INTERNATIONAL ISO/IEC
STANDARD 8882-1

First edition
1993-11-15

Information technology —
Telecommunications and information

exchange between systems — X.2b DTE
conformance testing — '

Part 1:
General pfinciples

Technologies de I'information — Télécommunications et éghange
d'information entre systémes — Test de conformité X.25 QTE —

Partie 1. Principes généraux

Py
; ® 130/|ng%r§§§-? ?3?33%3

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

ISO/MTEC 8882-1:1993 (E)

Forewor|

ISO (the

d

nternational Organization for Standardization) and IEC (the

International Electrotechnical Commission) form the specialized system for

worldwide §
participate
committees
fields. of teq

tandardization. National bodies- that are members of ISO or IEC
n the development of International Standards through technical
established by the respective organization to deal with particular
hnical activity. ISO and IEC technical committees collaborate in

fields of muytual interest. Other international organizations, governmental and
non-governifiental, in liaison with ISO and IEC, also take part in the work.

In the field

of information technology, ISO and IEC have established a_joint

technical committee, ISO/IEC JTC 1. Draft International Standards adopted by
the joint technical committee are circulated to national bodies {or “voting.
Publication &s an International Standard requires approval by at least(75 % of the
national bodjies casting a vote.

Internationa
Committee
Telecommun

ISO/IEC 884
technology -
- X.25 DTH
— Part
— Part]

— Part]

Annex A for

Standard ISO/IEC 8882-1 was prepared.-by’ Joint Technical
ISO/IBC JTC 1, Information technology,\ Sub-Committee SC 6,
ications and information exchange between'systems.

2 consists of the following parts, unider the general title Information
| Telecommunications and infotmation exchange between systems
| conformance testing:

: General principles
: Data link layerconformance test suite
- Packet leyel'conformance test suite

ms an integral part of ISO/IEC 8882.

© ISO/MEC 1993 _

All rights reserved. No part of this publication may be reproduced or utilized in any form or by
any means, electronic or mechanical, including photocopying and microfilm, without
permission in writing from the publisher.

ISOEC C

opyright Office » Case postale 56 « CH-1211 Gengve 20 . Switzerland

Printed in Switzerland

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

©ISO/EC

ISO/IEC 8882-1: 1993 (E)

Introduction

ISO/IEC 8882 specifies a set of tests to evaluate Data Teq
(DTE) conformance to International Standards ISO\7776 or

both. ISO 7776 and ISO/EC 8208 allow for anDTE to inte:
Circuit-Terminating Equipment (DCE) conforfiing” to- CCITT
X.25 (1980,1984) or to another DTE conforming to ISO 7776

minal Equipment
O/IEC 8208, or
ace with a Data
Recommendation
or ISO/IEC 8208

or both. The implementations of ISO 7776 and ISO/IEC 8208 are tested indepen-

dently.

CCITT Recommendations X.25(1980) and X.25(1984) are writ
spective of a DCE and therefore-do not explicitly specify th
However, recommended operation of DTEs is included by im
of the need to communicate 'with X.25 DCEs. Tests within ISC
ISOAMEC 8882-3 pertaining to X.25 (1980, 1984) are based on the
characteristics implied)by CCITT X.25.

This part of ISO/IEC 8882 specifies the framework in which

ten from the per-
DTE operation.
plication because
/IEC 8882-2 and
DTE operational

he other parts of

ISO/IEC 8882.may be understood and the principles to be applied. The notation

used in ISO/EC 8882-2 and ISO/AEC 8882-3 is TTCN as dd
96463\

fined in ISO/MEC

ISO/MEC 8882-2 presents the Data Link Layer aspects for eval\iating conformance

to ISO 7776 while ISO/IEC 8882-3 presents the Packet Layer asp
conformance to ISO/IEC 8208 ;

The conformance tests are designed for use by

ects for evaluating

-— test evaluators (responsible for analysing results and detgrmining whether

conformance has been achieved);

— test suite designers or implementors (for determining what
and what results can and should be anticipated by the test de

— users implementing ISO 7776 or ISO/IEC 8208 or DTEs inf
that implement CCITT X.25 (1980 or 1984) (for determining
required of their implementations to be considered in confor]

tests are required
vice); and

erfacing to DCEs
¥ the functionality
mance).

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

INTERNATIONAL STANDA RD®ISOAEC

ISO/IEC 8882-1 : 1993 (E}

Information technology — Telecommunications and information
exchange between systems — X.25 DTE conformance testing —

Part 1: General principles

1 Scope

ISO/IEC §$882 defines the testing of a DTE operating at the
Data Link| Layer and at the Packet Layer when accessing, by
means of § dedicated path connection, switched or permanent, a
public or private packet-switched network conforming to CCITT
Recommegdation X.25 or another DTE conforming to ISO 7776
and ISO/IEC 8208.

The tests [will test the conformance of an implementation by
observing |its external behaviour. The conformance tests will
not test the DTE performance characteristics, the diagnostic and
maintenange functions, the correctness of the protocol itself, or
DTE interpal implementation, or the full capabilities as stated in
the PICS.

This part pf ISO/NEC 8882

— provides a general introduction;

—~ refery to those applicable International Standards;

—— definps terms applicable to X.25-DTE conformance testing;
— stateg the test case derivation and description; and

— state the test methodology.

ISONEC i1882—1 contains no statement of conformance. Specific

statements| of conformance, are’ given in ISO/IEC 8882-2 and
ISO/TEC §882-3.

2 Normative references

ISO/IEC 8208 : 1990, Information.technology — Data commu-
nications — X.25 Packet Layer(Brotocol for Dpta Terminal Equip-
ment. ™

ISO/MEC 8882-2 : 1992, ‘Information technolpgy — Telecommu-
nications and information exchange between systems — X.25 DTE
conformance testings~ Part 2: Data link layer conformance test
Ssuite.

ISOAEC 8882°3 : 1991, Information technolpgy — Telecommu-
nications~and information exchange between systems — X.25 DTE
conformance testing — Part 3: Packet layer conformance test suite.

ISO/IEC 9646-1 : 1991, Information technoldgy — Open Systenis
Interconnection — Conformance testing methpdology and frame-
work — Part 1: General concepts.. (See also| CCITT Recommen-
dation X.291 (1991)).

ISO/IEC 9646-2 : 1991, Informatior technoldgy — Open Systems
Interconnection — Conformance testing methpdology and frame-
work — Part 2: Abstract test suite specificatiqn. (See also CCITT
Recommendation X.291 (1991)). :

ISO/IEC 9646-3 : 1992, Information technoldgy — Open Systems
Interconnection — Conformance testing methpdology and frame-
work — Part 3: The Tree and Tabular Combingd Notation (TTCN).

CCITT Recommendation X.25 (1980), Interfage berween Data Ter-
minal Equipment (DTE) and-Data Circuit-Tenminating Equipment
(DCE) for Terminals Operating in the Packet Mode on Public Data
Networks.

CCITT Recommendation X.25 (1984), Interfa¢e between Data Ter-
minal Equipment (DTE) and Data Circuit-Terpninating Equipment
{DCE) for Terminals Operating in the Packet Mode and Connected
to Public Data Networks by Dedicated Circuft. ‘

The followi T t tstons w‘ﬂ;»‘ﬁ, ﬂ'uuusb refer
ence in this text, constitute provisions of this part of ISO/IEC 8882.
At the time of publication, the editions indicated were valid. All
standards are subject to revision, and parties to agreements based
on this part of ISO/IEC 8882 are encouraged to investigate the pos-
sibility of applying the most recent editions of the standards listed
below. Members of IEC and ISO maintain registers of currently
valid International Standards.

ISO 7498 : 1984, Information processing systems — Open Systems
Interconnection — Basic Reference Model,

ISO 7776 : 1986, Information processing systems — Data commu-
nications — High-level data link control procedures — Description
of the X.25 LAPB-compatible DTE data link procedures.

3 Definitions

3.1 Reference model definitions

This part of ISO/IEC 8882 makes use of the following term defined
in ISO 7498:

(N)-protocol-data-unit (N)-PDU

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

ISO/MEC 8882-1 : 1993 (E)

3.2 Conformance testing definitions

This part of ISO/MEC 8882 makes use of the following terms
defined in ISO/IEC 9646-1:

a) Abstract Test Case
b) Conformance Tesi Suite
c) Conformance Testing

d) Implementation Under Test

@ISO/EC

4 Abbreviatiohs

The following abbreviations are used in this part of ISO/IEC 8882:
DCE Data Circuit-Terminating Equipment

DTE Data Terminal Equipment
DXE DTE or DCE
IUT Implementation Under Test

PDU Protocol Data Unit

e) Inopportune PDU
f) Lower Tester

g) Protocol Implementation Conformance Statement
h) Protocol Implementation eXtra Information for Testing
i) Remote Sfingle Layer Test Method

7 System Under Test

k) : Test Groyp
1)) Test Step

m) Test Suitg

‘5§ Test notation

PICS Protocol Implementation Conformance |Statement

PIXIT Protocol implementation eXtra Infornjation for Test-
ing

RS Remote Single Layer
SUT System Under Test
TPDU Transport\Protocol Data Unit

TTCN Tree-and Tabular Combined Notation

The test notation used in ISO/IEC 8882-2 and ISO/IEC 8882-3

3.3 X.25 DTE conformance tésting definitions

For the purpos

of this part of ISO/IEC 8882 the following def-

is YTTCN as defined in the DIS version of ISO/IE(
version of ISO/IEC 9646-3 is contained in annd
8882-2 and ISO/IEC 8882-3 contain an annex
differences between the DIS version of TTCN used

9646-3. This
x A. ISO/IEC
describing the
pnd the version

initions apply: |

3.3.1 improper PDU: The (N)-PDU whose syntax-does not
conform to the format specifications of ISO 7776 or ISOAEC 8208
or CCITT X.25. . ‘ :

3.3.2 proper|PDU: The (N)-PDU whose syntax conforms to
the format spetification of CCITT X.25,~ISO 7776 or ISO/IEC
8208 and is acg¢eptable to the state or.phase of the interface.

3.3.3 tester:| Refer to Lower Tester.

~3.3.4 test caale: Refer to Abstract Test Case.

of TTCN defined in ISOAEC 9646-3.

6 Test suite structure

The test suite structure used in ISOAEC 8882-2 and ISO/AEC
8882-3 is defined in ISO/IEC 9646-2 and is illustrated below.

Test Suite Structure

Test Group

Test Subgroup 1 (Proper PDUs)
Test Case No.101
Test Case No.102

3.3.5 test selection: Test selection is the process of choosing
test cases according to the specific criteria based on the IUT’s
PICS and PIXIT in order to constitute a conformance test suite
for the IUT.

3.3.6 test subgroup: A set of test cases that share a common
characteristic, such as testing for proper, improper, or inopportune
PDUs. A test subgroup is the smallest testable set of test cases
that can be selected.

3.3.7 sub-function: A subset of the PDUs and functional
capabilities of the protocol level above the TUT that are needed to
allow data transfer testing to be accomplished.

Test Ca.se' No.1nn
Test Subgroup 2 (Improper PDUs)

Test Case No.201 ’
‘Test Case No.202

Test Case No.2nn

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

©ISO/MEC

Test Subgroup 3 (Inopportune PDUs)
Test Case No.301
Test Case No.302 .

Test Ca.se No.3nn

ISOAEC 8882-1 : 1993 (E)

7.1 Test principles

The testing of the Data Link and the Packet Layer protocols is
done separately. The data link layer is normally tested first since
the packet layer requires the correct operation of the data link
layer. The RS method is the selected test method since it cannot
be assumed that a tester will be able to test completely each level
as a separate entity. The RS method requires that the tester shall
recognize and respond to a PDU received from the higher level
protocols. The specific PDUs which shall be accepted are defined
in ISO/IEC 8882-2 and ISO/IEC 8882-3.

7 Testing methodology

The testing methodology is based on the OSI Conformance Testing
Methodologly and Framework. The test method used is the Remote
Single layer (RS) method. To employ the RS method effectively,
the concept| of using sub-functions of higher layer protocols is
introduced. [Sub-functions are a subset of the PDUs and functional
capabilities [of the protocol layer above the IUT that are needed
to allow dafa transfer testing to be accomplished. The required
properties of the sub-functions used are:

a) That the number and sequence of data-PDUs received from
the TUT after receiving a data-PDU from the tester is pre-
dictable, and that the number received from the IUT is greater
than Zero.

b) That the reactions of the IUT upon receipt of these data-
PDUs|are known.

¢) That 1he sub-function allows either the tester or IUT to
’ initiat¢ transmission of the data-PDUs.

d) That the sub-function allows for the exchange of data-PDUs
by the|layer under test with minimal interference from other
functi¢ns of the protocol layer(s) above the IUT, (e.g., PDU
retrangmission, error recovery, efc.).

Examples df data transfer configurations are.shown for the Data
Link Layer|and the Packet Layer in figures.) and 2 respectively.

NOTE — The requirements on underlying protocols are specified in
ISO/IEC 8208, clause 3.

l.a DA ransier

The sub-function chosen by the IUT providet should create an
alternating exchange of data-PDUs between the[TUT and the tester.
This exchange will be repeated untihthe sequence numbers of the
layer under test have been rotatéd.”The sub-fupction chosen shall
be defined in the PIXIT of the'IUT, and shall include the sequence
and contents of the user data’ fields required [for the test. Two
examples of the use ofza sub-function to acconplish data transfer
testing are shown in/figures 3 and 4.

