TECHNICAL ISO/IEC
REPORT TR
19075-1

First edition
2011-07-15

|14

Information technology —Database
languages — SQL Technical Reports —

Part 1:
XQuery Regular Expression Suppoitin
SQL

Technologies de l'infoermation — Langages de base de donnges —
Rapport techniqgues~SQL —

Partie 1: Supportd'expressions régulieres de XQuery en SQL

Reference number
ISO/IEC TR 19075-1:2011(E)

iz o © ISO/IEC 2011

https://iecnorm.com/api/?name=5b9a7db947cf4461eaf5de3c0d2b8af9

ISO/IEC TR 19075-1:2011(E)

COPYRIGHT PROTECTED DOCUMEN

© |ISO/IEC 2011

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either 1SO at the address below or
ISO's member body in the country of the requester.

ISO copyright office

Case postale 56 ¢« CH-1211 Geneva 20

Tel. +41227490111

Fax +4122 74909 47

E-mail copyright@iso.org

Web www.iso.org

Published in Switzerland

ii © ISO/IEC 2011 — All rights reserved

https://iecnorm.com/api/?name=5b9a7db947cf4461eaf5de3c0d2b8af9

ISO/IEC TR 19075-1:2011(E)

Contents Page
0 1= (0 o A Y
INErOdUCTION. ..o N covi
N o0 01 S —
2 AQuery regular BXPreSSiONS.ttt e e e e o3
2.1 Matching a specific character. i .3
2.2 Metacharacters and €SCape SEOUENCES. v v vttt e ettt e e et e e e .4
2.3 DOt o e S .5
24 NGO, o R ..6
25 Line terminators.t T ..6
2.6 Bracket EXPrESSIONS. . . o\ttt e e LT
2.6.1 Listing characters. e T
2.6.2 Matching @ range. oot N ..8
2.6.3 NEGALION. . oo e ..8
26.4 Character class subtraction. N e .. 8
2.7 Alternation. N ..8
2.8 QUANTITIBIS. . o i e e e e .9
2.9 Locating amatCh. o N e .10
2.10 Capture and back-reference. . . (. . oo e 1
211 PrecedencCe. o e .12
212 MOOES. . ot e 13
3 Qperatorsusing regular. eXPreSSioNS.t e ... 15
3.1 LB RE G E X 0 ettt e e e e .15
3.2 OCCURRENCES REGEX. .. ittt e e e .16
3.3 POSITION S REGE X, . . oo .17
34 SUBSTRING _REGEX. ... e e .19
35 TRANSLATE REGEX. .. e e e e e e .20
Bibli Qi aPRYo e 23
8100 25

©ISO/IEC 2011 — All rights reserved Contents iii

https://iecnorm.com/api/?name=5b9a7db947cf4461eaf5de3c0d2b8af9

ISO/IEC TR 19075-1:2011(E)

(Blank page)

iv XQuery Regular Expression Support in SQL/Foundation ©ISO/IEC 2011 — All rights reserved

https://iecnorm.com/api/?name=5b9a7db947cf4461eaf5de3c0d2b8af9

ISO/IEC TR 19075-1:2011(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission)
form the specialized system for worldwide standardization. National bodies that are members of 1SO or IEC
participate in the development of International Standards through technical committees established by the

respec
collab
in liais
have e
Interna

Them
adopte
tional

In excs
that w
to pub
review

Attent
rights.

ISO/IH
Subco

ISO/IH
langug

— P3

on with 1SO and IEC, also take part in the work. In the field of information technology, 1IS©’and
btablished a joint technical committee, ISO/IEC JTC 1.

in task of the joint technical committee is to prepare International Standards. Dratt-International Sta
d by the joint technical committee are circulated to national bodies for voting.-Publication as an |
Standard requires approval by at least 75 % of the national bodies casting'a vote.

pptional circumstances, when the joint technical committee has collécted data of a different kind
nich is normally published as an International Standard (“state of the art”, for example), it may d
ish a Technical Report. A Technical Report is entirely informative in nature and shall be subject
every five years in the same manner as an International Standard.

on is drawn to the possibility that some of the elements:of this document may be the subject of |
ISO and IEC shall not be held responsible for identifying any or all such patent rights.

C TR 19075-1 was prepared by Joint Technical-Committee ISO/IEC JTC 1, Information techno
mmittee SC 32, Data management and interchange.

C TR 19075 consists of the following parts, under the general title Information technology — D4
ges — SQL Technical Reports:

rt 1: XQuery Regular Expression-Support in SQL

tional Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

IVE organization 1o deal with particular Tields of technical activity. ISO and TEC technical commjttees
prate in fields of mutual interest. Other international organizations, governmental and non-governmental,

IEC

ndards

nterna-

from
ecide
to

atent

ogy,

tabase

©ISO/IE

C 2011 - All rights reserved Foreword v

https://iecnorm.com/api/?name=5b9a7db947cf4461eaf5de3c0d2b8af9

ISO/IEC TR 19075-1:2011(E)

I ntroduction

The organization of this part of ISO/IEC TR 19075 is as follows:
1) Clause 1, “Scope”, specifies the scope of this part of ISO/IEC TR 19075.

2) Clpuse 2, “XQuery regular expressions”, explains how XQuery regular expressions are formed.

3) Clause 3, “Operators using regular expressions”, explains how the SQL operators use regular'expressions.

vi XQuery Regular Expression Support in SQL/Foundation ©ISO/IEC 2011 — All rights reserved

https://iecnorm.com/api/?name=5b9a7db947cf4461eaf5de3c0d2b8af9

TECHNICAL REPORT ISO/IEC TR 19075-1:2011(E)

| nfor mation technology — Database languages — SQL Technical Reports —

Part 1:
XQuery Regular Expression Support in SQL

1 Stope

This Technical Report describes the regular expression support in SQL adopted from the regular expregsion
syntax|of [XQuery F&O], which is derived from Perl. This Technical Report diSeusses five operators using
this regular expression syntax:

— LIKE_REGEX predicate, to determine the existence of a match to ategular expression.
— OCCURRENCES_REGEX numeric function, to determine the number of matches to a regular exprgssion.
— PAQSITION_REGEX function, to determine the position of a match.

