
I NTERNATI ON AL
STANDARD

ISO/IEC
8882-1

First edition
1993-1 1-1 5

Information technology -
Telecommunications and information
exchange between systems - X.25 DTE
conformance testing -
Part I:
G en era I p r i n ci pl es

Technologies de l'information - Télécommunications et échange
d'information entre systèmes - Test de conformité X.25 DTE -
Partie I: Principes généraux

Reference number
ISO/IEC 8882-1 :1993(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
82

-1:
19

93

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

ISODEC 8882.1:1993 (E)

Foreword
IS0 (the International Organization for Standardization) and IEC (the
International Electrotechnical Commission) form the specialized system for
worldwide standardization. National bodies that are members of IS0 or E C
participate in the development of International Standards through technical
committees established by the respective organization to deal with particular
fields of technical activity. IS0 and IEC technical committees collaborate in
fields of mutual interest. Other international organizations, governmental and
non-governmental, in liaison with IS0 and IEC, also take part in the work.

In the field of information technology, IS0 and IEC have established a joint
technical committee, ISO/IEC JTC 1. Draft International Standards adopted by
the joint technical committee are circulated to national bodies for voting.
Publication as an Intemational Standard requires approval by at least 75 % of the
national bodies casting a vote.

International Standard ISO/IEC 8882-1 was prepared by Joint Technical
Committee ISO/IEC JTC 1, Information technology, Sub-Committee SC 6,
Telecommunications and information exchange between systems.

ISO/IEC 8882 consists of the following parts, under the general title Information
technology - Telecommunications and information exchange between systems
- X.25 DTE conformance testing:

- Part I : General principles

- Part 2: Data link layer conformance test suite

- Part 3: Packet level conformance test suite

Annex A forms an integral part of ISO/IEC 8882.

c

C’

O ISO/IEc1993
All rights reserved No part of this publication may be reproduced or utilized in any form or by
any means, electronic or mechanical, including photocopying and microfilm, without
permission in writing from the publisher.

I S o / I ~ Copyright Officc Case postde 56 CH-121 1 Genève 20. Switzerland
Printed in Switzerland

ii

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
82

-1:
19

93

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

‘SO/IEC ISOAEC 8882-1 : 1993 (E)

Introduction
ISOREC 8882 specifies a set of tests to evaluate Data Terminal Equipment
(DTE) conformance to International Standards I S 0 7776 or ISOAEC 8208, or
both. I S 0 7776 and ISOREC 8208 allow for a DTE to interface with a Data
Circuit-Terminating Equipment (DCE) conforming to CCIIT Recommendation
X.25 (1980,1984) or to another DTE conforming to I S 0 7776 or ISOAEC 8208
or both. The implementations of IS0 7776 and ISOlIEC 8208 are tested indepen-
dently.

CCTC Recommendations X.25(1980) and X.25(1984) are written from the per-
spective of a DCE and therefore do not explicitly specify the DTE operation.
However, recommended operation of D E S is included by implication because
of the need to communicate with X.25 DCEs. Tests within ISOAEC 8882-2 and
ISOREC 8882-3 pertaining to X.25 (1980, 1984) are based on the DTE operational
characteristics implied by CCTC X.25.

This part of ISOAEC 8882 specifies the framework in which the other parts of
ISOREC 8882 may be understood and the principles to be applied. The notation
used in ISOAEC 8882-2 and ISOREC 8882-3 is ?TCN as defined in ISOREC
9646-3.

ISOREC 8882-2 presents the Data Link Layer aspects for evaluating conformance
to I S 0 7776 while ISOAEC 8882-3 presents the Packet Layer aspects for evaluating
conformance to ISOAEC 8208

The conformance tests are designed for use by

- test evaluators (responsible for analysing results and determining whether
confonnance has been achieved);

- test suite designers or implementors (for determining what tests are required
and what results can and should be anticipated by the test device); and

- users implementing I S 0 7776 or ISOREC 8208 or DTEs interfacing to DCEs
that implement CCITT X.25 (1980 or 1984) (for determining the functionality
required of their implementations to be considered in conformance).

iii

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
82

-1:
19

93

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
82

-1:
19

93

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

INTERNATIONAL STANDARDQEomC ISO/IEC 8882-1 : 1993 (E)

Information technology - Telecommunications and information
exchange between systems - X.25 DTE conformance testing -
Part 1: General principles

1 Scope

ISOLEC 8882 defines the testing of a DTE operating at the
Data Link Layer and at the Packet Layer when accessing, by
means of a dedicated path connection, switched or permanent, a
public or private packet-switched network conforming to CCïIT
Recommendation X.25 or another DTE conforming to I S 0 7776
and ISO/IEC 8208.

The tests will test the conformance of an implementation by
observing its external behaviour. The conformance tests will
not test the DTE performance characteristics, the diagnostic and
maintenance functions, the correctness of the protocol itself, or
DTE internal implementation, or the full capabilities as stated in
the PICS.

This part of ISOAEC 8882

- provides a general introduction:

-

-
refers to those applicable International Standards;

defines terms applicable to X.25-DTE conformance testing;

states the test case derivation and description; and -

- states the test methodology.

ISOAEC 8882-1 contains no statement of conformance. Specific
statements of conformance are given in ISOIIEC 8882-2 and
ISOlIEC 8882-3.

2 Normative references

The following standards contain provisions which, through refer-
ence in this text, constitute provisions of this part of ISO/LEC 8882.
At the time of publication, the editions indicated were valid. All
standards are subject to revision, and parties to agreements based
on this part of ISO/LEC 8882 are encouraged to investigate the pos-
sibility of applying the most recent editions of the standards listed
below. Members of IEC and I S 0 maintain registers of currently
valid International Standards.

I S 0 7498 : 1984, Informationprocessing systems - Open Systems
Interconnection - Basic Reference Model.

IS0 7776 : 1986, It$ormation processing systems - Data commu-
nications - High-level data link control procedures - Description
of the X.25 WB-compatible DTE data link procedures.

ISO/IEC 8208 : 1990, Information technoiogy - Data commu-
nicationr - X.25 Packzt Layer Protocol for Data Terminal Equip-
ment. ..
ISO/iEC 8882-2 : 1992, Information technology - Telecommu-
nicatiom and information exchange between systems - X . 2 5 DTE
confîormance iesting - Part 2: Data Cid layer conformance test
suite.

ISO/IEC 8882-3 : 1991, Ir$ormation technology - Telecommu-
nications and information exchange between system - X.25 DTE
conformance testing - Part 3: Packet layer conformance test suite.

ISOIIEC 9646-1 : 1991, Information technology - Open Systems
Interconnection - Conformance testing methodology and frame-
work - Part I : General concepts. (See also CCllT Recommen-
dation X.291 (1991)).

ISOAEC 9646-2 : 1991, Information technology - Open Systems
Interconnection - Conformance testing methodology and frame-
work - Part 2 : Abstract test suite specijication. (See also CCITT
Recommendation X.291 (1991)).

ISOliEC 9646-3 : 1992, Information technology - Open Systems
Interconnection - Conformance testing methodology and frame-
work - Part 3: The Tree and Tabular Combined Notation (lTCN).

CCïiT Recommendation X.25 (1980), Interface between Data Ter-
minal Equipment (DTE) and Data Circuit-Terminating Equipment
(DCE) for Terminals Operating in the Packet Mode on Public Data
Networks.

CCI'lT Recommendation X.25 (1984), Interface between Data Ter-
minal Equipment (DTE) and Data Circuit-Terminating Equipment
(DCE) for Terminals Operating in the Packet Mode and Connected
to Public Data Networks by Dedicated Circuit.

3 Definitions

3.1 Reference model definitions

This part of ISOAEC 8882 makes use of the following term defined
in I S 0 7498:

(N)-protocol-data-unit (N)-PDU

1

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
82

-1:
19

93

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

ISOAEC 8882-1 : 1993 (E)

3.2 Conformance testing definitions

This part of ISO/IEC 8882 makes use of the following terms
defined in ISO/IEC 9646-1:

a) Abstract Test Case

b) Conformance Test Suite

c) Conformance Testing

d) Implementation Under Test

e) Inopportune PDU

f) Lower Tester

g) Protocol Implementation Conformance Statement

h)

i)

j) System Under Test

k) Test Group

Protocol Implementation extra Information for Testing

Remote Single Layer Test Method

1) Test Step

m) Test Suite

3.3 X.25 DTE conformance testing definitions

For the purpose of this part of ISO/IEC 8882 the following def-
initions apply:

3.3.1 improper PDU: The (N)-PDU whose syntax does not
conform to the format specifications of IS0 7776 or ISOIIEC 8208
or CCI" X.25.

3.3.2 proper PDU: The (N)-PDU whose syntax conforms to
the format specification of CCïlT X.25, IS0 7776 or ISOAEC
8208 and is acceptable to the state or phase of the interface.

3.3.3 tester: Refer to Lower Tester.

3.3.4 test case: Refer to Abstract Test Case.

3.3.5 test selection: Test selection is the process of choosing
test cases according to the specific criteria based on the IUT's
PICS and PIXïï in order to constitute a conformance test suite
for the IUT.

3.3.6 test subgroup: A set of test cases that share a common
characteristic, such as testing for proper, improper, or inopporhme
PDUs. A test subgroup is the smallest testable set of test cases
that can be selected.

3.3.7 sub-function: A subset of the PDUs and functional
capabilities of the protocol level above the IUT that are needed to
allow data transfer testing to be accomplished.

2

OISOhEC

4 Abbreviations

The following abbreviations are used in this part of ISOAEC 8882:

DCE Data Circuit-Terminating Equipment

D E Data Terminal Equipment

DXE DTE or DCE

IUT Implementation Under Test

PDU Protocol Data Unit

PICS Protocol Implementation Conformance Statement

PIXIT Protocol Implementation extra Information for Test-
ing

RS Remote Single Layer

SUT System Under Test

TPDU Transport Protocol Data Unit

'ITCN Tree and Tabular Combined Notation

5 Test notation

The test notation used in ISO/IEC 8882-2 and ISOAEC 8882-3
is TïCN as defined in the DIS version of ISOAEC 96463. This
version of ISO/IEC 9646-3 is contained in annex A. ISO/IEC
8882-2 and ISOAEC 8882-3 contain an annex describing the
differences between the DIS version of P C N used and the version
of 'ITCN defined in ISO/IEC 9646-3.

6 Test suite structure

The test suite structure used in ISOAFiC 8882-2 and ISOAEC
8882-3 is defined in ISO/IEC 9646-2 and is illustrated below.

Test Suite Structure

Test Group

Test Subgroup 1 (Proper PDUs)
Test Case No.101
Test Case No.102

Test Case No.1nn

Test Subgroup 2 (Improper PDUs)
Test Case No.201
Test Case No.202

Test Case No.2nn

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
82

-1:
19

93

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

OISO/IEC

Test Subgroup 3 (Inopportune PDUs)
Test Case No.301
Test Case No.302

Test Case No.3nn

7 Testing methodology

The testing methodology is based on the OS1 Conformance Testing
Methodology and Framework. The test method used is the Remote
Single layer (RS) method. To employ the RS method effectively,
the concept of using sub-functions of higher layer protocols is
introduced. Sub-functions are a subset of the PDUs and functional
capabilities of the protocol layer above the IUT that are needed
to allow data transfer testing to be accomplished. The required
properties of the sub-functions used are:

a) That the number and sequence of data-PDUs received from
the IUT after receiving a data-PDU from the tester is pre-
dictable, and that the number received from the IUT is greater
than zero.

b) That the reactions of the IUT upon receipt of these data-
PDUs are known.

That the sub-function allows either the tester or IUT to
initiate transmission of the data-PDUs.

c)

d) That the sub-function allows for the exchange of data-PDUs
by the layer under test with minimal interference from other
functions of the protocol layer(s) above the IUT (e.g., PDU
retransmission, error recovery, etc.).

Examples of data transfer configurations are shown for the Data
Link Layer and the Packet Layer in figures 1 and 2 respectively.

NOTE - The requirements on underlying protocols are specified in
ISOlIEC 8208, clause 3.

ISOAEC 8882-1 : 1993 (E)

7.1 Test principles

The testing of the Data Link aiid the Packet Layer protocols is
done separately. The data link layer is normally tested first since
the packet layer requires the correct operation of the data link
layer. The RS method is the selected test method since it cannot
be assumed that a tester will be able to test completely each level
as a separate entity. The RS method requires that the tester shall
recognize and respond to a PDU received from the higher level
protocols. The specific PDUs which shall be accepted are defined
in ISOKEC 8882-2 and ISOKEC 8882-3.

7.2 Data transfer

The sub-function chosen by the IUT provider should create an
alternating exchange of data-PDUs between the IUT and the tester.
This exchange will be repeated until the sequence numbers of the
layer under test have been rotated. The sub-function chosen shall
be defined in the P E I T of the IUT, and shall include the sequence
and contents of the user data fields required for the test. TWO
examples of the use of a sub-function to accomplish data transfer
testing are shown in figures 3 and 4.

A more detailed explanation of data transfer testing is provided
in ISOAEC 8882-2 and ISO/IEC 8882-3. These explanations
also address the data transfer testing of send-only and receive-
only IUTs.

It is recognized that an IUT provider may not be able to accomplish
data transfer testing by this means. In such instances the data
transfer tests are deselected.

7.3 Other user data fields

When necessary, the content of user data fields in other than data-
PDUs shall be provided to the tester by the owner of the IUT in
order to execute successfully the conformance test suite. In this
case, the IUT requires the tester to transmit user data fields in
accordance with higher level protocols which are operating above
the IUT. For example, user data fields of call set-up, clearing, and
interrupt packets of the Packet Layer may be affected.

The content of such user data fields shall be provided by the IUT
owner in the PMIT.

Sub-function of

Figure 1 - Data Link Layer Data Transfer Configuration

Sub-function of OS1 Protocol(s) Sub-function of non-OS1 Protocol(s)

Packet Layer (layer under test)

I LAN I other Protocoi(s) I Protocol(s)
Data
Link
Layer I Note I Note

Note I I I
Figure 2 - Packet Layer Data Transfer Configuration

3

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
82

-1:
19

93

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

ISO/IEC 8882-1 : 1993 (E) OISO/IEC

7.4 Testing configuration

The SUT is connected to the tester, point-to-point, when partici-
pating in active testing. The points of observation and control for
each test sequence are within the tester.

ISOLEC 8882-2 and ISO/IEC 8882-3 include PIXIT proformas
which, when completed, describe the dynamic conformance test
environment.

7.5 Operational consideration

Testing is done in a controlled environment. It is not the intent
of this document to define the operational characteristics of test
devices used to achieve DTE Conformance Testing. However, it
is highly desirable that the device be capable of segregating IUT

test activity from normal operation of underlying layers. At a
minimum, the tester should be capable of distinguishing between
I-frame retransmission at the data link layer (due to T1 expiration)
and a packet layer retransmission. Some recommended functions
of the tester include:

a)

b)

Detection of failures of the physical layer.

The ability to respond transparently to timeout conditions at
the data link layer.

Timely data link layer acknowledgement (to avoid retrans-
missions) when performing packet layer testing.

In the instance where an I-frame is retransmitted, the tester
should properly acknowledge the frame and not pass it on
to the packet layer. The tester shall be sensitive to failures

c)

d)

PDU sent by

Tester IUT

Packet
Layer

CLEAR
INDICATION

Figure 3 - Example of the use of a Packet Layer Sub-function

PDU sent by

Tester IUT

.
Data Link Data Link
Layer Layer

, Packet
I Layer

I-frame _I)

I - frame CLEAR
CONFIRMATION

Transport Packet Packet
Layer Layer Layer

Erroneous
Connect Data -
request TPDU packet
(CR TPDU)

.I-- Data
packet

Transport
Layer

Disconnect request
TPDU (DR TDPU)

Figure 4 - Example of the use of a Transport Layer Sub-function directly over ISOAEC 8208 (Le. OS1 Network Layer)

4

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
82

-1:
19

93

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

OISO/IEC ISOhEC 8882-1 : 1993 (E)

that interfere with the tests, and when such a condition is
detected, the tester should abort the test.

The tester shall recognise the possibility of receiving unex-
pected PDUs which do not affect the results of the test case.
These specific PDUs for each layer are defined in ISOlIEC
8882-2 and ISOAEC 8882-3. In addition, other unexpected
PDUs may be received which do affect the results of a test
case. These PDUs will require further analysis and poten-
tially, re-execution of the test case. Receipt of such PDUs
may be due to interference from sources outside the realm of
the X.25 environment (e.g. the IUT operating system, IUT
operator).

e)

7.6 DTE initiated actions

Generally the tester forces the IUT to transmit a particular PDU.
However, in order to execute some test groups, it is required that
the IUT initiate the transmission of particular PDUs. When a
DTE-initiated action is required, it is specified in the appropriate
test group. Direct control of such actions may not be feasible for
the IUT owner. In such instances these tests are deselected.

7.7 Timing considerations

There are two types of timing considerations which should be taken
into account - timing considerations for the tester and timing
considerations for the SUT.

a) Tester Considerations: The tester shall allow for the time
required by the IUT to progress from one test case to the
next. This timing consideration should be accomodated for
in the test preamble.

For example, the time required by the IUT to initiate a CALL
REQUEST after completing a CALL CLEARING operation,
and the time required by the IUT to re-establish the data link
after completing a disconnect operation. The precise timing
requirements of the IUT shall be specified in the PIXIT, as
defined in ISOAEC 8882-2 and ISOLEC 8882-3.

b\ SUTConsiderations: Where the protocol standard identifies a ’
need for timers, values for those timers shall be those stated
in the PIXIT.

7.8 Optional facility testing

Full testing of optional facilities is not possible because

a) optional facilities may be managed by levels above X.25; and

b) multiple combinations of optional facilities may be required
depending on the applications running above X.25.

Optional facilities are tested individually. Where the IUT cannot
support this method of testing these tests are deselected.

7.9 Transient states

It is recognized that for those IUTs that process PDUs sequentially,
certain states are not realizable. Specifically, the testing of the
IUT during the DXE defined states (for example, for the packet
layer, r3 - Restart Indication, p3 - Incoming Call, p7 - Clear
Indication, and d3 - Reset indication) may result in the testing
of some other states (pl - Ready, p4 - Data Transfer, d l -
Flow Control Ready). For example, to test the response to an
error packet (inopportune or improper packet) in the DXE Restart
Indication (1-3) state, the tester will send a Restart Indication,
immediately followed by the error packet. The tester expects the
IUT to discard the error packet and then send a Restart Request in
response to the error packet. However, the IUT generally responds
immediately to the Restart Indication with a Restart Confirmation
and processes the next packet from the packet level state rl. When
these states are not observable in the IUT, transient test cases
are deselected. The specific handling of transient state testing is
described in ISO/IEC 8882-2 and ISO/IEC 8882-3.

8 Structure of other parts of ISO/IEC 8882

In order to ensure consistency between ISOAEC 8882-2 and
ISOlIEC 8882-3 the following items shall be included in those
standards.

a) A PIXIT pro forma

b)

c)

d)

e)

A statement of Acceptable Unexpected responses.

A statement of Tester Timing Considerations.

PICS and P E l T based abstract test selection rules.

A definition of the test cases.

f) A statement of conformance.

g) An annex describing the differences between the version of
TTCN used and the version of TTCN defined in ISOAEC
9646-3.

5

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
82

-1:
19

93

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

ISOhEC 8882-1 : 1993 (E)

6

OISO/IEC

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
82

-1:
19

93

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

OISO/IEC ISO/IEC 8882-1 : 1993 (E)

Annex A
(informative)

DIS level text for ISOOEC 9646 - Part 3
The Tree and Tabular Combined Notation (TTCN)

Important - This Annex contains an extract from the DIS text of ISO/IEC 9646-3. The clause, figure and table numbering has been
changed to align with the numbering in this standard. Example and proforma numbering is unchanged from the original text. Refer-
ences to the annexes in the original text have been placed in braces; for example “{Annex A}”. All errors contained in the original text
which were subsequently corrected in the published International Standard are also present here.

Introduction
This Part of the multi-part ‘standard/recommendation’ (hereafter abbreviated to ‘standard*’) defines a test notation, called the Tree and Tabular
Combined Notation (TTCN), for use in the specification of ‘OS1 or related CCIlT X.series or T.series’ (hereafter abbreviated to ‘OSI*’) ge-
neric and abstract conformance test suites.

In constructing a generic or abstract test suite, a test notation is used to describe abstract test cases. The test notation can be an informal notation
(without formally defined semantics) or a formal description technique (FDT). lTCN is an informal notation with clearly defined, but not for-
mally defined, semantics.

‘ITCN is designed to meet the following objectives:

a) to provide a notation in which generic and abstract test cases can be expressed in test suite standards*;

b) to provide a notation which is independent of test methods, layers and protocols;

c) to provide a notation which reflects the abstract testing methodology defined in this multi-part standard*.

In the abstract testing methodology a test suite is looked upon as a hierarchy ranging from the complete test suite, through test groups, test cases
and test steps, down to test events. ‘ITCN provides a naming structure to reflect the position of test cases in this hierarchy. It also provides the
means of structuring test cases as a hierarchy of test steps culminating in test events. In TïCN the basic test events are sending and receiving
Abstract Service Primitives (ASPS), Protocol Data Units (PDUs) and timer events.

Two forms of the notation are provided: a human-readable tabular form, called ‘ITCN.GR, for use in OSI* conformance test suite standards;
and a machine-processable form, called lTCN.MP, for use in representing TTCN in a canonical form within computer systems and as the syn-
tax to be used when transferring ‘ITCN test cases between different computer systems. The two forms are semantically equivalent.

A.l Scope

This Part of the multi-part standard* defines an informal test notation, called TTCN, for OSI* conformance test suites, which is independent
of test methods, layers and protocols, and which reflects the abstract testing methodology defined in Parts 1 and 2 of this multi-part standard*.

It also specifies requirements and provides guidance for using lTCN in the specification of system-independent conformance test suites for
one or more OSI* standards*. It specifies two forms of the notation: one, a human-readable form, applicable to the production of conformance
test suite standards* for OSI* protocols; and the other, a machine-processable form, applicable to processing within and between computer
systems.

This Part of this multi-part standard* applies to the specification of conformance test cases which can be expressed abstractly in terms of control
and observation of protocol data units and abstract service primitives. Nevertheless, for some protocols, test cases may be needed which cannot
be expressed in these terms. The specification of such test cases is outside the scope of this standard*, although those test cases may need to be
included in a conformance test suite standard*.