A more detailed explanation of data transfer festing is provided
in ISO/IEC.8882-2 and ISO/IEC 8882-3. These explanations
also addréss the data transfer testing of sendfonly and receive-
only IUTs,

- Itdsarecognized that an IUT provider may not be|able to accomplish

data transfer testing by this means. In such [instances the data
transfer tests are deselected.

7.3 Other user data fields

When necessary, the content of user data fields{in other than data-
PDUs shall be provided to the tester by the owner of the IUT in
order to execute successfully the conformance] test suite. In this
case, the IUT requires the tester to transmit hser data fields in
accordance with higher level protocols which dre operating above
the IUT. For example, user data fields of call s¢t-up, clearing, and
interrupt packets of the Packet Layer may be ffected.

The content of such user data fields shall be pjovided by the IUT
owner in the PIXIT.

Sub-function of
Packet Layer

Sub-function of
Other Protocol(s)

Data Link Layer (layer under test)

Figu?'e 1 — Data Link Layer Data Transfer Configuration

Sub-function of OSI Protocol(s)

Sub-function of non-OSI Protocol(s)

Packet Layer (layer under test)

Data Other Protocol(s)
Link Protocol(s)

Layer Note

Note

Figure 2 — Packet Layer Data Transfer Configuration

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

ISO/EC 8882-1 : 1993 (E) ©ISO/IEC

7.4 Testing configuration ’ test activity from normal operation of underlying layers. At a
/ minimum, the tester should be capable of distinguishing between

The SUT is connected to the tester, point-to-point, when partici- I-frame retransmission at the data link layer (due to T1 expiration)

pating in active testing. The points of observation and control for and a packet layer retransmission. Some recommended functions

each test sequence are within the tester. of the tester include:

-ISO/IEC 8882-2 and ISO/IEC 8882-3 include PIXIT proformas a) Detection of failures of the physical layer.

which, when completed, describe the dynamic conformance test

environment. ' b) The ability to respond transparently to timeout conditions at

the data link layer.

7.5 Operational consideration ¢) - Timely data link layer acknowledgement (to avoid retrans-
missions) when performing packet layer testing.

Testing is donelin a confrolled environment. It is not the intent
of this documept to define the operational characteristics of test d) In the instance where an I-frame is retransnijtted, the tester
devices used to| achieve DTE Conformance Testing. However; it should properly acknowledge the frame, and |not pass it on
is highly desirable that the device be capable of segregating IUT to the packet layer. The tester shall' be sensitive to failures
PDU sent by
Tester , IUT
Packet Data Link Data Link ~ Packet
Layer Layer Layer Layer
CLEAR
INDICATION I-frame e—m—gp
< I- frame CLEAR
- CONFIRMATION
Figure 3 —-Example of the use of a Packet Layer Sub-function
PDU sent by
Tester ~IUT
Transport Packet Packet Transport

) (P T gy L . I af‘el:
Layur Layct uaye'r—

Erroneous
Connect Data —_—
request TPDU packet
(CR TPDU)
«4— Data Disconnect request
packet TPDU (DR TDPU)

Figure 4 — Example of the use of a Transport Layer Sub-function directly over ISO/IEC 8208 (i.e. OSI Network Layer)

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

©@ISOMEC

that interfere with the tests, and when such a condition is
detected, the tester should abort the test.

e) The tester shall recognise the possibility of receiving unex-
pected PDUs which do not affect the results of the test case.
These specific PDUs for each layer are defined in ISO/IEC
8882-2 and ISO/IEC 8882-3. In addition, other unexpected

~ PDUs may be received which do affect the results of a test
case. These PDUs will require further analysis and poten-
tially, re-execution of the test case. Receipt of such PDUs
may be due to interference from sources outside the realm of
the X.25 environment (e.g. the IUT operating system, IUT
operator).

ISO/MEC 8882-1 : 1993-(E)

b) multiple combinations of optional facilities may be required
depending on the applications running above X.25.

Optional facilities are tested individually. Where the TUT cannot
support this method of testing these tests are deselected.

7.9 Transient states

1t is recognized that for those TUTs that process PDUs sequentially,
certain states are not realizable. Specifically, the testing of the
IUT during the DXE defined states (for example, for the packet
layer, 13 — Restart Indication, p3 -— Incoming Call, p7 — Clear

7.6 DTE initiated actions

Generally the tester forces the IUT to transmit a particular PDU.
However, in|order to execute some test groups, it is required that
the IUT inifiate the transmission of particular PDUs. When a
DTE-initiated action is required, it is specified in the appropriate
test group. IDirect control of such actions may not be feasible for
the TUT owner. In such instances these tests are deselected.

7.7 Timing considerations

There are twp types of timing considerations which should be taken
into accoun{ — timing considerations for the tester and timing
consideratiops for the SUT.

a) Tester Considerations: The tester shall allow for the time
required by the IUT to progress from one test case to the
next. This timing consideration should be accomodated for
in the [test preamble.

For example, the time required by the IUT to initiate a CALL
REQUEST after completing a CALL CLEARING opetation,
and th¢ time required by the IUT to re-establish the'data link
after cpmpleting a disconnect operation. The ptecise timing
requirgments of the TUT shall be specified in the PIXIT, as
defined in ISO/MAEC 8882-2 and ISO/IEC (8882-3.

b) SUT Cbnsiderations: Where the protocol standard identifies a

need for timers, values for those timers shall be those stated
in the |PIXIT.

7.8 Optional facility testing

Full testing [of optional facilities is not possible because

a) optiongl facilities may be managed by levels above X.25; and

Indication, and d3 — Reset indication) may-repult in the testing
of some other states (pI — Ready, p4 —< Data Transfer, d1 —
Flow Control Ready). For example, to.test the response to an
error packet (inopportune or improper.packet) iff the DXE Restart
Indication (13) state, the tester will\send a Restart Indication,
immediately followed by the error packet. The [tester expects the
IUT to discard the error packet ard then send a Restart Request in
response to the error packet,)However, the TUT generally responds
immediately to the Restart Indication with a Rejtart Confirmation
and processes the nextpacket from the packet leyel state r1. When
these states are not ‘observable in the TUT, trpnsient test cases
are deselected.~ The specific bandling of transignt state testing is
described inISO/IEC 8882-2 and ISO/IEC 88§2-3.

8 Structure of other parts of ISO/IEC 8882
In order to ensure consistency between ISOMIEC 8882-2 and

ISO/IEC 8882-3 the following items shall be [included in those
standards.

a) A PIXIT pro forma
b) A statement of Acceptable Unexpected repponses.
c) A statement of Tester Timing Consideratipns.

d) PICS and PIXIT based abstract test selection rules.
e) A definition of the test cases.
f) A statement of conformance.
g) An annex describing the differences betwgen the version of

TTCN used and the version of TTCN dgfined in ISO/NEC
9646-3.

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

ISONEC 8882-1 : 1993 (E) ©ISOAEC

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

©ISO/IE

Important|- This Annex contains an extract from the DIS text of ISO/IEC 9646-3. The clause, figure and table
changed tq align with the numbering in this standard. Example and proforma numbering is unchanged from the

ences to t|
which wer|

Introdudtion

This Part o
Combined
neric and a

In construc
(without fol
mally defin

TTCN is dg
a) (o prov
b) to prov
c) toprov

In the abstr
and test stel
means of s

C

Annex A
(informative)

DIS level text for ISO/IEC 9646 - Part 3
The Tree and Tabular Combined Notation (TTCN)

ISO/IEC 8882-1 : 1993 (E)

annexes in the original text have been placed in braces; for example "{Annex A}". All errors.contained
e subsequently corrected in the published International Standard are also present here.

the multi-part ‘standard/recommendation’ (hereafter abbreviated to ‘standard*’) defines a test notation, called t
Notation (TTCN), for use in the specification of ‘OSI or related CCITT X series orI.series’ (hereafter abbrev
hstract conformance test suites.

rmally defined semantics) or a formal description technique (FDT). TTCNis an informal notation with clearly
led, semantics.

signed to meet the following objectives:

de a notation in-which generic and abstract test cases can be.expressed in test suite standards*;
de a notation which is independent of test methods, layers and protocols;

de a notation which reflects the abstract testing methodology defined in this multi-part standard*.

het testing methodology a test suite is looked upon as a hierarchy ranging from the complete test suite, through t¢
ps, down to test events. TTCN provides a naming structure to reflect the position of test cases in this hierarchy
ructuring test cases as a hierarchy of test steps culminating in test events. In TTCN the basic test events are se

.

ing a generic or abstract test suite, a test notation is used to describe abstract\est cases. The test notation can be jn

nymbering has been

iginal text. Refer-
in the original text

he Tree and Tabular
iated to ‘OSI*’) ge-

informal notation
flefined, but not for-

st grouf)s, test cases
It also provides the
nding and receiving

Abstract S¢rvice Primitives (ASPs), Protocol Data-Units (PDUs) and timer events.

Two forms|of the notation are provided: a(hurhan-readable tabular form, called TICN.GR, for use in OSI* conformance [test suite standards;
and a machine-processable form, called TTCN.MP, for use in representing TICN in a canonical form within computer sysfems and as the syn-
tax to be uged when transferring TTEN test cases between different computer systems. The two forms are semantically equivalent.

A.l Scope

hich is independent
niti-part standard*.

This Part off the multi*part standard* defines an informal test notation, called TTCN, for OSI* conformance test suites, W
of test methods, fayers and protocols, and which reflects the abstract testing methodology. defined in Parts 1 and 2 of this m

It also spedifiesfequirements and provides guidance for using TTCN in the specification of system-independent conforrpance test suites for
one or more OSI* standards¥. It specifies two forms of the notation: one, a human-readable Torm, applicable To the production of conformance
test suite standards* for OST* protocols; and the other, a machine-processable form, applicable to processing within and between computer
systems. ‘ '

This Part of this multi-part standard* applies to the specification of conformance test cases which can be expressed abstractly in terms of control
and observation of protocol data units and abstract service primitives. Nevertheless, for some protocols, test cases may be needed which cannot
be expressed in these terms. The specification of such test cases is outside the scope of this standard*, although those test cases may need to be
included in a conformance test suite standard*.

NOTE 1 - For example, some static conformance requirements related to an application service may require testing techniques which are specific to
that particular application.

This Part of this multi-part standard* applies to the specification of conformance test suites for OSI* protocols in OSI layers 2 to 7, specifically
including ASN.1 based protocols. The specification of conformance test suites for multi-peer or Physical layer protocols is outside the scope
of this standard*. :

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

ISO/IEC 8882:1 : 1993 (E) ©ISO/IEC

The relation between TTCN and formal description techniques is outside the scope of this standard*.
The specification of test cases in which more than one behaviour description is to be run concurrently, is outside the scope of this standard*.
NOTE 2 - Use of parallel trees and synchronization between them is expected to be covered by an Addendum to this standard*.

Although this Part of this multi-part standard* specifies requirements on abstract test suites written in TTCN, including their operational se-
mantics, the means of realization of executable test suites from abstract test suites is outside the scope of this Part. Nevertheless, this Part spec-
ifies requirements on what a test suite standard* may specify about a conforming realization of the test suite,

NOTE 3 - ISO 9646-4 specifies requirements concerning test realization including ETS derivation.

A.2 Normative References

1S09646-1, Information Processing Systems - Open Systems Interconnection - OSI Conformance Testing Methodology and Fralnework - Part
I: General Congepts. (See also CCITT Recommendation X.290)

IS0 9646-2, Information Processing Systems - 0pen Systems Interconnection - OSI Conformance Testing Methodology and Frapnework. - Part
2: Abstract Test| Suite Specification. (See also CCITT Recommendation X.290) :

ISO 646, Information Processing Systems - Open Systems Interconnection - ISO 7-bit Coded Character SefforInformation Exchange

ISO 8824 (1989), Information Processing Systems - Open Systems Interconnection - Abstract Syntax Notation One (ASN.1). (Sge also CCITT
Recommendatiqn X.208)

1SO 8825 (1989), Information Processing Systems - Open Systems Interconnection - Basic Encoding Rules for ASN. 1. (See alsp CCITT Rec-
ommendation X].209)

NOTE - These Yersions of ASN.1 include ASN.1 Extensions Addenda.
1SO 7498-1 , Information Processing Systems - Open Systems Interconnection - Basic'Reference Model. (See also CCITT Recpmmendation
X.200)

ISO TR 8509 , nformation Processing Systems - Open Systems Interconnection -Service Conventions. (See also CCITT Recotpmendation
X.210) ‘

A.3 Definitipns

A.3.1 Basic Terms from ISO 9646-1
The following t¢rms defined in ISO 9646-1 apply:

a) abstract service primitive

b) abstract testing methodology
c) abstract teft case

d) abstract tept method

e) abstract teft suite

f) conformarce log

g) conformarce statement

h) conformarjce testing

i) conformarce\test suite
j) ~ coordinated test method
k) distributed test method
1) embedded testing

m) executable test case

n) executable test suite

0) external test methods

p) fail verdict

q) foreseen outcome

r) generic test case

$) generic test suite

t) implementation under test

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

ISO/IEC 8882-1 : 1993 (E)

©ISO/IEC

u) inconclusive verdict

v) inopportune test event

w) local test methods

x) lower tester

y) multi-layer testing

z) pass verdict

aa) PICS proforma

ab) PIXIT proforma

ac) point of control and observation
ad) protocol data unit

ae) protocdl implementation

af) real tejer

ag) remoteltest method

ah) syntactjcally invalid test event
ai) system|under test

aj) testca

ak) test coiidination procedures
al) testeveént

am) test grqup

an) test management protocol
ao) test oufcome

ap) test pufpose

aq) testreglizer

ar) test stgp

as) testsulte

at) unforepeen outcome

au) upper fester

av) valid tpst event

aw) verdic|

A.3.2 Terms from ISO 7498-1

The following terms defined in ISO 7498-1 apply:

a)
b)
9]
d)
e)
f)
g

(N)-layer

(N)-priotocol

(N)-ptjotocol control information
(N)-protocol data unit
(N)-sgrvice

(N)-sgrvice access point
(N)-user,data-ransfer syntax

A.3.3 Terms from ISO TR 8509

The following terms defined in ISO TR 8509 apply:

a)
b)
c)

service primitive
service provider
service user

A.3.4 Terms from ISO 8825
The following term defined in ISO 8825 applies:

encoding

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

ISO/IEC 8882-1 : 1993 (E)

A.3.5 Terms from ISO 8824
The following terms defined in ISO 8824 apply:

a) NumericString
b) PrintableString
¢) TeletexString
d) VideotexString
e) VisibleString
f) IASString

g) GraphicString
h) GeneralString

O©ISO/MEC

A.3.6 TTCN Specific Terms

For the purposep of this standard* the following definitions apply:

A.3.6.1 Abbre
A3.62 Attacllstatement: A TTCN statement which attaches a sub-tree to a calling tree.
A.3.6.3 Basec

A.3.6.4 Behav]
label, verdict, c{

A.3.6.5 Beha

A.3.6.6 Blank
inherited.