— SUBSTRING_REGEX function, to extract a substringmatching a regular expression.

— TRANSLATE_REGEX function, to perform replacements using a regular expression.

©ISO/IEC 2011 — All rights reserved Scope 1

https://iecnorm.com/api/?name=5b9a7db947cf4461eaf5de3c0d2b8af9

ISO/IEC TR 19075-1:2011(E)

(Blank page)

2 XQuery Regular Expression Support in SQL/Foundation ©ISO/IEC 2011 — All rights reserved

https://iecnorm.com/api/?name=5b9a7db947cf4461eaf5de3c0d2b8af9

2 X

ISO/IEC TR 19075-1:2011(E)
2.1 Matching a specific character

Query regular expressions

XQuery regular expression syntax is specified in [XQuery F&Q] section 7 6 1,_“Reqular expression syntax”.

Thisp
inan K
provid

The X
[XML

This s¢
sectior

section.

bper references the XQuery specification, with two small modifications (required since character
DBMS are not necessarily normalized according to XML conventions). The following subsectid
b an overview of this syntax.

Duery regular expression syntax is itself a modification of another regular expressiofrsyntax fou
Schema: Datatypes].

ction presents an overview of the capabilities of XQuery regular expression syntax. In the proce
will illustrate some of the SQL operators. The SQL operators themselves are presented in the n

The fo,rlowing discussion does not cover every aspect of XQuery regular €xpressions; for this, [XQuery

is the
expres

2.1

Perhag
For mq
you w

S

Note t
regula
values

XYy
ab
1

Note t
tested
occu

eference (though hardly a tutorial; a variety of popular works contain detailed treatments of regu
5i0NS).

M atching a specific char acter

s the most elementary pattern matching requirement is the ability to match a single character or
st characters, this is done by simply writing'the character in the regular expression. For example, s
int to know if a string S contains the letters “xyz”. This could be done with the following predia

| IKE_REGEX “"xyz*"

pat the SQL LIKE predicate would require an exact match for “xyz”. However, the convention v

of S would yield True for the predicate above:

4
CXyz123
KyZ 2 Xyz_3:-Xyz

pat in the last example, there are actually three occurrences of the regular expression “xyz” with
value: The user may wish to know the number of occurrences of a match. This can be done with
RRENCES_REGEX. For example:

5trings
ns

nd in

5s, this
pXt

F&O]
lar

string.
ippose
ate:

vith

expressions is that S need only contain a substring that is “xyz”. For example, all of the followjing

in the

OCCURRENCES_REGEX ("xyz" IN "1 xyz 2 xyz 3 xyz") = 3

The user might also wish to know the position of a specific match. This can be done using POSITION _REGEX.
For example, to learn the starting character position of the second occurrence,

POSITION_REGEX ("xyz" IN "1 xyz 2 xyz 3 xyz" OCCURRENCE 2) = 9

It is also possible to ask for the character position of the first character after the match. For example:

©ISO/IEC 2011 — All rights reserved

XQuery regular expressions 3

https://iecnorm.com/api/?name=5b9a7db947cf4461eaf5de3c0d2b8af9

ISO/IEC TR 19075-1:2011(E)

21 M

atching a specific character

POSITION_REGEX (AFTER "xyz" IN "1 xyz 2 xyz 3 xyz" OCCURRENCE 2) = 12

If AFTER is used and the last character of the subject string is consumed, then the result is the length of the
string plus 1 (one):

POSITION_REGEX (AFTER "xyz" IN "xyz") = 4

2.2

ASs me
Howe

SN2+ LFOIL1INS

The us

need td use an escape sequence, consisting of a backslash (“/”) followed.by the metacharacter. For ex3

to test

S

In particular, the escape sequence representing a backslash is-fwo consecutive backslashes. There are v

other @
charag

\n
\r
\t
\-
The sg

M etachar acter s and escape sequences

htioned, most characters can be matched by simply writing the character in the regular expressio
er, certain characters are reserved as metacharacters. The complete list of metacharacters is:

e of each of these metacharacters will be explained later. If you want te'match a metacharacter, th

whether a string contains a dollar sign, you could write

| IKE_REGEX “\$~

efined escape sequences, matching either a single character, or any of a group of characters. The
ter escape sequences are:

newline (U+000A)
return (U+000D)
tab (U+0009)
minus sign (-

-called category escapes arexexemplified by “\p{L}” or “\p{Lu}”. A category escape begins

u\p{i
exam

Some |nteresting category escapes are listed below:
\p{lL} Any letter,
\p{lLu} Any-uppercase letter.
\p{lLI} CAny lowercase letter.
\p{INd}"_Any decimal digit

followed by one uppercase’ letter, optionally a lowercase letter, and then the closing brace. In th
le, “\p{L}" matches'any letter (as defined by Unicode) and “\p{Lu}” matches any uppercase

-

en you
mple,

Arious
single

With
bse
letter.

\p{P} Any punctuation mark.

\p{Z} Any separator (space, line, paragraph, etc.).

The complete list of category escapes is found in [XML Schema: Datatypes], section F.1.1, “Character class

escape

S”.

There are also complementary category escapes, which are exemplified by “\P{L}” or “\P{Lu}”. A comple-
mentary category escape matches any character that would not be matched by the corresponding category

4 XQuery Regular Expression Support in SQL/Foundation

©ISO/IEC 2011 — All rights reserved

https://iecnorm.com/api/?name=5b9a7db947cf4461eaf5de3c0d2b8af9

ISO/IEC TR 19075-1:2011(E)
2.2 Metacharactersand escape sequences

escape. The difference is that the (positive) character escape is written with a lowercase “p” whereas the com-
plementary character escape is written with an uppercase “P”.

