts of the message.

NOTE
crew

2 This can be-uséful in cases, e.g. where the port call data are provided by the ship's agent; th
effects lists ar@provided by the ship, and the cargo information is provided by the charterer.

The digitql signature'as defined in 14.3 shall be inserted as an XML text file and after any certificaf
the HTTP| multi“part message. The corresponding content type shall be application/xml. See Cli

details.

e identity

Hentity of
of digital

n be used

ntees are
object of

'PS cannot

hould not

b crew and

e parts in
huse 9 for

14.2 Signers

Signed message parts should normally be signed by the sender of the message as identified in the message
header. In some cases, the authenticator as identified in the message header may sign one or more message parts.

It is also allowed that other parties are used as signatories. However, in such cases the server is responsible
for verifying that the signer is a trusted party.

The identity of a signer (see 6.18) shall match that of the identity in the corresponding digital certificate.

© IS0 2024 - All rights reserved
64

https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

ISO 28005-1:2024(en)

14.3 epc:EPCMessageSignatureType - Digital signatures of message parts

14.3.1 D

efinition

This data element contains the digital signatures for selected message parts. It contains a list of signatures
for the signed parts of the message.

NOTE If there are no signed parts, the whole signature message part can be omitted.
14.3.2 Type
<xs:complexType name="MessagePartSignatureType">
<XS:Segres
<xs|element name="DigestMethod" type="epc:int" minOccurs="0"/>

<Xs
<xs

<xs

<xs
<xs

</xXs:s4
</xs:comj

<xs:comp
<xs:se
<xSs

</xXs:s4
</xs:comj

<xs:elemd

14.3.3 R
The elem¢

— Digeqd

that

— Digeq
over {

— File:

— Signqg

element name="DigestValue" type="epc:string"
minOccurs="0"/>

element name="File" type="epc:string"/>
minOccurs="0"/>

element name="Signer"
type="epc:SignatureCertificateIdType"/>
minOccurs="0"/>

element name="Signature" type="epc:string"/>
minOccurs="0"/>

element name="SignatureMethod" type="epc:int"
minOccurs="0"/>

bquence>

lexType>

exType name="EPCMessageSignatureType">

luence>

element name="PartSignature"
type="epc:MessagePartSignatureTypal'
minOccurs="0" maxOccours="unbounded" />

bquence>

lexType>

bnt name="EPCMessageSignature" typé&z"EPCMessageSignatureType"/>

epresentation
bnts in each message part(sighature are used as follows:

tMethod: The method used to calculate the message part digest. Table].1 defines the cd
hall be used.

tvalue: The digest value encoded as base64 string over the message part. The digest is
he raw file:as transmitted, including any compression.

The file-name of the message part as described in 9.7.

rg-The identity of the signer as defined in 6.18.

— signature: The actual signature as a base64 encoded text string.

de values

alculated

— SignatureMethod: The method used to calculate the signature. Table].2 defines the code values that shall
be used.

15 General definitions related to the use of HTTP

15.1 Conceptual structure of a receiver

Figure 21 shows a conceptual structure of a receiver. This is an example of a possible implementation

pattern, but other principles for the design of receivers are also possible.

© IS0 2024 - All rights reserved
65

https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

ISO 28005-1:2024(en)

Asynchronous
Incoming message Synchronous response message and response
. . HTTP
HTTP server HTTP receive HTTP send HTTP client .
send/receive
l 4 A
Frontend Process header [«
i)
v
Seruice prnvidr-\r Process request [

The recei

client. The HTTP server handles incoming messages and synchronous responses-to these mesg

HTTP clie

A receive
and deter
status ch
can check
or header

The recei
control th
should ch
that case,
request c
synchron
can send

The servi
notificati
frontend

15.2 Conceptual structureof a sender

Figure 22
but other

A

f\v

Figure 21 — Conceptual structure of a receiver

er will normally use a top layer which may be implemented by an off-the-shelf HTTP s

nt is used to send outgoing messages and receive synchronous respgnses to these.

mines what service provider to forward requests to. The frontend should keep track of g
hinges so that simple status requests can be answered to synchronously (see 8.2.2). The

can be returned as a message error and further processing of the message will not be dg

er will be connected to one or more service providers that process the full incoming me|
e execution of services, including request status'changes as defined in 7.10.2. The servicg
eck the message content and can return an efror or a missing data code to the sender (se
no further processing of the message will\take place. If no errors are found, the procesg
bntinues, and request status may change as defined in 7.10.2. Such changes can be retu
bus response if the change happens within the same HTTP session. Otherwise, the service
isynchronous responses to senders.that accept asynchronous status reception (Clause 1

e provider should immediately notify the receiver frontend when a request status cha
n is independent of the usetof asynchronous responses and is useful to make it possil
o immediately answer syhchronous service status requests.

principles forthe design of receivers are also possible.

Request Response Status from receiver Response

] I I]

erver and
ages. The

' can implement a frontend component or other equivalent function that reads the message header

1l request
frontend

overall message syntax and the content of the message‘header. Any errors in the message syntax

ne.

ssage and
provider
e 10.7). In
ing of the
rned as a
e provider

D).

nges. This
le for the

shows a conegptual structure of a sender. This is an example of a possible implementatiopn pattern,

N
% HTTP .
HTTP client send/receive HTTP server HTTP receive > HTTP send
Request. Create and
|EEA process request

This part is only for a sender that accepts an asynchronous res

Figure 22 — Conceptual structure of a sender

© IS0 2024 - All rights reserved
66

ponse

https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

ISO 28005-1:2024(en)

The sender will normally use a top layer which may be implemented by an off-the-shelf HTTP client and
server. An HTTP client implementation is always required and is used to send outgoing messages and receive
synchronous responses from the receiver.