A3.6.7 Callinltree: The behaviour tree to which a sub-tree is attached.

A.3.6.8 Const
eter groups and

A.3.6.9 Const
A.3.6.10 Deco

A.3.6.11 Defaylt behaviour: The events, and other TTCN statements, which may occur at any level of the associated tree, an|
dicated in the d¢fault behaviour proforma.

A.3.6.12 Defaylts library: The set of the default behaviours in a test suite.
A.3.6.13 Defaults reference: A structured name which specifies the location of the default in the defaults library.
A.3.6.14 Dottef

riation identifier: A name for an abbreviation, which identifies its definition.

nstraint; Specifies a set of default values for each and every field in an ASP or PDU type'declaration.

our line: An entry in a dynamic behaviour table representing a test event or otherFTCN statement together
nstraints reference and comment information as applicable.

ur tree: A specification of a set of sequences of test events, and other TTCN-statements.

ntry: In a modified multiple constraint a blank entry in a constraint parameter or field denotes that a constrair

ints part: That component of a TTCN test suite concerned with the specification of the values of ASP paramet
PDU fields and field groups.

aints reference: A reference to a constraint, given in-a‘béhaviour line.

e expression: A specification of the decoding of PDUs embedded in ASPs or other PDUs.

identifier: An identifier, consisting of a base constraint identifier concatenated with one or more modified cd

fiers, separated py dots.
A.3.6.15 Encodle expression: A specification of the encoding of PDUs embedded in ASPs or other PDUs.

vith associated
t value is to be

ers and param-

d which arc in-

nstraint identi-

barticular PDU

A.3.6.20 Modified constraint: A subsequent constraint defined for an ASP or a PDU that already has a Base constraint, and which makes

modifications on that Base constraint.

A.3.6.21 Multiple constraint: Declaration of a set of constraints for an ASP or PDU of a given type arranged in a single table.

A.3.6.22 Operational semantics: Semantics explaining the execution of a TTCN behaviour tree.

A.3.6.23 Otherwise event: The TTCN mechanism for dealing with unforeseen events in a controlled way.

A.3.6.24 Parameter groups: A collection of one or more ASP parameters which may occur in more than one ASP type declaration and wh

is defined in a separate declaration. ;
A.3.6.25 Pseudo-event: A pseudo-event is a TTCN expression or Timer operation appearing in the behaviour description.
A.3.6.26 Receive event: The receipt of an ASP or PDU at a named or implied PCO.

10

ich

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

©ISO/EC : ISO/IEC 8882-1 : 1993 (E)

A.3.6.27 Root tree: The main behaviour tree of a test case, occurring at the level of entry into the test case.
A.3.6.28 Send event: The sending of an ASP or PDU to a named or implied PCO.

A.3.6.29 Set of alternatives: TTCN statements coded at the same level of indentation and belonging to the same predecessor node. They rep-
resent the possible events, pseudo-events and constructs which are to be considered at the relevant point in the execution of the test case.

A.3.6.30 Single constraint: Declaration of a constraint for a single ASP or PDU of a given type arranged in a single table.

A.3.6.31 Snapshot semantics: A semantic model to minimize the effect of timing on the execution of a test case, defined in terms of 'snap-
shots’ of the test environment, during which the environment is effectively frozen for a prescribed period.

A.3.6.32 Static chaining: The linking from the declaration of an ASP parameter or PDU field to the declaration of another ASP or PDU.
A.3.6.33 Static semantics: Semantic rules that restrict the usage of the TTCN syntax.

ious places in that (or

the test suite struc-

for the execution of

A.3.6.41 Tpst suite parameter: One of a set of constants derived from the PICS or PIXIT which globally parameterize a fest suite.

A.3.6.42 Tkst suite variable: One of a set of variables declared globally to.the test suite, and which retain their values befween test cases.

A.3.6.44 Tlree attachment: The method of indicating that a behaviotrtree specified elsewhere (either at a different poin} in the current pro-
A.3.6.45 Tree header: That which prefixes a local behaviour\ree. The header contains a tree identifier, and a specificatioh of any parameters

A.3.6.46 Tfee identifier: A name identifying a local behaviour tree.

A.3.6.47 Tyee indentation: A method of indicating the tree structure of a behaviour description. It is reflected in the behayiour desbription by
indentation|of text.

A.3.6.48 Tree leaf: The TTCN statement {n 2 behaviour tree or sub-tree which has no specifiéd subsequent behaviour.
A.3.6.49 Tree node: A single TTCN Statément.

A.3.6.50 Tyee notation: The notation used in TTCN to represent test cases as trees.

A3.6.51 CN abbreviation:"A'method of indicating a textual substitution to be performed in a dynamic behaviour table. . -
A.3.6.52 TITCN statemént: A TTCN statement is an event, a pseudo-event or construct which is specified in a behaviour description.

A.3.6.53 Unforeseen test event: A test event which has not been identified as a possible outcome in the test suite. It is norfally handled using
the OTHERWISE-event. '

A.3.6.54 Ungualified send event: A send event that does not have a Boolean expression or EncodedAs expression on the §ame statement line.

A.4 Abbreviations

A.4.1 Abbreviations Defined in ISO 9646-1
For the purposes of this Part of ISO 9646, the following abbreviations defined in clause 4 of ISO 9646-1 apply:

ASP : abstract service primitive

OSI : open systems interconnection

OSI* : OSI related CCITT X.series or T.series

PCO : point of control and observation

PDU : protocol data unit

PICS : protocol implementation conformance statement

11

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

ISO/IEC 8882-1: 1993 (E)

PIXIT : protocol implementation extra information for testing
SAP : service access point

standard* : standard or recommendation

SUT : system under test

A.4.2 Abbreviations Defined in ISO 9646-2

For the purposes

of this Part of ISO 9646, the following abbrgviations defined in clause 4 of ISO 9646-2 apply:

DS : distributed single-layer (test method)
FDT : formal description technique

TTCN : tree and

tabular combined notation

A.4.3 Other
For the purposes|

ASN.1 : abstract

BNF : The exterided Backus-Naur form used in TTCN

CEId : connectis

FIFO : first in first out

TTCN.GR : treg
TTCN.MP : treg

A.5 The Syntax Forms of TTCN

TTCN is provided in two forms:

a) a graphical f

b) amachine pr
automated pr

TTCN.GR is def]
formation delimi

As an aid to clar
DEFINITION. T}

The two forms o
dards* organizatj

A.6 Compliance

6.1 Test suites t|
TTCN.GR or TT]

bbreviations
of this Part of ISO 9646, the following abbreviations also apply:

syntax notation one
n endpoint identifier

and tabular combined notation, graphical form
and tabular combined notation, machine processable form

pbrm (TTCN.GR) suitable for human readability;
pbcessing.

fers. The syntax of TTCN.MP is defined in Aninex A of this standard* by means of a BNF grammar.

b improve the readability of this document some productions will appear in the text in several places.

CN.MP:

6.2 Test suites
A.8 through A1

ut:laim to comply with the requirements of TTCN.GR shall comply with the TTCN.GR syntax requirements st

and clause {A.3}. Generic test suites may also use the options specified in clause A.18.

©ISO/IEC

beessable form (TTCN.MP) suitable for transmission of TTCN descriptions between machines and possibly suitable for other
ned using tabular proformas. TTCN.MP differs from TTCN.GR only in syntax; keywords, instead of boxes, gre used as in-
fying the TTCN.GR many TTCN.MP productions are embedded in the text of this standard*, and are markdd: SYNTAX

F TTCN are equivalent. If there is‘a conflict between the two forms, this is an error, and should be reported bagk to the stan-
on via a defect report. In such cases, however, the TTCN.MP shall take precedence over the TTCN.GR form pé¢nding correc-

tion by the standgrds* organization.

hat claim to ¢comply with this Part of this multi-part standard* shall state that they comply with the requirements for either

ited in clauses

6.3 Test suites that claim to comply with the requirements of TTCN.MP shall comply with the TTCN.MP syntax requirements stated in clause

{A3).

6.4 Test suites that claim to comply with this Part of this multi-part standard* shall comply with the static semantic requirements specified in
clauses A.8 through A.15 and have operational semantics in accordance with the definition of the operational semantics in { Annex B}, such

that they are sem

antically valid.

6.5 A test suite standard* that claims to comply with this Part of this multi-part standard* shall require that any realization of that test suite
that claims to conform to that test suite standard* shall:

" a) have operational semantics equivalent to the operational semantics of the test suite as defined by { Annex B};

b) be able to produce a conformance log that as a minimum meets all the requirements in clause 17;

¢) comply with ISO 9646-4.

12

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

O©ISO/IEC ISO/IEC 8882-1:1993 (E)

A.7 Conventions

A.7.1 Introduction
The following conventions have been used when defining the TTCN.GR table proformas and the TTCN MP grammar.

A.7.2 TTCN.GR Table Proformas

The TTCN.GR notation is defined using a number of different types of table. The following conventions will be used in the description of
proformas for these tables:

a) Bold text (like this) shall appear verbatim in each éu:tual table in-a TTCN test case;

b) Text in jtalics (like this) shall not appear verbatim in a TTCN test case. This font is used to indicate that actual text must be substitute for
the itali¢ized symbol. Syntax requirements for the actual text can be found in the corresponding TTCN.MP BNF produgtion.

EXAMPLE 1 - Suiteldentifier corresponds to production 3 in {Annex A}

13

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

ISO/IEC 8882-1: 1993 (E) O©ISO/EC

A.7.3 Syntactic Metanotation
Table A.1 defines the metanotation used to specify the extended form of BNF grammar for TTCN (henceforth called BNF):
Table A.1: The TTCN.MP Syntactic Metanotation

u= is'defined to be

| alternative

[abc] 0 or 1 instances of abc

{abc} 0 or more instances of abc
{abc}+ 1 or more instances of abc
(...) textaal grouping

abc the non-terminal symbol abc
$abc the terminal symbol $abc
"abc" the terminal symbol abc

A4 TTCN.]‘IlP Syntax Definitions
€

A.7.4.1 Complefe tables defined in TTCN.GR are represented in TTCN.MP by productions of the kind:
‘ $BEGIN_KEYWORD..... ... ces oee. SEND_KEYWORD

EXAMPLE2- TS_PARdcls ::= $Begin_TS_PARdcls {TS_PARdcl}+ $End_TS PARdcls

Normally, these J;roductions contain at least one mandatory field.

A.7.4.2 Lines of a table, i.e. sets of fields in a table, are represented by productions of the kind:

SKEYWORD ceee svee vore SEND_KEYWORD
BEGIN does notj appear in the opening keyword.

EXAMBLE 3 - TS_PARdcl ::= $TS_PARdcl TS_PARid TS_PARtype PICS_PIXIT [Comment]
$End_TS_PARdcl '

A.7.4.3 Individgal fields in a line are represented by:
SKEYWORD ceee teve coer ene oene
There is no closihg keyword.

EXAMBLE 4 - TS_PARid ::= $TS_PARid TS_PARidentifier

NOTE - Symbol{ such as TS_PARid can only be.used to name a field. The contents of the field must be called, in that case, TS_} ARidentifier,
further defined a$ an identifier.

EXAMBLE 5 - TS_PARidentifier ::= Identifier

A.7.4.4 Sets of tables, up to and including the test suite, are represented by productions of the kind:
SKEYWORD ccct veee sore oore SEND_KEYWORD

EXAMHLE 6 --ASPdcls ::= $ASPdcls [TTCN_ASPdcls] [ASN1_ASPdcls] $End_ASPdcls
EXAMPLE(- Suite ::= $Suite Suiteld SuiteOverview Declarations DynamicPart ConstraintsPart $End_SuiEe.