The so-called block escapes match any character in a block of Unicode, that is, a predefined consecutive range
of code points. For example, “\p{IsBasicLatin}” matches the ASCII character set. There are also com-
plementary block escapes, such as “\P{IsBasicLatin}”, which matches any single character that is not
an ASCII character.

Finally, there are the following multi-character escape sequences:

\s As defined by [XML Schema: Datatypes], this escape matches space (U+0020), tab,(U+0009),
newline (U+000A), or return (U+000D). Since character strings in an RDBMS have not undergone
XML line termination normalization, we broaden it to include any character or.two-character
sequence that is recognized by [Unicode18] as a line terminator. Subclause 2:5\“Line terminators”,
discusses this issue further.

\S Any single character not matched by \s.
\i Underscore (“_"), colon (“:™) or letter (this is a lot more than just the Latin letters; see [XML 1.0]
appendix B, rule [84]).
\l Any single character not matched by \1i.
\c Any single character matched by NameChar, as defined in [XML 1.0] section 2.3, rule [4],
\C Any single character not matched by \c.
\d Any single digit
\D Any single character not matched by \d.
\w Any single Unicode character except those classified as “punctuation”, “separator”, or “other”.
\W The complement of \w.
2.3 | Dot
Dot (pgriod, “.") is a metacharacter that is used to match any single character (the same behavior as “ |” in

LIKE predicates), or,any’single character that is not a line terminator. The default is to match anything except

a line ferminator. The'alternative, called dot-all mode, is specified using a flag that contains a lowercasg “s”.

For example

S LIKE, REGEX "a.b*

matches the following:

"xalby*

but not the following:

"xa
by*

because the character between the “a” and the “b” is a line terminator. However, using dot-all mode like this:

©ISO/IEC 2011 — All rights reserved XQuery regular expressions 5

https://iecnorm.com/api/?name=5b9a7db947cf4461eaf5de3c0d2b8af9

ISO/IEC TR 19075-1:2011(E)
2.3 Dot

S LIKE_REGEX "a.b" FLAG "s*

would

24

match both examples.

Anchors

We haye seen that regular expressions look for a match anywhere within a string, without needingto'm
the entlire string. But what if you want to require a match of the entire string? For this, you can-use anc
The anchors are the metacharacters “~” for the start of a string (or line), and “$” for the end of a'string (g
For example:

S
can on

Ancho

S

IKE_REGEX "/xyz$"
y match a string that is precisely 'xyz'.

Irs may be used separately to require a “begins with” or “end with” match. For example

| IKE_REGEX "~xyz*

atch
nors.
r line).

matchgs any string that begins with “xyz”, and

S LIKE_REGEX *xyz$"
matchgs any string that ends with “xyz”.
Instead of matching the begin or end of the string, the anchors may be used to anchor a match to the begin or
end offa line, by performing the match in multi-line mode. Multi-line mode is specified using a flag confaining
a lowercase “m”. For example:

S LIKE_REGEX *~xyz" FLAG "m"
performs an anchored search in multizline mode, matching any string containing a line that begins with ‘fxyz”.
The eample above would matchrthe following string:

“Ifine one

Xy

lipe three”
2.5 | Lineterminators
The metacharacters -, "~ and“$"and the mufti-character escape Sequences ~“\sand“\S™are defined in

terms of a “line terminator”. What counts as a line terminator? [XQuery F&O] only recognizes a line feed
(U+000A) as a line terminator. This definition works well for XQuery, because XML normalizes the line ter-
minators on various platforms to a line feed.

A closer look shows that XML has two definitions of line handling, in section 2.11, “End-of-line handling”,
of [XML 1.0] and [XML 1.1]. So which should we use for SQL?

A first stop in answering this is to look at [SQL/XML WD] Subclause 6.17, “<XML query>", which requires
XML 1.0 as a basic level of support, and permits XML 1.1 support in the form of Feature X211, “XML 1.1

6 XQuery Regular Expression Support in SQL/Foundation

©ISO/IEC 2011 — All rights reserved

https://iecnorm.com/api/?name=5b9a7db947cf4461eaf5de3c0d2b8af9

ISO/IEC TR 19075-1:2011(E)
2.5 Lineterminators

support”. So, we might specify that the character string is normalized according to either XML 1.0 or XML
1.1 as an implementation-defined choice, or perhaps via a conformance feature.

However, some of the line terminators, even in XML 1.0, are two-character sequences. XML normalizes its
input, which means that such two-character sequences are converted to a single character. This changes the
relative position of every subsequent character, which would cause unexpected results for POSITION_REGEX.

Our solution is to look to [Unicode18], a Unicode standard containing guidelines for regular expression proces-

sors. Ti
charac

2.6

So far,
Using
these ¢

A brag
have a

N

For cla

26.1

If a brs
single

S

matchg

"s
"b|
|

All ba
a caret

his provides a referenceable definition of line terminator that does not require normalizing the.su
fer string.

Bracket expressions

bracket expressions, you can specify your own group of characters. (XML Schema and XQuery
haracter class expressions, but the term bracket expression is in commoh use.)

ket expression is begun by a left bracket “[” and terminated by aright bracket “]”. Bracket expre
different list of special characters, namely

L1\
rity, we will call these special characters, in contrasp te the metacharacters listed earlier.

Listing characters

cket expression does not contain any.of the special characters, then the bracket expression match
character that is listed between the)brackets. For example,

| IKE_REGEX "[abc]"
s any of the following:
s\

py *

pck*®

tkslash €scape sequences are available for use within a bracket expression. For example, to match
or a-backslash, you can use

bject

we have seen how to match a specific character, or any character from certain{predefined sets of characters.

call

pSsions

es any

either

S

IKE REGEX "[\™\\]"

To match all letters or digits, one might use

S

where

©ISO/IEC 2011 — All rights reserved

LIKE_REGEX *[\p{L}\p{Nd}]"
“\p{L}” is the escape matching any letter and “\p{Nd}” is the escape matching any digit.