The HTTP server implementation is required if the sender accepts asynchronous status reception (see
Clause 16). The HTTP server on the sender side shall respond to the synchronous message status whenever
a valid message arrives from the receiver. Invalid status messages can be reported back to the receiver, but
this is not required.

15.3 Transmission protocol

The transmission protocol is HTTP/1.1 as defined in RFC 7231.[5] All communication shall be encrypted,
using TrafiSport Layer Security (1 LS) version 1.2 as defined in RFC 5246 or version 1.3 as detined in RFC
8446. RF(28186l defines HTTP over TLS.

The use of TLS requires the use of a digital signature certificate on the HTTP server. The server shguld avoid
using the [same certificate as it uses for signing message parts (see 7.14) as its TLS certificate.

NOTE The TLS signature can be exposed to external and hostile parties each time a party makes a HT['P request
to the seryer’s URL. As this can aid hackers in determining the private key, this generally’requires a morje frequent
update of [the TLS certificate than would otherwise be necessary for the certificate, described in 7.14, [where the
signature {s much less frequently exposed.

15.4 Avoid use of HTTP redirect and similar mechanisms

As ship to shore communication via satellite can be expensive and can have limited bandwidth, the
implemeritors of HTTP servers should avoid using mechanismg that force the ship to resend an HTTP request
to anothef URL. This mainly relates to the use of HTTP redirects.

NOTE The access authorization mechanism specified in ‘this document does not use the conventipnal HTTP

authorizatjon mechanisms, which avoids the ship having t¢-resend a request after an “unauthorized” response code
from the server.

15.5 Optional use of HTTP keep-alive

The send¢r may set the keep-alive flag in the HTTP header to signal to the receiver that the TCP cpnnection
should be|kept open so that the sendericah send more than one HTTP request.

The receiyer can choose whether(oaccept the keep-alive flag or not.

NOTE This can be used tosaye bandwidth, e.g. when several services are ordered by the ship throughfa PCS. The
ship will then avoid establishiniga new TCP/IP connection for each service request.

15.6 AP] access point URL

The receiver's_ AP} access point is a URL defined by the receiver. This is also the case for th¢ sender's
API acceqs point if the sender accepts asynchronous notifications. This document does not sgecify any
requiremgnts to the format of the URL.

This document does not define how a sender gets the receiver's URL, but it is required that the URL or
URLSs be published in a manner such that it is convenient for the sender to find it. This information may be
published, for example, in a port procedures manual or similar, describing the services available in a port
(see 7.19).

15.7 HTTP methods
This document specifies the use of the POST method for all information exchanges.
NOTE While it can be desirable to specify REST compliant behaviour and, thus, differentiate between POST, PUT

and GET, it is in general not possible to guarantee formal REST behaviour from the different types of equipment that
can be connected via the interfaces specified in this document. Thus, POST is specified for all.

© IS0 2024 - All rights reserved
67

https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

ISO 28005-1:2024(en)

Servers should accept both PUT and GET to cater for non-compliant clients. If accepted, the server’s behaviour
shall not differ between the use of PUT, GET and POST methods with otherwise equivalent message content.

15.8 Different types of synchronous return values

15.8.1 General

This document uses HTTP to exchange messages between a client and a server. This is illustrated in
Figure 23, where four different types of returns from the server are shown. The return code on a given line
except the first will only be delivered if the previous line return code signalled a valid transaction.

Client Server
L L
Message i—\>i
| 1
:‘/——: Connection error

I i HTTP error codes
Message status

Service request status

Key
See Figure|2 for key references.

Figure 23 — Message status variants

The four dlifferent types of return codes are explained in 15.8.2 t0'15.8.5.

15.8.2 Cpnnection error

These ar¢ errors that occur at the transport protocollevel, e.g. that the connection is denied |or closed
during a gession. In all cases, the client should try to.determine the cause of the error and find agpropriate
corrective actions. This can require assistance froma human operator.

Connectign denial can, for example, be caused-by an error in the URL, that the TLS certificate that the server
uses is inyalid, or that the server is momentarily unavailable. The client should correct any client-side errors,
and if appllicable retry the transaction at a later time.

If the cornection is closed during(ajsession, this can mean that the status of a service requesf remains
unknown(to the client. The client €an use a status poll to check the status of the request (see 8.2.2). Jepending
on the cayse for the connectiof ¢losing, it can be necessary to complete the status poll after a certain period
of time, efg. if the server crashiéd during the session.

15.8.3 HTTP error codés

This docyment only/uses HTTP error codes to transfer HTTP protocol related information. All HT['P return
codes wil] indicate the result of the HTTP transaction on the HTTP server level (see 15.1).

Code 200|(OK) or 201 (Created) will be the return code for any successful request.

Other codes will indicate some HTTP anomaly or error that can require human operator assistance to
analyse and correct.

15.8.4 Message status

All returns from a server will contain a message status, explaining how the message was processed (see
8.1.5). These codes are mainly the result of processing at the frontend level (see 15.1).