A.7.4.5 All other productions defining non-terminal symbols have no keywords at the beginning or the end of the right-hand expres-
sion.

EXAMPLE 8 - TimerIdentifier ::= Identifier
Most of the terminal symbols used in the TTCN.MP grammar are defined in clause {A.3.9}.
A.7.5 TTCN.MP and TTCN.GR Symbeols
a) TTCN keywords (terminal symbols) that belong only to the TTCN.MP form start with the dollar character ($):
EXAMPLE 9 - $Suiteld
b) TTICN keywords (terminal symbols) that belong to both the TTCN.MP and the TTCN.GR forms do not start with the dollar character ($):

- 14

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

OISO/IEC

A.7.6 Uniqueness of Names in TTCN Test Suites

EXAMPLE 10 - the TTCN keyword REPEAT

ISO/IEC 8882-1 : 1993 (E)

A.7.6.1 Identifiers used within TTCN test suites are case sensitive. Whenever in the TTCN an identifier used from a protocol standard*

contains "-"" (dash) the dash shall be replaced by "'_"' (underscore).

A.7.6.2 All identifier names of the following items shall have unique meaning throughout the test suite (i.e. declarations and con-
straints).

Predefined TTCN types;
user defined TTCN types;

a)
b)
0
d)
e)
D
)
h)
i)
i)
k)
D

USjl—deﬁ-HEd-Qp&l""‘“;
Tedt suite parameters;

Tedt suite constants;

Te.
PC
PC

Tejt suite variables;

t case variables;
D types;

D names;

Timer identifiers;

Ab
AS

previation names;

P types;

m) Pamameter group types;

n)
0)
)
Q
)
s)
0
w)

V)

PD
Fie
AS

[J types;
d group types;

P constraint names;

Parpmeter group constraint names;

PD
Fie|

[J constraint names;

|d group constraint names;

Tedt case references;

Tes
Ted

t case identifiers;

t step references;

w) Teqt step identifiers;

X)
y)

Def:

De

ault references;

ault identifiers

A.7.6.3 When ASN.1 is used in a TTCN test suite, ASN.1 identifiers from the following list shall be umque throughout the test suite,

regardless of whether the ASN.1 definition is explicit or implicit by reference:
a) identifiers occurring in an ASN.1 ENUMERATED type as distinguished values;

b) identifiers occurring in a "NamedNumberList" of an ASN.1 INTEGER type;
¢) "UserTypeldentifiers" of a User ASN.1 Type Definition.

A.7.6.4 The names of ASP parameters shall be unique within the ASP in which they are declared. The names of PDU fields shall be

unique within the PDU in which they are declared.

A.7.6.5 The names of parameters within a parameter group shall be unique w1thin each ASP where it will expand. The names of fields

within a field group shall be unique within each PDU (and ASP, if applicable) where it will expand.

15

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

ISO/IEC 8882-1 : 1993 (E) ©ISO/IEC

A.7.6.6 Labels used within a tree shall be unique within a tree.
A.7.6.7 The tree header names used for local test steps shall be unique within the dynamic behaviour description in which they appear.

A.7.6.8 The formal parameter names which may optionally appear as part of the following shall be unique within that formal param-
eter list:

a) User defined operations declaration;
b) Tree header of a local tree;

¢) Test step identifier;

d) Defaults identifier;

¢) Parametorized-constraint-deelaration:

If usage of a formal parameter name within a dynamic behaviour description clashes with any other identifier defined in the tést suilte, the formal
parameter name shall take precedence.

A.8 TTCN Test Suite Structure

AS8.1 Introdultion

TTCN allows a t
this structure are:

t suite to be hierarchically structured in accordance with clause 8.1 of Part 1 of thisumaltipart standard*. The components of

a) test groups;
b) test cases;
c) test steps;
d) test events.
A TTCN test suit¢ may be completely flat (i.e. have no structure) in which.case there are no test groups.

TTCN allows the juse of test step groups and default groups, similar to the concept of test groups, in order to hierarchically structure test steps
and defaults. (Thip hierarchical structure is optional).

A.8.2 Test Group References and Test Case References

A.8.2.1 TTCN supports a naming structure that shows a conceptual grouping of test cases. Test groups can be nested. Test cases can
also be stand alope (see ISO 9646-1, clause 8, figure-10): references to TTCN test groups shall have the following syntax:

s TestGroupReference ::= SuiteIdémiﬁer "I" {TestGroupldentifier "/"}+

EXAMPLE 11 - A Transport group reference: TRANSPORT/CLASSO/CONN_ESTAB/
A.8.2.2 Referendes to the test.cases shall have the following syntax:
SYNTAX DEFINITION:
s TestCaseReference ::= (TestGroupReference TestCaseName) | (Suiteldentifier "/* TestCaseName)

EXAMPLE 12 - Transport Test Case References:
TRANSPORT/INIT

TRANSPORT/CLASSO/CONN_ESTAB/LT_INIT

where TRANSPORT is the name of the test suite, CLASS0 and CONN_ESTAB are test groups, and INIT and LT_INIT are
test case names

A.8.2.3 The test case references define the structure of the test suite,

A.8.3 Test Step Group References and Test Step References

A.8.3.1 Decomposition of a test case (or test step) into test steps is achieved by attaching behaviour sub-trees using the TTCN AT-
TACH statement. In TTCN the terms test step and sub-tree are synonymous. The position of a test step in the test suite structure is

16

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

OISO/IEC ISO/IEC 8882-1: 1993 (E)

not explicit in the test step reference. The concept of a test step may be expressed in several ways in TTCN. A test step may be:

- implicit in the behaviour tree;
- local to atest case or test step;
- globally accessible as a member of the test step library.

A.8.3.2 In the case of an implicit test step it is impossible to identify or attach the test step. A local test step has no test step reference
- it is identifiable through a local tree name. In the case of a global test step, the test step reference specifies the test step’s location in
the test step library. The test step library has no influence on the test suite structure itself. Test step groups and test step references
shall have the following syntax:

SYNTAX DEFINITION:

s Tes{StepGroupKeference -:= Suiteldentiiier 7 { IestStepGroupldentitier 7" [+
+ TestStepReference ;:= (TestStepGroupReference TestStepName) | (SuiteIdentifier "/" TestStepName)

EXAMPLE 13 - Transport Test step references:

TRANSPORT/STEP_A
TRANSPORT/STEP_LIBRARY/CLASSO/CONN_ESTAB/STEP-B

17

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

ISO/IEC 8882-1 : 1993 (E)

A.8.4 Default Group References and Default Behaviour References

Default behaviours (if any) are located in a default behaviours library.

©ISO/NEC

A default reference specifies the default’s location in the default library. The defaults library has no influence on the test suite structure itself.
Default groups and default references shall have the following syntax:

SYNTAX DEFINITION:

¢ DefaultGroupReference ::= Suiteldentifier "/* {DefaultGroupldentifier "/"}
o DefaultReference ::= (DefaultGroupReference DefaultName) | (SuiteIdentifier "/" Defau]tName)

A.9 Compongents of a TTCN Test Suite

An abstract test spite written in TTCN shail have the following four sections in the following order:

a)

b)

)

d)

18

EXAMPLE 14 - Transport default references:

Suite Overvid

which is the i
its overall puf

Declarations

which is the 4
This section 4

Constraints Plart (clauses A.12, A.13, A.14),

which is the §

1) TTCN tgbles; or

2) the ASN
3) both TTH
Dynamic Parf

TRANSPORT/DEF_A
TRANSPORT/DEFAULT_LIBRARY/CLLASSO/DEF_B

w (clause A.10),

nformation needed for the general presentation and understanding of the test suite,)such as test references and a
pose;

Part (clause A.11),

et of components that comprise the test suite (e.g. PCOs, Timers{ ASPs, PDUs, and their parameters or fields
hall contain the definition of any abbreviations to be used later‘in the test suite;

et of values for the ASPs, PDUs, and their parameters-used in the Dynamic Part. The constraints shall be spec

.1 Modular Method; or
CN tables and the ASN.1 Modular Method.
(clause A..15),

which compr
These sectio

1) the test

2) alibrary|
3) alibrary|
SYNTAX D

ses three sections that contain tables specifying test behaviour expressed mainly in terms of the occurrence of A
s are:

ase dynamic behaviour descriptions;

containing test.step dynamic bebaviour descriptions (if any);
containing default dynamic behaviour descriptions (if any).
FINITION:

description of

is described.

fied using:

SPs at PCOs.

s Suite ::=

$Suite Suiteld SuiteOverview Declarations ConstraintsPart DynamicPart $End_Suite

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

OISO/IEC

A.10 Suite Overview

This section shall include at least the following information:

a)
b)
<)
d)
e)

f)

g
h)

the name of the test suite;
references to the relevant base standards;
areference to the PICS proforma;

a reference to the partial PIXIT proforma (see ISO 9646-2 clause 14);

ISO/IEC 8882-1: 1993 (E)

areference to where in the Abstract Test Suite specification the mapping of the PICS and PIXIT entries used in test case selection is spec-

ified;

an indiciion of the test method or methods to which the test suite applies, plus for the Coordinated Methods a reference to where the Test

Manage:

ent Protocol is specified. When TTCN is being used for an abstract test suite then there shall only be one testfmethod, but when

it is beink used for a generic test suite then it may be that different test cases will be written in the style of different test{methods;

other infprmation which may aid understanding of the test suite, such as how it has been derived; this should be included as a comment;

a three-Tt test suite index:
1) ate

case index, consisting of the test case identifier, test case reference, page number-and a description|of each test case

(shortened form of the test purpose). The test cases shall be organized according t0 the structure of the tes suite, optionally
giving test group identifier or test group reference, page and test group objective\(in the description column) where appro-

priate in the structure to show the test groups;

NOTE - [There is no need to include test group identifiers in the first column because they are included in the test group|references

2) atest step index, consisting of the test step identifier, test step reference, page number and a description|of each test step
(shortened form of the test step objective). The test steps shallbeorganized according to the structure df the test step li-

brary;

3) a defaults index, consisting of the defaults identifier, defaults reference, page number and a description of each default
(shoytened form of the default objective). The defaults-shall be organized according to the structure of the|defaults library.

19

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

ISO/IEC 8882-1: 1993 (E) © ©ISONMEC

This information shall be provided in the format shown in the following proforma:

Test Suite Overview
Suite Name: Suiteldentifier
Standards ref: Reference
PICS proforma ref: Reference
PIXIT proforma ref: Reference
PICS/PIXIT use: Reference
Test Method(s): FreeText
' Comments; FreeText
Tést Group or Case Identifier | Test Group or Case Reference Page Description
TestCaseldentifier | TestCaseReference | Number FreeText
TestGroupldentifier TestGroupReference
Test Step Identifier Test Step Reference ' Page Description
TestStepldentifier TestStepReference Number FreeText
Default Identifier Default Reference Page Description
Defaultldentifier DefaultReference Number FreeText
Proforma 1: Test Suite Overview
SYNTAX DEFINITION:
o SuiteOperview ::= $Begin_SuiteOverview Suiteld StandardsRef PICSref PIXITref HowUsed TestMethod$ [Comment]
SuiteIndex $End_SuiteOverview
* Suiteldentifier ::< Identifier
¢ Reference ::= BoundedFreeText
* FreeTekt:5 {ExtendedAlphaNum}

SuiteIndex ::= $SuiteIndex TestCaselndex TestStepIndex Defanliindex $End_SuiteIndex

TestCaseIndex ::= $TestCaseIndex {((TestCaseld [TestCaseRef]) | ([TestGroupld] [TestGroupRef])) Description}+
$End_TestCaseIndex

TestGroupRef ::= $TestGroupRef TestGroupReference

TestStepIndex ::= $TestStepIndex {TestStepID TestStepRef Description} $End_TestStepIndex

DefaultIndex ::= $DefaultIndex {DefaultID DefaultRef Description} $End_DefaultIndex

If a dollar symbol ($) is needed in free text then it shall be preceded by the special character backslash (\), otherwise Free Text shall not include
a dollar symbol ($). Free Text shall not end with the character backslash.

20

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

O©ISO/IEC ISO/IEC 8882-1 : 1993 (E)

A.11 Declarations

A.11.1 Introduction

The purpose of the declarations section is to describe all the components used in the test suite. All components referenced in the dynamic part
shall have been declared in the declarations part. These components are:

a)
b)
©)
d)
€)
Y
g
h)
i)
i)

A.11.2 Gdneral TTCN Types
Al11.21 I

User defined types (clause A.11.2.3);
User defined operations (clause A.11.4.3);
Test suite parameters (clause A.11.5);

Test suite constants (clause A.11.6);

Test suife variables (clause A.11.7.1);
variables (clause A.11.7.2);
PCO deglarations (clause A.11.8);

Timer dgclarations (clause A.11.9);

Abbrevihtions (clause A.11.10).

ASP type declarations (clause A.11.11);

ASP pagameter group type declarations (clause A.11.11.3);
PDU type declarations (clause A.11.12);

¢ Dedlarations ::= $Declarations [UserTYPEdefs] [UserOPdefs] [TS_PARdcls] [TS_CONSTdcls] [TS| VARdcls]
[TA_VARdcls] PCOdcls [TIMERdcIs] [AbbreviationsJ{[ASPdcls] PDUdcls $End_Declarations

troduction

TTCN suppprts both a number of predefined types and mechanisms that allow the definition of user declared types. These|types may be used
throughout the test suite and may be referenced when test suite parameters, constants, variables, ASP parameters or PDU fields are defined.