NOTE 1 - For example, some static conformance requirements related to an application service may require testing techniques which are specific to
thai particular application.

This Part of this multi-part standard* applies to the specification of conformance test suites for OSI* protocols in OS1 layers 2 to 7, specifically
including ASN.l based protocols. The specification of conformance test suites for multi-peer or Physical layer protocols is outside the scope
of this standard*.

7

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
82

-1:
19

93

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

ISO/IEC 8882-1 : 1993 (E) OISO/IEC

The relation between TI'CN and formal description techniques is outside the scope of this standard*.

The specification of test cases in which more than one behaviour description is to be run concurrently, is outside the scope of this standard*.

NOTE 2 - Use of parallel trees and synchronization between them IS expected to be covered by an Addendum to this standard*

Although this Part of this multi-pari standard* specifies requirements on abstract test suites written in TI'CN, including their operational se-
mantics, the means of realization of executable test suites from abstract test suites is outside the scope of this Part. Nevertheless, this Part spec-
ifies requirements on what a test suite standard* may specify about a conforming realization of the test suite.

NOTE 3 - IS0 9646-4 specifies requirements concerning test realization including ETS derivation.

A.2 Normative References

I S 0 9646-1, Information Processing Systems - Open Systems Interconnection - OSX Conformance Testing Methodology and Framework. - Part
I : General Concepts. (See also CCITT Recommendation X.290)

IS0 9646-2, Information Processing Systems - Open Systems Interconnection - OSI Conformance Testing Methodology and Framework. - Part
2: Abstract Test Suite Specijïcation. (See also CClTï Recommendation X.290)

IS0 646, Information Processing Systems - Open Systems Interconnection - I S 0 7-bit Coded Character Set for Information Exchange

IS0 8824 (1989), Information Processing System - Open Systems Interconnection - Abstract Syntax Notation One (ASN.1). (See also CClTï
Recommendation X ,208)

IS0 8825 (1989), Information Processing Systems - Open Systems Interconnection - Basic Encoding Rules for ASN. 1. (See also C C ï ï ï Rec-
ommendation X.209)

NOTE - These versions of ASN.1 include ASN.1 Extensions Addenda.

IS0 7498-1 , Information Processing Systems - Open Systems Interconnection - Basic Reference Model. (See also CCITI' Recommendation
X.200)

IS0 TR 8509 , Information Processing Systems - Open Systems Interconnection -Sewice Conventions, (See also CCITT Recommendation
X.210)

A.3 Definitions

A.3.1 Basic Term from IS0 W6-1
The following terms defined in IS0 9646-1 apply:

abstract service primitive
abstract testing methodology
abstract test case
abstract test method
abstract test suite
conformance log
conformance statement
conformance testing
conformance test suite
coordinated test method
distributed test method
embedded testing
executable test case
executable test suite
external test methods
fail verdict
foreseen outcome
generic test case
generic test suite
implementation under test

8

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
82

-1:
19

93

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

OISO/IEC ISOAEC 8882-1 : 1993 (E)

u) inconclusive verdict
v) inopportune test event
w) local test methods
x) lower tester
y) multi-layer testing
z) pass verdict
aa) PICS proforma
ab) PMIT proforma
ac)
ad) protocol data unit
ae) protocol implementation
af) real tester
ag) remote test method
ah) syntactically invalid test event
ai) system under test
aj) test case
ak) test coordination procedures
al) testevent
am) test group
an) test management protocol
ao) test outcome
ap) test purpose
aq) test realizer
ar) test step
as) test suite
at) unforeseen outcome
au) upper tester
av) valid test event
aw) verdict

point of control and observation

A.3.2 Terms from IS0 7498-1

The following terms defined in IS0 7498-1 apply:

a) (N)-layer
b) (N)-protocol
c) (N)-protocol control information
d) (N)-protocol data unit
e) (N)-service
f) (N)-service access point
g) (N)-user data transfer syntax

A.3.3 Terms from IS0 TR 8509
The following terms defined in I S 0 TR 8509 apply:

a) service primitive
b) service provider
c) service user

A.3.4 Terms from IS0 8825
The following term defined in IS0 8825 applies:

encoding

9

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
82

-1:
19

93

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

l
ISOlIEC 8882-1 : 1993 (E) OISO/IEC

A.3.5 Terms from IS0 8824

The following terms defined in I S 0 8824 apply:

a) Numericstring
b) Printablestring
c) TeletexSîring
d) VideotexString
e) VisibleSiring
f) IASString
g) Graphicstring
h) Generalstring

A.3.6 TTCN Specific Terms
For the purposes of this standard* the following definitions apply:

A.3.6.1 Abbreviation identifier: A name for an abbreviation, which identifies its definition.
A.3.6.2 Attach statement: A TTCN statement which attaches a sub-tree to a calling tree.
A.3.6.3 Base constraint: Specifies a set of default values for each and every field in an ASP or PDU type declaration.
A.3.6.4 Behaviour line: An entry in a dynamic behaviour table representing a test event or other TTCN statement together with associated
label, verdict, constraints reference and comment information as applicable.
A.3.6.5 Behaviour tree: A specification of a set of sequences of test events, and other TTCN statements.
A.3.6.6 Blank entry: In a modified multiple constraint a blank entry in a constraint parameter or field denotes that a constraint value is to be
inherited.
A.3.6.7 Calling tree: The behaviour tree to which a sub-tree is attached.
A.3.6.8 Constraints part: That component of a TïCN test suite concerned with the specification of the values of ASP parameters and param-
eter groups and PDU fields and field groups.
A.3.6.9 Constraints reference: A reference to a constraint, given in a behaviour line.
A.3.6.10 Decode expression: A specification of the decoding of PDUs embedded in ASPs or other PDUs.
A.3.6.11 Default behaviour: The events, and other TTCN statements, which may occur at any level of the associated tree, and which arc in-
dicated in the default behaviour proforma.
A.3.6.12 Defaults library: The set of the default behaviours in a test suite.
A.3.6.13 Defaults reference: A structured name which specifies the location of the default in the defaults library.
A.3.6.14 Dotted identifier: An identifier, consisting of a base consiraint identifier concatenated with one or more modified constraint identi-
fiers, separated by dots.
A.3.6.15 Encode expression: A specification of the encoding of PDUs embedded in ASPs or other PDUs.
A.3.6.16 Field groups: A collection of one or more PDU fields which may occur in more than one PDU type declaration and which is defined
in a separate declaration.
A.3.6.17 Implicit send event: A mechanism used in Remote methods for specifying that the IUT should be made to initiate a particular PDU
or ASP.
A.3.6.18 Inheritance: The means by which constraint values specified for a base constraint are passed to a modified constraint.
A.3.6.19 Local tree: A behaviour tree defined in the same proforma as its calling tree.
A.3.6.20 Modified constraint: A subsequent constraint defined for an ASP or a PDU that already has a Base constraint, and which makes
modifications on that Base constraint.
A.3.6.21 Multiple constraint: Declaration of a set of constraints for an ASP or PDU of a given type arranged in a single table.

A.3.6.22 Operational semantics: Semantics explaining the execution of a T ï C N behaviour tree.

A.3.6.23 Otherwise event: The TTCN mechanism for dealing with unforeseen events in a controlled way.
A.3.6.24 Parameter groups: A collection of one or more ASP parameters which may occur in more than one ASP type declaration and which
is defined in a separate declaration.

A.3.6.25 Pseudo-event: A pseudo-event is a TTCN expression or Timer operation appearing in the behaviour description.
A.3.6.26 Receive event: The receipt of an ASP or PDU at a named or implied PCO.

10

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
82

-1:
19

93

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

OISO/IEC ISO/IEC 8882-1 : 1993 (E)

A.3.6.27 Root tree: The main behaviour tree of a test case, occurring at the level of entry into the test case.
A.3.6.28 Send event: The sending of an ASP or PDU to a named or implied PCO.
A.3.6.29 Set of alternatives: TTCN statements coded at the same level of indentation and belonging to the same predecessor node. They rep-
resent the possible events, pseudo-events and constructs which are to be considered at the relevant point in the execution of the test case.
A.3.6.30 Single constraint: Declaration of a constraint for a single ASP or PDU of a given type arranged in a single table.
A.3.6.31 Snapshot semantics: A semantic model to minimize the effect of timing on the execution of a test case, defined in terms of 'snap-
shots' of the test environment, during which the environment is effectively frozen for a prescribed period.
A.3.6.32 Static chaining: The linking from the declaration of an ASP parameter or PDU field to the declaration of another ASP or PDU.
A.3.6.33 Static semantics: Semantic rules that restrict the usage of the TTCN syntax.

A.3.6.34 Sub-tree: An identifiable part of a behaviour tree which can be separated, then attached and executed at various places in that (or
some other) behaviour tree.
A.3.635 Test case identifier: A short name for the test case.

A.3.6.36 Test case reference: A full name for the test case behaviour description, which defines its conceptual location in the test suite struc-
ture.
A.3.6.37 Test case variable: One of a set of variables declared globally to the test suite, but whose value is retained only for the execution of
a single test case.
A.3.638 Test step library: The set of the test step dynamic behaviour descriptions in the test suite.
A.3.639 Test step objective: An informal statement of what the test step is meant to accomplish.
A.3.6.40 Test Suite constant One of a set of constants, not derived from the PICS or PIXIT, which will remain constant throughout the test
suite.
A.3.6.41 Test suite parameter: One of a set of constants derived from the PICS or PIXIT which globally parametenze a test suite.
A.3.6.42 Test suite variable: One of a set of variables declared globally to the test suite, and which retain their values between test cases.
A.3.6.43 Timeout event: An event which is used within a behaviour tree to check for expiration of a specified timer.
A.3.6.44 Tree attachment: The method of indicating that a behaviour tree specified elsewhere (either at a different point in the current pro-
forma, or as a test step in the test step library) is to be included in the current behaviour tree.
A.3.6.45 Tree header: That which prefixes a local behaviour tree. The header contains a tree identifier, and a specification of any parameters
and their types used in the tree.
A.3.6.46 Tree identifier: A name identifying a local behaviour tree.
A.3.6.47 Tree indentation: A method of indicating the tree structure of a behaviour description. It is reflected in the behaviour description by
indentation of text.
A.3.6.48 Tree leaf The TTCN statement in a behaviour tree or sub-tree which has no specified subsequent behaviour.
A.3.6.49 Tree node: A single TTCN statement.
A.3.6.50 Tree notation: The notation used in TTCN to represent test cases as trees.
A.3.6.51 TTCN abbreviation: A method of indicating a textual substitution to be performed in a dynamic behaviour table.
A.3.6.52 TTCN statement: A TTCN statement is an event, a pseudo-event or construct which is specified in a behaviour description.
A.3.6.53 Unforeseen test event: A test event which has not been identified as a possible outcome in the test suite. It is normally handled using
the OTHERWISE event.
A.3.6.54 Unqualified send event: A send event that does not have a Boolean expression or EncodedAs expression on the same statement line.

A.4 Abbreviations

A.4.1 Abbreviations Defined in IS0 9646-1
For the purposes of this Part of IS0 9646, the following abbreviations defined in clause 4 of I S 0 9646-1 apply:

ASP : abstract service primitive
OS1 : open systems interconnection
OSI* : OS1 related CCITT X.series or T.series
PCO : point of control and observation
PDU : protocol data unit
PICS : protocol implementation conformance statement

11

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
82

-1:
19

93

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

ISODEC 8882-1 : 1993 (E) OISO/IEC

PIXIT : protocol implementation extra information for testing
SAP : service access point
standard* : standard or recommendation
SUT : system under test

A.4.2 Abbreviations Defined in IS0 9646-2
For the purposes of this Part of IS0 9646, the following abbreviations defined in clause 4 of I S 0 9646-2 apply:

DS : distributed single-layer (test method)
FDT : formal description technique
TTCN : tree and tabular combined notation

A.4.3 Other Abbreviations

For the purposes of this Part of I S 0 9646, the following abbreviations also apply:

ASN.1 : abstract syntax notation one
BNF : The extended Backus-Naur form used in lTCN
CEId : connection endpoint identifier
FIFO : fiist in first out
TTCN,GR : tree and tabular combined notation, graphical form
TTCN.MP : tree and tabular combined notation, machine processable form

A S The Syntax Forms of TTCN

lTCN is provided in two forms:

a) a graphical form (ïTCN.GR) suitable for human readability;

b) a machine processable form (TLTCN.MP) suitable for transmission of TLTCN descriptions between machines and possibly suitable for other
automated processing.

ïTCN.GR is defined using tabular proformas. TTCN.MP differs from ïTCN.GR only in syntax; keywords, instead of boxes, are used as in-
formation deiimiters. The syntax of TLTCN.MP is defined in Annex A of this standard* by means of a BNF grammar.

As an aid to clarifying the ïTCN.GR many TLTCN.MP productions are embedded in the text of this standard*, and are marked: SYNTAX
DEFINïïION. To improve the readability of this document some productions will appear in the text in several places.

The two forms of TïCN are equivalent. If there is a conflict between the two forms, this is an error, and should be reported back to the stan-
dards* organization via a defect report. In such cases, however, the TLTCN.MP shall take precedence over the lTCN.GR form pending correc-
tion by the standards* organization.

A.6 Compliance

6.1 Test suites that claim to comply with this Part of this multi-part standard* shall state that they comply with the requirements for either
TïCN.GR or ïTCN.MP.
6.2 Test suites that claim to comply with the requirements of TTCN.GR shall comply with the lTCN.GR syntax requirements stated in clauses
A.8 through A.16 and clause IA.3). Generic test suites may also use the options specified in clause A.18.
6.3 Test suites that claim to comply with the requirements of ?TCN.MP shall comply with the lTCN.MP syntax requirements stated in clause
{ A.3).
6.4 Test suites that claim to comply with this Part of this multi-part standard* shall comply with the static semantic requirements specified in
clauses A.8 through A.15 and have operational semantics in accordance with the definition of the operational semantics in (Annex B}, such
that they are semantically valid.
6.5 A test suite standard* that claims to comply with this Part of this multi-part standard* shall require that any realization of that test suite
that claims to conform to that test suite standard* shail:

a) have operationai semantics equivalent to the operational semantics of the test suite as defined by {Annex B};

b) be able to produce a conformance log that as a minimum meets all the requirements in clause 17;
c) comply with I S 0 96464.

12 I

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
82

-1:
19

93

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

OISO/IEC ISO/IEC 8882-1 : 1993 (E)

A.7 Conventions

A.7.î Introduction
The following conventions have been used when defining the lTCN.GR table profonnas and the lTCN.MP grammar.

A.7.2 TTCN.GR Table Proformas
The TTCN.GR notation is defined using a number of different types of table. The following conventions will be used in the description of
proformas for these tables:

a) Bold text (like this) shall appear verbatim in each actual table in a TïCN test case;

b) Text in italics (like this) shall not appear verbatim in a lTCN test case. This font is used to indicate that actual text must be substitute for

EXAMPLE 1 - SuiteldentGer corresponds to production 3 in {Annex A}

the italicized symbol. Syntax requirements for the actual text can be found in the corresponding lTCN.MP BNF production.

13

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
82

-1:
19

93

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

OISOAEC

A.7.3 Syntactic Metanotation
Table A.l defines the metanotation used to specify the extended form of BNF grammar for TI'CN (henceforth called BNF):

Table A.l: The TTCN.MP Syntactic Metanotatia
is defined to be
aitemative
O or 1 instances of abc
O or more instances of abc
1 or more instances of abc
textual grouping
the non-terminai symbol abc
the terminal symbol $abc
the terminal symbol abc

A.7.4 TTCN.MP Syntax Definitions

A.7.4.1 Complete tables defined in TTCN.GR are represented in TTCN.MP by productions of the kind:
$BEGIN-KEY WORD $END-KEYWORD

EXAMPLE 2 - TSPARdcls ::= $BeginTS-PARdcls { TSPARdcl} + $End-TS-PARdcls

Normally, these productions contain at least one mandatory field.

A.7.4.2 Lines of a table, i.e. sets of fields in a table, are represented by productions of the kind:
$KEYWORD $ENQKEYWORD

BEGIN does not appear in the opening keyword.

EXAMPLE 3 - TS-PARdcl ::= $TS-PARdcl TS-PARid TSPARtype PICS-PIXIT [Comment]
$End-TS-P ARdcl

A.7.4.3 Individual fields in a line are represented by:

$KEYWORD
There is no closing keyword.

EXAMPLE 4 - TSPARid ::= $TS-PARid TSPARidentifier
NOTE - Symbols such as TS-PARid can only be used to name a field. The contents of the field must be called, in that case, TS-PARidentifier,
further defined as an identifier.

EXAMPLE 5 - TSPARidentiFier ::= Identifier
A.7.4.4 Sets of tables, up to and including the test suite, are represented by productions of the kind:

$KEYWORD $END-KEYWORD

EXAMPLE 6 - ASPdcls ::= $ASPdcls [TTCN-ASPdcls] [ASNlASPdcls] $End-ASPdcls

EXAMPLE 7 - Suite : := $Suite SuiteId Suiteoverview Declarations Dynamicpart ConstraintsPart $End-Suite.
A.7.4.5 All other productions defining non-terminal symbols have no keywords at the beginning or the end of the right-hand expres-
sion.

EXAMPLE 8 - TimerIdentifier ::=Identifier

Most of the terminal symbols used in the TTCN.MP grammar are defined in clause {A.3.9}.

A.7.5 TTCN.MP and TTCN.GR Symbols
a) TTCN keywords (terminal symbols) that belong only to the TTCN.MP form start with the dollar character ($):

EXAMPLE 9 - $SuiteId

b) TïCN keywords (terminal symbols) that belong to both the TTCN.MP and the TTCN.GR forms do not start with the dollar character ($):

14

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
82

-1:
19

93

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

OISO/EC ISO/IEC 8882-1 : 1993 (E)

EXAMPLE 10 - the 'ITCN keyword REPEAT

A.7.6 Uniqueness of Names in TTCN Test Suites
A.7.6.1 Identifiers used within TTCN test suites are case sensitive. Whenever in the TTCN an identifier used from a protocol standard*
contains "-" (dash) the dash shall be replaced by "-" (underscore).
A.7.6.2 All identifier names of the following items shall have unique meaning throughout the test suite (i.e. declarations and con-
straints).

a) Redefined 'ITCN types;

b) user defined TTCN types;

c) User defined operators;

d) Test suite parameters;

e) Test suite constants;

f) Test suite variables;

g) Test case variables;

h) PCO types;

i) PCOnames;

j) Timer identifiers;

k) Abbreviation names:

1) ASP types;

m) Parameter group types;

n) PDU types;

O) Field group types;

p) ASP constraint names;

q) Parameter group constraint names;

r) PDU constraint names;

s) Field group constraint names:

t) Test case references:

U) Test case identifiers;

v) Test step references;

w) Test step identifiers;

x) Default references;

y) Default identifiers.
A.7.6.3 When ASN.1 is used in a TTCN test suite, ASN.l identL.-rs ,.om the following list sha
regardless of whether the ASN.1 definition is explicit or implicit by reference:

a) identifiers occurring in an ASN.l ENUMERATED type as distinguished values;

b) identifiers occurring in a "NamedNumberList" of an ASN. 1 INTEGER type;

c) "UserTypeIdentifiers" of a User ASN. 1 Type Definition.

be unique throughout the test suite,

A.7.6.4 The names of ASP parameters shall be unique within the ASP in which they are declared. The names of PDU fields shall be
unique within the PDU in which they are declared.
A.7.6.5 The names of parameters within a parameter group shall be unique within each ASP where it will expand. The names of fields
within a field group shall be unique within each PDU (and ASP, if applicable) where it will expand.

15

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
82

-1:
19

93

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

OISOBEC

A.7.6.6 Labels used within a tree shaU be unique within a tree.
A.7.6.7 The tree header names used for local test steps shall be unique within the dynamic behaviour description in which they appear.
A.7.6.8 The formal parameter names which may optionally appear as part of the following shall be unique within that formal param-
eter list:

a) User defined operations declaration:

b) Tree header of a local tree;

c) Test step identifier:

d) Defaults identifier;

e) Parameterized consmint declaration.
If usage of a formal parameter name within a dynamic behaviour description clashes with any other identifier defined in the test suite, the formai
parameter name shall take precedence.

A.8 TTCN Test Suite Structure

A.8.1 Introduction
TTCN allows a test suite to be hierarchically struchired in accordance with clause 8.1 of Pari 1 of this multipart standard*. The components of
this structure are:

I a) test groups;

b) testcases;

c) test steps;

d) testevents. I
A TTCN test suite may be completely flat (i.e. have no structure) in which caSe there are no test groups.

TTCN allows the use of test step groups and default groups, similar to the concept of test groups, in order to hierarchically structure test steps
and defaults. (This hierarchical structure is optional).

A.8.2 Test Group References and Test Case References
A.8.2.1 TTCN supports a naming structure that shows a conceptual grouping of test cases. Test groups can be nested. Test cases can
also be stand alone (see IS0 9646-1, clause 8, figure 10): references to TTCN test groups shall have the following syntax:

SYNTAX DEFINITION:

TestGroupReference ::= SuiteIdentiîïer "/" { TestGroupIdentifier "/") +

I
EXAMPLE 11 - A Transport group reference: TRANSPORT/CLASSO/CONN-ESTAB/

A.8.2.2 References to the test cases shaU have the following syntax:
SYNTAX DEFINITION:

TestCaseReference ::= (TestGroupReference TestCaseName) I (SuiteIdentifier "/" TestCaseName)

EXAMPLE 12 - Transport Test Case References:

TR ANSPORTLNIT

TRANSPORT/CLASSO/CONN_ESTABnT_INIT

where TRANSPORT is the name of the test suite, CLASS0 and CONN-ESTAB are test groups, and INIT and LT-INIT are
test case names

A.8.2.3 The test case references defiie the structure of the test suite.

A.8.3 Test Step Group References and Test Step References
A.8.3.1 Decomposition of a test case (or test step) into test steps is achieved by attaching behaviour sub-trees using the TTCN AT-
TACH statement. In TTCN the terms test step and sub-tree are synonymous. The position of a test step in the test suite structure is

I

16 I

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
82

-1:
19

93

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

OISO/IEC ISOBEC 8882-1 : 1993 (E)

not explicit in the test step reference. The concept of a test step may be expressed in several ways in TTCN. A test step may be:
-
-
-

A.8.3.2 In the case of an implicit test step it is impossible to identify or attach the test step. A local test step has no test step reference
- it is identifiable through a local tree name. In the case of a global test step, the test step reference specifies the test step's location in
the test step library. The test step library has no influence on the test suite structure itself. Test step groups and test step references
shall have the following syntax:

SYNTAX DEFINITION:

TestStepGroupReference ::= SuiteIdentifier "/" (TestStepGroupIdentifier "/,, }+
TestStepReference : := (TestStepGroupReference TestStepName) I (SuiteIdentifier "/" TestStepName)

implicit in the behaviour tree;

local to a test case or test step;

globally accessible as a member of the test step library.