If the message was rejected, no service request status will be returned, and the message will have no effect
on the service status.

© IS0 2024 - All rights reserved
68

https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

ISO 28005-1:2024(en)

All errors will be returned as text strings that are intended for human consumption. In addition, missing
data fields will be listed in the Missing attributes to the status object and can be automatically corrected by
the sender. Likewise, mismatch in version codes will be returned from the receiver in the version code in the
message header and can be automatically corrected by the sender. See also 7.2.

15.8.5 Service request status

The service request status will be returned from a receiver as a response to a request or when the status of a
service changes. The service request status will often be returned together with the message status. Ifitis a
response to a service request, it can contain error codes or a list of missing data (see 8.1.5).

Errors other than missing data fields will be returned as text strings for human consumption. Missing data
fields willbetistedimthe Missingattributes to the statusobject:

16 API access points for asynchronous HTTP communication

16.1 General

The asynthronous API access points means that both the sender and the receiver have a URL for delivery
of messages. This is the case shown in Figure 2. The sender transfers a return URL to the receivgr that the
receiver yses to return asynchronous notifications to the sender.

16.2 Mefsage patterns to use

These AP| access points shall use the exact message patterns defined in Clause 8 for the patternis that are
supported by the access point. The polling pattern (see 8.2.2)\5s required for the receiver. Other patterns
shall be ithplemented by the sender and receiver as describéd in the MIGs that the access points support.

16.3 Nojauthorization on the sender’s URL

The send¢r should not implement authorization enits return access point.

17 API access point for synchroneus HTTP communication

17.1 GeIeral

The pollig or synchronous API)access point means that the sender polls the receiver for status g¢r data. In
this case,|the sender has noWURL that the receiver can access. The sender is always a client and the receiver
is alwaysp server.

17.2 Mepsage patterns to use

This accefs point modifies the message patterns defined in Clause 8. Each message transmitted with the
receiver dsithe client shall be replaced by the pattern shown in Figure 24.

Sender Receiver
Status poll :-\J
| 1
:‘_/‘: Message/Service request status

Key
See Figure 2 for key references.

Figure 24 — Sender polling pattern

© IS0 2024 - All rights reserved
69

https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

ISO 28005-1:2024(en)

The polling pattern (see 8.2.2) is required for the receiver. Other patterns shall be implemented by the
sender and receiver as described in the MIGs that the access point supports.

18 Authorization to access API access point

18.1 General

Some receivers can require authorization before access to the main API access point is accepted. The
authorization will normally be done through an open access point, different from the service access point.
The principle is described in 7.16. The authorization key is inserted in the authorizationToken field in the
header when the open access point is used.

18.2 Th¢

The mess
some moq

Key
See Figure

The main

1. Insed
differ

. i |
0 Authorization request |\’=
|

e i‘_/-—-: Authorization
1
B Request

P message pattern

hge pattern for the authorization case is functionally the same as pattern 1 described in |

B.2.1 with

lifications as illustrated in Figure 25. Annex B contains the MIG for the authotization funiction.

Sender Receiver API accesspoints
AL
-~ ~
Authorization Main(s)

L///JI Message status/

I I Authorization
| |

Message status :\4

2 for key references.
sequences 1 to 3, which are defined by the corresponding lightly shaded areas of the message exd

Figure 25 — Authorization message pattern

differences frémpattern 1 described in 8.2.1 are described below.

uence 1 and 2 in Figure 25, the authorization requests will normally be done on an APl ac

This

ent frem the main API(s). This API is here called Authorization. The actual service tra

hange

Cess point
sactions,
Ss points.
hed in the

PLis here called Main(s). The addresses of one or more main API access points are retur

here}escribed with the initial request in sequence 3, will normally be executed on another accg

BiZatl ot oo D
auth TTZatroTr Iessagcs

2. Insequence 1 in Figure 25, the authorization request is functionally the same as a service request, but
with a different message function code as defined in Table E.1. If the authorization can be given in the
same HTTP session as the authorization request, the response will be both a message status and an
authorization message and sequence 2 is omitted.

Implementations of the authorization function are not required to accept service request updates and
canrequire that all necessary information for access authorization is included in the initial authorization
request. If updates are accepted, this shall be implemented as sequence 2 in pattern 1 as defined in 8.2.1
and use the normal update request function code.

© IS0 2024 - All rights reserved
70

https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

ISO 28005-1:2024(en)

3. Insequence 2 in Figure 25, a positive access authorization is signalled with an Authorization message.
This is functionally equivalent to an Accept message but uses a different function code as defined in

Table

E.1.

18.3 epc:ServiceAuthorizationType - Type of service authorization

18.3.1 Definition

This element provides the authorization code and the access point URL for a list of services that are available
from a receiver.