XQuery regular expressions 7

https://iecnorm.com/api/?name=5b9a7db947cf4461eaf5de3c0d2b8af9

ISO/IEC TR 19075-1:2011(E)
2.6 Bracket expressions

2.6.2

Matching arange

A minus sign “-"" is used to specify a character range. For example:

S LIKE_REGEX "[sa-my]"

matches the lowercase letters “s”, all the letters between “a” and “m” inclusive, and “y”. Ranges are defined

in termmmmﬂﬁmmmﬂmmﬁmm

match

Using
advice

2.6.3

A care
the set

S

is Trug

264

A brag
called
is to be

S

matchd

is equipalent to:

S

Seemi

pf the ranges. For example:
| IKE_REGEX "[a-me-z]"
s all lowercase letters.

A special character in a range is sometimes permitted, but tricky. Rather than present the rules he
is to use a backslash escape if the start or end point of a range must be a special character.

Negation

[“/\” is a special character when it is the first character of a‘hracket expression, where it indicate
of characters is anything not listed by the following bracket expression. For example:

| IKE_REGEX "[~aj-m]"

if S contains any character that is not “a”, “j™*%.<k”, “1”, or “m”

Character class subtraction

ket expression may conclude with a minus sign “-" followed by a nested bracket expression. Th
A character class subtraction,-and indicates that any character matched by the nested bracket exp
b removed from the set of\‘characters that might be a match. For example:

| IKE_REGEX "[a-z=[m-p11"

S anything between “a” and “z”, except for the letters between “m” and “p”, inclusive. This exa

| IKE_REGEX "[a-l1g-z]"

es the

re, our

s that

is is
ession

mple

cket

ngly you can nest character class subtractions indefinitely. This concludes the presentation of bra

expres

2.7

tORS:

Alternation

You can specify a choice of regular expressions using a vertical bar “]”. For example:

8 XQuery Regular Expression Support in SQL/Foundation

©ISO/IEC 2011 — All rights reserved

https://iecnorm.com/api/?name=5b9a7db947cf4461eaf5de3c0d2b8af9

S

ISO/IEC TR 19075-1:

2011(E)

2.7 Alternation

LIKE_REGEX "a]b"

is True if S contains either an “a” or a “b”.

Alternation has lower precedence than concatenation. Thus

S

LIKE_REGEX "ab]xyz"

is True

if S contains either “ab” or “xyz”. To override this precedence, you can use parentheses, such

examplle:

S
The pn

2.8

| IKE_REGEX "a(b|xy)z"

pceding example is True if S contains either “abz” or “axyz”.

Quantifiers

as this

Quantifiers are metacharacters that specify a match for some number of repetitions of a regular expression.

There pre two sets of quantifiers, the greedy and the reluctant. The greedy quantifiers are:

{n} Exactly n repetitions.

{n] n or more repetitions.

{n,m} Between nand mrepetitions, inclusive.

? 0 (zero) or 1 (one) repetition; equivalentto {0,1}.

* 0 (zero) or more repetitions; equivalent to {0,}.

+ 1 (one) or more repetitions; equivalent to {1,}.
The rgluctant quantifiers are formed-by suffixing a question mark to a greedy quantifier. Thus, “*?” is
reluctgnt form of “*”, and “??"is:the reluctant form of “?”. The greedy quantifiers try to match as mu
possible, whereas the reluctant quantifiers try to match as little as possible (while still allowing the ove
regulaf expression to match): There is no difference in behavior between the greedy and reluctant quan
for LIKE_REGEX. We Will look at this difference for the other operators shortly.
Examples:

S LIKE_REGEX "a{3}"

is equi

alent to

the
ch as
rall
tifiers

S LIKE_REGEX “aaa”

and matches any string containing at least three consecutive instances of “a”. Note that if S contains more than
three consecutive instances of “a”, it still matches; to test whether S contains a substring of three consecutive
instances of “a” and no more is a lot harder, since you have to also require something other than an “a” at both
ends of the substring.

S LIKE_REGEX "ab+c*

is equivalent to

©ISO/IEC 2011 — All rights reserved

XQuery regular expressions 9

https://iecnorm.com/api/?name=5b9a7db947cf4461eaf5de3c0d2b8af9

ISO/IEC TR 19075-1:2011(E)
2.8 Quantifiers

S LIKE_REGEX "ab{1,}c"

and matches any string that contains a substring consisting of an “a”, one or more “b”s, and then a “c”.

2.9 Locatingamatch

LIKE_[REGEX only cares whether a match exists; the other operators care about where a match is\ocated in

the string. Consider the regular expression “a+” and the string “**alaa2aaa3”. There are ten possible matches

for “at”, indicated by the underlining on the following lines:
"aflaa?aaa3" -- position 1, length 1
"allaa2aaal3" -- position 3, length 1
"allaa?aaa3" -- position 3, length 2
"allaa?aaal3" -- position 4, length 1
"aflaa?aaa3" -- position 6, length 1
"aflaa?aaa3" -- position 6, length 2
"aflaa?aaa3" -- position 6, length 3
"aflaa?aaa3" -- position 7, length 1
"aflaa?aaal3" -- position 8, length 2
"aflaa?aaal3" -- position 9, length 1

Notice| that some of the matches are substrings of otherimatches. The rules of XQuery regular expressipns are

designgd to ignore certain matches, so that the recognized matches are mutually disjoint. Obviously thegre are

many yvays to do this, so the rules provide priorities in determining the recognized matches. There are three
priorit(es:

1) THe top priority is to find a match as early in the string as possible. This is commonly called the leftmost
rule.

2) THhe second priority is to find.the first alternative of an alternation, if possible. We are unaware of a common
name for this rule.

3) THe last priority is tofind the longest possible match for greedy quantifiers, and the shortest match(for
refuctant quantifiers. in the case of greedy quantifiers, this is commonly called the longest rule; welare
unpware of a common name for the rule regarding reluctant quantifiers.