EXAMPLE 13 - Transport Test step references:

TR ANSPORT/STEP-A
TR ANSPORT/STEP-LIBR ARY/CLASSO/CONN-ESTAB/STEP-B

17

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
82

-1:
19

93

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

ISODEC 8882-1 : 1993 (E) OISO/IEC

A.8.4 Default Group References and Default Behaviour References
Default behaviours (if any) are located in a default behaviours library.

A default reference specifies the default's location in the default library. The defaults library has no influence on the test suite structure itself.
Default groups and default references shall have the following syntax:

SYNTAX DEFINITION:

DefaultGroupReference ::= SuiteIdentifier 'I/" (DefaultGroupIdentifier "/" }
DefaultReference ::= (DefaultGroupReference DefaultName) I (SuiteIdentifier "/" DefaultName)

EXAMPLE 14 - Transport default references:

TR ANSPORTIDEF-A
TR ANSPORTIDEFAULT-LJBR ARYKLASSOIDEF-B

A.9 Components of a TTCN Test Suite

An abstract test suite written in 'ITCN shall have the following four sections in the following order:

a) Suite Overview (clause A.10),

which is the information needed for the general presentation and understanding of the test suite, such as test references and a description of
its overall purpose;

b) Declarations Part (clause A.l l),

which is the set of components that comprise the test suite (e.g. PCOs, Timers, ASPs, PDUs, and their parameters or fields) is described.
This section shall contain the definition of any abbreviations to be used later in the test suite;

c) Constraints Part (clauses A.12, A.13, A.14),

which is the set of values for the ASPs, PDUs, and their parameters used in the Dynamic Part. The constraints shall be specified using:

1) TTCN tables; or

2) the ASN.l Modular Method; or

3) both TTCN tables and the ASN.1 Modular Method.
d) Dynamic Part (clause A.15),

which comprises three sections that contain tables specifying test behaviour expressed mainly in terms of the occurrence of ASPs at PCOs.
These sections are:

1) the test case dynamic behaviour descriptions;

2) a library containing test step dynamic behaviour descriptions (if any):

3) a library containing default dynamic behaviour descriptions (if any).
SYNTAX DEFINITION:

Suite ::= $Suite SuiteId Suiteoverview Declarations ConstraintsPart Dynamicpart $End-Suite

18

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
82

-1:
19

93

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

OISO/IEC ISO/IEC 8882-1 : 1993 (E)

A.10 Suite Overview

This section shall include at least the following information:

a) the name of the test suite;

b) references to the relevant base standards;

c) a reference to the PICS proforma;

d) a reference to the partial PIXIT proforma (see IS0 9646-2 clause 14);

e) a reference to where in the Abstract Test Suite specification the mapping of the PICS and PIXIT entries used in test case selection is spec-
ified;

f) an indication of the test method or methods to which the test suite applies, plus for the Coordinated Methods a reference to where the Test
Management Protocol is specified. When TïCN is being used for an abstract test suite then there shall only be one test method, but when
it is being used for a generic test suite then it may be that different test cases will be written in the style of different test methods;

g) other information which may aid understanding of the test suite, such as how it has been derived; this should be included as a comment;

h) a three-part test suite index:

1) a test case index, consisting of the test case identifier, test case reference, page number and a description of each test case
(shortened form of the test purpose). The test cases shall be organized according to the structure of the test suite, optionally
giving test group identifier or test group reference, page and test group objective (in the desml>tion column) where appro-
priate in the structure to show the test groups;

0

NOTE - There is no need to include test group identifiers in the f i s t column because they are included in the test group references

2) a test step index, consisting of the test step identifier, test step reference, page number and a description of each test step
(shortened form of the test step objective). The test steps shall be organized according to the structure of the test step li-
brary;

3) a defaults index, consisting of the defaults identifier, defaults reference, page number and a description of each default
(shortened form of the default objective). The defaults shall be organized according to the structure of the defaults library.

I

j

I.
i
I

I
19

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
82

-1:
19

93

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

ISO/IEC 8882-1 : 1993 (E) OISO/IEC

This information shall be povided in the format shown in the following proforma:

Test Suite Overview

Suite Name: SuiteldentGer
Standards ref: Reference
PICS proforma ref: Reference
PIXIT proforma ref: Reference
PICSPIXIT use: Reference
Test Method(s): Free Text
Comments FreeText

Test Group or Case Identifier

TestCaseldentGer I
Test GroupldentGer

Test Step Identifier

TestStepIdentijier

Default Identifier

Defaultldentijier

Test Group or Case Reference Page Description

TestCaseReference I
TestGroupReference

Number FreeText

I I
Test Step Reference I Description

TestStepReference
,

Default Reference

DefaultReference Number FreeText

Proforma 1: Test Suite Overview

SYNTAX DEFINITION:

SuiteIdentifier ::= IdentiFier
Reference ::= BoundedFreeText
FreeText ::= (ExtendedAiphaNum}
SuiteIndex ::= $SuiteIndex TestCaseIndex TestStepIndex Defaultindex $End-SuiteIndex
TestCaseIndex ::= $TestCaseIndex { ((TestCaseId [TestCaseRefl) I ([TestGroupId] [TestGroupRefl)) Description}+
$End-TestCaseIndex
TestGroupRef ::= $TestGroupRef TestGroupReference
TestStepIndex ::= $TestStepIndex (TestStepID TestStepRef Description} $End-TestStepIndex
Defaultindex ::= $DefaultIndex (DefaultID DefaultRef Description} $End-DefaultIndex

Suiteoverview ::= $BeginSuiteOverview SuiteId StandardsRef PICSref PIXITref HowUsed TestMethods [Comment]
SuiteIndex $End-Suiteoverview

If a dollar symbol ($) is needed in free text then it shall be preceded by the special character backslash O), otherwise Free Text shall not include
a dollar symbol ($). Free Text shall not end with the character backslash.

20

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
82

-1:
19

93

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

~

OISO/IEC ISOLEC 8882-1 : 1993 (E)

A.11 Declarations

A . l l . l Introduction

The purpose of the declarations section is to describe all the components used in the test suite. All components referenced in the dynamic part
shall have been declared in the declarations part. These components are:

a) User defined types (clause A.11.2.3);

b) User defined operations (clause A.11.4.3);

c) Test suite parameters (clause A. 11 S);

d) Test suite constants (clause A. 11 4;
e) Test suite variables (clause A.11.7.1);

f) Test case variables (clause A.11.7.2);

g) PCO declarations (clause A.11 .8);

h) Timer declarations (clause A.11.9);

i) Abbreviations (clause A.ll.lO).

j) ASP type declarations (clause A.11.11);

k) ASP parameter group type declarations (clause A. 1 1.11.3);

1 j PDU type declarations (clause A. 1 1.12);

m) PDU field group type declarations (clause A.11.12.3);

SYNTAX DEFINITION:

Declarations ::= $Declarations WserTYPEdefs] CUserOPdefs] [TSPAJXdcls] [TS-CONSTdcls] [TS-VARdclsl
[TC-VARdcls] PCOdcls [TIMERdcls] [Abbreviations] [ASPdclsl PDUdcls $End-Declarations

A.11.2 General TTCN Types

A. 11.2.1 Introduction

'iTCN supports both a number of predefined types and mechanisms that allow the definition of user declared types. These types may be used
throughout the test suite and may be referenced when test suite parameters, constants, variables, ASP parameters or PDU fields are defined.

SYNTAX DEHNITION:

Type : := PredefinedType I UserDefinedType

A.11.2.2 Predefined TTCN Types

A number of commonly used types are predefined for use in ITCN. These types may be referenced even though they do not appear in a type
declaration in a test suite. All other types used in a test suite shall be declared in the User Type Declarations and referenced by name.

a) INTEGER Predefined Type: a type with distinguished values which are the positive and negative whole numbers, including zero;

b) BOOLEAN Predefined Type: a type consisting of two distinguished values;

c) BITSTRING Predefined Type: a type whose distinguished values are the ordered sequences of zero, one, or more bits;

d) HEXSTRING Predefined Type: a type whose distinguished values are the ordered sequences of zero, one, or more semi-octets, a semi-
octet being an ordered sequence of four bits;

e) OCTETSTRING Predefined Type: a type whose distinguished values are the ordered sequences of zero, one, or more octets, each octet
being an ordered sequence of eight bits; thus an OctectString is an even number of HEXSTRING digits;

f) Character String Predefined Types: types whose distinguished values are zero, one, or more characters from some character set; the char-
acter string types listed in table A.2 may be used; they are defined in section two of I S 0 8824.

21

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
82

-1:
19

93

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

~

ISOAEC 8882-1 : 1993 (E)

Table A.2: Predefined Character String Types

OISO/IEC

NumericString
Printablestring
Teletexstring (i.e. T61String)
VideotexString
Visiblestring (i.e. ISO646String)
IASString
Graphicstring
Generalstring

SYNTAX DEI?INITION:

PredefmedType ::= INTEGER I BOOLEAN I PredefinedStringType
PredefimedStringType ::= BITSTRING I HEXSTRING I OCTETSTRING I CharacterString
CharacterString ::= Numericstring I Printablestring I Teletexstring I VideotexString I Visiblestring I IASString I
Graphicstring I Generalstring 0

A.11.2.3 User Defined Types for a Specific Test Suite

A.11.2.3.1 Introduction

Types specific to a test suite may be introduced by the TTCN user. These may be defined using the "TCN user type definitions table andor
ASN.l.

SYNTAX DEFINITION:

UserTYPEdefs ::= $UserTYPEdefs [Tl'CN-TYPEdefs] (ASN1-TYPEdef) $End-UserTYPEdefs

A.113.3.2 User Type Definitions -Tabular Form

To define a new type, the following information shall be provided:

a) a name for the type;

b) the base type (if any),

which is required when defining a new type equivalent to or a subset of a previously defined, or predefined, type (see c2A, c2B); the test
case writer shall ensure that the base type is compatible with the new type being defined;

the base type field may be left blank when the definition of the base type is implicit in the definition of a restricted length type (see c2B);

c) a definition of the type, provided in one of the following manners:

1) by listing tbe set of distinguished values of another type; these values comprise the new type;

2) by specifying a subset of the distinguished values of another type; this may be done in a number of ways:

0

A) by specifying a subrange within a list of values, or integer;

B) by restricting the length of a predefined or user defined string type (e.g. BITSTRING, HEXSTRING, IASS-
TRING) .
The length shall be specified in the unit represented by the corresponding string type: BITSTRING in number of
bits, HEXSTRING in number of hexadecimal digits, OCTETSTRING in number of octets and other character
strings in number of characters.

22

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
82

-1:
19

93

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

OISO/IEC

User Type Definitions
a I

l Name Base Type Definition

Transport-Clawes INTEGER (O, 1, 2, 3, 4)

ClassNumber INTEGER (O .. 4)
i

Example 15: Example User Type Definition

ISO/IEC 8882-1 : 1993 (E)

Name

User Type Identijie r

This information shall be provided in the format shown in the following proforma:

Base Type Definition Comments

BaseType TypeDejinition FreeText

User Type Definitions I

~ ~~

Proforma 2: User Type Definitions

SYNTAX DEFINITION:

TTCN-TYPEdefs ::= $Begin-TTCN-TYPEdefs { TTCN-TYPEdef) + $End-TTCN-TYPEdefs
TEN-TYPEdef ::= $TTCNTYPEdef UserTypeId [Base] TypeDef [Comment] $End-TTCNTYPEdef
UserTypeId : := $UserTypeId UserTypeIdentifier
UserTypeIdentifier ::= IdentiFier
Base ::= $Base Type
FlELDgroupConstraintTypeDef ::= $TypeDef TypeDefinition
TypeDefinition : := TypeIfNoBaseUsed I TypeIfBaseUsed
TypeIfNoBaseUsed ::= TypeAndLength
TypeIfBaseUsed ::= Range I VALlist
Range ::= "(" SignedNumber To SignedNumber ")"
TO ::= TO I ".."
VALlist ::= "(" SignedValue {Comma SignedValue} ")"
comma ..- " 1'

TypeAndLength ::= StringType Y" Number "3"
SignedNumber ::= ["-"I Number
SignedValue ::= ["-"I Value

0

..- ,

Where a range of values is used as a T E N type definition, that range shall be stated with the lower of the two values on the left.

I Comments

Classes that may be used 1 for Transport layer con-
nection I

23

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
82

-1:
19

93

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

ISO/IEC 8882-1 : 1993 (E) OISOAEC

A.11.2.3.3 User Type Definitions in ASN.1

User types specified in ASN.l (IS0 8824) shall be defined in the following proforma:

I User ASN.l Type Definition

I Type Name: UserTypeIdentijïer

ASN.l Definition or Reference

ASNIRef I ASNlDef

,
Proforma 3: User ASN.1 Type Definition

SYNTAX DEFINITION:

ASN1-TYPEdef ::= $Begin-ASNl-TYPEdef UserTypeId ASNlRefûrDef $End-ASNlTY PEdef
ASNlRefûrDef ::= $ASNlRefOrDef (ASNlRef I ASNlDef) $End-ASNlRefOrDef
ASNlRef ::= #REF { SymbolsFromModule}+
SymbolsFromModule : := S ymbolList FROM ModuleReference
SymbolList ::= TypeReference { Comma TypeReference)
TypeReference ::= /* Defined in I S 0 8824 */
ModuleReference ::= /* Defined in I S 0 8824 */
ASNlDef ::= (TypeAssignment)+ /* Defined in I S 0 8824 */

When an ASN.l reference is used the free text entry shall be preceded by the keyword #REF. This applies throughout ïTCN where ASN.l
references are used.

A.11.2.4 Type Compatibility for ASN.1 Types

Data objects are assignment compatible:

a) if their type names are identical;

b) or if one type is derived from the other type by:

1) subtyping (i.e. subrange types, length restriction);

2) or renaming the original type;
EXAMPLE 16 - int : := INTEGER

Data objects of type int and INTEGER are assignment compatible.

3) or changing the tag of the original type;
EXAMPLE 17 - int2 ::= [5] int

int and int2 are assignment compatible.

Constants that are local to the type definition may be defined using ASN. 1 (Named Values) are only compatible to the type they were defined in.

If type A is assignment compatible with type B, and type B is assignment compatible with type C, then type A is always assignment compatible
with type C (i.e. assignment compatibility is transitive).

A.11.2.5 Type Compatibiüty for TTCN Types

For types (user defined types, ASP types, PDU Types) defined using the tabular method the rules a) and b l) from clause A.11.2.4 apply.

NOTE - Renaming cannot be achieved in the tabular method.

I

24

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
82

-1:
19

93

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

OISO/IEC ISO/IEC 8882-1 : 1993 (E)

A.11.2.6 Relationship Between ASN.l and TTCN Types

The following 'ITCN predefined types are assignment compatible with their corresponding ASN. 1 types:

a) INTEGER;

b) BOOLEAN;

c) BITSTRING;

d) OCTETSTRING;

e) and all character string types,

A.11.3 Value Denotation

A.11.3.1 Values of Redefined Types

The values of predefined types shall be denoted as follows:

a) INTEGER Values: values of type INTEGER shall be denoted by one or more digits; the first digit shall not be zero unless the value is O;
the value zero shall be represented by a single zero;

b) BOOLEAN Values: values of the BOOLEAN type are TRUE or FALSE;

c) BITSTRING Values: values of type BITSTRING shall be denoted by an arbitrary number (possibly zero) of zeros and ones, preceded by
a single ' and followed by the pair of characters 'B;

EXAMPLE 18 - 'OllOl'B

d) HEXSTRING Values: values of type HEXSTRING shall be denoted by an arbitrary number (possibly zero) of the characters:

0 1 2 3 4 5 6 7 8 9 A B C D E F
preceded by a single ' and followed by the pair of characters 'H; each character is used to denote the value of a semi-octet using a hexadec-
imal representation;

EXAMPLE 19 - 'ABOlD'H

e) OCTETSTRING Values: values of type OCTETSTRING shall be denoted by an arbitrary, but even, number (possibly zero) of the char-
acters:

0 1 2 3 4 5 6 7 8 9 A B C D E F
preceded by a single ' and followed by the pair of characters 'O; each character is used to denote the value of a semi-octet using a hexadec-
imal representation;

EXAMPLE 20 - 'FF96'0

f) Character String Values: values of character string types shall be denoted by an arbitrary number (possibly zero) of characters from the
character set referenced by the character string type, preceded and followed by " (double quote); if the character string type includes the
character " (double quote), this character shaii be represented a pair of " (double quote) in the denotation of any value.

SYNTAX DEFINITION:

Value ::= Number I BooleanVaiue I Bstring I Hstring I Ostring I Cstring
Number ::= (NonZeroNum {Num)) I O
NonZeroNum ::= 1 I I 9
Num ::= O I I 9
BooleanValue ::= TRUE I FALSE
Bstring ::= ""' {Bin I Wildcard) ""' B
Bin ::=O1 1
Hshng . a _ ..- 11 '11 {Hex I Wildcard} "'" H
Hex ::= Num I A I I F
Ostring ::= ""' {Oct I Wildcard) ""' O
Oct ::= Hex Hex
Cstring ::= """ {Char I Wildcard I "Y) """
Char : := /* a character defined by the relevant character string type */

25

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
82

-1:
19

93

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

ISOAEC 8882-1 : 1993 (E)

ExtValue ::= SignedVaiue I Wiidcard I "-"

SignedValue ::= [,,-"I Value
Identifier ::= Alpha(A1phaNum I "-")
AlphaNum ::= Alpha I Num
Alpha::=AI I Z l a l I z

Wildcard ::= 'I?" I "*"

OISO/IEC

A.11.3.2 Values of ASN.1 Predefined Types

The values of the ASN.l predefined types INTEGER, BOOLEAN, BITSTRING, OCTETSTRING and all character string types shall be de-
noted using the same notation defined in clause A.l l .3 .l for the conesponding 'ITCN predefined types.

Values of an ASN.l ENUMERATED type shall be denoted using the Enumerated Identifiers.

NOTE - ïTCN does not support a value notation for the ASN.l predefined type REAL nor for structured ASN.1 types.

A.11.3.3 Values of User Defined Types and ASN.l User Defined Types

Values of types that are derived from "TCN predefined or ASN.1 predefined types by subsetting shallibe denoted in the same manner as the
values of the type they were derived from.

26

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
82

-1:
19

93

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
82

-1:
19

93

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

ISO/IEC 8882-1 : 1993 (E) OISOBEC

A.11.4.2.3 Redefined Relational Operators

The predefined relational operators are:
1 1 - 1 1 I ll<ll I ll>ll I ll<>ll I ll>=ll I i i < = i I

They represent the relations of equality, less than, greater than, not equal too, greater than or equal to ancl less than or equal to. Operands of "="
and "<>" may be of an arbitrary type. The two operands shall be assignment compatible. All other relational operators shall have operands only
of type INTEGER or derivatives of INTEGER. The result type of these operations is BOOLEAN.

In string comparisons BlTSTRING, HEXSTRING, OCTETSTRING and all kinds of CHARACTER STRINGS may contain the wildcard char-
acters "*" and "?". In this case the comparison is performed according to the pattern matching rules defined in clause A.12.3.3.

A.11.4.2.4 Redefined Boolean Operators

The predefined Boolean operators are:

-

NOT AND OR
They represent the operations of negation, logical AND and logical OR. Their operands shall be of typelBOOLEAN ('ITCN or ASN.l or pre-
defined) or derivations of BOOLEAN.

The logical AND returns the value TRUE if both its operands are TRUE; othervise it returns the value FALSE. The logical OR returns the
value TRUE if at least one of its operands is TRUE; it returns the value FALSE only if both operands are FALSE. The logical NOT is the unary
operator that returns the value TRUE if its operand was of value FALSE and returns the value FALSE if the operand was of value TRUE.

A.11.4.3 User Defined Operators for a Specific Test Suite

Operators specific to a test suite may be introduced by the 'ITCN user. To define a new operation, the following information shall be provided:

a) a name for the operation;

b) a list of the input parameters and their types;
this is a list of the formal parameter names and types. Each parameter name shall be followed by a colon and then the name of the param-
eter' s type.

If more than one parameter of the same type is used, the parameters may be specified as a parameter sub-list. When a parameter sub-list is
used , the parameter names shall be separated from each other by a comma. The final parameter in the list shall be followed by a colon and
then the name of the parameter's type.

When more than one parameter and type pair (or parameter list and type pair) is used, the pairs shall be separated from each other by semi-
colons. I

EXAMPLE 21 - The following are equivalent methods of specifying a parameter list using two INTEGER parameters and one
BOOLEAN parameter:

a) (A:INTEGER; B:INTEGER; C:BOOLEAN)

b) (A, B:INTEGER; C:BOOLEAN)

c) the type of the result;

d) a description of the operation,
which shall consist of an explanation of the operation, plus at least one example showing an invocation and corresponding result; the ex-
planation shall begin by stating the operation name, followed by a parenthesized list containing the parameter names of the operation; this
provides a "pattern" invocation for the operation.

28

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
82

-1:
19

93

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

OISO/IEC

This information shall be provided in the format shown in the following proforma:

ISO/IEC 8882-1 : 1993 (E)

User Operation Definition

Operation Name: OPident8er [FormalPARlistl
Result Type: Type

I Description

FreeText

Proforma 4: User Operation Definition

An operation may be compared to a function in an ordinary programming language. However, the parameters to the operation shall not be
altered as a result of any call of the operation and there shall be no side effects (i.e. no changes to any Test Suite or test case variable).

When a User Defined Operation is invoked, the types of the actual parameters shall match the types of the formal parameters.