18.3.2 Type
<xs:complexType name="ServiceAuthorizationType">
<xs:sedquence>
<xs|element name="AuthorizationToken"
type="epc:AuthorizationTokenType” minOccurs = "0"/ >
<xslelement name="AuthorizationValidityEnd" type="epc:dateTime"
minOccurs="0"/>
<xslelement name="EncryptionId"
type="epc:SignatureCertificateIdType"
minOccurs="0"/>
<xslelement name="ServiceCode" type="epc:ServiceCodeContentType"
minOccurs="0"/>
<xs|element name="ServiceName" type="epc:string” minOccufs = "0"/
<xslelement name="ServiceTypeCode"
type="epc:ServiceTypeCodeContentType”
minOccurs="0"/>
<xs|element name="ServiceURL" type="epc:anyURI" min®ccurs="0"/>
</xs:s¢quence>

</xs:comy

<xs:comp
<xs:se
<xs:4{

</ xS 184
</xs:comy

18.3.3 R
The authg
— Authd
— Authd

— Encry
encry

jluence>

bquence>

encry

lexType>

lexType>

exType name="ServiceAuthorizationListType">

b lement name="ServiceAuthorization"
type="epc:ServiceAuthorizationType”
maxOccurs="unbounded" />

epresentation
rization is returned-as a list of entries. The elements in each entry are used as follows:
rizationTokefi: The authorization token to be used for specified service.

rizationpvalidityEnd: The date and time the token expires, if defined.

ptionid: The identity of the receiver of the message (part), when the message (part]
ptédbefore transmission. This can be used toretrieve the publickey thatcan be used foras
ption of content

shall be
ymmetric

NOTE

The message can contain the corresponding X.509 certificate if it is not already available through a PKI.

— ServiceCode: The service code as defined in 10.5.

— ServiceName: The service name as defined in 10.5.

— ServiceTypeCode: The service type code as defined in 10.5.

— serviceURL: The URL for the API access point where the service can be ordered.

The service can be specified by code or name.

© IS0 2024 - All rights reserved
71

https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

ISO 28005-1:2024(en)

If this API is used for service discovery only, and no authorization is required, the token and its expiry date
and time should be omitted.

18.4 The message body

One service authorization list can be sent in a normal EPC body message as described in 11.2. The service

authoriza

tion list is defined as a message body data object in Annex A.

19 Specifications for the message implementation guide (MIG)

19.1 General structure of MIG

MIGs canl
document

Annex B
MIG for M

19.2 MI(

The intro
the docun

19.3 Hig

This inclu
also defin

19.4 Pre

be structured as is most convenient for describing the intended functions. Howeve

fontains a MIG for the access authorization mechanisms (see Clause 18) and-Annex C ¢
SW and MRS. These annexes can also be used as examples of the structure-efa MIG.

; Introduction

Huction gives an overview of the function defined by the MIG including any normative ref
hents that are the basis for the description of these functions.

h level description of use case

des additional details related to functionality which are not already covered in the intro
es the parties involved and the physical system architecture.

requisites

This sectjon defines all relevant requirements te:parties using the MIG that are not directly rela

message {

19.5 Me

equence diagrams.

5sage sequence diagrams

This sectjon describes the message.patterns that are used, if necessary, with additional message

diagrams
(pattern

Subclause
similar m
descriptig
from the

The mess

When a message pattern'is referenced, all requirements related to that pattern as defing
) to 8.2.5 (pattern/5)-apply. Special or deviant requirements can be specified in the MIG.

s in this section-of the MIG shall be made for all message types specified by the M

ns: one for\the requests from the sender, including cancel and status poll; and one for t
feceiver.

hge headers are normally described in a table, as exemplified in Table 10.

, the MIGs follow a structure composed of four sections, which are defined in 19.2t0-19.5.

b1, in this

ontains a

brence for

Huction. It

ted to the

sequence
bd in 8.2.1

[G, where

pssage types.éan be grouped and discussed together. This most commonly results in tw¢ message

he replies

© IS0 2024 - All rights reserved
72

https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

ISO 28005-1:2024(en)

Table 10 — Example header for MIG

Attribute 2 |Value b Card.c
Sender information
SenderId Identity of sender 0.1
ShipId Ship identity 1.1
Message information
SentTime Date and time of transmission 1.1
MessageReference Message reference 1.1
MessageFunctionCode Authorization request, update request, cancel or status poll 1.1
MessageBpdyFormat Asdefimed by AGR (X METsdefautt) 1.1
SpecialAfttachments If required by AGR - should not be used 0.1
MessageManifest Structure of message parts 1.1
Version “2.n"d 1.1

Service request information

ServiceBpokingNumber Reference to the service session if not first message 0.1
RequestVplidityEnd Optional timeout

a Attrib{ite is the name of the data object as defined in 10.10.

b Value gives additional information about the object.

¢ Cardinfality (Card.) specifies the number of occurrences of this object: “0..1” fgt"zero or one; “1:1” for exactly one; “1..*” for one
or more; aijd “0..*” for an arbitrary number, including none.

d Replacge n with the relevant file code (see 6.19).

The table[lists all elements in the header that the sender and.¥éceiver are required to process. Othei elements
may be ijcluded by the sender or receiver. In that case, these elements should have the same fynction as
defined in} Clause 10, but neither party is required to pfocess them. They can be silently ignored.

If the funftion of a data object differs from whatis specified in Clause 10 an additional definitiop shall be
provided n this section of the MIG.

The partd of the message other than the header are briefly described in a separate sub-section. Th¢ message
body confent, in particular, is normally defined by requirements in external references, e.g] the IMO
Compendjum.[14]

© IS0 2024 - All rights reserved
73

https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

ISO 28005-1:2024(en)

Annex A
(normative)

EPC request body

Table A.1 contains the data elements defined in this document that shall be available in the consolidated
message body definitions in the XSD file. The elements in Table A.1 shall be included in file number 1 as
discussed in 4.4.2.

The corrgsponding mandatory part of the version code in the message header shall be “2.1” (see 4ft.2).