A.11.2.2 Predefined TTCN Typés

SYNTAX DEFINITION:
¢ Type ::= PredefinedType | UserDefined Type

A number of commonly useditypes are predefined for use in TTCN. These types may be referenced even though they do rfot appear in a type
declaration {n a test suite. -All'other types used in a test suite shall be declared in the User Type Declarations and referenc¢d by name.

a)
b)

)
Q)
D

f)

INTEGER Predefined Type: a type with distinguished values which are the positivé and negative whole numbers, in¢luding zero;
BOOLEKAN Predefined Type: a type consisting of two distinguished values;

BITSTRING Predefined Type: a type whose distinguished values are the ordered sequences of zero, one, or more bifs;

HEXSTRING Predefined Type: a type whose distinguished values are the ordered sequences of zero, one, or more semi-octets, a semi-
00t¢t being an ordered sequence of four bits;

OCTETSTRING Predefined Type: a type whose distinguished values are the ordered sequences of zero, one, or more octets, each octet
being an ordered sequence of eight bits; thus an OctectString is an even number of HEXSTRING digits;

Character String Predefined Types: types whose disﬁnguished values are zero, one, or more characters from some character set; the char-
acter string types listed in table A.2 may be used; they are defined in section two of ISO 8824,

21

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

ISO/IEC 8882-1: 1993 (E)

SYNTAX DEFINITION:

s PredefinedType ::= INTEGER | BOOLEAN | PredefinedString Type |
s PredefipedStringType ::= BITSTRING | HEXSTRING | OCTETSTRING | CharacterString

s CharaclerString ::= NumericString | PrintableString | TeletexString | VideotexString | VisibleString | I
GraphjcString | GeneralString

A.11.2.3 User

A.11.2.3.1 Intgoduction

Types specific
ASN.1.

SYNTAX IPEFINITION:
o UserTYPEdefs ::= $UserTYPEdefs [TTCN_TYPEdefs] {ASN1_TYPEdef} $End_UserTYPEdefs

A.11.2.3.2 User Type Definitions - Tabular Form

To define a new type, the following information shall be provided:
.a) aname for the type;

b) the base type (if any),

which is required when defining a new type equivalent to or a subset of a previously defined, or predefined, type (see ¢2A

case writer

the base type field may be left blank when the definition of the base type is implicit in the definition of a restricted length t

c) adefinition

1)' by listing the set of distinguished values of another type; these values comprise the new type;

2) by speq
A)

Table A.2: Predefined Character String Types

NumericString

PrintableString

TeletexString (i.e. T61String)
VideotexString

VisibleString (i.e. 1SO646String)
IAS5String

GraphicString

GeneralString

©ISO/IEC

Defined Types for a Specific Test Suite

hall ensure that the base type is compatible with the new type being defined;

of the type, provided.in one of the following manners:

ifying a subset of the distinguished values of another type; this may be done in a number of ways:

by specifying a subrange within a list of values, or integer;

B)

by_restricting the length of a predefined or user defined string type (e.g. BITSTRING, HEXST

A5String |

o a test suite may be introduced by the TTCN user. These may be defined using the TTCN user type definitiohs tabie and/or

, ¢2B); the test

ypev(see c2B);

RING, IA5S-

22

TRINGY:

The length shall be specified in the unit represented by the corresponding string type: BITSTRING

in number of

bits, HEXSTRING in number of hexadecimal digits, OCTETSTRING in number of octets and other character

strings in number of characters.

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

©ISO/IEC ISO/IEC 8882-1 : 1993 (E)

This information shall be provided in the format shown in the following proforma:

'User Type Definitions
Name Base Type ’ Definition ‘ Comments
UserTypeldentifier BaseType TypeDeﬁr_Lition ~ FreeText

Proforma 2: User Type Definitions

SYNTAX DEFINITION:

s TTCN_TYPEdefs ::= $Begin_ TTCN_TYPEdefs {TTCN_TYPEdef}+ $End_TTCN_TYPEdefs

s TTEN_TYPEdef ::= $STTCN_TYPEdef UserTypeld [Base] TypeDef [Comment] $Ead -TTCN_TYPEdef
. s UserTypeld ::= $UserTypeld UserTypeldentifier

o UsarTypeldentifier ::= Identifier

» Basg ::= $Base Type

 FIELDgroupConstraintTypeDef ::= $TypeDef TypeDefinition -

+ TypeDefinition ::= TypelfNoBaseUsed | TypelfBaseUsed

* TypgelfNoBaseUsed = TypeAndLength

o TygelfBaseUsed ::= Range | VALIlist

o Range ::= "(" SignedNumber To SignedNumber ")"

¢ Tol=TOI"."

o VALIlist::="(" SignedValue {Comma SignedValue}")"

e Compma:=","

o TypeAndLength ::= StringType "[" Number "}

+ SighedNumber ::= ["-"] Number

. Sig]:edValue o= ["-"] Value

Where a rafjge of values is used as a TTCN type definition, that range shall be stated with the lower of the two values on the left.

User Type Definitions
Nafnie Base Type Definition Comments
Transport_Classes INTEGER © 1 2 3 4 Classes that may be used
: for - Transport layer con-
nection
Class_Number INTEGER 0.4

Example 15: Example User Type Definition

23

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

ISO/IEC 8882-1 : 1993 (E)

A.11.2.3.3 User Type Definitions in ASN.1
User types specified in ASN.1 (ISO 8824) shall be defined in the following proforma:

When an ASN.1
references are usq

A.112.4 Type Q

Data objects are 3

©ISO/MEC

User ASN.1 Type Definition

Type Name: UserTypeldentifier

ASN.1 Definition or Reference ‘ «

ASNIRef | ASNIDef

Proforma 3: User ASN.1 Type Definition

SYNTAX DEFINITION:

¢ ASN1_]
¢ ASNIR{
¢ ASNIR{
e Symbolg
* Symboll

'YPEdef ::= $Begin_ASN1_TYPEdef UserTypeld ASN1RefOrDef $End_ASN1_TYPEdef
fOrDef ::= SASN1RefOrDef (ASN1Ref | ASN1Def) $End_ASN1RefOrDef

f ::= #REF {SymbolsFromModule}+) B

FromModule ::= SymbolList FROM ModuleReference

List ::= TypeReference { Comma TypeReference}

. TypeRelerence :=/* Defined in ISO 8824 %/

* Module
* ASNIDg

eference ::= /* Defined in ISO 8824 */
bt == {TypeAssignment}+ /* Defined in ISO 8824 */

reference is used the free text entry shall be préceded by the keyword #REF. This applies throughout TTCN
d. ,
ompatibility for ASN.1 Types

ssignment compatible:

a) if their type names are identical;

b)

or if one type

is derived from the other)type by:

1) subtypai:E (i.e. subrange types, length restriction); L

2) orren;
EXAMPI
Data obje

ing the original type;
E 16 - int::= INTEGER
ts(of type int and INTEGER are assignment compatible.

where ASN.1

3) or changing the tag of the original type;
EXAMPLE 17 - int2 ::= [5] int

int and int2 are assignment compatible.

Constants that are local to the type definition may be defined using ASN.1 (Named Values) are only compatible to the type they were defined in.

If type A is assignment compatible with type B, and type B is assignment compatible with type C, then type A is always assignment compatible
with type C (i.e. assignment compatibility is transitive). ‘

A.11.2.5 Type Compatibility for TTCN Types

1

For types (user defined types, ASP types, PDU Types) defined using the tabular method the rules a) and b1) from clause A.11.2.4 apply.

NOTE - Renaming cannot be achieved in the tabular method.

24

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

©OISO/IEC

A.11.2.6 Relationship Between ASN.1 and TTCN Types

The following TTCN predefined types are assignment compatible with their corresponding ASN.1 types:
a) INTEGER;

b) BOOLEAN;

¢) BITSTRING;

d) OCTET:

STRING;

e) and all character string types.

A.11.3 Value Denotation

Al131 V
The values

a) INTEG
the valu

b) BOOLEAN Values: values of the BOOLEAN type are TRUE or FALSE;

ISO/IEC 8882-1: 1993 (E)

alues of Predefined Types
f predefined types shall be denoted as follows:

e zero shall be represented by a single zero,

ER Values: values of type INTEGER shall be denoted by one or more digits; the first digit shall not'be zero urjless the value is 0;

¢) BITSTRING Values: values of type BITSTRING shall be denoted by an arbitrary number (possibly zero) of zeros and ones, preceded by

a single

and followed by the pair of characters 'B;
EXAMPLE 18 - '01101'B

d) HEXSTRING Values: values of type HEXSTRING shall be denoted by an arbitrary number (possibly zero) of the chdracters:

precede

imal repyesentation;

¢) OCTETSTRING Values: values of type OCTETSTRING shall be denoted by an arbitrary, but even, number (possibl

acters:

precede
imal rep|

f) Charac
characte
characte

SYNTA|

0123456789ABCDEF

| by a single * and followed by the pair of characters 'H; each chatracter is used to denote the value of a semi-oct

EXAMPLE>19 - 'ABOID'H

0123456789ABCDEF

| by a single ’ and followed by the pain of Characters 'O; each character is used to denote the value of a semi-oct
pesentation;

EXAMPLE 20 - 'FF96'0

er String Values: values:of character string types shall be denoted by an arbitrary number (possibly zero) of ¢
r set referenced by the\character string type, preceded and followed by " (double quote); if the character strin
r " (double quote), this’character shall be represented a pair of " (double quote) in the denotation of any value.

X DEFINITION:

s Valpie ::= Nomber | BooleanValue | Bstring | Hstring | Ostring | Cstring

bt using a hexadec-

zero) of the char-

et using a hexadec-

haracters from the
b type includes the

+ Nurhber &= (NonZeroNum {Num}) 10
+ NonZereNum :=11....... {9
s Num:= 0l..... 19

+ BooleanValue ::= TRUE | FALSE
s Bstring ::=""" {Bin | Wildcard} """ B

e Binu=01i1

« Hstring ::="" {Hex | Wildcard} “"“H
o Hex:=NumlAl.... IF

¢ Ostring ::= """ {Oct | Wildcard} " O

* Oct ::= Hex Hex

¢ Cstring ::=""" {Char | Wildcard | "\"} """

s Char ::= /* a character defined by the relevant character string type */

25

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

ISO/IEC 8882-1 : 1993 (E) ©ISO/IEC

o ExtValue ::= SignedValue | Wildcard | "-"
* Wildcard ::="7"1"*"

¢ SignedValue ::= ["-"] Value

¢ Identifier ::= Alpha{AlphaNum | "_" }

s AlphaNum ::= Alpha | Num

o Alpha:=Al....1Zla]l.... |z

A.11.3.2 Values of ASN.1 Predefined Types

The values of the ASN.1 predefined types INTEGER, BOOLEAN, BITSTRING, OCTETSTRING and all character string types shall be de-
noted using the same notation defined in clause A.113.1 for the corresponding TTCN predefined types.

Values of an ASN.1 ENUMERATED type shall be denoted using the Enumerated Identifiers.

NOTE - TTCN dloes not support a value notation for the ASN.1 predefined type REAL nor for structured ASN.1 types:
A:11.3.3 Values of User Defined Types and ASN.1 User Defined Types

Values of types that are derived from TTCN predefined or ASN.1 predefined types by subsetting shall'be denoted in the same|manner as the
values of the type they were derived from. . '

26

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

©ISO/IEC ISO/IEC 8882-1: 1993 (E)

A.11.4 TTCN Operators
A.11.4.1 Introduction

TTCN supports both a number of predefined operators and mechanisms that allow the definition of user operators. These operators may be used
throughout any dynamic behaviour descriptions.

A.11.42 Predefined TTCN Operators
A.11.4.2.1 Introduction
The predefined TTCN operators fall into three categories:

a) arithmetic;

b) relationd

Eey

¢) Boolean|

The precedeice of these operators is shown in table A.3. Parentheses may be used to group operands in expressions, a parenthesized expression
has the highgst precedence for evaluation. : ‘

Table A.3: Precedence of Operators

highest)
+ - NOT Unary
* / MOD AND ’
+ - OR Binary
lowest =< > < >= <=

Within any fow in table 3, the listed operators have equal precedence. If more than one operator of equal precedence appeats in an expression,
the operatiofs shall be evaluated left to right.

SYNTAX DEFINITION:

« AddOp:= "+"1"-"|OR

* MultiplyOp ::= "*" | "/" IMOD | AND

P Un yOp ::= ll+|l l "_II I NOT

° Rel p ::= ":ll I "<" I ">" | 17<>" ' ">=|| | ll<=ll

A.11.4.2.2 Predefined Arithmetic Operators
The predefined arithmetic operators are:
'I+", ll-ll, Ii*", !I/Il, MOD

They repres¢nt the operations-of addition, subtraction, multiplication, division and modulo. Operands of these operatofs shalll be of type INTE-
GER (i.e. TTCN or ASN.1 predefined) or derivations of INTEGER (i.e. subrange). ASN.1 Named Values shall not be usefl within arithmetic
expressions |as operands-of operations. The result type of arithmetic operations is INTEGER.

NOTE - Singe ASN:1 and TTCN Predefined INTEGER are aséignment compatible no further classification of the result fype is needed.