SYNTAX DEFINITION

UserOPdefs ::= $UserOPdefs { UserOPdef} + $End-UserOPdefs
UserOPdef : := $Begin-UserOPdef OPid OPresult OPdescription $End-UserOPdef
OPid ::= $OPid Opidentifier [FormalPARlist]
Opidentifier ::= Identifier
OPresult ::= $OPresult Type
OPdescription ::= $OPdescription BoundedFreeText

The definition of a string operation is given below:

User Operation Definition

Operation Name:
Result Type: IASSTRING

substr (source:IASSTRING; start-index, 1ength:INTEGER)

I Description

substr(source, start-index, length) is the string of length length starting from index sturt-index of the source
string source.
For example:
substr("abcde",3,2) = " c d
subs&("abcde",4,99999) = "de"

I
Example 22: Definition of Operation substr

29

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
82

-1:
19

93

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

ISODEC 8882-1 : 1993 (E) I OISOBEC

A.11.5 Test Suite Parameters
The purpose of this section is to declare constants derived from the PICS andor PIXIT which globally parameterize the test suite. These con-
stants are referred to as test suite parameters.

NOTE - In real cases of testing, test suite parameters wiil be bound to a value when the PICSPIXIT processing occurs. The method of PICS
andior PIXIT processing is implementation dependent and is not specified in the TïCN notation.

The following information relating to each test suite parameter shall be provided in this section:
,

a) its name;
b) its type;

c) PICS/PIXIT entry reference,
which is a reference to an individual PICSIPEIT proforma entry that will clearly identify where the value to be used for this test suite
parameter will be found.

This information shall be provided in the format shown in the following proforma:

Test Suite Parameters

Name Type PICS/PIXIT Ref. Comments

TS-PARidentijier Type 1 Reference FreeText
Reference Type

Proforma 5: Test Suite Parameters

SYNTAX DEFINITION:

TSPARdcls ::= $Begin-TSPARdcls (TSPARdcl}+ $End-TS-PARdcls
TSPARdcl ::= $TSPARdci TSPARid TSPARtype PICSPIXIT [Comment] $End-TS-PARdcl
TSPARid ::= $TS-PARid TS-PARidentifier
TSPARidentifier ::= Identifier
TSPARtype ::= $TS-PARtype (Type I ReferenceType)
PICS-PIXIT ::= $PICS-PIXIT Reference

I Test Suite Parameters I
Name Type PICS/PIXIT Ref. Comments

PAR1 INTEGER PICS question xx
PAR2 INTEGER PICS question yy
PAR3 INTEGER PEUT question zz

I I I I I

Example 23: Test Suite Parameter Declarations

30

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
82

-1:
19

93

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

@IS O/IEC

Name Type Value

ISOAEC 8882-1 1993 (E)

Comments

A.11.6 Test Suite Constants

The purpose of this section is to declare a set of names for values not derived from the PICS or P W T that will be constant throughout the test
suite.

The following information relating to each test suite constant shall be provided in this section:

a) its name;
b) its type;

c) its value.

This information shall be provided in the format shown in the following proforma:

Name Type Value

TSCONSTl BOOLEAN TRUE
TSCONST2 IASString "A string"

Comments

I I I

i I I

I I
Proforma 6: Test Suite Constants

SYNTAX DEFINITION:

TSCONSTdcls : := $Begin-TS-CONSTdcls { TSCONSTdcl} + $End-TS-CONSTdcls
TSÇONSTdcl ::= $TS-CONSTdcl TS-CONSTid TS-CONSTtype TS-CONSTvalue [Comment]
$EndTSCONSTdcl
TSCONSTid ::= $TS-CONSTid TSCONSTidentifier
TSÇONSTidentifier ::= Identifier
TSÇONSTtype ::= $TS-CONSTtype Type
TSÇONSTvaiue ::= $TS-CONSTvalue SignedValue

Test Suite Constants I

31

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
82

-1:
19

93

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

ISODEC 8882-1 : 1993 (E)

Name

OISO/IEC

Type Value Comments

A.11.7 TTCN Variables

A.11.7.1 Test Suite Variables

A test suite may make use of a set of variables which are defined globally for the test suite, and retain their values throughout the test suite.
These variables are referred to as test suite variables.

A test suite variable is used whenever it is necessary to pass information from one test case to another.

All test suite variables to be used in a test suite shall be declared. The following information shall be provided for each variable declaration:

a) itsname;
b) its type;

c) its initial value (if any),
where the initial value column is used when it is desired to assign an optional initial value to a test s te variable at its point of declaration.

This information shall be provided in the format shown in the following proforma:

Name Type

I Test Suite Variables

Value Comments

Proforma 7: Test Suite Variables

SYNTAX DEFINITION:

TS-VARdcls ::= $Begin-TS-VARdcls { TSVARdcl}+ $EndTS-VARdcls
TS-VARdcl ::= $TS-VARdcl TS-VARid TS-VARtype [TSYARvalue] [Comment] $End-TS-VARdcl
TS-VARid ::= $TS-VARW TS-VARidentifier
TS-VARidentiîïer ::= Identifier
TS-VARtype ::= $TS-VARtype (Type I ReferenceType)
TS-VARvaiue ::= $TS-VARvalue SignedValue

Since it is possible that any particular test case may be run independently of the others in the test suite, it is necessary that the use made of test
suite variables does not make assumptions about the ordering of the test case execution.

EXAMPLE 25 - An example of test suite variables, with the comments indicating their intended use.

r ~ ~~ ~~

Test Suite Variables

I Used to indicate the final I state I IASSTRING I "idle"
stable state of the previous
test case, if any, in order to
help determine which pre-
amble to use.

A.11.7.2 Test Case Variables

A test suite may make use of a set of variables which are declared globally to the test suite but whose scope is defined to be local to the test
case. These variables are referred to as test case variables.

All test case variables to be used in a test suite shall be declared. The following information shall be provided for each variable declaration:

a) itsname;

32

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
82

-1:
19

93

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

OISO/IEC

Name Type Value

TC-VARidentGer Type I Value
Reference Type

ISOAEC 8882-1 : 1993 (E)

Comments

FreeText

b) its type;

c) its initial value (if any),
where the initial value column is used when it is desired to assign an opfional initial value to a test case variable at its point of declaration.

This informati

NOTE - Cauti
with other test
all such variab

SYNTAX DEFINITION:

TC-VARdcls : := $Begin-TC-VARdcls { TC-VARdcl] + $End-TC-VARdcls
TC-VARdcl ::= $TC-VARdcl TC-VARid TC-VARtype [TCVARvalue] [Comment] $EndTc-VARdcl
TC-VARid ::= $TC-VARid TC-VARidentifier
TC-VARidentifier ::= IdentiFier
TC-VARtype ::= $TC-VARtype (Type i ReferenceType)
TC-VARvaiue ::= $TC-VARvalue SignedValue

A.11.7.3 Binding of TTCN Variables

A.11.7.3.1 Binding of Test Suite Variables

Initially test suite variables are unbound. They may become bound (or be rebound) in the following contexts:

a) at the point of declaration;

b) when the test suite variable appears on the left-hand side of an assignment statement (clause A.15.10.4);

c) when the variable appears in a constraints reference (clause A.15.16).

Once a value has been bound to a test suite variable, the test suite variable will retain that value until either it is bound to a different value, or
execution of the test suite terminates - whichever occurs first.

A.11.7.3.2 Binding of Test Case Variables

Initially test case variables are unbound. They may become bound (or be rebound) in the following contexts:

a) at the point of declaration;

b) when the test case variable appears on the left-hand side of an assignment statement (clause A.15.10.4);

c) when the test case variable appears in a constraints reference (clause A.15.16).

Once a value has been bound to a test case variable, the test case variable will retain that value until either it is bound to a different value, or
execution of the test case terminates - whichever occurs first. At termination of the test case, the test case variable becomes bound to its initial
value, if one is specified, otherwise it becomes unbound.

A.11.8 PCO Declarations
This section lists the set of points of control and observation (PCOs) to be used in the test suite and explains where in the testing environment
these PCOs exist. In accordance with part 1 of this standard* the number of PCOs relates to the test method one PCO for the Remote and
Coordinated test methods, and mu PCOs for the Local, Distributed, Loop-back Relay and Transverse test methods.

33

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
82

-1:
19

93

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

I

ISO/IEC 8882-1 : 1993 (E) OISOflEC

TTCN behaviour statements specified for execution at the upper tester PCO shall not place requirements beyond those allowed by I S 0 9646-2.

In 'ITCN the PCO model is based on two First In First Out (FIFO) queues:
-
-
The output queue is assumed to be located within the underlying service provider or in the case of the upper tester, within the IUT.

A SEND event is successful by being passed from the lower tester to the service provider (from upper tester to IUT).

For the purpose of receiving events the tester has an input queue. All incoming events are queued and processed by the tester in the same order
they were received, and without loss of any events.

one output queue for sending ASPs andior PDUs

one input queue for receiving ASPs andior PDUs

NOTES -
1 - The queue model is only an abstract model and is not intended to imply a specific implementatip.

2 - Connection Endpoint Identifiers (CEIds) within a single PCO are expected to be treated in an addendum to this standard*. It is ex-
pected that there will be two FIFO queues (one input, one output) for each CEId.

The following information shall be provided for each PCO used in the test suite:

a) its name,

b) its type,
where the name shall be used in the behaviour descriptions to specify where particular events occur;

where the type is used to identify the layer boundary where the PCO is located;

c) itsrole,

which is an explanation of which type of tester is placed at the PCO. The predefined identifier UT indicates that the PCO is an upper tester
PCO and LT specifies a lower tester PCO.

This information shall be provided in the format shown in the following proforma:

PCO Type Declarations

Role 8 Comments Name Type

PCOidentifier I PCOtypeIdentifier 1 UTlLT 1 FreeText

Proforma 9: PCO Declarations

SYNTAX DEFINITION:

PCOdcls : := $Begin-PCOdcls (PCOdcl} + $End-PCOdcls
PCOdcl : := $PCOdcl PCOid PCOtypeId PCOrole [Comment] $End-PCOdcl
PCOid ::= $PCOid PCOidentifier
PCOidentifier ::= Identifier
PCOtypeId ::= $PCOtypeId PCOtypeIdentifier
PCOtypeIdentifier ::= Identifier
PCOrole ::= $PCOrole (UT I LT)

34

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
82

-1:
19

93

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

orsomc ISOhEC 8882-1 : 1993 (E)

PCO Type Declarations

Name Type Role Comments

L TSAP LT Transport service access

SSAP UT Session service access point U
point at the lower tester.

at the upper tester.

Example 26: Typical PCO Declarations

Points of control and observation are usually just SAPs, but in general can be any appropriate points at which the test events can be controlled
and observed. However, it is possible to define a PCO to correspond to a set of SAPs , provided all the SAPs comprising that PCO are:

-

-

When a PCO corresponds to several S A P s the calling address (when initiating) or called address (when receiving) is used to identify the indi-
vidual SAP.

at the same location (i.e. in the lower tester or in the upper tester);

SAPs of the same service.

EXAMPLE 27 - A typical example in which one PCO corresponds to several SAPs could be an Internet lower tester which uses
one PCO representing all the subnetwork points of attachment for sending several Internet PDUs over different routes.

It should be noted that a PCO may not be related to a S A P at all. For instance, this could be the case when a layer is composed of sublayers
(e.g. in the Application layer, or in the lower layers, where a subnetwork point of attachment is not a SAP).

A.11.9 Timer Declarations

A test suite may make use of several timers. Each timer has an associated length of time for its expiration.

The following information shall be provided for each timer:

a) the timer name,
where this name shall be unique within the declarations part;

b) the optional timer duration,
where the default duration of the timer may be a test suite parameter, test suite constant, or an explicit value; timer duration may be omitted
if the value cannot be established prior to execution of the test suite.

c) the time units,

where the time units shall be one of the following:

1) ps (i.e. picosecond);

2) ns (i.e. nanosecond);

3) us (i.e. microsecond);

4) ms (i.e. millisecond);

5) sec (i.e. second);

6) min (i.e. minute).
Time units are determined by the test suite designer and are fixed at the time of specification. Different timers may use different units within
the same test suite. A PICS or PIXIT entry requesting the IUT provider to indicate the duration of a timer shall include the units declared
in the timer declarations proforma for that specific timer.

35

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
82

-1:
19

93

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

ISO/IEC 8882-1 : 1993 (E) OISOAEC

This information shall be provided in the format shown in the following proforma:

Comments Timer Name Duration

Timer Declarations

Timerldentifier TimerDuration

Units

Time Unit. Free Text I Free Text I

Proforma 1 0 Timer Declarations

SYNTAX DEFINITION:

TIMERdcls : := $Begin-TIMERdcls (TIMERdcl} + $End-TIMERdcls
TIMERdcl ::= $TIMERdcl TimerId [Duration] TimeUnit [Comment] $End-TIMERdcl
TimerId ::= $TimerId TimerIdentifier
TimerIdentifier ::= Identifier
Duration ::= $Duration TimerDuration
TimerDuration ::= Number I TS-PARidenWier I TSÇONSTidentifier
TimeUnit ::= $Timeunit (ps I ns i us I ms I sec I min)

Timer Declarations

Timer Name Duration Units Comments

wait 15 SeC General purpose wait

no-response A min used to wait for IUT to connect or react to con-
nection establishment, longer duration than
general purpose wait. Gets value from PIXiT

delay-timer ms Duration to be established during execution of
the test suite.

Example 28: Timer Declarations

A.ll.10 TTCN Abbreviations Declarations
A.11.10.1 Introduction

This section defines any abbreviations that are to be used in the behaviour description column of the test suite. Abbreviations are used as a
macro facility, performing simple textual substitution operations.

An abbreviation definition shall provide the foliowing information:

a) an abbreviation identifier;
b) its expansion,

which is to be substituted for every occurrence of the identifier.

36

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
82

-1:
19

93

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

OISO/IEC ISOhEC 8882-1 : 1993 (E)

This information shall be provided in the format shown in the following proforma:

Abbreviation Declarations

Abbreviation Expansion Comments

AbbreviationIdent@er Free Text FreeText

Proforma 11: Abbreviations

SYNTAX DEFINITION:

Abbreviations ::= $Begin-Abbreviations {Abbreviation}+ $Endebbreviatiom
Abbreviation : := $Abbreviation AbbreviationId Expansion [Comment] $EndAbbreviation
AbbreviationId ::= $AbbreviationId AbbreviationI&ntifier
AbbreviationIdentifier ::= Identifier
Expansion : := $Expansion BoundeâFreeText

I

Abbreviation

CR

cc

Abbreviation Declarations

Expansion

N-DATAinde NSDU - CR-WDU>

N-DATAreq <NSDU CC-TPDU>

Comments

CR denotes any N-DATA indication
whose Network Service Data Unit is
the encoding of a Connect Request
Transport PDU.
NOTE - for the "-" operator defini-
tion see clause 11.15.3.

CC denotes any N-DATA request
whose Network Service Data Unit is
the encoding of a Connect C o n f i
Transport PDU.
NOTE - for the operator defini-
tion see clause 11.15.2.

Example 29: Abbreviation Declaration from a Transport Test Suite.

A.11.10.2 Scope and Expansion of Abbreviations

The following rules apply:

a) an abbreviation is an identifier that shall follow the syntax rules defined in the 'ITCN.MP. This means that an abbreviation is delimited by
any character (symbol) not allowed in a "TCN identifier. Abbreviations shall be delimited by: white space, "!", "?", "(", ")", "[", "I", "<",

, !,+,,, ,,-,*, "*" "/", ,,,,,, ,,;$,, ,< I I 11_34 <'A" ">", 11:11(! ! _ I t -
. I 7 .

EXAMPLE 30 - !CR(X:=l) and ! CR (X:=i) are both legal uses of the abbreviation CR, which is delimited by the characters
"!" and "(", and "!" and white space respectively.

b) abbreviations are not recursive - if an abbreviation appears in the expansion of that abbreviation it shall not be expanded (i.e. it is a one pass
expansion);

EXAMPLE 3 1 - the CR in the CR-TPDU of the expansion above is not expanded.

c) an abbreviation may be used to replace any piece of text within a single 'ITCN statement of a behaviour tree. It shall only be used in a
behaviour description column or a constraints reference column;

d) the test case writer shall ensure that when an abbreviation is expanded in a 'ITCN statement and/or constraints reference that the syntax of
the resulting ?TCN statement and/or constraints reference follows the 'ITCN.MP syntax for ?TCN statements and/or constraints referenc-

37

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
82

-1:
19

93

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

ISOhEC 8882-1 : 1993 (E) OISO/IEC

es ;

e) tree indentation shall not be part of the expansion. The level of indentation is taken to be the same its the level of indentation of the TTCN
statement in which the abbreviation appears.

A.l l . l l ASP Type Declarations
A.11.11.1 Introduction

The purpose of this part of the abstract ?TCN test suite is to declare the types of ASPS that may be sent or received at the declared PCOs. ASP
type declarations may include ASN. 1 type declarations, if appropriate. Normally, the declared information can be found in the appropriate ser-
vice definition. However, declaring it explicitly allows the addition of commentary specific to testing and to a particular test suite, as well as
providing for cases where no explicit OS1 service definition exists (e.g. X.25).

A.11.11.2 Tabular ASP Type Declarations

The following information shall be supplied for each ASP:

a) its name,
where the full name, as given in the appropriate protocol standard*, shall be used; if an abbreviation is used, then the full name shall follow
in parentheses;

b) the PCO type associated with the ASP,
where the PCO type shall be one of the PCO types used in the PCO declaration proforma. If only a s gle PCO is defined within a test suite,
specifying the PCO type in an ASP type declaration is optional;

c) a list of the parameters and parameter groups associated with the ASP,
where the foilowing information shall be supplied for each parameter and parameter group:

1) its name,
where the full name, as given in the appropriate protocol standard", shall be used: if an abbreviation is used, then the full
name shall follow in parentheses;

2) its type,

where parameters may be of a type of arbitrarily complex structure; if a parameter is be structured as a PDU, then its
type may be stated as PDU to indicate that in the constraints for the ASP this parameter may be chained to a PDU con-
straints identifier;

if the name is a parameter group identifier then the type shall be stated as GROUP to indicate that the structure of the
parameter group is to be found in the appropriate parameter group declaration.

This information shall be provided in the format shown in the following proforma:

ASP Type Declaration

ASP Name: ASPid&FullId PCO Type: PCOtypeIdentijier Comments: FreeText

Parameter Name

ASP-PARid& Fullld

Service Parameter Information

Type I GROUP I PDU

Comments

FreeText

Proforma 12: Abstract Service Primitive Type Declaration

38

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
82

-1:
19

93

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

OISO/IEC

SYNTAX DEFINITION:

ISO/IEC 8882-1 : 1993 (E)

TTCN-ASPdcls : := $TTCN-ASPdcls { TïCN-ASPdcl} (ASP-PARgroupDcl) $End-TTCN-ASPdcls
TTCN-ASPdcl : := $Begin-TTCN-ASPdcl ASPid [PCOtypeId] [Comment] [SPI] $EndTTCN-ASPdcl
ASPid ::= $ASPid ASP-id&FullId
ASP-id&FullId : := AS Pidentifier [FullIdentifier]
ASPidentifier ::= Identifier
FullIdentifier ::= 'I(,, BoundedFreeText ")"
PCOtypeId ::= $PCOtypeId PCOtypeIdentifier
PCOtypeIdentifier : := Identifier
SPI ::= $SPI (ASP-PARdcl}+ $End-SPI
ASP-PARdcl ::= $ASP-PARdcl ASP-PARid ASP-PARtype [Comment] $End-ASP-PARdcl
ASP-PARid : := $ASP-PARid ASP-PARid&FullId
ASP-PARid&FullId : := (ASP-PARidentifier [FullIdentifier]) I ASP-PARgroupIdentifier
ASP-PARidentifier : := Identifier
ASP-PARtype ::= $ASP-PARtype (Type I GROUP I PDU)
EXAMPLE 32 - The figure below shows an example from the Transport Service [IS0 80721. This could be part of the set of
ASPs used to describe the behaviour of an abstract upper tester in a DS test suite for the Class O Transport. CDA,CGA and QOS
are u s q defined types [IS0 80731.

CONreq (T-CONNECTrequest)

Cga (Calling Address)

QoS (Quality of Service

... of lower tester

should ensure class O is used

Figure A.1: TCONNECTrequest Abstract Service Primitive

A.11.11.3 Parameter Group Declarations

ASPs may be sub-structured by declaring one or more ASP parameters in a separate ASP parameter group declarations table. The parameters
that are to be represented using this table shall be contiguous parameters in the original ASP type declaration. Values of parameter groups shall
be specified in the constraints part.

39

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
82

-1:
19

93

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

ISO/IEC 8882-1 : 1993 (E)

This information shall be provided in the following proforma:

ASP Name: ASPid&Fullld

OISOOEC

PCO Type: PCûtypeIdentifier

ASP Parameter Group Type Declaration I

ASP-PARid& Fullld Type I GROUP I PDU

Proforma 13: Parameter Group Type Declaration

SYNTAX DEFINITION:

?TCN-ASPdcls ::= $TTCN-ASPdcls (TTCN-ASPdcl} (ASP-PARgroupDcl} $End-TTCN-ASPdcls
ASP-PARgroupDcl ::= $Begin-ASP-PARgroupDcl ASP-PARgroupId [Comment] SPI $End-ASP-PARgroupDcl
ASP-PARgroupId : := $ASP-PARgroupId ASP-PARgroupIdentifier
ASP-PARgroupIdentifier : := Identifier

A.11.11.4 ASP Type Declarations Using ASN.l

Where more appropriate, ASPS can be specified in ASN.1. lhis shail be achieved either by:

a) A precise reference to an ASN.1 ASP defined in an OSI" standard";

b) An ASN.1 definition using the ASN.1 syntax as defined in IS0 8824.