[Histofical note:-POSIX only has a leftmost longest rule. There were no reluctant quantifiers, and the priority

for matching-alternations was the longest match rather than the first alternative.]

These yules-will be illustrated by examples:

Subject regular match(es) priority

string expression underlined

baaaaaa bala* baaaaaa leftmost (even though baaaaaa would be longer);
baaaaaa second match must start after the first match

ab alab ab first alternative (rather than matching ab)

10 XQuery Regular Expression Support in SQL/Foundation

©ISO/IEC 2011 — All rights reserved

https://iecnorm.com/api/?name=5b9a7db947cf4461eaf5de3c0d2b8af9

ISO/IEC TR 19075-1:2011(E)
2.9 Locatingamatch

Subject regular match(es) priority
string expression underlined
abcabbabc ab* abcabbabc leftmost
abcabbabc longest (greedy guantifier consumes two "b"s)
abcabbabc longest
abcalibabc ab*? abcabbabc shortest (no need to match "b")
abcabbabc shortest
abcabbabc shortest

2.10 | Capture and back-reference

A pargnthesized sub-expression is a portion of a regular expression that is enclgsed in parentheses. Parentt
sub-expressions are numbered in order of their left parenthesis. For examplé, in the regular expression

@ 1))
there gre three sub-expressions:
D @21())
2) (@D
3)

A sub-expression can be referenced later in a regular expression using a back-reference, taking the forr]
backslash followed by one or more digits. Thus the three sub-expressions in the example can be referer]
“\1”, ['\2", and “\3”. For example, consider the regular expression:

\PLZF A\P{LIINP{Z}\1I\p{Z}

The first and only parenthesized-stib-expression (“\p{L}*”") matches any sequence of letters that is bq
by some kind of space character (“\p{Z}”) before and after the sequence of letters. The back-reference
matchgs whatever sequence of letters was captured by the first sub-expression. This regular expression
be usefl to search for occurrences of a repeated word (perhaps caused by a cut-and-paste error). Here is
examplle of a subjeet string, with underlining to indicate the match for the entire regular expression:

Helllo Dollly you"re_looking looking swell

When g backreference references a parenthesized group with a quantifier, then the back-reference matc

esized

nof a
ced as

unded
ll\lll)
might

an

hes the

last iteratioh of the quantified sub-expression. For example, consider the regular expression:

(ab)*c*\1"
and the subject string:

"abbbabbabcabbbbb*

The matches to “(ab™*)” are shown by underlining below:

"abbbabbabcabbbbb*

©ISO/IEC 2011 — Al rights reserved XQuery regular expressions 11

https://iecnorm.com/api/?name=5b9a7db947cf4461eaf5de3c0d2b8af9

ISO/IEC TR 19075-1:2011(E)
2.10 Capture and back-reference

"abbbabbabcabbbbb*®
"abbbabbabcabbbbb*®

These three iterations of “(ab*)” are matched by “(ab*)*” and then the “c” is matched. Next, we need to
match “\1”. The last match for the first parenthesized sub-expression is “ab”, so the overall match is indicate
by underlining below:

"abbbabbabcabbbbb*"

In the pvent that a sub-expression is unmatched, a back-reference to it matches the zero-length string. Hor
examplle, consider the regular expression:

"((@*) | (b*))c??\3"
and th¢ subject string:

"Xlyzaaccb*®

In thislexample, the alternation “((a*) | (b*))” matches the “aa”, which is a match for the first alterpative.
Thus there is no match for the second alternative, “(b*)”. The “c?” preféers.to match a zero-length string
(though it could match the “c”), and the “\3” must match a zero-length-string. Thus, the complete substring
that is jmatched is underlined below:

Xlyzaacch”

2.11 | Precedence

The precedence of operators outside bracket expressions is as follows (from highest to lowest):
— Hipghest precedence: atoms, defined as:

* | Parentheses.

* [Individual characters.

* | Escape sequences.

o | Dot (“.”)

| Anchors (:a%,“$”)

| Bracket.expressions.

— Quantifiers.

— Concatenation.

— Alternation (lowest).

Examples:

1) Quantifiers have higher precedence than concatenation:

ab™ is equivalent to a(b*)

12 XQuery Regular Expression Support in SQL/Foundation ©ISO/IEC 2011 — All rights reserved

https://iecnorm.com/api/?name=5b9a7db947cf4461eaf5de3c0d2b8af9

ISO/IEC TR 19075-1:2011(E)
2.11 Precedence

2) Concatenation outranks alternation:

ab|cd is equivalent to (ab) | (cd)

2.12 Modes

The preceding discussion has mentioned two of the flags, “s” to specify dot-all mode, and “m” to specify|multi-
line mpde. There are two additional flags, “i” for case-insentive mode, and “x” to disregard white-spage in
regulaf expressions for readability. The complete set of modes is:

"s" [Specifies dot-all mode, in which a period matches any character. If “s” is not specified, then a period
matches any single character except a line terminator.

"m" [Specifies multi-line mode, in which the anchors match the beginning or endof a line. If “m” is npt
specified, then the anchors match the beginning or end of the subject string.

i" [Specifies case-insensitive mode.

X" [Specifies that white space characters in a regular expression are ignored. This allows you to set off pprtions
of a regular expression for greater readability.

©ISO/IEC 2011 — All rights reserved XQuery regular expressions 13

https://iecnorm.com/api/?name=5b9a7db947cf4461eaf5de3c0d2b8af9

ISO/IEC TR 19075-1:2011(E)

(Blank page)

14 XQuery Regular Expression Support in SQL/Foundation ©ISO/IEC 2011 — All rights reserved

https://iecnorm.com/api/?name=5b9a7db947cf4461eaf5de3c0d2b8af9

ISO/IEC TR 19075-1:2011(E)

31 LIKE_R

3 Operatorsusing regular expressions

SQL ¢

ontains five aperators that use the XQuery reqular expression syntax:

EGEX

1) LI
2) Of
in
3) PC
ex
4) SU
in

5) TR
to

3.1

LIKE_
The syf

<rege

where
— <
— <)

— <)
F&

The re

CCURRENCES_REGEX — numeric function returning the number of matches for a regular exp
a string.