In the case where

c the operand if it was
positive and vice versa.

27

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

ISO/IEC 8882-1: 1993 (E)

A.11.4.2.3 Predefined Relational Operators

The predefined relational operators are:

H=" ' H<H I ">" I ll<>ll I l'>=" I ll<='l

©ISO/IEC

They represent the relations of equality, less than, greater than, not equal too, greater than or equal to and less than or equal to. Operands of "="
and "<>" may be of an arbitrary type. The two operands shall be assignment compatible. All other relational operators shall have operands only
of type INTEGER or derivatives of INTEGER. The resuit type of these operations is BOOLEAN.

In string comparisons BITSTRING, HEXSTRING, OCTETSTRING and all kinds of CHARACTER STRINGS may contain the wildcard char-
acters "*" and "?". In this case the comparison is performed according to the pattern matching rules defined in clause A.12.3.3.

A.114.2.4 Predefined Boolean Operators

The predefined B|

They represent th
defined) or deriva

The logical AND
value TRUE if at
operator that retul

A.11.4.3 User Dpfined Operators for a Specific Test Suite

Operators specifig

a)
b)

c)
d)

28

a name for th

a list of the in|

this is a list o
eter’s type.

If more than

polean operators are:

NOT AND OR

e operations of negation, logical AND and logical OR. Their operands shall be of type JBOOLEAN (TTCN or 4
tions of BOOLEAN.

returns the value TRUE if both its operands are TRUE; otherwise it returns the value FALSE. The logical G
east one of its operands is TRUE,; it returns the value FALSE only if both operands are/FALSE. The logical NO|
ns the value TRUE if its operand was of value FALSE and returns the value FALSE(f the operand was of val

to a test suite may be introduced by the TTCN user. To define a new opefation, the following information shal
operation; |

put parameters and their types;
the formal parameter names and types. Each parameter name shall be followed by a colon and then the name

ne parameter of the same type is used, the parameters iay be specified as a parameter:sub-list. When a paramg

used , the parameter names shall be separated from each other by,a comma. The final parameter in the list shall be followed b

then the name

When more th
colons.

EXAMPL]

of the parameter’s type.
an one parameter and type pair (or parameter list and type pair) is used, the pairs shall be separated from each g

E 21 - The following are equivalentmethods of specifying a parameter list using two INTEGER parameters an

BOOLEAN parameter:

a) (A:IN1
b) (A, B:
the type of thq

'EGER; B:INTEGER; C:BOOLEAN)
INTEGER; C:BOOLEAN)

result;

a description ¢f the operation,

which shall cq

begin by stating the operation name, followed by a parenthesized list containing the parameter names of the o

provides a "p4ttern” invocation for the operation.

planation shjl

ASN.1 or pre-

R returns the
I is the unary
te TRUE.

be provided:

pf the param-

ter sub-list is
y a colon and

ther by semi-

ki one

nsist of-an.explanation of the operation, plus at least one example showing an invocation and corresponding fesult; the ex-

peration; this

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

OISO/IEC

This information shall be provided in the format shown in the following proforma:

User Operation Definition

Operation Name: OPidentifier [FormalPARlist]
Result Type: Type

Description

FreeText

Proforma 4: User Operation Definition

ISO/IEC 8882-1:1993 (E)

An operatior] may be compared to-a function in an ordinary programming language. However, the parameters to the operation shall not be
. altered as a rpsult of any call of the operation and there shall be no side effects (i.e. no changes to any Test Suite or test casq variable).

When a Useq Defined Operation is invoked, the types of the actual parameters shall match the types-of the formal parameters.
SYNTAX DEFINITION:

The definitidn of a string operation is given below:

UsetOPdefs ::= $UserOPdefs {UserOPdef}+ $End_UserOPdefs

UsellOPdef ::= $Begin_UserOPdef OPid OPresult OPdescription $End_UserOPdef
OPid ::= $0Pid OPidentifier [FormalPARlist]

OPidentifier ::= Identifier

OPr¢sult ::= $OPresult Type

OPdescription ::= $OPdescription BoundedFreeText

User Operation Definition

Operation Name: substr (source:IASSTRING; start_index, length:INTEGER)
Result Type: IA5STRING

Description

{ubstr(source, start_index, length) is the string of length length starting from index Start_index of the spurce
tring source.

or example:
ubstr("abcde),3,2) = "cd”
bstr(“abcde",4,99999) = "de"

29

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

ISO/IEC 8882-1 : 1993 (E) O©ISO/TEC

A.11.5 Test Suite Parameters
The purpose of this section is to declare constants derived from the PICS and/or PIXIT which globally parameterize the test suite. These con-

stants are referred to as test suite parameters, , ,
NOTE - In real cases of testing, test suite parameters will be bound to a value when the PICS/PIXIT processing occurs. The method of PICS
and/or PIXIT processing is implementation dependent and is not specified in the TTCN notation. '

The following information relating to each test suite parameter shall be provided in this section:

a) its name;

b) its type;

c) PICS/PIXIT entry reference,

which is a rpference to an individual PICS/PIXIT proforma entry that will clearly identify where the value 1o be used fof this test suite
parameter Will be found.

This informatioh shall be provided.in the format shown in the following proforma:

Test Suite Parameters

Name Type PICS/PIXIT Ref. Comments

TS_PARidentifier Type | Reference FreeText
ReferenceType . ; .

Proforma 5: Test Suite Parameters

SYNTAX DEFINITION:)

o TS_PARdcls ::= $Begin_TS_PARdcls {TS_PARdcl}+$End_TS_PARdcls

¢ TS_PARdcl ::= $TS_PARdcl TS_PARid TS_PARtype PICS_PIXIT [Comment] $End_TS_PARdcl
o TS_PARIid ::= $TS_PARid TS_PARidentifier

» TS_PARidentifier ::= Identifier ' . \'

o TS_PARtype ::= $TS_PARtype (Type(ReferenceType) '

» PICS_RIXIT ::= $PICS_PIXIT Reference

Test Suite Parameters

Name Type PICS/PIXIT Ref. Comments
PAR1 INTEGER PICS question xx

PAR2 INTEGER PICS question yy

PAR3 INTEGER PIXIT question zz -

Example 23: Test Suite Parameter Declarations

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

©ISO/IEC ISO/IEC 8882-1 : 1993 (E)

A.11,6 Test Suite Constants

The purpose of this section is to declare a set of names for values nof derived from the PICS or PIXIT that will be constant throughout the test
suite.

The following information relating to each test suite constant shall be provided in this section:
a) its name;

b) its type;

¢) its value.

This information shall be provided in the format shown in the following proforma:

~Test Suite Constants

Name Type Value © Comments

T S_CONSTidentifier Type Value FreeText

Proforma 6: Test Suite Constants

SYNTAKX DEFINITION:
o TS_CONSTAdcls ::= $Begin_TS_CONSTdcls {TS_CONSTdcl}+ $End_TS_CONSTdcls

o TS_CONSTdcl ::= $TS_CONSTdcl TS_CONSTid TS_CONSTtype TS_CONSTvalue [Comment]
$End_TS_CONSTdcl

o TS_CONSTid ::= $TS_CONSTid TS_CONSTidentifier

» TS_[CONSTidentifier ::= Identifier -

o TS_CONSTtype ::= $TS_CONSTtype Type

e TS_ICONSTvalue ::= $TS_CONSTvalue SignedValue

Test Suite Constants
Name Type Value Comments
TS,_CONST1 BOOLEAN TRUE
TSLCONST2 IASString "A string" J

Example 24: Declaration of Test Suite Constants

3

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

ISO/IEC 8882-1 : 1993 (E) | ©ISO/IEC

A.11.7 TTCN Variables
A.11.7.1 Test Suite Variables

A test suite may make use of a set of variables which are defined globally for the test suite, and retain their values throughout the test suite.
These variables are referred to as test suite variables. ;

A test suite variable is used whenever it is necessary to pass information from one test case to another.
All test suite variables to be used in a test suite shall be declared. The following information shall be provided for each variable declaration:

a) its name;
b) its type;
¢) its initial value (if any),
where the initial value column is used when it is desired to assign an optional initial value to a test syite variable at its point pf declaration.

This information| shall be provided in the format shown in the following proforma:

Test Suite Variables
Name Type Value Comments
TS_VARidentifier Type | Value FreeText
. ReferenceType . ‘ .

Proforma 7: Test Suite Variables

SYNTAX DEFINITION:

s TS_VARdcIs ::= $Begin_TS_VARdcls {TS_VARdcl}+$End. TS_VARdcls

s TS_VARdcl ::= $TS_VARdcl TS_VARid TS_VARtype [TS_VARvalue] [Comment] $End_TS_VARdecl
» TS_VARid ::= $TS_VARid TS_VARidentifier ;

o TS_VARidentifier ::= Identifier

s TS_VARtype ::= $TS_VARtype (Type | ReferenceType)

¢ TS_VARvalue ::= $TS_VARvalue SignedValue

Since it is possible that any particular test case’'may be run independently of the others in the test suite, it is necessary that the use made of test
suite variables ddes not make assumptions:about the ordering of the test case execution.

EXAMPLE 25 - An example(of;test suite variables, with the comments indicating their intended use.

Test Suite Variables
Name Type Value Comments

state IASSTRING “idle" Used to indicate the final

. stable state of the previous
test case, if any, in order to
help determine which pre-
amble to iise.

A.11.7.2 Test Case Variables

A test suite may make use of a set of variables which are declared globally to the test suite but whose scope is defined to be local to the test
case. These variables are referred to as test case variables,

All test case variables to be used in a test suite shall be declared. The following information shall be provided for each variable declaration:

a) its name;

32

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

©ISO/IEC ISO/IEC 8882-1: 1993 (E)

b) its type;.
¢) its initial value (if any), .
where the initial value column is used when it is desired to assign an optional initial value to a test case variable at its point of declaration.

This information shall be provided in the format shown in the following proforma:

Test Case Variables

Name Type Value Comments
TC_VARidentifier Type | Value FreeText
ReferenceType

Proforma 8: Test Case Variables

with other tdst step or test case variables. A test suite specifier may avoid such problems by adopting a naming convention which will result in

’ NOTE - Ca{ion must be exercised when using test case variables as, essentially, local variables withijn'a test step to avoifl naming conflicts
all such varipbles being uniquely named within a test suite.
SYNTAX DEFINITION:

o TC_|VARdcls ::= $Begin_TC_VARdcls {TC_VARdcl}+ $End_TC_VARdcls
o TC|VARAcl ::= $TC_VARdcl TC_VARid TC_VARtype [TC_VARvalue] [Comment] $End_TC_VARdcl
¢ TC|VARid ::= $TC_VARid TC_VARidentifier

e TC|VARidentifier ::= Identifier

e TC[VARtype ::= $TC_VARtype (Type | ReferenceType)
¢ TC|VARvalue ::= $TC_VARvalue SignedValue

A.11.7.3 Binding of TTCN Variables

A.11.7.3.1 Binding of Test Suite Variables

Initially test|suite variables are unbound. They may become bound (or be rebound) in the following contexts:

a) at the pdint of declaration;

b) when the test suite variable appears on the left-hand side of an assignment statement (clause A.15.10.4);
. ¢) when the variable appears in aconstraints reference (clause A.15.16).

Once a valup has been bound to'a tést suite variable, the test suite variable will retain that value until either it is bound to 4 different value, or
execution of the test suite terminates - whichever occurs first.

A.11.7.3.2 Binding of Test Case Variables

Initially test|case watiables are unbound. They may become bound (or be rebound) in the following contexts:

a) at the pdint of declaration;

b) when the test case variable appears on the left-hand side of an assignment statement (clause A.15.10.4);
¢) when the test case variable appears in a constraints reference (clause A.15.16).

Once a value has been bound to a test case variable, the test case variable will retain that value until either it is bound to a different value, or
execution of the test case terminates - whichever occurs first. At termination of the test case, the test case variable becomes bound to its initia)
value, if one is specified, otherwise it becomes unbound.

A.11.8 PCO Declarations

This section lists the set of points of control and observation (PCOs) to be used in the test suite and explains where in the testing environment
these PCOs exist. In accordance with part 1 of this standard* the number of PCOs relates to the test method: one PCO for the Remote and
Coordinated test methods, and swo PCOs for the Local, Distributed, Loop-back Relay and Transverse test methods.

33

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

ISO/IEC 8882-1 : 1993 (E) ‘ ©ISO/IEC

TTCN behaviour statements specified for execution at the upper tester PCO shall not place requirements beyond those allowed by ISO 9646-2.
In TTCN the PCO model is based on two First In First Out (FIFO) queues:

- one output queue for sending ASPs and/or PDUs

- one input queue for receiving ASPs and/or PDUs

The output queue is assumed to be located within the underlying service provider or in the case of the upper tester, within the IUT.

A SEND event is successful by being passed from the lower tester to the service provider (from upper tester to IUT).

For the purpose of receiving events the tester has an input queue. All incoming events are queued and processed by the tester in the same order
they were received, and without loss of any events.

NOTES -

1 - The quege model is only an abstract model and is not intended to imply a specific implementation.

2 - Connectjon Endpoint Identifiers (CEIds) within a single PCO are expected to be treated in an addendum to this standar:i"ﬁ. It is ex-
pected that there will be two FIFO queues (one input, one output) for each CEId.