This information shali be provided in the following proforma:

ASN.l ASP Type Declaration I

ASNlRef I ASNlDef

Proforma 14: ASN.l ASP Type Declaration

SYNTAX DEFINITION:

ASNlASPdcls ::= $ASNlASPdcls { ASNlASPdcl} { ASNIASP-PARdcl} $End-ASNl-ASPdcls
ASNlASPdcl ::= $Begin- ASNlASPdcl ASPid [PCOtypeId] ASNlRefOrDef $End-ASNl-ASPdcl
ASPid ::= $ASPid ASP-id&FullId
ASP-id&FullId ::= ASPidentifier [Fullldentifier]
ASPidentifkr ::= Identifier
FullIdentiFer ::= "(,, BoundedFreeText ">"

e

e

40

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
82

-1:
19

93

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

OIS MEC ISOAEC 8882-1 : 1993 (E)

PCOtypeId ::= $PCOtypeId PCOtypeIdentifier
PCOtypeIdentifier ::= Identifier
ASNlRefOrDef ::= $ASNlRefOrDef (ASNlRef I ASNlDef) $End-ASNlRefOrDef
ASNlRef ::= #REF {SymbolsFromModule}+
ASNlDef ::= { TypeAssignment}+ /* Defined in I S 0 8824 */

A.11.11.5 ASP Parameter Type Declarations Using ASN.l

ASP parameters specified in ASN.l shall be defined in the following proforma:

ASNlRef I ASNlDef

Proforma 15: ASN.1 ASP Parameter Type Declaration

SYNTAX DEFINITION:

ASN1-ASPdcls ::= $ASNlASPdcls { ASNl-ASPdcl} { ASNlASP-PARdcl} $EndASNlASPdcls
ASN 1 A S P-PARdcl : : = $Begin-ASN 1ASP-PARdcl ASN 1 ASP-PARid ASN 1 RefûrDef
$EndASNl-ASP-PARdcI
ASN 1 -AS P-PARid : := $ASN 1ASP-PARid ASN 1-AS P-PARidentifier
ASN1-ASP-PARidentifier ::= Identifier

A.11.12 PDU Type Declarations
A. 11.12.1 Introduction

The purpose of this part of the abstract T ï C N test suite is to declare the types of the PDUs that may be sent or received either directly or em-
bedded in ASPS at the declared PCOs. PDU type declarations may include ASN.1 type declarations, if appropriate.

The encoding of PDU fields shall follow that as defined in the relevant protocol specification.

0

A.11.12.2 PDU Type Declarations Using Tables

The declaration of PDUs is similar to that of ASPs. The following information shall be supplied for each PDU:

a) its name,
where the full name, as given in the appropriate protocol standard*, shall be used; if an abbreviation is used, then the full name shall follow
in parentheses;

b) the PCO type associated with the PDU,

if a PDU is sent or received only embedded in ASPs within the whole test suite, specifying the PCO type is optional; if only a single PCO
is defined within a test suite, specifying the PCO type in a PDU type declaration is optional;

c) a list of the fields and field groups associated with the PDU.

NOTE - In order to be able to describe tests which exercise PDU encoding, it may be necessary to include fields (such as length indicators)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
82

-1:
19

93

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

ISOAEC 8882-1 : 1993 (E) OISOAEC

The following information shall be supplied for each field or field group:

1) its name,
where the full name, as given in the appropriate protocol standard*, shall be used; if an abbreviation is used, then the full
name shall follow in parentheses;

2) its type and optional field length,

where a field is to be structured as a (higher-level) PDU, then its type may be stated ;m PDU to indicate that in the con-
straints for the PDU this parameter may be chained to another PDU constraint identifier;

if the name is a field group identifier then the type shall be stated as GROUP to indicate that the structure of the field
group is to be found in the appropriate field group declaration.

This information shall be provided in the format shown in the following proforma:

PDU Type Declaration I
PDU Name: PDUid&FullId PCO Type: PCOtypeIdentifier Comments: FreeText

PDU Field Information

Field Name TYPe Comments

FIELDid& Fullld Type&Length I FreeText
GROUP I PDU

Proforma 16: Protocol Data Unit Type Declaration

SYNTAX DEFINITION:

TïCN-PDUdcls : := $TTCN-PDUdcls { TTCN-PDUdcl) { FIELDgroupDcl} $EndTTCN-PDUdcls
TïCN-PDUdcl ::= $Begin-TTCN-PDUdcl PDUid [PCOtypeId] [Comment] PFI $End-TTCN-PDUdcl
PDUid ::= $PDUid PDUid&FullId
PDUid&FullId ::= PDUidentifier [FullIdentifier]
PDUidentifier ::= Identifier
PCOtypeId ::= $PCOtypeId PCOtypeIdentifier
PCOtypeIdentifier ::= Identifier
PFI : : = $PFI { FELDdcl } + $End-PFI
FlELDdcl ::= $FIELDdcl FIELDid FIELDtype [Comment] $End-FlELDdcl
=Did ::= $FIELDid FELDid&FullId
FELDid&FuliId ::= (FIELDidentifier [FuliIdentifier]) I FIELDgroupIdentifier
FIELDidentifier ::= Identifier
FIELDgroupIdentifier ::= Identifier
FIELDtype ::= $FIELDtype (Type&Length I GROUP I PDU)
Type&Length ::= Type ["[" Length "1" 3
Length ::= SingleLength I RangeLength
SingleLength ::= TCVid I Number I FIELDidentifier
RangeLength ::= (TCVid I Number) To SingleLength

42

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
82

-1:
19

93

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

OISO/IEC

PDUName: INTC PCO Type: NSAP

(Interrupt Confirm)

ISODEC 8882-1 : 1993 (E)

Comments:

Field Name Type

GFI BITSTRING
LCGN BITSTRING
LCN BITSTRING
PTI OCTETSTRING

EXTRA OCTETSTRING

PDUs may be sub-structured by declaring one or more PDU fields in a separate PDU field group declarations table. The fields that are to be
represented using this table shall be contiguous fields in the original PDU type declaration. Values of PDU fields shall be specified in the con-
straints part.

This information shall be provided in the following proforma:

Comments

General Format Identifier
Logical Channel Group Number
Logical Channel Identifier
Packet Type Identifier
To create long INTC packets

PDU Field Group Type Declaration
-~

Field Group Name: FIELDgroupIdentsfier Comments: FreeText

PDU Field Information

Field Name

FIELDid& Fullld Type WithLength
GROUP I PDU

Comments

FreeText

Proforma 17: PDU Field Group Declaration

SYNTAX DEFINITION:

TEN-PDUdcls : := $TTCN-PDUdcls (TTCN-PDUdcl} (FiELDgroupDcl} $End-TTCNPDUdcls
FIELDgroupDcl ::= $Begin-FIELDgroupDcl FELDgroupId [Comment] PFI $End-FIELDgroupDcl
RELDgroupId ::= $FIELDgroupId FIELDgroupIdentifier
FIELDgroupIdentifier ::= Identifier

A.11.12.4 PDU Type declarations Using ASN.1

Where more appropriate PDUs can be specified in ASN.l. This is achieved either by:

a) a precise reference to an ASN.l PDU defined in an OSI* standard*;

b) or an ASN.l definition using the ASN.l syntax as defined in I S 0 8824.

43

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
82

-1:
19

93

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

ISO/IEC 8882-1 : 1993 (E)

This information shall be provided in the format shown in the following proforma:

44

OISO/IEC

I ASN.1 PDU Type Declaration

PDU Name: PDUid&FuZlId PCO Type: PCOtypeIdentijier

ASN.l Defmition or Reference I

ASNIRef I ASNlDef

Proforma 18: ASN.l PDU Type Definition

SYNTAX DEFINITION:

ASN1-PDUdcls ::= $ASNl-PDUdcls { ASN1-PDUdcl) { ASN1-FIELDdcl) $End-ASNlPDUdcls
ASNI-PDUdcl ::= $Begin_ASNl-PDUdcl PDUid [PCOtypeId] ASNlRefOrDef $End-ASNl-PDUdcl
PDUid ::= $PDUid PDUid&FuliId
PDUid&FullId : := PDUidentifier FullIdentifier]
PDUidentifier ::= Identifier
PCOtypeId ::= $PCOtypeId PCOtypeIdentitïer
WOtypeIdentifier ::= Identifier
ASNlRefOrDef ::= $ASNlRefOrDef (ASNlRef I ASNlDef) $End-ASNlRefOrDef
ASNlRef ::= #REF (SymbolsFromModule}+
ASNlDef ::= (TypeAssigrment)+/* Defined in I S 0 8824 */

ASN.l PDU Type Declaration

PDU Name: F-INIT (F-INITIALEE-response) PCO Type:

ASN.1 Definition or Reference

SEQUENCE (
state-result State-result DEFAULT success,
action-result Action-Result DEFAULT success
protocol-id Protocol-Version

................... etc. }

Example 34: FTAM ASN.l Declaration Through Definition.

e

e

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
82

-1:
19

93

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

OISO/IEC ISODEC 8882-1 : 1993 (E)

A.11.12.5 PDU Field Type Declarations Using ASN.l

PDU fields specified in ASN. 1 shall be defined using the following proforma:

ASN.l PDU Field Type Declaration

ASN.l Definition or Reference

ASNlRef I ASNlDef

Proforma 1 9 ASN.l PDU Field Type Declaration

SYNTAX DEFINITION:

ASN1-PDUdcls ::= $ASNl-PDUdcls { ASNI-PDUdcl} { ASN1-FIELDdcl} $End-ASNl-PDUdch
ASN1-FIELDdcl : := $Begin-ASNlFIELDdcl ASNl-FIELDid ASNl RefOrDef $End-ASNlFIELDdcl
ASN 1 -FIELDid : : = $ASNlFlELDid ASN l-FIELDidentifier
ASNlFIELDidentifier ::= Identifier

When an ASN.l reference is used the free text entry shall be preceded by the keyword #REF. This applies throughout ïTCN where ASN.l
references are used.

45

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
82

-1:
19

93

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

ISO/IEC 8882-1 : 1993 (E) OISOLEC

A.12 The Constraints Part

A.12.1 Introduction
It is necessary to specify, in detail, the values of ASP parameters and PDU fields . These encodings s

-
-

Reference to particular constraints is made in the constraints reference column of the various dynamic behaviour tables.

A.12.2 Using Test Suite Parameters and Constants in Constraints
Test suite parameters and test suite constants that have been declared in the declarations part of the test suite may be used in the constraints
part. The following rules shall be observed, with respect to the direction of the PDU:

a) sent PDUs:

be described using either:

the Tabular Method (clause A.13); or

the ASN.l Modular Method (clause A.14).

- the value of the test suite parameter or test suite constant is sent;

b) received PDUs:

- the value of the test suite parameter or test suite constant shall be the value received if the constraint is to apply;

Neither test suite- nor test case variables shall be used in constraints, unless passed as parameters.

NOTE - Use of test suite and test case variables in constraints is expected to be treated in an addendum

A.12.3 Using Special Value Symbols in Constraints
A. 12.3.1 Introduction

Three special symbols ('I-", "?", "*") may be used in constraints to specify "don't care" values and to explicitly omit fields.
A.123.2 Parameter or Field Constraints

a) The OMIT symbol, "-", ("dash"), specified as the value of a parameter or field in a constraint, indicates that the parameter or field shall be
absent in a SEND event and in a RECEIVE event, if the constraint is to match.

NOTE - How the absence of a parameter or field is expressed is a local encoding matter.

b) The ANY-SINGLE-VALUE symbol, "?", in a RECEIVE event, replacing a value in a single parameter or field of a defined type in a con-
straint, indicates that the constraint will match with any received value in that parameter or field and belonging to the type.

c) The ANY-OR-OMIT symbol, "*", in a RECEIVE event, replacing a value in a single parameter or field of a defined type in a constraint,
indicates that the constraint will match with any received value belonging to the type, and/or if the parameter or field is omitted.

If either of the two symbols "?" and "*" are used in a constraint calied by a SEND event, then the fields/parameters in which they occur shall
be explicitly overwritten with definite values before the event is to be sent.

The ASN.l equivalent symbols are:

OMIT instead of "-'* as in ïTCN.GR
"?" as in TïCN.GR
"*" as in ïTCN.GR

A.12.3.3 Pattern Matching in a String

The special characters can be used, in a very similar manner, to indicate special conditions of acceptance of a character string, BITSTRING,
HEXSTRING, or OCTETSTRiNG in a constraint referenced by a RECEIVE event, or in an expression in which two strings are compared (us-
ing "=" or "<>"). Inside a string, a "?" in place of a single unit means that any single unit value is accepted; a "*" means that none, or any number
of units is accepted. The symbol "*" shall match the longest sequence of units possible, according to the pattern as specified by the symbols
surrounding the "*".
In a character string, when the symbols "?" or "*" are needed within the character string as characters, this shall be indicated by "\?" or "*".
The character "Y itself shall be written "\Y'.

46

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
82

-1:
19

93

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

OIS O/IEC ISO/IEC 8882-1 : 1993 (E)

A.13 Specifying Constraints Using the Tabular Method

A.13.1 Introduction
This clause describes the tabular method to define constraints on PDUs and ASPs. First it is discussed how single constraint tables can be used
to define constraints on flat PDUs or ASPs. Next a technique to combine multiple constraints definitions in one table is introduced. Finally it
is pointed out how the PDU field or ASP parameter groups, as defined in the declaration of structured PDUs or ASPs, can be used to define
structured constraints.

A.13.2 Tables for Single Constraints on PDUs
A.13.2.1 ConsEraint Declaration

In the T ï C N tabular form a constraint is defined by specifying a value and optional length for each PDU field. This information shall be pro-
vided in the format shown in the following proforma:

PDU Constraint Declaration

PDU Name: PDUidentGer Constraint Name: CONSiddLPARlist

Field Name Value

FIELDidentifier ValuedLLength
I

I
Comments:

FreeText

Proforma 20: PDU Constraint Declaration

SYNTAX DEFINITION:

TïCN-PDUconstraints : := $TTCN-PDUconstraints { TTCN-PDUconstraint} { FIELDgroupConstraint }
$End-TTCNPDUconstraints
TTCN-PDUconstraint ::= $Begin-TTCN-PDUconstraint PDUid CONSid {NI}+ [Comment]
$End-TTCNPDUconstraint
PDUid : := $PDUid PDUid&FullId
PDUid&FullId : := PDUidentifier [FullIdentifier]
PDUidentifier ::= Identifier
CONSid ::= $CONSid CONSid&PARlist
CONSid&PARlist ::= CONSidentifier [FormalPARlist]

ConstraintIdentifier ::= Identifier
FVI : := $FVI (PDUVALdcl) + $End-nTI
PDU-VALdcl : := $PDU-VALdcl FIELDid CONSvalue $End-PDU-VALdcl
FIELDid ::= $FIELDid FIELDid&FullId
FIELDid&FullId : := (FIELDidentifier [FullIdentifïer]) I FIELDgroupIdentifier
FIELDidentifier ::= Identifier
FIELDgroupIdentifier ::= Identifier

e

CONSidentifier ::= ConstraintIdentifier (Dot ConstraintIdentiîïer}
Dot ::= ","

47

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
82

-1:
19

93

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

1 ISO/IEC 8882-1 : 1993 (E) OISOLEC

~

CONSvalue ::= $CONSvalue Value&Length
Constraintvalue ::= ExtVaiue I TS-PARidentifier I TS-CONSTidentifier I PARidentifier I Relop SignedValue I VALlist
I Range I CONSidentifier [RestrictedCrefList]
ResUictedCrefList ::= "(" (SignedVaiue I TSPARidentifier I TS-CONSTidentifier I FARidentifier) { Comma
(SignedValue I TS-PARidentifier I TS-CONSTidentifier I PARidentiîïer)} ")"
Value&Length ::= ConsuaintValue ["[" LengthConstraint "I" I
LengthConstraint ::= SingleLengthConstraint I RangeLengthConstraint
SingleLengthConstraint ::= Number I TS-PARidentifier I TSCONSTidentifier I FlELDidentifier I PARidentifier
RangeLengthConstraint ::= (Number I TS-PARidentifier I TSCONSTidentifier) To Sing1eLengthConstm.int

I

When defining constraints on an ASP or PDU, and the original ASP or PDU was defined as having both a short name and a full identifier, the
constraint need not repeat the full identifier.

A.13.2.2 Constraint Values

Each field entry in the field name column shall have been declared in the relevant ASP or PDU type declaration. When defining constraints on
an ASP or PDU, and any of the original ASP parameters or PDU fields was defined as having both a short name and full identifier, the constraint
need not repeat the full identifier. Values assigned to each field shall be of the type specified in the ASP or PDU declaration. Optionally, the
length of a PDU field may be specified. The value may be an explicit value or, where the type definition allows it, a range or list of values (e.g.
"a" ,. "z"). In the case of numeric types a relational operator may be used (e.g. >10). Test suite parameters and test suite constants may also be
used as constraint values. Special symbols may also be used in constraints as may parameter or field group names.

PDU Constraint Declaration

PDU Name: PDU-B Constraint Name: C1

Field Name Value

FLDl >3
FLD2 TRUE
FLD3 "A STRING"

~~

Example 35: A Constraint, called C1, on the PDU called PDU-B

48
I

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
82

-1:
19

93

http://Sing1eLengthConstm.int
https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

OISO/IEC ISOAEC 8882-1 : 1993 (E)

PDU Name: PDU-A

A.13.2.3 Base Constraints

For every PDU type declaration at least one base constraint shall be specified. A base constraint specifies a set of base, or default, values for
each and every field defined in the appropriate declaration. There may be any number of base constraints for any particular PDU.

When a subsequent constraint is defined for a PDU that has a base constraint, any fields not re-specified in the modified constraint will default
to the values specified in the base constraint. The name of the modified constraint will be the concatenation of the name of the base constraint
and the modified constraint, separated by a dot (' I . ") . A base constraint is recognizable in that it does not have a dot ('I.") in its name. There is
no limit on the depth of modified constraints.

EXAMPLE 36 - CO.Cl,C2.C3

Value fields may be explicitly omitted if the symbol "-" is present as a field value. The rules for building a constraint from a base constraint are
thus:

PCO Type: Comments: This is the declaration
of the protocol data unit named
PDU-A

a) field and value not specified in constraint 3 value in parent constraint used (i.e. the value is inherited);

b) field and value specified in the constraint 3 specified value replaces the inherited value;

Field Name

FLD 1
FLD2
FLD3
FLD4

c) field has "-" specified as a value 3 omit this field and value from the constraint.

EXAMPLE 37 - Suppose that we have the following PDU type declaration:

PDU Type Declaration I

Type Comments

INTEGER
HEXSTRING
BITSTRING
BOOLEAN

49

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
82

-1:
19

93

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

ISODEC 8882-1 : 1993 (E)

A modified constraint to the base constraint CO could be:

PDU Constraint Declaration

PDU Name: PDU-A Constraint Name: C0.Cl

Field Name Value

OISO/IEC

I 1

Comments: FLDl has value 1

The constraint COC1 is exactly the same as CO except that the value of FLDl is now the integer value ’1’.

We can further build on C0.Cl:

PDU Constraint Declaration

Comments: Field FLD2 omitted. Any legal value accepted for FLD3

The constraint C0.Cl.CZ specifies the following values for PDU-A:

FLDl = 1
FLD2 is omitted
FLD3 = any (legal) value is accepted
FLD4 = TRUE

Because of the requirement for uniqueness of constraint identifiers and components of dotted identifiers within the test suite a reference to a
PDU constraint can be made from a behaviour description using the last identifier in the dotted identi However, the full dotted identifier
shall still appear in the constraint’s name field.

EXAMPLE 38 - the identifiers CO, C1 and C2 are unique. The constraints reference P D U A [C the same as saying PDU-A
[CO.Cl] and the constraints reference PDU-A [C2] is the same a$ saying PDU-A [CO.Ci.C2]. The constraints references can
be further shortened by omitting PDUA, simply specifying CO, C1 or C2 as appropriate.

A.13.2.4 Parameterized Constraints

Constraint values may be parameterized. In such cases the constraint name shall be followed by a parameter list and the parameterized fields
shall have these parameters as values. Each parameter name shall be followed by a colon and then the name of the parameter’s type.

If more than one parameter of the same type is used, the parameter may be specified as a parameter sub-list. When a parameter sub-list is used,
the parameter names shall be separated from each other by a comma. The final parameter in the sub-list shall be followed by a colon and then
the name of the parameter sub-list’s type. When more than one parameter and type pair (or parameter sub-list and type pair) is used, the pairs
shall be separated from each other by semicolons.

Test suite and test case variables shall only be used as actual parameters to a constraint in a constraints reference made in a dynamic behaviour
description. Actual values, test suite parameters or test suite constants may, however, be used as actual parameters to a coiistraint in constraint
references both in dynamic behaviour descriptions and in constraint declarations. When a test suite parameter, or test suite constant, or test suite
or test case variable is used as an actual parameter in a constraint, then the following rules apply:

a) in the case of a SEND event the value of the actual parameter is sent;

b) in the case of a RECEIVE event the value of the actual parameter shall be the same as the value received if the constraint is to apply.

50

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
82

-1:
19

93

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

OISO/IEC ISODEC 8882-1 1993 (E)

EXAMPLE 39 - The parameterized base constraint CO. A possible invocation of CO from a test case or test step may be: PDU-A
[CO (O, TRUE)].

PDU Constraint Declaration

PDU Name: PDU-A Constraint Name: CO (Pl:INTEGER, P2:BOOLEAN)

Field Name Value

FLD 1 P1

FLD3 'OO'B
FLD4 P2

FLD2 'FF'H

Comments:

0 A.13.3 Tables for Multiple Constraints on PDUs

A.13.3.1 Introduction

In cases where a constraint contains only a few fields, or when there are only a small number of constraints, the constraints may be collected
in a list and presented in the multiple version of the constraints table proforma:

YDU Constraints Declarations

PDU Name: PDUidentifier

Constraint Name Field Name Comments

FIELDidentifierl FIELDidentifiern

CONSid&PARlistl Value&Lengthl,l Value&Lengthl,, FreeTex-tl

CONSid&PARlist2 Value &Length2, I Value&Length2, FreeText2

.__.,....,,.._.,.I..____I..__

CONSid& PARlist, Value&Lengthm,l Value & Length,, Free Text,

Proforma 21: Multiple PDU Constraints Declarations

The multiple çonstraints proforma has field names across the top of the table, and different instances of the PDU constraints in rows within the
table. If there are n fields in the PDU type declaration then there shall be n field columns in the multiple constraint table.

51

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
82

-1:
19

93

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

ISODEC 8882-1 : 1993 (E) OISO/IEC

E8 iMPLE 40 - Constraints using the multiple constraints proforma. Given PDUB's declaration to be:

PDU Type Declaration I
PDU Name: PDU-B I PCO Type: XSAP Comments:

PDU Field Information

Field Name Type Comments

FLD 1 INTEGER
FLDZ BOOLEAN
FLD3 IASSTRING

the constraints on PDU-B using the multiple constraints proforma could be:

PDU Constraints Declarations

PDU Name: PDU-B

Constraint Name Field Name Comments

FLDl FLD2 FLD3

CN1 >3 TRUE "A string"

CN2 (4,5,6) FALSE "A string"

CN3 O ?