SITION_REGEX — numeric function returning the position of the start of a match for a regula
bression in a string, or the position of the next character after a match.

BSTRING_REGEX — character string function returning a substring that.matches a regular exp
a string.

ANSLATE_REGEX — character function that performs a replacement operation on one or all
A regular expression in a string.

LIKE_REGEX

REGEX is a predicate that returns True if a substring of a string matches a regular expression.
ntax is:

like predicate> :@:=
row value predicand>

[NOT] LIKE_REGEX <XQuery pattern>
[FLAG <XQuery option~flag>]

bw value predicand=\is the subject string to be searched for matches to the <XQuery pattern>.
Query pattern>\is'a character string expression whose value is an XQuery regular expression.

(Query optionflag> is an optional character string, corresponding to the $flags argument of the [X
LO] function Fn:-match.

sult is-Unknown if any of the operands is the null value, True if there is a substring that matches

<XQu

KE_REGEX — predicate that returns True if a substring of a string matches a regular expression.

ession

-

ession

atches

Query

the

pry.pattern> in the <row value predicand>, and False if there is no match.

Note that unlike LIKE, LIKE_REGEX can return Truewithout matching the entire string. The usual convention
for regular expression matching is to search for a match somewhere within the searched string, without neces-
sarily matching the entire string. The user may use anchors to require a match to the entire string.

Exceptional cases:

— If any of the parameters is the null value, the result is Unknown.

— If the pattern or flag is not valid, then an exception condition is raised.

©ISO/IEC 2011 — All rights reserved

Operatorsusing regular expressions 15

https://iecnorm.com/api/?name=5b9a7db947cf4461eaf5de3c0d2b8af9

ISO/IEC TR 19075-1:2011(E)
3.1 LIKE_REGEX

Examples:

"abcde®™ LIKE _REGEX "c*" evaluates to True.

"abcde® LIKE _REGEX "x" evaluates to False.

"abcde®™ LIKE _REGEX CAST (NULL AS CHAR(10)) evaluates to Unknown.

3.2

occu
a strin

<rege
OCCURRENCES_REGEX <left paren>

where

The <
positign>, which'is measured in the units specified by <char length units>, either CHARACTERS or OC
The repult is.the number of matches.

a

cde” LIKE REGEX "\ " rajses an nyr‘npfinn condition.In this ny:\mpln, “N" is not awell-fo

regy

ali

<

<
F&

<r

<S
stg

<d
(th

lar expression.

OCCURRENCES_REGEX

occurrences function> ::=

<XQuery pattern> [FLAG <XQuery option flag> }
IN <regex subject string>

[FROM <start position>]

[USING <char length units>] <right paren>

(Query pattern> is a character string expression whose value is an XQuery regular expression.

Query option flag> is an optional character string, corresponding to the $flags argument of the [X
LO] function fn:match.

bgex subject string> is the character string to be searched for matches to the <XQuery pattern>.

art position> is an optional’ exact numeric value with scale 0 (zero) specifying the position at wh
rt the search (the default is position 1 (one)).

har length units>issCHARACTERS or OCTETS, indicating the unit in which <start position> is mg
e default is to‘'measure in CHARACTERS).

med

cde™ LIKE REGEX "x" FLAG "?" raises an exception condition. In this example;the flgg “?”
is invalid.

RRENCES_REGEX is a numeric function returning the number of matches for a regular expression in
J. The syntax is:

Query

ich to

asured

egex subject string> is searched for matches to the <XQuery pattern>, starting from position <start

TETS.

Exceptiomatcases:

— If any of the parameters is the null value, then the result is the null value.

16

If the pattern or flag is not valid, then an exception condition is raised.

If a starting position is given in octets, but it is not the first octet of a character, then the result is implemen-

tat

ion-dependent. The use of OCTETS is discussed under POSITION_REGEX.

If any of the numeric parameters is too large or too small, then the result is —1. This includes the following
cases:

XQuery Regular Expression Support in SQL/Foundation

©ISO/IEC 2011 — All rights reserved

https://iecnorm.com/api/?name=5b9a7db947cf4461eaf5de3c0d2b8af9

ISO/IEC TR 19075-1:2011(E)
3.2 OCCURRENCES_REGEX

The starting position is less 1 (one).

The starting position is greater than the length of the string (measured in CHARACTERS or OCTETS

as specified by <char length units>).

Examples:

OCCURRENCES_REGEX ("a" IN "what is that?") evaluatesto 2.

3.3

POSIT
a matc

<rege

<rege

where

©ISO/IEC 2011 — All rights reserved

0C(
0C(
0C(

P

S
| A

ST
thd
co

<

<
[X

<r

URRENCES_REGEX ("a" IN "what is that?" FROM 5) evaluatesto 1 (one).
URRENCES_REGEX ("A" FLAG "i" IN “"what is that") evaluatesto 2
URRENCES_REGEX ("A" IN “what is that") evaluates to O (zero).

POSITION_REGEX

ION_REGEX is a numeric function returning the position of the start.ef a match, or one plus the
h, for a regular expression in a string. The syntax is:

position expression> ::=
SITION_REGEX <left paren> [<regex position start or after>]
<XQuery pattern> [FLAG <XQuery option flags]
IN <regex subject string>
[FROM <start position>]
[USING <char length units>]
[OCCURRENCE <regex occurrence>]
[GROUP <regex capture group>] .<right paren>

position start or after> ::=

[ART
FTER

IART indicates that the starting position of the match to the regular expression is desired; AFTER in
t the character position.immediately following the match is desired (START is the default). If the
hsumes the last character of the subject string, then AFTER returns the length of the string plus 1

(Query patterns is a character string expression whose value is an XQuery regular expression.