The following information shall be provided for each PCO used in the test suite:

a) its name,
where the nfme shall be used in the behaviour descriptions to specify where particular events ogCur;
b) its type,
where the type is used to identify the layer boundary where the PCO is located;
c) itsrole, »

which is an pxplanation of which type of tester is placed at the PCO. The predefined identifier UT indicates that the PCO is|an upper tester
PCO and LT specifies a lower tester PCO.

This informatiop shall be provided in the format shown in the following proforma:

PCO Type Déclarations
Name Type Role : Comments
PCOidentifier PCOwypeldentifier UTILT FreeText

Proforma 9: PCO Declarations

SYNTAX DE TION:

o PCOdcls ::= $Begin_PCOdcls {PCOdcl}+ $End_PCOdcls

¢ PCOdc] ::= $PCOdcl PCOid PCOtypeld PCOrole [Comment] $End_PCOdcl
¢ PCOid |:='$PCOid PCOidentifier

» PCOidentifier ::= Identifier

* PCOtypeld ::= $PCOtypeld PCOtypeIdenuﬁer

» PCOtypeldentifier ::= Identifier

* PCOrole ::= $PCOrole (UT | LT)

34

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

©ISO/MEC

Points of co

- at the same location (i.e. in the lower tester or in the upper tester);

- SAPs off the same service.

When a PC
vidual SAP

EXAMPLE 27 - A typical example in which one PCO corresponds to several SAPs-Cotld be an Internet lower tester|

one

It should be|noted that a PCO may not be related to a SAP at all. For instance,#his Tould be the case when a layer is com
(e.g. in the Application layer, or in the lower layers, where a subnetwork point of attachment is not a SAP).

A119 Ti

A test suite

The followihg information shall be provided for each timer:

a) the timey name,
where this name shall be unique within the declarations part;

b) the opti

where tl]

c) the timeunits,

where the time units shall be-one/of the follovsfing:

1) ps
2) ns
“3) us
4) ms

5) sec

ISO/IEC 8882-1 : 1993 (E)

PCO Type Declarations
Name Type Role Comments
L TSAP LT Transport service access
point at the lower tester.
U SSAP uT Session service access point
‘ ' at the upper tester.
e

Example 26: Typical PCO Declarations

D corresponds to several SAPs the calling address (when initiating) or called address (when réceivihg) is used

mer Declarations

may make use of several timers. Each timer has an associated length of time for its expiration.

nal timer duration,

i.e. picosecond);
i.e. nanosecond);

i.e. microsecond);

(g millisecond);

(i.e. second);

6) min (i.c. minute).

htrol and observation are usually just SAPs, but in general can be any appropriate points at which the testevents can be controlled
and observefl. However, it is possible to define a PCO to correspond to a ser of SAPs, provided all the SAPs comprising i

at PCO are:

o identify the i_ndi-

which uses
PCO representing all the subnetwork points of attachment for sending several Intérnet PDUs over different routes.

posed of sublayers

e default duration of the timer may.be'a test suite parameter, test suite constant, or an explicit value; timer durafion may be omitted
if the value cannot be established prior to gxecution of the test suite.

Time units are determined by the test suite designer and are fixed at the time of specification. Different timers may use different units within
the same test suite. A PICS or PIXIT entry requesting the IUT provider to indicate the duration of a timer shall include the units declared
in the timer declarations proforma for that specific timer.

35

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

ISO/IEC 8882-1: 1993 (E) ©ISO/MIEC

This information shall be provided in the format shown in the following proforma:

Timer Declarations

Timer Name Duration Units ' Comments

Timerldentifier TimerDuration TimeUnit. FreeText

Proforma 10: Timer Declarations

SYNTAX DEFINITION: ,
. "HMEchls ::= $Begin_TIMERdcls {TIMERdcl}+ $End_TIMERdcls

¢+ TIMER(cl ::= $STIMERdcl Timerld [Duration] TimeUnit [Comment] $End_TIMERdcl
¢ Timerld|::= $Timerld Timerldentifier

¢ Timerldentifier ::= Identifier

¢ Duration ::= $Duration TimerDuration

s TimerDyration ::= Number | TS_PARidentifier | TS_CONSTidentifier

s TimeUnjt ::= $TimeUnit (ps | ns { us | ms | sec | min)

Timer Declarations

Timer Name Duration Units Comments
wait 15 sec General purpose wait
ng_response A min used to wait for IUT to connect or react to cont

nection establishment, longer duration thap
general purpose wait. Gets value from PIXIT

delay_timer ms Duration to be established during execution of
the test suite.

Example 28: Timer Declarations
A.11.10 TTCN Abbreviations Declarations
A.11.10.1 Introduction

This section defirfes any abbreviations that are to be used in the behaviour description column of the test suite. Abbreviations lare used as a
macro facility, peffofming simple textual substitution operations.

An abbreviation definition shall provide the following information:

a) an abbreviation identifier;
b) its expansion,
which is to be substituted for every occurrence of the identifier.

36

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

©ISO/IEC ISO/IEC 8882-1 : 1993 (E)

This information shall be provided in the format shown in the following proforma:

A.11.10.2 Scope and Expansion of Abbreviations
The following rules apply:

a)

b)

)

d)

Abbreviation Declarations

Abbreviation Expansion Comments

Abbreviationldentifier FreeText FreeText

Proforma 11: Abbreviations

SYNTAX DEFINITION:

+ Abbfeviations ::= $Begin_Abbreviations { Abbreviation} + $End_Abbreviations

s Abbfeviation ::= $Abbreviation Abbreviationld Expansion [Comment] $End_Abbréviation
« Abbteviationld ::= $Abbreviationld Abbreviationldentifier

« Abbreviationldentifier ::= Identifier

+ Expansion ::= $Expansion BoundedFreeText

Abbreviation Declarations

Abbreviation Expansion Comments

CR denotes any N_DATA indigation
CR N_DATAind< NSDU ~ CR_TPDU> whose Network Service Data Unit is
the encoding of a Connect R¢quest
Transport PDU.
NOTE - for the "~" operator" defini-
tion see clause 11.15.3.

CC denotes any N_DATA request
CcC N_DATAreq <NSDU A CC_TPDU> whose Network Service Data Unit is

| the encoding of a Connect Cqnfirm
Transport PDU.
NOTE - for the "A" operator defini-
tion see clause 11.15.2.

Example 29: Abbreviation Declaration from a Transport Test Suite.

an abbreviation is an identifier that shall follow the syntax rules defined in the TTCN.MP. This means that an abbreviation is delimited by
any character (symbol) not allowed in a TTCN identifier. Abbreviations shall be delimited by: white space, “!", "?","(", ")", "[", "]", "<",

BN M e LI LY UL U [CCIVN
y vy T vy T [N R N 2) ’ .

EXAMPLE 30 - ICR(X:=1) and ! CR (X:=1) are both legal uses of the abbreviation CR, which is delimited by the characters
"" and "(“, and "!" and white space respectively.

abbreviations are riot recursive - if an abbreviation appears in the expansion of that abbreviation it shall not be expanded (i.e. it is a one pass
expansion);

EXAMPLE 31 - the CR in the CR_TPDU of the expansion above is not expanded.

an abbreviation may be used to replace any piece of text within a single TTCN statement of a behaviour tree. It shall only be used in a
behaviour description column or a constraints reference column;

the test case writer shall ensure that when an abbreviation is expanded in a TTCN statement and/or constraints reference that the syntax of
the resulting TTCN statement and/or constraints reference follows the TTCN.MP syntax for TTCN statements and/or constraints referenc-

37

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

ISO/IEC 8882-1: 1993 (E) ’ OISO/MEC

es; : :
e) tree indentation shall not be part of the expansion. The level of indentation is taken to be the same as the level of indentation of the TTCN
statement in which the abbreviation appears.

A.11.11 ASP Type Declarations
A.11.11.1 Introduction

The purpose of this part of the abstract TTCN test suite is to declare the types of ASPs that may be sent or received at the declared PCOs. ASP
type declarations may include ASN.1 type declarations, if appropriate. Normally, the declared information can be found in the appropriate ser-
vice definition. However, declaring it explicitly allows the addition of commentary specific to testing and to a particular test suite, as well as
providing for cases where no explicit OSI service definition exists (e.g. X.25).

Al1.11.2 Tab‘rmlﬁlﬁls
The following information shall be supplied for each ASP:
a) its name,

where the full name, as given in the appropriate protocol standard*, shall be used; if an abbreviation is used, then the full name shall follow
in parentheses; i '

b) the PCO tyge associated with the ASP, »
where the PCO type shall be one of the PCO types used in the PCO declaration proforma. If only a sinle PCO is defined within a test suite,
specifying the PCO type in an ASP type declaration is optional; “ :

c) alist of the parameters and parameter groups associated with the ASP,
where the fqllowing information shall be supplied for each parameter and parameter group:
1) its name, :
where the full name, as given in the appropriate protocol standard*,shall be used; if an abbreviation is used} then the full
name shall follow in parentheses;
2) its type

where parameters may be of a type of érbitrarily complex structure; if a parameter is to be structured as a PDU, then its
type may be stated as PDU to indicate that in the constraints for the ASP this parameter may be chained t¢ a PDU con-
straints [identifier;

if the name is a parameter group identifierstheén the type shall be stated as GROUP to indicate that the stfucture of the
paramefer group is to be found in the appropriate parameter group declaration.

This information shall be provided in the formaf shown in the following proforma:

ASP Type Declaration

ASP Name: ASPid&Fullld PCO Type: PCOtypeldentifier | Comments: FreeText

Service Parameter Information

Parameter Name Type Comments

ASP_PARid&Fullld Type | GROUP | PDU FreeText

Proforma 12: Abstract Service Primitive Type Declaration

38

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

©ISO/EC ISOMEC 8882-1 : 1993 (E)

SYNTAX DEFINITION:

'« TTCN_ASPdcls ::= STTCN_ASPdels {TTCN_ASPdcl} {ASP_PARgroupDcl} $End_TTCN_ASPdcls
« TTCN_ASPdcl ::= $Begin_TTCN_ASPdcl ASPid [PCOtypeld] [Comment] [SPI] $End_TTCN_ASPdcl

« AS
+ AS
+ AS

Pid ::= $ASPid ASP_id&Fulild
P_id&Fullld ::= ASPidentifier [Fullldentifier]
Pidentifier ::= Identifier

o Fullldentifier ::= "(" BoundedFreeText ")"
+ PCOtypeld ::= $PCOtypeld PCOtypeldentifier

« PC

* SPr=$SPHASP-PARdeH-+$End—SPE

« AS
+ AS
+ AS
+ AS
¢« AS

EX
AS
- are

Otypeldentifier ::= Identifier

P PARdc] ::= $ASP_PARdcl ASP_PARid ASP_PARtype [Comment] $End_ASP_PARdcl
P_PARid ::= $ASP_PARid ASP_PARid&Fullld

P PARid&Fullld ::= (ASP PARidentifier [Fullldentifier]) | ASP PARgroupIdentlﬁer
P_PARidentifier ::= Identifier

P_PARtype ::= $ASP_PARtype (Type | GROUP | PDU)

AMPLE 32 - The figure below shows an example from the Transport Service [ISO 8(72]. This could be pait bf the set of

Ps used to describe the behaviour of an abstract upper tester in a DS test suite for the Class 0 Transport. CDA,CGA and QOS
user defined types [ISO 8073].
ASP Type Declaration
ASP Name: PCO Type: Comments:
CONreq (T_CONNECTrequest) TSAP -

Service Paraméeter Information

Parameter Name Type : Comments
Cda (Called Address) CDA .t ... of upper tester
Cga (Calling Address) " CGA ’ ... of lower tester
QoS (Quality of Service) , QOS - shouid ensure class 0 is‘used

A1L113

ASPs may
that are to b
be specifie

Figure A.1: T_CONNECTrequest Abstract Service Primitive

Parameter Group Declarations

be sub-structured by‘declaring one or more ASP parameters in a separate ASP parameter group declarations tazjble. The parameters
e represented using this table shall be contiguous parameters in the original ASP type declaration. Values of paameter groups shall
| in the constraints part.

39

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

ISO/IEC 8882-1 : 1993 (E) ©ISO/IEC

This information shall be provided in the following proforma:

ASP Parameter Group Type Declaration

Parameter Group Name: ASP_PARgroupldentifier | Comments: FreeText

Service Parameter Information

- Parameter Name Type ~Comments

ASP_PARid& Fullld Type | GROUP | PDU FreeText

Proforma 13: Parameter Group Type Declaration

SYNTAX DEFINITION: o

s TTCN_ASPdcls ::= $STTCN_ASPdcls {TTCN_ASPdcl} {ASP_PARgroupDcl} $End‘_TTCN_ASPchs
s ASP_PARgroupDcl ::= $Begin_ASP_PARgroupDcl ASP_PARgroupld [Coniment] SPI $End_ASP_PARgroupDcl
s ASP_PARgroupld ::= $ASP_PARgroupld ASP_PARgroupldentifier
e ASP_PARgroupldentifier ::= Identifier

A.11.11.4 ASP [Type Declarations Using ASN.1

Where more appropriate, ASPs can be specified in ASN.1. This shall be achi¢ved either by:
a) A precise reflerence to an ASN.1 ASP defined in an OSI* standard*;

b) An ASN.1 definition using the ASN.1 syntax as defined in 1SO, 8824.