Table A.1 — EPC Request Body

Core element Type Card. Description

ServiceAuthorizationList epc:ServiceAuthorizationListType [0..1 List of seryviges and corresppnding au-
thorization tokens.

The formaf of this table is defined in 11.2.2

© IS0 2024 - All rights reserved
74

https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

ISO 28005-1:2024(en)

Annex B
(informative)

Message implementation guide for access authorization

B.1 Introduction

This mes to a set of
session c¢ntext message exchanges. It is based on FAL.5/Circ.46.11] The access authorization meghanism is
defined in} Clause 18.

B.2 High level description of use case

B.2.1 General function

This use ¢ase describes a service where a declarant (sender) sends certaininformation to an authorization
granting §erver (AGR) via the sender's declarant reporting sender (DRS) ifivorder to be granted access to one
or more ofther APIs that can be used in the specified session context.

The use dase describes a fully automated machine-to-machine ex¢hange of information. Thus, the parties
used in the descriptions are the respective software systems.

B.2.2 Parties involved

B.2.2.1 DRS - Declarant reporting sender

The declajrant reporting sender (DRS) is the software system used by the declarant to send informjation and
request agcess authorization.

NOTE This can be a computer system on the ship, in the ship agent's office, or in the ship manager's or
charterer'§ office.

B.2.2.2 AGR - Authorization granting receiver

The AGR refers to the software system that receives the authorization request and which can either grant
access to API access points;-Or not.

B.2.3 General architecture

The physical architecture is shown in Figure B.1.

% «—> DRS AGR > %

Declarant Message exchange parties Authority

Key
DRS declarant reporting sender AGR authorization granting receiver

Figure B.1 — General message exchange architecture

© IS0 2024 - All rights reserved
75

https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

ISO 28005-1:2024(en)

The declarant can use the DRS to perform the necessary message exchanges with the AGR. The AGR can in
turn have a backend where an authority examines submitted information and grants or denies authorization.
However, in many cases both the declarant and the authorization processes may be automated so that the
message exchange can be done fully automatically.

In the communication between the DRS and the AGR, the DRS is defined as the sender and the AGR as the
receiver.

B.3 Prerequisites

B.3.1 Publication of AGR API and data requirements

Details of the AGR API access point shall be published so that the DSR can use it to configtie the API
parametefrs. The following information is required:

1. API afpcess point URL that can be used to access the AGR.

2. The ipformation requirements for granting authorization. This should be limited to the datq set used
in the¢ general arrival declaration as described in the IMO Compendium.[14] Ifadditional infomation is
requilred, this shall be clearly stated in the service description.

NOTE|1 This will normally be the identity of the ship, the sender identity, if different from the ship,)estimated
times|of arrivals and departure, agent information if calling on a port, andinformation about the ship's planned
operagions.

NOTE|2 The Missing data fields in the service and message status objects can be used to specify m|ssing data
that i required for authorization to be granted.

3. A list{ of message parts that shall be encrypted for the'services where encryption may be r¢quired. If
symmetric encryption keys are available, the method for'acquiring these keys shall be described [see 11.3).

NOTE|3 Thelist of message parts that should be enerypted will also be indicated by the list of EncrydtObjects.

4. The dxtent of the session context that defines the envelope around the services that the AGR provides
details of.

B.3.2 Np authorization on AGR API1

The AGR §hould not require any authorization for access to the AGR API itself.

B.3.3 Ayailability of digital’signature certificates

If digital §ignatures arecised, each of the parties shall have a public digital signature certificate that allows
the other|party to verify-the authenticity of the digital signature.

The certificates_sheuld normally be available from a public key infrastructure, but can also be ifcluded in
the requept and;status messages.

B.3.4 Maintainauthorization status through the sessioncontext

The AGR is required to keep the authorization status available for a status poll from the DRS during the
whole session context as defined by the AGR. This also means that the service context is the same as the
session context for this service.

B.4 Message sequence diagrams

B.4.1 The message sequence patterns

Message pattern 1 as defined in 8.2.1 can be used, with the exception that the initial service request is
replaced by an authorization request. The final service status is likewise replaced by an authorization

© IS0 2024 - All rights reserved
76

https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

ISO 28005-1:2024(en)

message. The AGR shall also support the status poll function defined in pattern 2 in 8.2.2 (sequence 3 in
Figure B.2).

The AGR can alternatively implement the simpler pattern 3 described in 8.2.3. Pattern 3 will correspond
to sequence 1 in Figure B.2 where the return message from the AGR is authorization or the service status
“rejected”. In this case, pattern 2 (sequence 3 in Figure B.2) shall also be supported.

Key

See Figure|2 for key references.

DRS AGR
0 Authorization request

Message/Service status/Authorization

!

| |

= |

e Update request i ’:
Iﬁ/__l Message/Service status/Authorization

|

9 Status poll :\J

| . A
Service status/Authorization

— |
|
e L—/JI Service status/Authérization

Message status I—_’:
i

@ sequences 1 to 4, which are defined by the corresponding lightly shaded areas of the message exdhange

Figure B.2 — Authorization requést and acknowledgement

Figure B.P consists of four numbered sequences. ‘Each sequence is described in the following list. If the

simple paftern 1 is implemented by the AGR, only:sequence 1 and 3 will be supported.

1.