The constraints reference in the dynamic part might then contain entries such as PDU_B[CNl] and PDU_B[CN2]

EXAMPLE 41 - An example of the inheritance mechanism using the multiple constraint proforma:

PDU Constraints Declarations

PDU Name: PDU-A

Field Name I Comments

FLDl FLDZ FLD3 FLD4

CNO O 'FF'H 'OO'B TRUE

CNO.CN1 1

CNO.CN1 .CN2 ?

Constraint CNO is the base constraint in which all fields have a value specified. Constraint CN1 is the modified constraint de-
rived from base constraint CNO. The modified constraint CNO.CN1 is exactly the same as CO except that the value of FLDl is
the INTEGER value ' 1 ' .
The constraint CNO.CNl.CN2 further modifies the constraint built by CNO.CN1 to specify the following values for P D U A :

52

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
82

-1:
19

93

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

OISO/IEC ISOAEC 8882-1 : 1993 (E)

A a.,"& 15, " I I I I L L W U

FLD3 = any (legal) value is accepted

FLD4 = TRUE

Given these constraint definitions, the constraints reference column in the dynamic part could contain entries such as PDU--
A[CNO], CN1 and PDU_A[CN2].

A.13.3.2 Parameterized Multiple Constraints

Multiple constraints may also be parameterized. In such cases the parameterized constraint shall have its constraint name followed by the pa-
renthesized list of parameter names and types. The parameter names shall also appear in the column entry of the corresponding fields.

EXAMPLE 42 - A parameterized multiple constraint. The invocation of the constraints on PDU-X in a test step
as follows: S1, S2, S3, S4, S5(0), S5(1) or S5(Var) where Var is a test case or test suite variable.

PDU Constraints Declarations
PDü Name: PDU-X

I I Constraint Field Name Comments
PI P2 Name

I I I

s1 I O I O I I I I I

s 2 O 1 I I
s3 1 I O I I
s4 I 1 I 1 I I

SS(A:INTEGER) 1 A I I I

be made

A.13.4 Structured Constraints for PDUs
A.13.4.1 Introduction

The field grouping mechanism allows one or more contiguous fields of a PDU to be combined and referred to through a single reference. That
is, a group of field identifiers may be replaced by a field group identifier and the corresponding group of fields are represented by a single field
group constraint identifier. Field group identifiers shall be declared in the declarations section of the abstract test suite. The expansion of field
groups is equivalent to a macro expansion.

53

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
82

-1:
19

93

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

ISO/IEC 8882-1 : 1993 (E) OISO/IEC

Field Group Name:
FIELDgroupldentijier

Fieid Name

A.13.4.2 Single Field Group Constraints
Single field group constraints information shall be provided in the following proforma:

Constraint Name:
CONSid&PARlist

Value

FlELDidentifier I Vulue&Length

Comments:

Free Text

Proforma 22: PDU Field Group Constraint Declaration

It should be noted that field group identifiers are not legitimate PDU fields, they are only references (pointers) to a field group (i.e. lists of
fields). Thus, field group identifiers shall not be used in assignment statements nor in Boolean expressions.

SYNTAX DEFiNITiON:

TïCN-PDUconstraints ::= $TTCN-PDUconstraints (PCN-PDUconstraint } (FIELDgroupConstraint }
$End-TTCN-PDUconstr aints
FIELDgroupConstraint ::= $Begin-FIELDgroupConstraint mELDgroupId CONSid { FVI} + [Comment]
$End-FIELDgroupConstraint
FIELDgroupId : := $FIELDgroupId FIELDgroupIdentifier
FIELDgroupIdentifier ::= Identifier
CONSid ::= $CONSid CONSid&PARlist
CONSid&PARlist ::= CONSidentiFier FormalPARlist]
FVI ::= $FVI {PDU-VALdcl}+ $End-FVI
PDU-VALdcl ::= $PDU-VALdcl FIELDid CONSvalue $End-PDU-VALdcl
FIELDid ::= $FIELDid FIELDid&FullId
FIELDid&FullId : := (FIELDidentifier FuliIdenMier]) I FIELDgroupIdentifier

A.13.4.3 Multiple Field Group Constraints
Alternatively, field group constraints may be provided in a table for multiple field groups. Multiple field group constraints shall be provided in

54

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
82

-1:
19

93

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

ISOLIEC 8882-1 : 1993 (E)

Constraint Name Field Name

OIS(

Comments

YIEC

CONSiddPARlistl

the following proforma:

PDU Field Group Constraints Declarations

FIELDidentifierl

Value&Lengthl,l
~ ~ ~ . .

Value&Lengthl,n

I FIELDidentifiern I
FreeTextl

...,
CONSid & PAR1 ist, ValuedZength,,

I I

FreeText, Value&Length,,,

Constraint Name Field Name

A Y4 Y5

YY1 A l O 1

YY2 A2 1 O

YY3 A2 O 1

55

Comments

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
82

-1:
19

93

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

ISO/IEC 8882-1 : 1993 (E)

Al is a base constraint of field group A:

OISO/IEC

PDU Field Group Constraint Declaration
_ _ ~ __

Field Group Name: A Constraint Name: Al

Field Name Value

Y1
Y2
Y3

O
O
O

I

Comments:

Figure A.3: Field Group A’s Constraint A l in the Single Form

The field group constraint, A2, is a modified constraint derived from Al:

I PDU Field Group Constraint Declaration

-me: A I Constraint Name: Al .A2

I I Field Name Value
I

Y2 3

Comments:

Figure A.4: Field Group A’s Constraint A2 in the Single Form

PDU Field Group Constraints Declarations

Field Group Name: A

Constraint Name -1 I Field Name Comments

Y1 Y2 Y3

Al O O O

A i .A2 3

Figure A . 5 Field Group A’s Constraints A l and A2 in the Multiple Form

When using field groups within PDU constraint declarations, each field name used within the field group declaration must exactly match the
name (or short name, if both the short name and full name were defined) of the PDU field which it represents from the original PDU type dec-
laration.

56

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
82

-1:
19

93

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

OISO/IEC ISO/IEC 8882-1 : 1993 (E)

A.13.5 Tables for Single ASP Constraints

Single ASP constraint tables are very similar to single PDU constraint tables. The parameter values for single ASP constraints shall be specified
in the format shown in the following proforma:

I ASP Constraint Declaration

ASP Name: ASPidentijïer Constraint Name: CONSid&PARlist

Parameter Name Value

I ASP-PARid&FullId I Value&Length

Comments:

FreeText

Proforma 24: ASP Constraint Declaration

This proforma is used for ASPS and their parameters in the same way that PDU constraint declaration proforma is used for PDUs and their
fields. Thus, for further information see clause A.13.2.

SYNTAX DEFINITION:

TïCN-ASPconstraints ::= $TTCN-ASPconstraints { TTCN-ASPconstraint) { ASP-PARgroupConstraint}
$EndTTCNASPconstraints
TïCN-ASPconstraint ::= $Begin-TTCNASPconstraint ASPid CONSid { PVI) + [Comment]
$EndTTCN-ASPconstraint
PVI ::= $PVI {ASP-VALdcl)+ $End-PVI
ASP-VALdci ::= $ASP-VALdcl ASP-PARid CONSvalue $End-ASP-VALdcl

57

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
82

-1:
19

93

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

ISODEC 8882-1 : 1993 (E) OISOLEC

A.13.6 Tables for Multiple ASP Constraints

Multiple ASP constraint tables are very similar to multiple PDU constraint tables. The parameter values for multiple ASP constraints shall be
specified in the following proforma:

ASP Constraints Declarations

ASP Name: ASPiàent$er

Comments Constraint Name Parameter Name

ASP-PARident$erl ASP-PARidentifier,

CONSid&PARlistl Value&Lengthl,l ...-I -. . Value&Lengthl,, FreeTextl

CONSid&PARlist;! V a l ~ e & L e n g t h ~ , ~ Value& Length;), FreeText2

..........................

CONSid&PARlistm Value&Lengthm,I Value&L,engthm,n FreeTextm

Proforma 25: Multiple ASP Constraints Declarations

This proforma is used for ASPs and their parameters in the same way that PDU constraint declaration proforma is used for PDUs and their
fields. Thus, for further information see clause A.13.3.

A.13.7 Structured Constraints on ASPs
Structured constraints on ASPs using parameter groups are similar to structured PDU constraints using field groups. The constraints on pa-
rameter groups shall be specified in the format shown in the following proforma:

ASP Parameter Group Constraint Declaration

Parameter Group Name: Constraint Name:
ASP-PARgroupldentifier CONSid&PARlist

Parameter Name Value

ASP-PARid&Fullld ValueUength

I
Comments:

FreeText

Proforma 26: ASP Parameter Group Constraint Declaration

This proforma is used for ASP parameter groups and their parameters in the same way that the PDU field group constraint profonna is used for
PDUs and their field groups. For further information see clause A. 13.4.

SYNTAX DEFINITION:

TïCN-ASPconstraints ::= $TTCN-ASPconstraints { TTCN-ASPconstraint) { ASP-PARgroupConstraint }
$End-TTCN-ASPconstr aints

58

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
82

-1:
19

93

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

ISO/IEC 8882-1 : 1993 (E) OISO/EC

CONSid ::= $CONSid CONSidLkPARlist

ASP-PARgroupConstraint ::= $Begin-ASP-PARgroupConstraint ASP-PARgroupId CONSid { PVI) + [Comment]
$EndASP-PARgroupConstraht

Alternatively, field group constraints may be provided in a table for multiple field groups. Multiple field group constraints shall be provided in
the following proforma: _ _

ASP Parameter Group Constraints Declarations I
Parameter Group Name: ASP-PARgroupldent$er

ValuediLength,, 1 CONSid&PARlist, FreeText,

Proforma 27: Multiple Parameter Group Constraints Declarations

This proforma is used for ASP parameter groups and their parameters in the same way that the PDU field group constraints proforma is used
for PDUs and their field groups. For further information see clause A.13.4.

A.13.8 Field Length Specifications
The length of a field may be specified in a single or multiple constraint table by including a number or range in the value column. The length
may also be determined dynamically from the contents of another field of the same constraint or as a parameter passed into the constraint. The
following example illustrates the various methods of defining a length of a PDU field.

The units for the length specification shall be interpreted as shown below for TTCN predefined types and their assignment compatible types:

Table A.4: Units of Length Used in Field Length Specifications

Type
INTEGER
BOOLEAN
BITSTRING
HEXSTRING
OCTETSTRING
character string

Units of Length
bits
bits
bits
hex digits
octets
characters

59

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
82

-1:
19

93

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

ISODEC 8882-1 : 1993 (E) OISO/IEC

EXAMPLE 44 - An example of length specification:

PDU Type Declaration I
PDU Name: PDU-2 PCO Type: Comments:

PDU Field Information

I Comments Field Name Type

FLDl
FLD2
FLD3

INTEGER [8]
HEXSTRING [FLDl]

OCTETSTRING
I I

Where a constraint on PDU Z could be:

PDU Constraints Declarations

PDU Name: P D U Z

Constraint Name Field Name

FLDl FLD2 FLD3

CNO ? ? ? V I

CN1 ? ? ? [1..3]

CNZ(X:INTEGER) ? ? ? [XI

CN3(YINTEGER) ? ? r31 ? [y1
I I I I

Comments

CNO uses a constant length

CN1 specifies a length of range 1 to 3

CN2 specifies a variable length

Explanation of PDU-Z constraint:

Constraint CNO allows the length field of field FLDl to be an 8 bit integer as declared in the PDU type declaration and field
FLD2 to have a length based on the contents of field FLDl. Field FLD3 will be 5 octets long. Constraint CN1 uses a range for
the length of field FLD3 indicating that F L M may be between 1 and 3 octets long. Constraint CN2 uses a parameter passed to
the constraint that wiil be used to indicate the length of FLD3. CN3 illustrates a more complex usage of length, where field
FLD2 is of length 3 hexdigits (overriding the declaration) and field FLD3 uses the parameter Y.

A.14 ASN.l Constraints

A.14.1 Introduction
This clause describes a method to define constraints in ASN. 1, in a way similar to the definition of tabular constraints. The normal ASN. 1 value
definition is extended to allow use of wild cards and ranges. Mechanisms to replace or omit parts of ASN.l constraints, to be used in modified
constraints, are defined.

I S 0 8824 "Specification of Abstract Syntax Notation One" contains mechanisms to define subtypes of existing types. These subtypes can be
used for the same purposes as TTCN tabular constraints. The approach taken is, however, very different from that used in tabular constraints.
Therefore these subtypes are treated in TTCN as ASN. 1 types and can not be referenced from the test case/step/default table constraint reference
column.

A.14.2 ASN.l Constraint Tables
The ASN.l constraint shall be named so that they can be referenced in the dynamic part. It is possible to paramekrize ASN.l constraints, in

60

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
82

-1:
19

93

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

OIS O/IEC ISO/IEC 8882-1 : 1993 (E)

which case the constraint name shall be followed by a formal parameter list.

ASN.l constraints are typed. It is required for documentation purposes to mention this type in the header of the ASN.1 constraint table. The
type can be any ASN.l type as defined in Type in I S 0 8824.

If an ASN.l constraint definition is a modification of an existing ASN.l constraint, the name of the ASN.l constraint that is taken as the basis
of this modification shall be referenced in the table.

Single ASN. 1 ASP constraint declarations shall be specified in the format shown in the following proforma:

ASN.l ASP Constraint Declaration
~~ ~

ASP Name: ASPidentfier I Constraint Name: CONSid&PARlist
I

ASN.l Value

ASNl -ConstrainNalue

Proforma 28: ASN.1 ASP Constraint Declaration

SYNTAX DEFINITION:

ASN1-ASPconstraints ::= $ASNl-ASPconstraints (ASN1-ASPconstraint} (ASNI-ASP-PARconstraint}
$End-ASNl-ASPconstraints
ASN1-ASPconstra.int ::= $Begin-ASNlASPconstraint ASPid CONSid ASNlDef $End-ASNlASPconstraht
ASNl-Def ::= $ASNl-Def ASNlConstraintValue $End-ASNl-Def

Single ASN.l PDU constraint declarations shall be specified in the format shown in the following proforma:

ASN.l PDU Constraint Declaration I
PDU Name: PDUidentfier Constraint Name: CONSidhPARlist

ASN.l Value

ASNl -ConstraintVnlue

Proforma 29: ASN.l PDU Constraint Declaration

The body of the single ASN.1 ASP and PDU constraints tables contains the ASN.l constraint definition.

SYNTAX DEFINITION:

ASN1-PDUconsaaints ::= $ASNl-PDUconstraints { ASN1-PDUconstraint} (ASN1-FiELDconstraint)
$End-ASNl-PDUconstraints
ASN1-PDUconstraint ::=$Begin-ASNl-PDUconstraht PDUid CONSid ASNl-Def $End-ASNl-PDUconstraint
ASNlDef ::= $ASNl-Def ASNlÇonstraintValue $End-ASNl-Def

61

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
82

-1:
19

93

http://ASN1-ASPconstra.int
https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

ISODEC 8882-1 1993 (E)

The following proformas shall be used for multiple ASN. 1 ASP and PDU constraints declarations respectively:

ASN.l ASP Constraints Declarations

ASP Name: ASPidentger

Constraint name ASN.l Value

CONSid&PARlist ASNI-Constraint Value

OISO/IEC

CONSid&PARlist ASNI-Constraint Value

Proforma 30: Multiple ASN.l ASP Constraints Declarations

ASN.1 PDU Constraints Declarations

PDU Name: PDUident$er

Constraint name ASN.l Value

CONSid& PARlist ASNI -ConstraintValue

CONSid& PARlist ASNI-Constraint Value

Proforma 31: Multiple ASN.l PDU Constraints Declarations

A.14.3 ASN.l Constraint Value Definition
A.14.3.1 Introduction

An ASN.l constraint value definition consists of two parts. The first part, Encoding, is optional. It can be used to define encoding directives.
The second part, the ASN.l value, is the actual description of the constraint.

SYNTAX DEFINITION:

ASNlConstraintValue ::= [Encoding] ASNl-VaiueTemplate

A.14.3.2 Encoding Directives

The ASN.l basic encoding rules, IS0 8825, offer multiple ways to encode length. By giving encoding directives, the test suite specifier can

62

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
82

-1:
19

93

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

OISO/IEC ISO/IEC 8882-1 : 1993 (E)

restrict the possible ways of encoding length offered by I S 0 8825.

If any legal encoding of the value is acceptable, the specification of encoding constraints for the value may be omitted. Otherwise, the encoding
specification shall have the following syntax:

SYNTAX DEFINITION:

Encoding ::= ["[I' LengthEncoding "I"
LengthEncoding ::= LI I SD I LD I LD Number I IN

where:

LI

SD

LD

IN

specifies that any legal encoding of the correct length may be used.

specifies that the Short Definite length type shall appear in the encoding.

specifies that the Long Definite length type shall appear in the encoding. The length shall be padded out to number
octets if number appears.

specifies that the Indefinite length type shall appear in the encoding.

The length encoding shall consist of a whole number of Octets.
0 A.14.3.3 Value Templates

It is possible to define complete ASN.l values as constraints. In order to allow the use of parameters, wild cards and ranges for specifying con-
straints using a format similar to the ASN.1 value definition, a number of BNF productions are copied from I S 0 8824, and some of these pro-
ductions have been extended. The productions that are identical to productions used in I S 0 8824 (1989) are indicated by "/* I S 0 8824 */". The
complete BNF is in (Annex A}.

The complete specification of a constraint using ASN. 1 becomes:

SYNTAX DEFINITION:

ASNlConstraintValue ::= [Encoding] ASN1-Value
ASNl-Value ::=

BooleanValue
I Integervalue
I BitStringValue
I OctetStringValue
I NullValue
I Sequencevalue
I SequenceOfValue
I SetValue
I SetOfValue

/* IS0 8824 */
/* IS0 8824 */
I* IS0 8824 */
/* I S 0 8824 */
/* I S 0 8824 */
/* IS0 8824 */
/* I S 0 8824 */
/* IS0 8824 */
/* IS0 8824 */

I Choicevalue /* I S 0 8824 */
I SelectionValue /* I S 0 8824 */
I TaggedValue /* IS0 8824 */
I AnyValue /* IS0 8824 */
I ObjectIdentifierValue /* I S 0 8824 */
I CharacterStringValue /* IS0 8824 */
I EnumeratedValue /* IS0 8824 */
I Realvalue /* IS0 8824 */
I Usefulvalue 1" IS0 8824 */
I Replacevalue

I Wildcard
I l Parameter
l

I I ConstraintIdentifier [RestrictedCrefList]
I

/* Where they have been used within the I S 0 8824 productions: BooleanValue ,. Usefulvalue , the following I S 0 8824 productions have been
redefined: *I

1

63

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
82

-1:
19

93

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

ISODEC 8882-1 : 1993 (E) OISO/IEC

Value ::= ASN1-Value
identifier ::= ASN1-Identifier

1" Additional non-IS0 8824 productions: *I

Replacevalue ::= IN ConsuaintIdentifier [ResuictedCrefList] 'I (It (Replacement} ") "
Replacement ::= (REPLACE ReferenceList BY ASNLValue) I (OMIT ReferenceList)
ReferenceList ::= ASN1-Idenflier I (ASNl-IdenWier Dot ReferenceList)
Parameter : :=TSPARidenMier I TSCONSTidentifier I PARidentifier
ASNl-Identifier ::= Identifier

The constraints specified using ASN.l can be used both for specifying PDUs or ASPS which are to be sent, or for specifying patterns against
which an incoming PDU or ASP may be matched.

ASN.l constraints may use the wildcard characters "?" and "*", in patterns of any of the string types or in piace of explicit values of any element
of an ASN.l type, as defined in clause A.12.3.2.

A.14.3.4 Structured ASN.l Constraints

The mechanism similar to that available in the tabular method, to structure constraint definitions by defining PDU field group and ASP param-
eter group constraints, can be used in ASN.l constraints to define PDU field and ASP parameter constraints.

Single ASN. 1 ASP parameters shall be specified in the following proforma:

e
ASN.l ASP Parameter Constraint Declaration

Parameter Name: Constraint Name:

ASNI -ASP-PARidentijïer CONSid& PARlist

ASN.l Value

ASNI -Constraint Value

Proforma 32: ASN.1 ASP Parameter Constraint Declaration

SYNTAX DEFINITION:

ASNlASPconstraints ::= $ASNlASPconstraints (ASN1-ASPcons&a.int] { ASNlASPPARconstraint}
$End-ASNlASPconstraints
ASNl-ASP-PARconsuaint ::= $Begin-ASNl-ASP-PARconstraint ASNlASP-PARid CONSid ASN1-Def
$End-ASNlASPPARconstraint IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IS

O/IE
C 88

82
-1:

19
93

http://ASN1-ASPcons&a.int
https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

OISO/IEC ISO/IEC 8882-1 1993 (E)

Single ASN. 1 PDU fields shall be specified in the following proforma:

ASN.l PDU Field Constraint Declaration

Field Name: Constraint Name:

ASNI -FIELDident@er CONSid&PARlist

ASN.l Value

ASNl -ConstraintValue

Proforma 33: ASN.l PDU Field Constraint Declaration

SYNTAX DEFINITION:

ASNlPDUconsuaints ::= $ASNl-PDUconstraints { ASN1-PDUconstraint] { ASN1-FIELDconstraint}
$End-ASNl-PDUconstraints
ASNlFIELDconsuaint ::= $Begin-ASNlFIELDconstraint ASN1-FIELDid CONSid ASNl-Def
$EndASNlFIELDconstraint

Multiple ASN.l ASP parameter constraints may also be specified in the following proforma:

ASN.l ASP Parameter Constraints Declarations

Parame ter Name: ASP-PAR ident@er

Constraint name ASN.l Value

CONSid& PARlist ASNI-Constraint Value

CONSid&PARlist ASN1-Constraintvalue

Proforma 34: Multiple ASN.1 ASP Parameter Constraints Declarations

65

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
82

-1:
19

93

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

ISOAEC 8882-1 : 1993 (E) OISO/IEC

Multiple ASN.l PDU field constraints may also be specified in the following proforma:

ASN.l PDU Field Constraints Declarations

Field Name:ASNI- FIELDidentiJïer

Constraint name ASN.l Value I
~~

CONSid&PARlist ASNI -ConstraintValue

CONSid&PARlist ASNI -ConstraintValue

Proforma 3 5 Multiple ASN.1 PDU Field Constraints Declarations

A.143.5 Parameterized ASN.1 Constraints

It is possible to parameterize ASN.l Constraints. The parameter mechanism is identical to that of the tabular constraint definition and is de-
scribed in clause A.13.2.3.