(Query aption flag> is an optional character string, corresponding to the $flags argument of th
Query-E&O] function fn:match.

bgex.Subject string> is the character string to be searched for matches to the <XQuery pattern>.

end of

dicates
match
(one).

<start position> is an optional exact numeric value with scale 0 (zero), identifying the character position
at which to start the search (the default is 1 (one)).

<char length units> is CHARACTERS or OCTETS, indicating the unit in which <start position> is measured,
and the unit in which the returned position is measured (the default is to measure in CHARACTERS).

<regex occurrence> is an optional exact numeric value with scale 0 (zero) indicating which occurrence of
a match is desired (the default is 1 (one)).

Operatorsusing regular expressions 17

https://iecnorm.com/api/?name=5b9a7db947cf4461eaf5de3c0d2b8af9

ISO/IEC TR 19075-1:2011(E)
3.3 POSITION_REGEX

— <regex capture group> is an optional exact numeric value with scale 0 (zero) indicating which capture
group of a match is desired (the default is O (zero), indicating the entire occurrence).

The <regex subject string> is searched for matches to the <XQuery pattern>. If there are at least RO matches,
where RO is the value of <regex occurrence>, then either the starting position of the RO-th match, or the position
immediately following the RO-th match, is returned (for the START or AFTER options, respectively). Positions
are measured in the units specified by <char length units>, either CHARACTERS or OCTETS. If a <regex

capturegroup> CAP is cpnr‘ifind, then the pncifinn at the start or immnr‘linmly fnlln\l\ling the cllhcfring that

matchd

With A
of the
reques
match
subjec
string.
length
AFTE

OCTE

s the CAP-th parenthesized subexpression is used.

However, when doing this, the user must beware of a pitfall: if the regular€xpression matches a
string, then the AFTER position and the START position are the same, and resuming the search
R position will simply find the same zero-length match again.

Itise

positign of some occurrence within a string, measured in octets. Thatvalue is then known to be the firs
of a character, and may be used as a starting position in other function invocations. If the user picks an ar
octet number, it may be other than the first octet of a character~Naturally, beginning a regular expression
at such an octet can produce unpredictable results. Therefore'we say that the result is implementation-dep
if a starting octet is not the first octet of a character.

Excepfional cases:
— If gny of the parameters is the null value, the result is the null value.
— If the pattern or flag is not valid, then an‘exception condition is raised.

— If g starting position is given in octets, but it is not the first octet of a character, then the result is imp

ta

— If
lo

TS is provided for efficient processing for those UCS encodings that.do not have a fixed character
pected that the user will use the output of POSITION_REGEX,~". USING OCTETS ...) to lear

on-dependent.

ving cases:
The starting pasition is less 1 (one).

The starting-position is greater than the length of the string (measured in CHARACTERS or O(
as spegified by <char length units>).

Theré are not at least RO matches.

FTER, note that the position returned is the one after the match. If the match consumes the'last character
5tring, then the position returned is actually one plus the length of the string (in characters or octgts, as
ted by <char length units>). The rationale for providing the position that is 1 (one)aftér the end pf the
is that this is the correct place to begin a search for the next match. If the user wishes to process fthe
string in a loop, the loop can continue until the AFTER position is greater than the length of the subject

zero-
at the

width.
n the

[octet
bitrary
match
endent

emen-

hny of the numeric parameters is too large or too small, then the result is O (zero). This includes the fol-

LTETS

A

e =Y D) - l L -
TTIETE dl® TTUL ULAF PdlETIUIESIZEU SUDUEXPTESSIUTTS.

Examples:
POSITION_REGEX ("a® IN "what is that?") evaluatesto 3.
POSITION_REGEX (START "a" IN "what is that?") evaluatesto 3.
POSITION_REGEX (AFTER "a" IN "what is that?") evaluates to 4.
POSITION_REGEX (AFTER "a®" IN "a") evaluates to 2.

18 XQuery Regular Expression Support in SQL/Foundation

©ISO/IEC 2011 — All rights reserved

https://iecnorm.com/api/?name=5b9a7db947cf4461eaf5de3c0d2b8af9

ISO/IEC TR 19075-1:2011(E)
3.3 POSITION_REGEX

POSITION_REGEX
POSITION_REGEX
POSITION_REGEX
POSITION_REGEX

POSITION REGEX

a” IN "what is that?" FROM 5) evaluatesto 11.
a” IN "what i1s that?" OCCURRENCE 2) evaluatesto 11.
"(2A)()" IN "what is that?" GROUP 2) evaluates to 4.

"A" FLAG "i" IN "what is that") evaluatesto 3.

"A*" IN "what is that")n\/nlllnmcfnﬂ

N A~~~

34 | SUBSTRING_REGEX

SUBSTRING_REGEX is a character string function returning a substring that matcheS:a-regular expression in
a string. The syntax is:

<regex substring function> ::=

SUBSTRING_REGEX <left paren>

<XQuery pattern> [FLAG <XQuery option flag>]
IN <regex subject string>

[FROM <start position>]

[USING <char length units>]

[OCCURRENCE <regex occurrence>]

[GROUP <regex capture group>] <right paren>

where
— <XQuery pattern> is a character string expression‘'whose value is an XQuery regular expression.

— <XQuery option flag> is an optional charactérstring, corresponding to the $Fflags argument of the
[XQuery F&O] function fn:match.

— <rggex subject string> is the character string to be searched for matches to the <XQuery pattern>.

— <sfart position> is an optional exact numeric value with scale 0 (zero), indicating the character position at
which to start the search (the-default is position 1 (one)).

— <char length units> is CHARACTERS or OCTETS, indicating the unit in which <start position> is mgasured
(tHe default is to measure in CHARACTERS).

— <rggex occurrenee>-is an optional exact numeric value with scale 0 (zero) indicating which occurrénce of
a match is desired (the default is 1 (one)).