The ipitial authorization request (see B:4:2), is sent by the DRS. The message is checked by tHe AGR for
validity and if errors are found, a message status is returned with appropriate error codes. If valid,
the AGR initiates the service request and establishes the service booking number. If it is ppssible to
immgdiately grant or deny the~authorization, the return from the AGR consists of an authorization
messpge with appropriate status codes. If the service cannot be immediately processed, the AGR returns
a megsage and service status (see B.4.3).

If the|full pattern is imjplemented by both parties, the DRS can add additional data to the access request,
i.e. if missing data lfag been signalled in a status message from the AGR.

The IPRS shall’be able to poll the status of the authorization service at any time. If authorization is not
granted yetszaservice status is returned, otherwise the full authorization message is returned. The poll
pattefn can’be used as long as the session context corresponding to the authorization is active.

If aut : RS g : G d v GRhas ished the
authorization processes, the authorization message will be sent if approved. Alternatively, a service
status with status rejected will be sent. This contains status codes informing whether access was
granted or not.

B.4.2 describes the requests from the DRS in the sequences in Figure B.2. B.4.3 describes the answer from
the AGR.

© IS0 2024 - All rights reserved
77

https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

ISO 28005-1:2024(en)

B.4.2 Authorization requests

B.4.2.1

Message header

This message is used to request, update or check status on an access authorization. Table B.1 lists the

elements

in the message header that may be used in the request.

Table B.1 — Header for authorization request

Attribute @ Value 2 Card.
Sender information
SenderId tdentity-ofsender 0.1
ShipId Ship identity 1.1
Authentifcator The person attesting to information correctness 0.1
RequestReplyMethod Type of reply required 1.1
Message information
SentTime Date and time of transmission 1.1
MessageReference Message reference 1.1
MessageFunctionCode Authorization request, update request, cancelor status poll 1.1
MessageBpdyFormat As defined by AGR (XML is default) 1.1
Specialhfttachments If required by AGR - should not be used 0.1
MessageMpnifest Structure of message parts 1.1
Version “2.n" b 1.1
Service request infofmation

ArrivalDeparture Message related to arrivalor departure 0.1
ServiceBpokingNumber Reference to the service session if not first message 0
RequestVlidityEnd Optional timeout

For the tabje structure, see Table 10 and other definitiens in 19.5.

a See 10|10 for a definition of attributes and values:

b Replage n with relevant file code (see 6.19).
ArrivalD¢parture shall only be used if the authorization is explicitly related to arrival or departure.
Otherwisg, this flag should be omitted or empty.

B.4.2.2

For the i
to grant

The statu

The AGR

The message body-and other message parts

cess. If sontething is missing, this can be reported by the AGR in the service status miss
5 pollkrequest shall not contain a message body.

should limit its information requirements to that of the general declaration message as

itial authoriZation request, the message body should contain the information required by the AGR

ng fields.

described

in the IM

Compendium.l2I'Tf other information is required, this shall be clearly stated in the description of
the service.

Attachments may contain an X.509 certificate for the DRS or other senders cooperating with the DRS.

The signature part is optional but should be included to ensure proper authentication of sender and integrity

checks of

contents. The AGR can deny access if the signature field is empty.

© IS0 2024 - All rights reserved
78

https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

ISO 28005-1:2024(en)

B.4.3 The message status or authorization reply from AGR

B.4.3.1 The message header

The message header is shown in Table B.2.

Table B.2 — AGR message status header

Attribute 2 Value 2 Card.
Sender information
SenderId Identity of sender 0.1
ShipId Ship identity
Receiver information (.\(]/W
SystemId Type of system the answer is returned from
Receiver|ld Identity of receiver 0.1
Message information (\QJ
SentTime Date and time of transmission 1.1
MessageReference Message reference 1.1
MessageFjunctionCode Message status, service status or authorization 1.1
Final True only for end of session context or forrejected requests 0..1
MessageBpdyFormat As defined by DRS (XML is default), €émpty if rejected 0..1
MessageMpnifest Structure of message parts 1.1
Version “2.n"b 1.1
Service request ir&aﬁhation
ArrivalDeparture Message related to arrival’or departure 0.1
ServiceBpokingNumber Reference to the service session (may be session context) 1.1
ShipStayReference Reference to thesession context, if used 0.1
RequestVhlidityEnd Optional timéeut 0.1
ShipStayReference Sessionscontext if defined by AGR 0.1
Mes&age\;nd request status information
MessageSftatus Status of received message 0.1
RequestSftatus Status of requested service 0..1
For the tabje structure, see Table 10\and other definitions in 19.5.
a See 10]10 for a definition of’attributes and values.
b Replage n with relevant file code (see 6.19).
Message fgnd/or réquest status is used depending on the type of response. Timeout may be specified if
enforced py either*DRS or AGR.
B.4.3.2 Mgessage body and other message parts

The message body contains the service authorization data object (see 18.3) if access has been granted. The
body is empty in all other cases.

Other me

ssage parts can include an X.509 certificate for the AGR if this is not generally available. Other

message parts can also contain X.509 certificates for parties that require special encrypted attachments.

The signature part is optional but should be included to ensure proper authentication of the sender and
integrity checks of contents.