A.14.4 Modified Constraints
ASN. 1 constraints can be defined by modifying an existing ASN.1 constraint. Portions of a defined constraint can be redefined to create a new
constraint by using the REPLACE/OMIT mechanism in a REPLACE value as the ASN.l value for the new constraint, where REPLACE value
is defined as follows:

SYNTAX DEFINITION:

ReplaceVaiue ::= IN Constraintidentifier [ActuaiParameterList] " { " {Replacement} ") "
Replacement ::= (REPLACE ReferenceList BY ASN1-VaiueTemplate) I (OMIT ReferenceList)
ReferenceList ::= ASN1-Identifier I (ASN1-Identifier Dot ReferenceList)

NOTE - OMIT corresponds to: REPLACE ReferenceList BY { }

A.14.5 Using Formal Parameters
When using an ASN. 1 constraint in the dynamic part of the test, the constraint reference i s used along with a list of actual parameters. The latter
correspond to the list of formal parameters which were used to specify the referenced constraint. Each actual parameter may either be a variable
identifier, test suite parameter, test suite constant or an actual value.

EXAMPLE 45 - This example shows how to specify an ASN.l constraint using formal parameters and then reference it in the

66

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
82

-1:
19

93

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

OIS O/IEC ISOnEC 8882-1 : 1993 (E)

dynamic part. Given the following ASN.l type definition of the PDU:

ASN.l PDU Type Declaration

PDU Name: APDU PCO Type:

ASN.1 Definition or Reference

SEQUENCE [INTEGER BOOLEAN)

A rpical instance of this PDU could be:

ASN.l PDU Constraint Declaration I
-~ -~

PDU Name: APDU I Constraint Name: ThePDU(X:INTEGER; Y:BOOLEAN) I
I ASN.l Value

[SDI { X,Y } -- A Sequence PDU of an integer and a boolean

In this example x and y are identifiers which act as formal parameters whose sole purpose is to specify those parts of the PDU
which can be substituted by actual parameters whenever the PDU is used in sending data or matching received data within a
test case

A.14.6 Mixing REPLACWOMIT and Formal Parameters
Care should be taken when using both the REPLACEIOMIT and formal parameter styles that inconsistencies between formal parameters in the
constraint header and the occurrence (or non-occurrence) of these parameters in the body of the constraint do not arise. In any case, parameter-
ized fields shall not be replaced or omitted in a modified constraint.

A.15 The Dynamic Part

A. 15.1 Introduction
The Dynamic Part contains the main body of the test suite: the test case, the test step and the default behaviour descriptions.

SYNTAX DEFINITION:

Dynamicpart ::= $Dynamicpart TestCases [TestStepLibraryJ [DefaultsLibrary] $End-DynamicPart

A.15.2 Specification of Test Case Dynamic Behaviour
A.15.2.1 The Test Case Proforma

The following information shall be supplied for the dynamic behaviour of each test case:

a) a Test Case Reference (clause A.8.2),

giving a full name to the test case behaviour description and defines its location in the test suite structure; a test case reference shall conform
to the requirements of clause A.8.2;

b) a Test Case Identifier,

used to provide a shorter name for a test case; it may be used interchangeably with a test case reference;

c) a brief description of the Test Purpose,

which shall be an informal statement of purpose of the test case, possibly summarizing the full test purpose given in the relevant test suite
structure and test purposes standard or equivalent section of the test suite standard;

67

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
82

-1:
19

93

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

ISOAEC 8882-1 : 1993 (E) OISO/iEC

d) identification of the Default behaviour to be used (clause A. 15.14),

which shall be the identifier (including an actual parameter list if necessary) of a default behaviour description, if any, which applies to the
test case behaviour specification;

e) a Behaviour Description (clause A.15.5),

which shall describe the behaviour of the lower tester andior upper tester in terms of test events (and their parameters) using the tree notation
described in clause A.15.6;

f) Labels (clause A. 15.14),

placed in the labels column to identify ïTCN statements either for statement line numbering and/or to allow jumps using the GOT0 state-
ment;

g) Constraints References (clause A. 15.16),

placed in the constraints reference column to associate 'ITCN statements in a behaviour tree with a reference to specific ASP and/or PDU
values defined in the constraints part (clause A. 12);

h) Verdict or result information (clause A.15.17),

placed in the verdicts column to be associated with l T C N statements in a behaviour tree;

i) Comments,

placed in the comments column to ease the understanding of the lTCN statements by providing short remarks or references to additional
text in the optional extended comments field;

j) Extended comments,

used to give longer comments and general comments.

This information shall be provided in the format shown in the following proforma:
_ _ ~ ~ ~ ~ _ _ ~

Test Case Dynamic Behaviour

Reference: TestCaseReference
Identifier: TestCaseIdentifier
Purpose: Free Text
Default: DefaultsReference