— <rggex captufe group> is an optional exact numeric value with scale 0 (zero) indicating which capture
group of a match is desired (the default is O (zero), indicating the entire occurrence).

The <regex-subject-string>is-searched-for-matches-to-the<XQuery-patterr>—H-there-are-atleast RO-matches,
where RO is the value of <regex occurrence>, then the result is the substring that is the RO-th match. If <regex
capture group> CAP is specified, then the result is the substring that matches the CAP-th parenthesized substring
within the substring that is the RO-th match. If there are not at least RO matches, or at least CAP parenthesized
subexpressions, the result is the null value.

The exceptional cases are:

— If any of the parameters is the null value, the result is the null value.

©ISO/IEC 2011 — All rights reserved Operatorsusing regular expressions 19

https://iecnorm.com/api/?name=5b9a7db947cf4461eaf5de3c0d2b8af9

ISO/IEC TR 19075-1:2011(E)
3.4 SUBSTRING_REGEX

— If the pattern or flag is not valid, then an exception condition is raised.

— Ifastarting position is given in octets, but it is not the first octet of a character, then the result is implemen-
tation-dependent.

— If any of the numeric parameters is too large or too small, then the result is the null value. This includes
the following cases:

Examy
SUE
SUE

SUE
stri

SUH
strif

3.5

TRAN
matchg

<rege

TRANSLATE_REGEX <left paren>

<rege
<

The startimyg position s tess tham I (one).

The starting position is greater than the length of the string (measured in CHARACTERSor O(
as specified by <char length units>).

There are not at least RO matches.

There are not CAP parenthesized subexpressions.

les:

STRING_REGEX ("\p{L}*" IN “what is that?") evaluates to the string “what”.
STRING_REGEX ("\p{L}*" IN "what is that?" FROM 2) evaluates to the string |
STRING_REGEX ("\p{L}*" IN “"what is that?* OCCURRENCE 2) evaluatest
g“is”.

STRING_REGEX ("(is) (\p{L}*)" IN “what is that?" GROUP 2) evaluate
g “that”.

TRANSLATE_REGEX

SLATE_REGEX is a character string function that performs a replacement operation on one or
S to a regular expression in astring. The syntax is:

transliteration> ::£

<XQuery pattern>. [FLAG <XQuery option flag>]

IN <regex subject string>

[WITH <regex replacement string>]

[FROM <start position>]

[USING.schar length units>]

[OCCURRENCE <regex transliteration occurrence>] <right paren>

transliteration occurrence> ::=

LTETS

hat”.
b the

to the

Al

f[egex occurrence>

| A

where:

=

— <XQuery pattern> is a character string expression whose value is an XQuery regular expression.

— <XQuery option flag> is an optional character string, corresponding to the $flags argument of the
[XQuery F&O] function fn:match.

— <regex subject string> is the character string to be searched for matches to the <XQuery pattern>.

20 XQuery Regular Expression Support in SQL/Foundation ©ISO/IEC 2011 — Al rights

reserved

https://iecnorm.com/api/?name=5b9a7db947cf4461eaf5de3c0d2b8af9

ISO/IEC TR 19075-1:2011(E)
3.5 TRANSLATE_REGEX

<regex replacement string> is a character string whose value is suitable for use as the $replacement
argument of the [XQuery F&O] function fn: replace. The special syntax for replacement strings is
discussed below. The default is the zero-length string.

<start position> is an optional exact numeric value with scale 0 (zero), indicating the character position at
which to start the search (the default position is 1 (one)).

<char length units> is CHARACTERS or OCTETS, indicating the unit in which <start position> is measured
(tHe default is to measure in CHARACTERS).

<rggex transliteration occurrence> is either the keyword ALL, or an exact numeric value with.seale 0|(zero),
inglicating which occurrence of a match is desired (the default is ALL).

The <1iegex subject string> is searched for matches to the <XQuery pattern>. If ALL is specified or implied,
then eyery match is replaced by the value of <regex replacement string>. If a numeric-<regex transliteration

occurrgnce> is specified, then only that match is replaced.

Exceptional cases:

If any of the parameters is the null value, then the result is the null valde,
If the pattern, flag or replacement string is not valid, then an exception condition is raised.

If the pattern matches a zero-length string, then an exception cendition is raised (this is the behaviqr of
XQuery's Fn:replace in this case)

If & starting position is given in octets, but it is not the first'octet of a character, then the result is implemen-
tation-dependent.

If any of the numeric parameters is too large ordoo small, then the result is the null value. This includes
the following cases:

| The starting position is less than 1 (one).

* | The starting position is greaterithan the length of the string (measured in CHARACTERS or OCTETS
as specified by <char length units>).

* | Anumeric <regex transliteration occurrence> is specified, and there are not at least that many matches.

First, here are some examples with no replacement string. In these examples, any matched substring is rgplaced

by

a zgro-length string,-efféctively removing the matched substring.
TRANSLATE_REGEX ("a® IN "what was that?") evaluates to the string “wht ws tht?”

TRANSLATE REGEX ("a® IN "what was that?" OCCURRENCE ALL) evaluates to the|string
“wht wstht?”

TRANSKATE REGEX ("a”" IN "what was that?"FROM 5) evaluates to the string “what ws tht?”

TRANSLATE_REGEX ("a®" IN "what was that?" OCCURRENCE 2) evaluates to the string
“what ws that?”

TRANSLATE_REGEX ("A" IN “what was that?") evaluates to the string “what was that?”

TRANSLATE_REGEX ("A" FLAG "i" IN "what was that?") evaluates to the string “wht ws
tht?”

Next, here are some examples in which the matched substrings are replaced with constant text:

©ISO/IEC 2011 — All rights reserved Operatorsusing regular expressions 21

https://iecnorm.com/api/?name=5b9a7db947cf4461eaf5de3c0d2b8af9

	Blank Page