© IS0 2024 - All rights reserved
79

https://standardsiso.com/api/?name=61a673bc6cb86353579d8be60011a9e4

	Foreword
	Introduction
	1 Scope
	2 Normative references
	3 Terms, definitions, and abbreviated terms
	3.1 Terms and definitions
	3.2 Abbreviated terms

	4 Structure of XSD data type and object definitions
	4.1 General
	4.2 Principles for XML descriptions in the ISO 28005 series
	4.2.1 No use of XML attributes
	4.2.2 Defaults for minOccurs and maxOccurs
	4.2.3 Signalling empty XML tags
	4.2.4 Order of child elements in XSD files
	4.2.5 Character set
	4.2.6 Principles for defining types with code lists
	4.2.7 XSD name space for general XSD data types
	4.2.8 ​ISO 28005 name space
	4.2.9 Use of Xpath expressions

	4.3 Structure of clauses defining data types
	4.3.1 Clause and data type name
	4.3.2 Definition
	4.3.3 Type defined as XSD code
	4.3.4 Representation

	4.4 Creating valid XSD schema files
	4.4.1 File structure
	4.4.2 Numbering of XSD files and message version code
	4.4.3 Location of XSD files

	4.5 Reference to data types defined in ISO 28005-2:2021

	5 Adapted XSD data types for ISO 28005
	5.1 General
	5.2 epc:anyURI – Generalized URI
	5.2.1 Definition
	5.2.2 Type
	5.2.3 Representation

	5.3 epc: boolean – Boolean flag
	5.3.1 Definition
	5.3.2 Type
	5.3.3 Representation

	5.4 epc:date – General date
	5.4.1 Definition
	5.4.2 Type
	5.4.3 Representation

	5.5 epc:dateTime – Time and date, with time zone
	5.5.1 Definition
	5.5.2 Type
	5.5.3 Representation

	5.6 epc:decimal – decimal number
	5.6.1 Definition
	5.6.2 Type
	5.6.3 Representation

	5.7 epc:duration – Time duration
	5.7.1 Definition
	5.7.2 Type
	5.7.3 Representation

	5.8 epc:int – Integer number
	5.8.1 Definition
	5.8.2 Type
	5.8.3 Representation

	5.9 epc:string – General string
	5.9.1 Definition
	5.9.2 Type
	5.9.3 Representation

	5.10 epc:token – Computer-understandable string
	5.10.1 Definition
	5.10.2 Type
	5.10.3 Representation

	5.11 epc:xpath – Identification of an XML data item
	5.11.1 Definition
	5.11.2 Type
	5.11.3 Representation

	6 General ISO 28005 data types
	6.1 General
	6.2 epc: AuthenticatorType – Authenticator of information
	6.2.1 Definition
	6.2.2 Type
	6.2.3 Representation

	6.3 epc:AuthorizationTokenType – Authorization token
	6.3.1 Definition
	6.3.2 Type
	6.3.3 Representation

	6.4 epc:ContactInfoType – Contact information
	6.4.1 Definition
	6.4.2 Type
	6.4.3 Representation

	6.5 epc:CommunicationNumberType – Communication number information
	6.5.1 Definition
	6.5.2 Type
	6.5.3 Representation

	6.6 epc:CountryCodeContentType – Country identification
	6.6.1 Definition
	6.6.2 Type
	6.6.3 Representation

	6.7 epc:CountrySubdivisionCodeContentType – Country subdivision identification
	6.7.1 Definition
	6.7.2 Type
	6.7.3 Representation

	6.8 epc:CrewDutyType – Duty onboard or on shore
	6.8.1 Definition
	6.8.2 Type
	6.8.3 Representation

	6.9 epc:LocationType – Identification of a location
	6.9.1 Definition
	6.9.2 Type
	6.9.3 Representation

	6.10 epc:NameType – Name of person
	6.10.1 Definition
	6.10.2 Type
	6.10.3 Representation

	6.11 epc:OrganizationType – Description of an organization
	6.11.1 Definition
	6.11.2 Type
	6.11.3 Representation

	6.12 epc:PostalAddressType – A postal mail address
	6.12.1 Definition
	6.12.2 Type
	6.12.3 Representation

	6.13 epc:ShipIDType – Ship identity
	6.13.1 Definition
	6.13.2 Type
	6.13.3 Representation

	6.14 epc:ReportingSystemType – Name of a reporting system
	6.14.1 Definition
	6.14.2 Type
	6.14.3 Representation

	6.15 epc:AttachmentType – Reference to an attached document
	6.15.1 Definition
	6.15.2 Type
	6.15.3 Representation

	6.16 epc:ReferenceCodeType – General reference code
	6.16.1 Definition
	6.16.2 Type
	6.16.3 Representation

	6.17 epc:SystemIdType – Identity code for a software system
	6.17.1 Definition
	6.17.2 Type
	6.17.3 Representation

	6.18 epc:SignatureCertificateIdType – Name of digital signature holder
	6.18.1 Definition
	6.18.2 Type
	6.18.3 Representation

	6.19 epc:VersionType – Version code
	6.19.1 Definition
	6.19.2 Type
	6.19.3 Representation

	7 ​ISO 28005 design principles
	7.1 Harmonization with the IMO reference data model
	7.2 Fully automated machine to machine
	7.3 Using carrier independent and internet-based protocols
	7.4 General format of message sequence diagrams
	7.5 Sender and receiver versus client and server — asynchronous message transfers
	7.6 Generalization of service
	7.7 Different levels of sessions
	7.7.1 HTTP session
	7.7.2 Session
	7.7.3 Session context