Behaviour Description Label

TreeHeader

StatementLine

Label

~~~ ~ 

Extended Comments: FreeTexî 

Constraints Verdict Comments 
Reference 

Constraints 
Reference 

Verdict FreeText 

-~ 

Proforma 36: Test Case Dynamic Behaviour 

NOTE - a synchronization requirements field may be added to the proforma at a future date. Synchronization is expected to be addressed in an 
addendum to this part of the multipart standard*. 

The four columns to the right of the table may be headed: L, Cref, V and C, but shall not be omitted. This enables the behaviour tree column 
to be as wide as possible in cases of physical paper size limitations. 

68 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
82

-1:
19

93

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f


OISO/IEC ISO/IEC 8882-1 : 1993 (E) 

SYNTAX DEFINITION: 

TestCase : := $Begin-TestCase TestCaseRef TestCaseId Testmirpose [DefauitsRefl BehaviourDescription 
[ExtComments] $End-TestCase 
TestCaseRef ::= $TestCaseRef TestCaseReference 
TestCaseReference ::= (TestGroupReference TestCaseName) I (SuiteIdentifier "/,, TestCaseName) 
TestGroupReference ::= SuiteIdentifier "/" { TestGroupIdentifier "/")+ 
TestCaseName ::= Identifier 
TestCaseId ::= $TestCaseId TestCaseIdentifier 

* TestCaseIdentifier ::= Identifier 
Testpurpose ::= $Testfirpose BoundedFreeText 
DefaultsRef ::= $DefaulQRef DefaultsReference 
DefaultsReference ::= Defauludentifier [ActuaiPARiist] 
ExtComments ::= $ExtComments BoundedFreeText 

A.15.2.2 Structure of the Test Case Behaviour 

Each test case contains a precise description of sequences of (anticipated) events and related verdicts. This description is structured as a tree, 
with ïTCN statements as nodes in that tree and verdict awignments at its leaves. 

Statement and Verdict 

ement and Verdict 

Test Case 

tateinent and Verdict 

Figure A.6: Test Case Behaviour Structure 

In many cases it is more efficient to use test steps as a means for substructuring this tree: 

Statement and Verdict 

Statement Statement and Verdict 

69 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
82

-1:
19

93

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f


ISO/IEC 8882-1 : 1993 (E) OISO/IEC 

Figure A.7: Structured Test Case Behaviour 

In TTCN this explicit modularization is expressed using test steps and the ATTACH statement. 

A.15.3 Specification of Test Step Dynamic Behaviour 
Test step dynamic behaviours are identical to test case dynamic behaviours, except for the following differences: 

a) the table has the heading "Test Step Dynamic Behaviour"; 

b) the test step reference specifies the location of the test step in the test step library; a test step reference shall conform to the requirements of 
clause A.8.3; 

I c) the test step identifier may be used interchangeably with a test step reference; 

d) an optional list of formal parameters, and their associated types, may be specified immediately following the test step identifier. These pa- 
rameters may be used to pass PCOs, constraints or other data objects into the root tree of the test step; 

e) test steps do not have a test purpose, instead they have an objective. This is an informal statement of the objective of the test step. 

This information shall be provided in the format shown in the following proforma: 

I Test Step Dynamic Behaviour 

Reference: TestStepReference 
Identifier: TestStepIdent$er [FomlPARlistl  
Objective: FreeText 
Default: DefaultsReference 

Behaviour Description Label Constraints 
Reference 

StatementLine 

I ' I  
TreeHeader I Label I Consiraints 

Reference 
StatementLine 

Extended Comments: Free Text 

Verdict Comments 

Verdict FreeText 

I 

I I 
Proforma 37: Test Step Dynamic Behaviour 

SYNTAX DEFINITION: 

b TestStep : := $Begin-TestStep TestStepRef TestStepId Objective [DefaultsRefl BehaviourDescription ExtCoinrneiits] 
$End-TestStep 
TestStepRef : := $TestStepRef TestStepReference 
TestStepReference : := (TestStepGroupReference TestStepName) I (SuiteIdentifier "I' TestStepName) 
TestStepGroupReference ::= SuiteIdenWier "/,, { TestStepGroupIdentifier ''/''}+ 
TestStepName ::= Identifier 
TestStepId ::= $TestStepId TestStepIdentifier [FormaiPARlist] 
TestStepIdentifier : := Identifier 
Objective ::= $Objective BoundedFreeText 

A.15.4 Specification of Dynamic Default Behaviours 
A TI'CN test specification shall specify alternative behaviour for every possible event. It often happens that in a behaviour tree every sequence 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
82

-1:
19

93

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f


OISO/IEC ISO/IEC 8882-1 : 1993 (E) 

of alternatives ends in the same behaviour. This behaviour may be 'factored out' as default behaviour to this tree. Such default behaviour de- 
scriptions are located in the global defaults library. 

This information shall be provided in the format shown in the following proforma: 

Default Dynamic Behaviour 

Reference: DefaultReference 
Identifier: DefaultIdentifier [FormalPARlist] 
Objective: FreeText 

Behaviour Description Label Constraints Verdict Comments 
Reference 

StatementLine Label Constraints Verdict FreeText 
Reference 

Extended Comments: FreeText 

Proforma 38: Default Dynamic Behaviour 

The default dynamic behaviour proforma shall be identical to the test step dynamic behaviour proforma, except for the following differences: 

a) the table is headed ""Default Dynamic Behaviour"; 

b) the default reference specifies the location of the default in the defaults library. A default reference shall conform to the requirements of 
clause A.8.4. These complete references shall be unique within the test suite; 

c) the default identifier may be used interchangeably with a default reference; 

d) a default dynamic behaviour proforma does not have an entry in its heading for a defaults reference since defaults are not allowed to have 
defaults; 

e) it shall contain only one behaviour tree. 

It should be noted that both PCOs and other actual parameters may be passed to default behaviour descriptions in the same way that they may 
be passed to test steps. The same rules on scope and substitution of these parameters apply as described for tree attachment (clause A.15.13.2). 

NOTE - For the meaning of defaults see clause A.15.18. 
SYNTAX DEFINITION: 

Default ::= $Begin-Default DefaultRef DefaultId Objective BehaviourDescription [ExtComments] $Endoefault 
DefaultRef ::= $DefaultRef DefaultReference 
DefaultReference ::= (DefaultGroupReference DefaultName) I (SuiteIdentifier "I '  DefauitName) 
DefaultGroupReference ::= SuiteIdentifier "/" (DefaultGroupIdentifier 'I/''}+ 

DefaultGroupIdentifier ::= Identifier 
DefaultName ::= Identifier 
DefaultId ::= $DefaultId DefaultIdentifier [FormalPARlist] 
DefaultIdentifier : := Identifier 

A.15.5 The Behaviour Description 
The behaviour description column of a dynamic behaviour table contains the specification of the combinations of 'ITCN statements that are 
deemed possible by the test suite specifier. The set of these combinations is called the behaviour tree. Each 'ITCN statement is a node in the 

71 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
82

-1:
19

93

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f


ISODEC 8882-1 : 1993 (E) OISO/IEC 

behaviour tree. 

A.15.6 The Tree Notation 
In the TTCN notation, each TTCN statement shall be shown on a separate statement line. The statements can be related to one another in two 
ways: 

- 
- as alternative TTCN statements. 

Sequences of ?TCN statements are represented one statement line after the other, each new TTCN statement being indented once from left to 
right, as time is assumed to progress. 

as sequences of TTCN statements; 

EXAMPLE 46 - TTCN statements in sequence: 

EVENT-A 
CONSTRUCT-B 

EVENT-C 

Test TTCN statements at the same level of indentation and belonging to the same predecessor node represent the possible alternative TTCN 
statements which may occur at that time. Alternative TTCN statements shall be given in the order in which the appropriate tester shall repeat- 
edly attempt them until one occurs. 

EXAMPLE 47 - alternative 'ITCN statements: 

CONSTRUCT-B 1 
STATEMENT-B2 
EVENT-B3 

EXAMPLE 48 - combining sequences and alternatives to build a tree: 

EVENT-A 
CONSTRUCT-B 1 
STATEMENT-B2 
EVENT-B3 

EVENT-C 

The term "set of alternatives" is used generically to describe: 

a) true "sets" of more than 1 element, but also "sets" containing only a single element; 

b) behavior that can be considered as actual alternatives - that is, mutually exclusive behavior - as well as behavior lines that may, because of 
their static or dynamic semantics, include unreachable behavior lines. An example of unreachable behavior due to static semantics is when 
behavior lines are coded (sequentially) after, and at the same level of indentation as, a TTCN statement such as assignment, which always 
succeeds. An example of unreachable behavior due to dynamic semantics occurs whenever an event matches one of a set of alternatives 
on a pass through the set of alternatives, because all the subsequent members of the set of alternatives are then unreachable. In all cases, 
subsequent behaviour to non-matched alternatives is unreachable because of dynamic semantics. 

A.15.7 Tree Names and Parameter Lists 
A.15.7.1 Introduction 

Each behaviour description shall contain at least one behaviour tree. So that trees may be unambiguously referred to (such as in an ATTACH 
statement) each tree has a tree name. 

The first tree appearing within a behaviour description is called the root tree. The name of a root tree is the identifier appearing in the header 
of its dynamic behaviour table. That is, the tree name of the root tree of a test step is the test step identifier for that test step, and likewise for 
root trees in test case dynamic behaviours and default dynamic behaviours. 

Trees other than the root tree which appear within dynamic behaviour tables are termed local trees. Local trees are prefixed by a tree header 
which contains the tree name. 

SYNTAX DEFINITION: 

TreeHeader ::= $TreeHeader Header 
Header ::= TreeIdenMier FormaiPARiist] 
TreeIdentiFier : : = Identifier 
FormalPAIUist ::= "(" FormaiPARsubList [ SemiColon FormaiPARsubList} ")" 

72 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
82

-1:
19

93

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f


OISO/IEC ISO/IEC 8882-1 : 1993 (E) 

FormdPARsubList ::= PARidentifier {Comma PARidentifier 
PARidentifier ::= Identifier 
Semicolon ::= ";" 
Colon ::= ":" 

* ParameterType : := Type I ReferenceType I PCOtypeIdentifier 

Colon ParameterType 

A.15.7.2 Trees with Parameters 

All trees, except test case root trees, may make use of parameters. These parameters may he used to provide PCOs, constraints, variables, or 
other such items for use within the tree. Test case root trees shall never make use of parameters. 

If a tree makes use of parameters, then a list of formal parameters and their types shall appear within parentheses directly following the tree 
name. For example, the formal parameter list for a test step root tree shall appear within parentheses immediately following the test step iden- 
tifier in the header of the test step dynamic behaviour table. Similarly, the formal parameter list for a local tree shall appear immediately after 
the tree name in the tree header. 

In constructing the formal parameter list, each formal parameter shall he followed hy a colon and the name of the formal parameter's type. If 
more than one formal parameter of the same type is present, these may he combined into a suh-list. When such a suh-list is used, the formal 
parameters within the suh-list shall he separated from each other by a comma. The final formal parameter in the suh-list shail he followed hy 
a colon and the formal parameter's type. 

When more than one formal parameter and type pair (or more than one sub-list and type pair) is used, the pairs shall he separated from each 
other by semi-colons. 

Formal parameters may he of PCO type, constraint type, or one of the other TI'CN predefined or user types. 

EXAMPLE 49 - A local tree header using formal parameters: EXAMPLE-TREE(LTSAP; X:INTEGER) 

EXAMPLE 50 - A test step root tree using formal parameter sub-lists: 

Test Step Dynamic Behaviour 

Reference: 
Identifier: PREAMBLE(A, B:INTEGER X:BITSTRING) 
Objective: 
Default: 

TTCN-EX AMPLESKS P- 1 O 1 

To illustrate test step identifier with a formal parameter list. 

Behaviour Description Label constraints Verdict Comments 
Reference 

!CONNECTrequest CRI 

A.15.8 TTCN Statements 
The tree notation allows the specification of test events initiated by the tester, test events received by the tester, TTCN pseudo-events and TI%N 
constructs. These are collectively known as lTCN statements. 

SYNTAX DEFINITION: 

Statement ::= Event I PseudoEvent I Construct 
Event ::= Send I ImplicitSend I Receive I Otherwise I Timeout 
Construct ::= GoTo I Attach I Repeat 
PseudoEvent ::= [TTCNExpression] [TimerOperations] 

The TTCN Test events are the ASPS or PDUs to be initiated or received by the lower- or upper tester, the OTHERWISE event and the TIh4E- 
OUT event. TTCN also supports the GOTO, ATI'ACH and REPEAT constructs. 

Test events can be accompanied by Boolean expressions, assignments and timer operations. Boolean expressions, assignments and timer oper- 
ations can also stand alone, in which case they are called pseudo-events. 

73 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
82

-1:
19

93

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f


ISO/IEC 8882-1 : 1993 (E) OISODEC 

A.15.9 TTCN Test Events 
A.15.9.1 Sending and Receiving Events 

T K N  supports the initiation (sending) of ASPs and PDUs to named PCOs and acceptance (receipt) of ASPs and PDUs at named PCOs. The 
PCO model is defined in clause A.11.8. 

The names of events to be initiated by the appropriate tester shall be prefixed by an exclamation mark (!). Those events which it is possible for 
the appropriate tester to accept shall be prefixed by a question mark (?). 

An unqualified SEND event is always successful. 

Such names (composed of "!" or ''Y followed by an event name) shall be prefixed by one of the PCO names appearing in the formal parameter 
list of the tree in which the event appears. The PCO name is used to indicate the PCO at which the test event may occur. If the test suite only 
uses one PCO the PCO prefix may be omitted. 

SYNTAX DEFINITION: 

Send ::= [PCOidentiîïer I PARidenMier] " !" (ASPidentifier I PDUidentifier) [EncodedAs] [TTCNExpression] 
[Timerûperations] 
Receive ::= [PCOidentifier I PARidentifier] "?'I (ASPidentifier I PDUidentifier) [DecodesAs] [TïCNExpression] 
[Timerûperations] 

In the simplest form an ASP identifier or PDU identifier follows the "!" or "?", as in the following example: 

EXAMPLE 5 1 - !SUBreq or ?CONind 

NOTE - see clause A.15.9.7 for the definition of the lifetime of received event. This definition covers the minimum scope of received events 
and may be extended in future versions of 'ITCN. 

A.15.9.2 Alignment of Test Events 

A set of alternatives (i.e. events, pseudo-events and TïCN constructs) shall be written so that the f i s t  symbol of each of the alternatives is 
aligned in the same column (level of indentation) within the behaviour description . 

EXAMPLE 52 - alignment of alternatives 

L?A 
L?B 
STATEMENT-C 

These three lines represent a set of alternatives. (The syntax of TïCN statements is discussed in subsequent clauses of this stan- 
dard*). 

A.15.9.3 Execution of the Behaviour Tree 

A.15.9.3.1 Introduction 

The test suite specifier shall organize the behaviour tree representing a test case or a test step according to the following rules regarding test 
execution: 

- starting from the root of the tree, the lower or upper tester remains on the first level of indentation until an event occurs. If an event is to be 
initiated the tester initiates it; if an event is to be received , it is said to occur only if a received real event matches the description of the event 
in the behaviour tree; 

- once an event has occurred, the tester remains on the next level of indentation. No return to a previous level of indentation can be made, except 
by using the GOT0 statement; 

- test events at the same level of indentation and following the same predecessor event represent the possible alternative events which may occur 
at that time. Alternative events shall be given in the order that the test suite specifier requires the lower or upper tester to attempt either to initiate 
or receive them, if necessary, repeatedly, until one occurs. 

NOTE - The OTHERWISE event, pseudo-events and 'ITCN consbvcts bring further complexity to the above rules. Refer to the relevant clauses 
for execution rules. 

Suppose that the following sequence of events can occur during a test whose purpose is to establish a connection, exchange 
some data, and close the connection. The events occur at the lower tester PCO L: 

a) CONNECTrequest, CONNECTconfirm, DATArequest, DATAindication, DISCONNECTrequest; 

Progress can be ihwated at any time by the IUT or the service provider. This generates two more sequences: 

74 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
82

-1:
19

93

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f


OISO/IEC ISO/IEC 8882-1 : 1993 (E) 

b) CONNECTrequest, CONNECTconfirm, DATArequest, DISCONNECTlndication; 

c) CONNECTrequest, DISCONNECTindication. 

The three sequences of events can be expressed as a TTCN behaviour tree. There are five levels of alternatives, and only three 
tips (a to c), because the SEND events L! are always successful. Execution is to progress from left to right (sequence), and from 
top to bottom (alternatives). The following diagram illustrates this progression, and the principle of the 'ITCN behaviour tree. 

progression of Time 

EXAMPLE-TREE (L : NS AP) a 
1 4! CONNECTrequest 
t 
e L 

I 

+L? CONNECTconfirm 

IJ! DATArequest 

? DATAindication 

! DISCONNECTrequest a) 

? DISCONNECTindication b) 

+? DISCONNECTindication c) 

Figure A.8: Principle of a TTCN Behaviour Tree 

There are no lines, arrows or tip names in the TTCN notation. The behaviour tree of this example would be represented in TTCN 
as in the following figure: 

Test Case Dynamic  Behaviour 1 
Reference: TTCN_EXAMPLES/AMPLE--l 
Identifier: TREE-EX-l(L:NSAP) 
Purpose: To illustrate the use of trees. 
Default: 

Behaviour Description Label Constraints Verdict  Comments  
Reference 

Request ... 
L ?CONNECTconfm cc1 . . . Confirm 

DTRl Send Data 

L ! CONNECTrequest CR1 

L !DATArequest 
L ?D AT Aindication DTI 1 Receive Data 

L !DISCONNECTrequest DSCRl pass Accept 
L ?DISCONNECTindication DSCIl Premature 

L ?DISCONNECTindication DSCRl Premature 

Figure A.9: A TTCN Behaviour Tree 

inconc 
inconc 

NOTE - See clause A.15.19 to see how this example can be simplified by specifying the L? DISCONNECTindications as default behaviour. 

75 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
82

-1:
19

93

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f


ISODEC 8882-1 : 1993 (E) OISO/IEC 

A.15.9.3.2 The Concept of Snapshot Semantics 

The alternative events at the current level of indentation are processed in their order of appearance. 'ITCN operational semantics (see annex B) 
assume that the status of any of the events cannot change during the process of trying to match one of a set of alternatives. This implies that 
snapshot semantics are used for received events and TIMEOUTs - i.e. each time around a set of alternatives a snapshot is taken of which events 
have been received and which TIMEOUTs have fiied. Only those identified in the snapshot can match on the next cycle through the alternatives. 

A.15.9.4 The IMPLICIT SEND Event 

In the Remote Test Methods, although there is no explicit PCO above the IUT, it is necessary to have a means of specifying, at a given point 
in the description of the behaviour of the Lower Tester, that the IUT should be made to initiate a particular PDU or ASP. For this purpose, the 
implicit send event is defined, with the following syntax: 

SYNTAX DEFINITION: 

implicitsend ::= "c" IUT "!I' (ASPidentifïer I PDUidentifïer) '5'' [EncodedAs] 

The IUT in the syntax takes the place of the PCOidentifier used with a normal SEND or RECEIVE, indicating that the specified ASP or PDU 
is to be sent by the IUT. The angle brackets signify that this is an implicit event, i.e. there is no specification of what is done to the IUT to trigger 
this reaction, only a specification of the required reaction itself. 

An IMPLICIT SEND event is always considered to be successful, in the sense that any alternatives coded after, and at the same level of inden- 
tation as the IMPLICIT SEND are unreachable. 

An IMPLICIT SEND shall only be used where the relevant OSI* standard(s)* permit the IUT to send the specified ASP or PDU at that point 
in its communication with the Lower Tester. 

For every IMPLICIT SEND in a test suite, the test suite specifier shall create and reference a question in the partial PIXIT proforma that allows 
indication of whether the IMPLICIT SEND can be invoked on demand. 

An IMPLICIT SEND event shall not be used unless the test method being used is one of the Remote methods. An IMPLICIT SEND event shall 
not be used unless the same effect could have been achieved using the DS test method. 

When an IMPLICIT SEND event is specified, the associated internal events within the IUT necessary to meet the requirements of the standard 
for the protocol being tested are also performed, e.g. set timer, initialize state variables. 

NOTE - For example, when testing a connection-oriented Transport Protocol implementation, it would be permissible to use IMPLICIT SEND 
to get the IUT to initiate a CR TPDU because in the DS test method that effect could be achieved by getting the Upper Tester to send a T- 
ConReq ASP. On the other hand, it would not be permissible to use IMPLICIT SEND to get the IUT to initiate an N-RstReq ASP because that 
effect could not be controlled through the Transport Service boundary. The reason for this restriction is to prevent test cases from requiring 
greater external control over an IUT than is provided for in the relevant protocol standard*. 

The semantics of IMPLICIT SEND is that the SUT shall be controlled as necessary in order to cause the initiation of the specified ASP or PDU. 
The way in which the SUT is to be controlled should be specified in the PIXIT (or documentation referenced by the PIXIT). 

Neither a final verdict nor a preliminary result shall be coded on an IMPLICIT SEND event. 

At an appropriate point following an IMPLICIT SEND, there should be a RECEIVE event to match the ASP or PDU that should, as a result, 
have been sent by the IUT. 

NOTE - Such a RECEIVE event is often likely to be specified at the next level of indentation immediately after the IMPLICIT SEND, but it 
may be specified further down the tree if it is expected that there are other PDUs already in transit towards the Lower Tester. 

76 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
82

-1:
19

93

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f


OISO/IEC ISO/IEC 8882-1 : 1993 (E) 

EXAMPLE 53 - EXAMPLE use of IMPLICIT SEND 

Test Step Dynamic Behaviour I 
Reference: TJ~ZN-EXAIV€PLES/IMPLICIT-SEN~I 
Identifier: IMP 1 (LT:N-SAP) 
Objective: 
Default: 

A partial tree to illustrate the use of IMPLICIT SEND. 

Behaviour Description Label Constraints Verdict Comments 
Reference 

cIUT!CR> CR1 
LT ? CR CRI 

LT ! CC cc1 
... 

... 
LT ? OTHERWISE 

... 

A.15.9.5 The OTHERWISE Event 

The predefined event OTHERWISE is the T"CN mechanism for dealing with unforeseen test events in a controlled way. OTHERWISE has 
the syntax: 

SYNTAX DEFINITION 

Otherwise ::= [PCOidentifier I PARidentifier] "?" OTHERWISE [TTCNExpression] [TimerOperations] 

OTHERWISE is used to denote that the appropriate tester shall accept any incoming event which has not previously matched one of the alter- 
natives to the OTHERWISE. 

If a tree uses multiple PCOs then the OTHERWISE shall be preceded by a PCO identifier. Incoming events, including OTHERWISE, are 
considered only in terns of the given PCO. 

EXAMPLE 54 - use of OTHERWISE with PCO identifiers 

PARTIALTREE (PCO1:XSAP; PC02:YSAP) 
PCOl? A 
PC02? B Pass 
PCOl? c inconc 
PC02? OTHERWISE fail 

Assume no event is received at PCO1, then receipt of event B at PC02 results in a pass verdict. Receipt of any other event at 
PC02 results in a fail verdict. 

Due to the significance of ordering of alternatives, incoming events following an (unconditional) OTHERWISE on the same PCO will never 
be matched. 

EXAMPLE 55 - incoming events following an OTHERWISE: 

PARTIAL-TREE (PCO1:XSAP) 
PCOl? A 
PCOl? B 
PCOl? OTHERWISE 
PCOl? c 

The OTHERWISE will match any incoming event other than A or B. The last alternative, ?C, can never be matched. 

A.15.9.6 The TIMEOUT Event 

A. 15.9.6.1 Introduction 

The TIMEOUTevent allows expiration of a timer, or of all b e r s ,  to be checked in a test case. When a timer expires (conceptually immediately 

77 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
82

-1:
19

93

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f


ISOAEC 8882-1 : 1993 (E) OISO/IEC 

before a snapshot processing of a set of alternative events), a TIMEOUT event is placed into a timeout list. The timer becomes immediately 
inactive. Only one entry for any particular timer may appear in the list at any one time. Since TIMEOUT is not associated with a PCO, a single 
timeout list is used. 

When a TIMEOUT event is processed, if a timer name is indicated, the timeout list is searched, and if there is a timeout event matching the 
timer name, that event is removed from the list, and the TIMEOUT event succeeds. 

If no timer name is indicated, any timeout event in the timeout list matches. The TIMEOUT event succeeds if the list is not empty; and the list 
itself is immediately emptied. 

TIMEOUT has the following syntax: 

SYNTAX DEFINITION: 

Timeout : := ?TIMEOUT [TimerIdentifier] [TTCNExpression] [TimerOperations] 

EXAMPLE 56 - ?TIMEOUT T 

If the timer identifier is omitted, then the TIMEOUT applies to any timer which has expired. 

A.15.9.6.2 Using TIMEOUT with OTHERWISE 

Because TIMEOUT events do not occur at any particular PCO they are not covered by the OTHERWISE event: 

EXAMPLE 57 - relationship of TLMEOUT and OTHERWISE: 

PARTIALTREE (PCO1:XSAP) 
PCOl? A Pass 
PCOl? OTHERWISE fail 
?TIMEOUT T inconc 

An inconclusive verdict is assigned if no incoming event is received at PCOl (neither A nor anything else) and the timer T ex- 
pires. 

A.15.9.7 Lifetime of Events 

Identifiers of ASP parameters and PDU fields associated with SEND and RECEIVE shall only be used to reference ASP parameter and PDU 
field values on the statement line itself. 

Therefore, in the case of SEND events, relevant ASP parameters and PDU fields can be set, if required, by using them in appropriate assign- 
ments on the SEND line. Similarly, in the case of RECEIVE events, if relevant ASP parameter and PDU field values need to be subsequently 
referenced, either the whole ASP or PDU or a relevant part of it shall be assigned to variables on the RECEIVE line itself. These variables may 
then be referenced in subsequent lines. 

A.15.10 TTCN Expressions 
A.15.10.1 introduction 

There are two kinds of expressions: ASSIGNMENTS and BOOLEAN expressions. 

SYNTAX DEFINITION: 

TïCNExpression ::= ({ BooleanExpression)+ {Assignment)+) I { BooleanExpression)+ I {Assignment)+ 

Both assignments and Boolean expressions may contain explicit values and the following forms of reference to data objects: 

a) Test suite parameters; 

b) Test suite constants; 

c) Test suite and test case variables; 

d) Formal parameters of a test step, default or local tree; 

e) ASPS and PDUs (on event lines). 

SYNTAX DEFINITION: 

DataObjectIdentifier ::= TCVid I PARidentifier I ASP-PDUidentifier 
TCVid : := TSPARidentifier I TSCONSTidentiFier I VARidentiFier 
ASP-PDUidentifier ::= ASPidentifier I PDUidentifier 

78 

e 

e 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
82

-1:
19

93

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f


OISOAEC ISO/IEC 8882-1 1993 (E) 

A.15.10.2 References for ASN.l Defined Data Objects 

To refer to components of structured data objects the following access mechanisms are provided: 

a) a reference to a component of one of the following types: SEQUENCE, SET and CHOICE is constnicted using a dot notation; i.e. appending 
a dot and the name (component identifier) of the desired component to the data object identifier; 

b) references to unnamed components are constructed by giving the position of the component within the type definition in parentheses; the 
component identifier shall be used if specified; numbering of such components of such a type starts with "I". 

SYNTAX DEFINITION: 

DataObjectReference : := (DataObjectIdentifier { ComponentReference) ) I (ComponentIdentifier 
{ ComponentReference} ) 
ComponentReference ::= RecordRef I ArrayRef I BitRef 
RecordRef ::= Dot (ComponentIdentifier I Componentposition) 
Componentldentifier ::= ASP-PARidentifïer I FiELDidentifier 
Componentposition ::= "("Number")" 

Omitting the data object identifier (i.e. starting the reference with a component identifier) is only allowed for references to the ASPsffDUs 
associated with event lines. If this leads to ambiguity (e.g. there is an existing variable with the same name as a referenced ASP parameter or 
PDU field) the full reference shall be used. 0 

EXAMPLE 58 - example-type ::= SEQUENCE ( 

field-1 INTEGER, 

field-2 BOOLEAN 

OCTETSTRING ) 

If varl is of ASN.l type example-type, then we could write: 

varl .field-1 

varl.(3) -- refers to the third (unnamed) field -- 

EXAMPLE 59 - XY-PDU-type ::= SEQUENCE ( 

-- refers to the first INTEGER field -- 

user-data OCTETSTRING, 

: I  
On the statement line: 

user-data may be used instead of XY-PDU.user-data if there is no other data object defined with the name user-data. 

L? XY-PDU (buffer := user-data) 

An index enclosed in square brackets is used to refer to a component of an ASN.l SEQUENCE OF or SET OF type. 
a 

SYNTAX DEFINITION: 

ArrayRef ::= "[" ComponentNumber "I" 
ComponentNumber ::= SimpleExpression 

The first component has the number "0'. 

The simple expression shall evaluate to a non-negative INTEGER. 

The same notation is used to refer to elements (bits) of the ASN.l BITSTRING type. BITSTRING is assumed to be defined as SEQUENCE 
OF (BOOLEAN}. If certain bits of a BITSTRING are associated with an identifier (named bit) then the dot notation and this identifier shall 
be used to refer to the bit. 

SYNTAX DEFiNITION: 

BitRef ::= Dot BitIdentifier I ''r BitNumber "I" 
BitIdentifier ::= Identifier 
BitNumber ::= SimpleExpression 

The leftmost bit has the number "O". 

79 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
82

-1:
19

93

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f


ISODEC 8882-1 : 1993 (E) 

The simple expression shall evaluate to a non-negative INTEGER. 

EXAMPLE 60 - b-type ::= BITSTRING ( ack(O), poll@) } 

where bit zero is called "ack  and bit three is calied "poll" 

If b-str is of ASN.1 type b-type, then we could write: 

b-str.ack := TRUE 

b-~tr[2] := FALSE 

Note that b-str.poll := TRUE and b-str[3] := TRUE both assign the value TRUE to the "poll" bit. 

OISODEC 

A.15.10.3 References for Data Objects Defined by the Tabular Method 

The same syntax as defined in A. 15.10.2 shall be used to construct references to structured data objects defined in the tabular form (i.e. ASPs 
and PDUs). To specify a reference to an ASP parameter or PDU field the data object identifier shall be followed by a dot and a parameter or 
field identifier. When accessing parameters or fields of ASPs or PDUs on the same statement line they are receiveasent, the data object refer- 
ence (i.e. the ASP identifier or PDU identifier) may be omitted resulting in an abbreviated form. 

A.15.10.4 Assignments 

A.15.10.4.1 Introduction 

The effect of an assignment is to bind the test case or test suite variable (or ASP parameter or PDU field) to the value of the expression if, 
and only if, the event occurs. The expression shall contain no unbound variables. 

The rules for use of assignments within events are as follows: 

a) all assignments occur in the order in which they appear, that is left to right processing; 

b) on a SEND event all assignments are performed after the Boolean expression is evaluated and before the ASP or PDU is transmitted; 

c) on SEND events assignments are allowed for the fields of the ASP or PDU being transmitted; 

d) on a RECEIVE event assignments are performed after the event occurs and cannot be made to fields of the ASP or PDU just received. 

EXAMPLE 61 - use of assignments with event lines: 

(X:=i) 
(Y=2) 

L!A (Y:=O, X:=Y) (A.fieldl:=Y) 
L?B (Y:=B.field2) (X:=X+l) 

When PDU A is successfully transmitted the contents of the test case variables X and Y will be zero, and field1 of PDU A will 
also contain zero. Upon receipt of PDU B the test case variable Y would be assigned the contents of field2 from PDU B and the 
test case variable X would be incremented. 

SYNTAX DEFINITION: 

Assignment ::= "(" SimpleAssignment {Comma SimpleAssignment} 'I) 
SimpleAssignment ::= DataObjectReference "::=" Expression 
Expression ::= SimpleExpression [ Relop SimpleExpression] 
SimpleExpression ::= Term { AddOp Term) 
Term ::= Factor {MultiplyOp Factor) 
Factor ::= [UnaryOp] Primary 
Primary ::= DataObjectReference I R I UserOperation I "(I' Expression ")" I imber I Cstring I Hstring I Ostring I Bstring 
I BooleanVaiue I ASN1-EnumeratedIdentifier I ASN1-NamedIntegerIdentiFier 
ASN1-EnumeratedIdentifier ::= Identifier 
ASN 1-NamedIntegerIdentifkr : : = Integer 

MultiplyOp ::= "*'I I "/" I MOD I AND 
Unary@ ::= 'I+" I "-'I 1 NOT 
Useaperation ::= Opidentifier [ActuaiPARiist] 

Add@ ::= 'I+" I "-" I OR 

The types on the left-hand side and the right-hand side of an assignment shall be assignment compatible (as defined in clause A.11.2.4). 

80 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
82

-1:
19

93

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f


OISO/IEC ISO/IEC 8882-1 : 1993 (E) 

The result of performing the MOD operation on two INTEGER values gives the remainder of dividing the first INTEGER by the second. 

The result of performing the division operation ("/") on two INTEGER values gives the whole INTEGER value resulting from dividing the 
first INTEGER by the second (i.e. fractions are discarded). 

A.15.10.4.2 Assignment Rules for String Types 

If length restricted string types are used within an assignment the following rules apply: 

a) if the destination string type is defined to be shorter than the source string, the source string is truncated on the right to the maximum length 
of the destination string type; 

b) if the source string is shorter than that allowed by the destination string type, then the source sîring is left aligned and padded with fill char- 
acters up to the maximum size of the destination string type. 

Fill characters are: 

" " (blank) for all character strings; 

"O" (zero) for BITSTRINGs, HEXSTRINGs and OCTETSTRINGs. 

A.15.10.5 Boolean Expressions 

An event may be qualified by placing a Boolean expression after the event. This qualification shall be taken to mean that a match may only 
occur if both the event matches and the Boolean expression evaluates to TRUE. 

If both a Boolean expression and an assignment are associated with the same event, then the Boolean expression shall appear first. 

SYNTAX DEFINITION: 

BooleanExpression ::= 'I[" Expression "1" /* Expression shall evaluate to a Boolean Value */ 
Relop ::= 11-11 - I iiclf I l f > l g  I t1<>11 I ff>=it I f*<=" 

A.15.10.6 Assignments and Boolean Expressions with Events 

It is allowed to associate an event with either an assignment, or a Boolean expression or both. If an event is followed by an assignment, the 
assignment is executed only if the event occurs. If an event is followed by a Boolean expression, the event may occur only if the Boolean ex- 
pression holds. If an event is followed by both, the event may occur only if the Boolean expression holds, and the assignment is only executed 
if the event occurs. 

If a RECEIVE event is qualified by a Boolean expression and the event that has occurred potentially matches the specified event, then the Bool- 
ean expression shall be evaluated in the context of the event that has occurred. If the Boolean expression contains areference to ASP parameters 
andor PDU fields then the values of those parameters andor fields are taken from the event that has occurred and shall also be consistent with 
the specified constraint; in such cases the value in the relevant constraints declaration of each ASP parameter and/or PDU field shall be a 'don't 
care' value, a list of values, or a range of values. 

Boolean expressions may be broken down into a sequence of Boolean expressions. Similarly, assignments may be broken down into a sequence 
of assignments. The separate assignments are performed sequentially, left-to-right. 

EXAMPLE 62 - ?CR [W=l][X<2] (Y:=3) (Z:=4) is equivalent to ?CR m=l AND X<2] (Y:=3,2:=4) 

EXAMPLE 63 - The OTHERWISE event may be used together with Boolean expressions and/or assignments. If a Boolean 
expression is used, this Boolean becomes an additional condition for accepting any incoming event. If an assignment statement 
is used, the assignment will take place only if all conditions for matching the OTHERWISE are satisfied. For example, 

PARTIALTREE (PCO1:XSAP; PCOkYSAP) 
PCOl? A pass 
PC02? B [X=2] inconc 
PCOl? c pass 
PC02? OTHERWISE [X<>2] (Reason:="X not equal 2 )  fail 
PC02? OTHERWISE (Reason:="X equals 2 but event not B") fail 

Assume that no event is received at PCOl. Receipt of event B at PC02 when X=2 gives an inconclusive verdict. Receipt of any 
other event at PC02 when X<>2 results in a fail verdict and assigns a value of "X not equal 2" to the character string variable: 
Reason. If an event is received at PC02 that satisfies neither of these scenarios then the final OTHERWISE will match. 

EXAMPLE 64 - Use of a qualified SEND event 

PARTIAL-TREE 
?A pass 
!B[X=3] inconc 

81 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
82

-1:
19

93

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f


ISO/IEC 8882-1 : 1993 (E) OISOBEC 

? OTHERWISE fail 

A verdict of fail will be assigned if neither A is received nor B is sent due to XO3.  If X=3 an inconclusive verdict is assigned 
and the OTHERWISE never occurs. 

A.15.10.7 Assignments and Boolean Expressions Without Events 

It is permitted to use assignments and Boolean expressions by themselves on a statement line in a behaviour tree, without any associated 
event. These stand-alone expressions are called pseudo-events. Only the following combinations are allowed: 

a) assignments alone; the assignments are executed; 

b) Boolean expressions alone; the Boolean expressions are evaluated, execution continues with subsequent behaviour (if any) only if the ex- 
pressions hold; 

c) Boolean expressions followed by assignments; the assignments are executed only if the Boolean expression holds. 

A.15.11 The ENCODE and DECODE Expressions 
A.15.11.1 introduction 

The ENCODE and DECODE expressions allow the specification of the encoding of PDUs embedded in ASPS or other PDUs. 

It is recommended that the static chaining of constraints mechanism (clause A.15.11.1) is used for specifying ASPS with embedded PDUs. If 
desired this chaining mechanism can be used in combination with parameterized constraints. See (Annex C} for examples of these mechanisms. 

NOTE - ENCODE and DECODE are discouraged, but they are still part of TTCN for reasons of upward compatibility. The static chaining 
mechanism was not available in DP versions of TTCN and therefore ENCODE and DECODE were used instead. 

A.15.11.2 The ENCODE Expression 

The ENCODE operator is written as *, and should be read as "is encoded as". An ENCODE expression is only associated with a SEND events: 

The ENCODE expression has the syntax: 

I 

SYNTAX DEFINITION: 

Send ::= [PCOidentifier I PARidentifier] !I' (ASPidentifier I PDUidentifier) [EncodedAs] [TTCNExpression] 
[TimerOperations] 
EncodedAs : := "<" DataObjectReference 'IA'' PDUidentifier [EncodedAs] "2" 

The left-hand side of the ENCODE expression shall be the name given to the user data field in the appropriate ASP or PDU type declaration. 

A.15.113 The DECODE Expression 

The DECODE operator is written as -, and should be read as "decodes as". A DECODE expression is only associated with a RECEIVE event: 

The DECODE expression has the syntax: 

SYNTAX DEFINITION: 

Receive ::= [PCOidentifier I PARidentiFier] "?" (ASPidentifïer I PDUidentifier) [DecodesAs] [TTCNExpression] 
[Timerûperations] 
DecodesAs ::= "<'' DataObjectReference "-" PDUidentifier [DecodesAs] ">" 

The left-hand side of the ENCODE expression shall be the name given to the user data field in the appropriate ASP or PDU type declaration. 

A.15.12 Timer Management 
A.15.12.1 Introduction 

A set of operations are used to model timer management. These operations can appear in combination with events or as stand-alone pseudo- 
events. They can be applied to: 

- 

- 
It is assumed that the timers used in a test suite are either inactive or running. All running timers are automatically cancelled at the end of each 
test case. There are three predefined "TCN timer operations: START, CANCEL and READ TIMER. More than one timer operation may be 
specified on a TïCN statement if necessary. This is indicated by separating the operations by commas. 

a set of timers, which is specified by omitting the timer name; 

an individual h e r ,  which is specified by following the timer operation by the timer name. 

82 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
82

-1:
19

93

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