	7.8 One service per request and session
	7.9 Linking receivers to service providers
	7.10 Service request states
	7.10.1 Message processing
	7.10.2 State diagram for service requests
	7.10.3 Message functions
	7.10.4 Specification of request timeout
	7.10.5 Message and service request return values

	7.11 Send data once only
	7.12 Message context
	7.13 General message structure
	7.14 Digital signatures
	7.15 Secure data transfer
	7.16 Additional authorization for accessing API
	7.17 Message implementation guide
	7.18 Other formats than XML for the message body
	7.19 No explicit service discovery

	8 Message exchange patterns
	8.1 General rules
	8.1.1 Application of this specification
	8.1.2 Use of reference codes
	8.1.3 Use of final flag in message header
	8.1.4 Use of service timeout or session context end
	8.1.5 Status and error codes
	8.1.6 Multiple senders
	8.1.7 Interleaving update requests with status messages

	8.2 Sequence diagrams
	8.2.1 Pattern 1: Service request and updates
	8.2.2 Pattern 2: Status poll
	8.2.3 Pattern 3: Simple report
	8.2.4 Pattern 4: Request information
	8.2.5 Pattern 5: Subscribe to service or information

	9 Using HTTP multi-part message
	9.1 General
	9.2 Example of an ISO 28005-1 multi-part message
	9.3 Content-Type: multipart/form-data
	9.4 Content-Encoding: gzip
	9.5 Prose text
	9.6 Content-Type: application, image or other
	9.7 Content-Disposition: form-data; name = name; filename = file.name;

	10 Definitions related to the message header part
	10.1 General
	10.2 epc:MessageFunctionCodeContentType – Message function code
	10.2.1 Definition
	10.2.2 Type
	10.2.3 Representation

	10.3 epc:ReplyInformationType – Type of sender response code
	10.3.1 Definition
	10.3.2 Type
	10.3.3 Representation

	10.4 epc:MessageBodyFormatContentType – Format of body data
	10.4.1 Definition
	10.4.2 Type
	10.4.3 Representation

	10.5 epc:ServiceTypeCodeContentType – Code for identification of service type
	10.5.1 Definition
	10.5.2 Type
	10.5.3 Representation

	10.6 epc:ServiceCodeContentType – Code for identification of a service in a group
	10.6.1 Definition
	10.6.2 Type
	10.6.3 Representation

	10.7 epc:StatusType – General message and service request status and error codes
	10.7.1 Definition
	10.7.2 Type
	10.7.3 Representation

	10.8 epc:SpecialAttachmentType – Description of special attachment
	10.8.1 Definition
	10.8.2 Type
	10.8.3 Representation

	10.9 epc:MessageManifestType – Number of message parts
	10.9.1 Definition
	10.9.2 Type
	10.9.3 Representation

	10.10 epc:EPCMessageHeaderType – Standard header for an EPC message
	10.10.1 Definition
	10.10.2 Type
	10.10.3 Representation

	11 Definitions related to the message body part
	11.1 General
	11.2 XML message body
	11.2.1 epc:EPCMessageBodyType – the XML body data type
	11.2.2 Structure of message body definition table

	11.3 Encryption of selected content
	11.4 UN/EDIFACT message body
	11.5 UN/EDIFACT status message
	11.6 JSON message body

	12 Definitions related to attachment message parts
	12.1 General
	12.2 Reference to an attached document in an XML body

	13 Definitions related to X.509 certificate message parts
	14 Definitions related to the digital signature message part
	14.1 General
	14.2 Signers
	14.3 epc:EPCMessageSignatureType – Digital signatures of message parts
	14.3.1 Definition
	14.3.2 Type
	14.3.3 Representation

	15 General definitions related to the use of HTTP
	15.1 Conceptual structure of a receiver
	15.2 Conceptual structure of a sender
	15.3 Transmission protocol
	15.4 Avoid use of HTTP redirect and similar mechanisms
	15.5 Optional use of HTTP keep-alive
	15.6 API access point URL
	15.7 HTTP methods
	15.8 Different types of synchronous return values
	15.8.1 General
	15.8.2 Connection error
	15.8.3 HTTP error codes
	15.8.4 Message status
	15.8.5 Service request status

	16 API access points for asynchronous HTTP communication
	16.1 General
	16.2 Message patterns to use
	16.3 No authorization on the sender’s URL

	17 API access point for synchronous HTTP communication
	17.1 General
	17.2 Message patterns to use

	18 Authorization to access API access point
	18.1 General
	18.2 The message pattern
	18.3 epc:ServiceAuthorizationType – Type of service authorization
	18.3.1 Definition
	18.3.2 Type
	18.3.3 Representation

	18.4 The message body

	19 Specifications for the message implementation guide (MIG)
	19.1 General structure of MIG
	19.2 MIG Introduction
	19.3 High level description of use case
	19.4 Prerequisites
	19.5 Message sequence diagrams

	Annex A (normative) EPC request body
	Annex B (informative) Message implementation guide for access authorization
	Annex C (informative) Message implementation guide for maritime single window and mandatory ship reporting system
	Annex D (normative) Code list for special attachments
	Annex E (normative) Message function codes for XML messages
	Annex F (normative) Message and service request status codes
	Annex G (normative) Service codes
	Annex H (normative) Software system type codes
	Annex I (normative) Code list for authenticator and contact point roles
	Annex J (normative) Codes for digital signatures
	Annex K (informative) IMO FAL mapping
	Bibliography