This information shall be provided in the following proforma:

ASN.1 ASP Type Declaration

ASH Name: ASPid&Fullld PCO Type: PCOrypeldentifier

ASN.1 Definition or Reference

ASNIRef | ASNIDef

Proforma 14: ASN.1 ASP Type Declaration

SYNTAX DEFINITION:
s ASN1_ASPdcls ::= $ASN1_ASPdcls {ASN1_ASPdcl} {ASN1_ASP_PARdcl} $End_ASN1_ASPdcls
* ASNI1_ASPdcl ::= $Begin_ ASN1_ASPdcl ASPid [PCOtypeld] ASN1RefOrDef $End_ASN1_ASPdcl
* ASPid ::= $ASPid ASP_id&Fullld ‘

"o ASP_id&Fullld ::= ASPidentifier [Fullldentifier]
* ASPidentifier ::= Identifier
¢ Fullldentifier ::= "(" BoundedFreeText)"

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

OISO/IEC

PCOtypeld ::= $PCOtypeld PCOtypeldentifier

PCOtypeldentifier ::= Identifier

ASN1RefOrDef ::= $ASN1RefOrDef (ASN1Ref | ASN1Def) $End_ASN1RefOrDef
ASNI1Ref ::= #REF {SymbolsFromModule }+

ASN1Def ::= { TypeAssignment}+ /* Defined in ISO 8824 */

A.11.11.5 ASP Parameter Type Declarations Using ASN.1

ASP parameters specified in ASN.1 shall be defined in the following proforma:

A.11.12 HDU Type Declarations

ASN.1 ASP Parameter Type Declaration

ASP Parameter Name: ASNI_ASP_PARidentifier

ASN.1 Definition or Reference

ASNIRef | ASN1Def

SYNTA

¢ AS]
¢ ASI

Proforma 15: ASN.1 ASP Paraméter Type Declaration

X DEFINITION:

N1_ASPdcls ::= $ASN1_ASPdcls { ASN1_ASPdcl} {ASN1_ASP_PARdcl} $End_ASN1_ASPdcls
N1_ASP_PARGdcl ::= $Begin_ASN1_ASP_PARdcl ASN1_ASP_PARid ASN1RefOrDef

$E

o ASN1_ASP _PARid ::= $ASN1_ASP_PARid‘ASN1_ASP_PARidentifier
¢ ASN1_ASP_PARidentifier ::= Identifier,

A.ll1.12.1 |

The purpos
bedded in A

The encodit

A11.122

The declaration of PDUS is similar to that of ASPs. The following information shall be supplied for each PDU:

a)

b)

¢)

its nam

d_ASN1_ASP_PARdcl

ntroduction

SPs at the declared PCOs.'"PDU type declarations may include ASN.1 type declarations, if appropriate.
g of PDU fields shallfollow that as defined in the relevant protocol specification.
PDU Type Declarations Using Tables

where the

in parentheses;

the PCO type associated with the PDU,

ISO/IEC 8882-1: 1993 (E)

of this part of the abstract FTTCN test suite is to declare the types of the PDUs that may be sent or received eifher directly or em-

1]} name shall follow

if a PDU is sent or received only embedded in ASPs within the whole test suite, specifying the PCO type is optional; if only a single PCO
is defined within a test suite, specifying the PCO type in a PDU type declaration is optional;

a list of

the fields and field groups associated with the PDU.

NOTE - In order to be able to describe tests which exercise PDU encoding, it may be necessary to include fields (such as length 1ndxcators)

into the

PDU description, even though they may not be considered to be PDU fields in the protocol specification.

41

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

ISO/IEC 8882-1: 1993 (E) OISONEC

The following information shall be supplied for each field or field group:

1) its name,
where the full name, as given in the appropriate protocol standard*, shall be used; if an abbrev:atxon is used, then the full
name shall follow in parentheses; ,

2) its type and optional field length,

where a field is to be structured as a (higher-level) PDU, then its type may be stated as PDU to indicate that in the con-
straints for the PDU this parameter may be chained to another PDU constraint identifier;

if the name is a field group identifier then the type shall be stated as GROUP to indicate that the structure of the field
group is to be found in the appropriate field group declaration.

This information shall be provided in the format shown in the following proforma: .

PDU Type Declaration

PDU Name: PDUid&Fullld PCO Type: PCOtypeldentifier | Comments: FreeText

PDU Field Information
Field Name Type Comments
FIELDid&Fullld TypedLength | ~ FreeText
GROUP | PBU .

Proforma 16: Protocol Data Unit Type Declaration

el O T 11T]
.l ILLJJIU(XJ ulliy

] FIELDld&FullId := (FIELDidentifier {Fullldentifier]) | FIELDgroupidentifier
» FIELDidentifier ::= Identifier

- FIELDgroupldentifier ::= Identifier

¢ FIELDtype ::= $FIELDtype (Type&Length | GROUP | PDU)

¢ Type&Length ;= Type ["[" Length "]"]

¢ Length ::= SingleLength | RangeLength

¢ SingleLength ;:= TCVid | Number | FIELDidentifier

¢ RangeLength ::= (TCVid | Number) To SingleLength

42

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

ISO/IEC 8882-1: 1993 (E)

O©ISO/MEC
PDU Type Declaration
PDU Name: INTC ‘ PCO Type: NSAP Comments:
(Interrupt Confirm)
PDU Field Information
Field Name Type Comments
GE BITSTRING General FormatIdentifier —
LCGN BITSTRING Logical Channel Group Number
LCN BITSTRING Logical Channel Identifiet
PTI OCTETSTRING Packet Type Identifier
EXTRA OCTETSTRING To create long INTC packets

A.11.12.3 Field Group Declarations

PDUs may pe sub-structured by declaring one or more PDU fields in a separate PDU field group‘declarations table. The
represented [using this table shall be contiguous fields in the original PDU type declaration(Values of PDU fields shall be s

straints part

This informption shall be provided in the following proforma:

Example‘ 33: A Typical PDU Type Declaration

fields that are to be

pecified in the con-

PDU Field Group Type Declaration
[Field Group Name: FIELDgroupldentifier [Comments: FreeText
PDU FKield Information
Field Name Type Comments
FIELDid&Fullld TypeWithLength | FreeText
GROUP | PDU

SYNTAX DEFINITION:

e TTCNoPDUdcls = $TTCN PDUdcls {TTCN_PDUdcl} (FIEI DgroupDel} $End_TTCN_PDUdcls

Proforma 17: PDU Field Group Declaration

¢ FIELDgroupDcl ::= $Begin_FIELDgroupDcl FIEL.Dgroupld {Corhment] PFI $End_FIELDgroupDcl

* FIELDgroupld ::= $FIELDgroupld FIELDgroupldentifier
» FIELDgroupldentifier ::= Identifier
A.11.12.4 PDU Type declarations Using ASN.1

Where more appropriate PDUs can be specified in ASN.1. This is achieved either by:
a) a precise reference to an ASN.1 PDU defined in an OSI* standard*;

b) or an ASN.1 definition using the ASN.1 syntax as defined in ISO 8824.

43

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

ISO/IEC 8882-1 : 1993 (E) _ OISO/IEC |

This information shall be provided in the format shown in the following proforma:

ASN.1 PDU Type Declaration

PDU Name: PDUid& Fullld . PCO Type: ~ PCOtypeldentifier

ASN.1 Definition or Reference

ASNIRef I ASNIDef

Proforma 18: ASN.1 PDU Type Definition

SYNTAX DEFINITION:

+ ASNi_PDUdcls ::= $ASN1_PDUdcls {ASN1_PDUdcl} {ASN1_FIELDdcl} $End. ASN1_PDUdcls
¢ ASN1_PDUdcl ::= $Begin_ASN1_PDUdcl PDUid [PCOtypeld] ASN1RefOrDef\ $End_ASN1_PDUdcl
+ PDUid |:= $PDUid PDUid&Fullld

¢ PDUid&Fulild ::= PDUidentifier [Fullldentifier]

» PDUidantifier ::= Identifier

* PCOtypeld ::= $PCOtypeld PCOtypeldentifier

* PCOtypeldentifier ::= Identifier

o ASNIREfOrDef ::= SASN1RefOrDef (ASN1Ref | ASN1Defy $End_ASN1RefOrDef

o ASNIREf ::= #REF {SymbolsFromModule}+

o ASNI1Def ;:= { TypeAssignment}+ /* Defined in ISO-8824 %

ASN.1 PDU Type Declaration

PDU Name: F_INIT (F_INITIALIZE response) PCO Type:

ASN.1 Definition or Reference

SEQUENCE {

state_result State’result DEFAULT success,
action_result /Action_Result DEFAULT success
protocol. id_Protocol _Version

.................. efc. }

Example 34: FEAM ASN-+ Declaration Through Dofinition—

44

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

©ISO/IEC ISO/IEC 8882-1: 1993 (E)

A.11.12.5 PDU Field Type Declarations Using ASN.1
PDU fields specified in ASN.1 shall be defined using the following proforma:

ASN.1 PDU Field Type Declaration

PDU Field Name: ASNI_FIELDidentifier

ASN.1 Definition or Reference

ASNIRef | ASNIDef

Proforma 19: ASN.1 PDU Field Type Declaration

SYNTAK DEFINITION:

¢ ASN1_PDUdcls ::= $ASN1_PDUdcls {ASN1_PDUdcl} {ASN1_FIELDdcl}) $End_ASN1_PDUdcls
s ASN1_FIELDdcl ::= $Begin_ASN1_FIELDdcl ASN1_FIELDid ASNIRefOrDef $End_ASN1_FIEL]
o ASN1_FIELDid ::= $ASN1_FIELDid ASN1_FIELDidentifier
¢ ASN1_FIELDidentifier ::= Identifier

When an A$N.1 reference is used the free text entry shall be preceded by.the keyword #REF. This applies throughout T
references afe used.

PDdcl

[CN where ASN.1

45

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

ISO/IEC 8882-1 : 1993 (E) ©ISO/EC

A.12 The Constraints Part

A.12.1 Introduction

It is necessary to specify, in detail, the values of ASP parameters and PDU fields . These encodings sﬂgll be described using either:
- the Tabular Method (clause A.13); or | ‘

- the ASN.1 Modular Method (clause A.14).

Reference to particular constraints is made in the constraints reference column of the various dynamic behaviour tables.

A.12.2 Using Test Suite Parameters and Constants in Constraints

the constraints

e 1 <l [ratro

ction of the PDU:

Test suite parampte d-testsuiteTo ray decta
part. The following rules shall be observed, with respect to the dire
a) sent PDUs:

- the valu

b) received PDUs:

of the test suite parameter or test suite constant is sent;

- the valuf of the test suite parameter or test suite constant shall be the value received if the constraint is to gpply;
Neither test suitd- nor test case variables shall be used in constraints, unless passed as parameters.

NOTE - Use of test suite and test case variables in constraints is expected to be treated in an addendum:to this standard*

A.12.3 Using pecial Value Symbols in Constraints

A.12.3.1 Introduction ; -
bols ("-", "?", "*") may be used in constraints to specify "don’t care" values and to explicitly omit fields.
A.12.3.2 Paranjeter or Field Constraints ‘ / B

a) The OMIT symbol, "-", ("dash"), specified as the vaiue of a parameter/or field in a constraint, indicates that the parameter of field shall be
absent in a SEND event and in a RECEIVE event, if the constraintiis to match.

NOTE - How th¢ absence of a parameter or field is expressed-is(ajlocal encoding matter.

b) The ANY_SINGLE_VALUE symbol, "?", in a RECEIVE event, replacing a value in a single paraméter or field of a defined| type in a con-
straint, indicates that the constraint will match with anyreceived value in that parameter or field and belonging to the type.

¢) The ANY_OR_OMIT symbol, "*", in a RECEIVE event, replacing a value in a single parameter or field of a defined type in a constraint,
indicates that the constraint will match with ‘any received value belonging to the type, and/or if the parameter or field is omitted.

If either of the two symbols "?" and "*" are'used in a constraint called by a SEND event, then the fields/parameters in which tijey occur shall
be explicitly overwritten with definite values before the event is to be sent.

The ASN.1 equiyalent symbols are:

OMIT inst::f of "-" as in‘FTTEN.GR
CN.GR
"*" as in TTCN.GR

A.12.3.3 Pattern Matching in a String

The special characters can be used, in a very similar manner, to indicate special conditions of acceptance of a character string, BITSTRING,
HEXSTRING, or OCTETSTRING in a constraint referenced by a RECEIVE event, or in an expression in which two strings are compared (us-
ing "=" or "<>"). Inside a string, a2 "?" in place of a single unit means that any single unit value is accepted;.a "*" means that none, or any number
- of units is accepted. The symbol "*" shall match the longest sequence of units possible, according to the pattern as specified by the symbols
surrounding the "*".

"7 asin

In a character string, when the symbols "?" or "*" are needed within the character string as characters, this shall be indicated by "\?" or "*".
The character "\" itself shall be written "\\". :

46

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

OISO/IEC ISO/IEC 8882-1 : 1993 (E)

A.13 Specifying Constraints Using the Tabular Method

A.13.1 Introduction

This clause describes the tabular method to define constraints on PDUs and ASPs. First it is discussed how single constraint tables can be used
to define constraints on flat PDUs or ASPs. Next a technique to combine multiple constraints definitions in one table is introduced. Finally it
is pointed out how the PDU field or ASP parameter groups, as defined in the declaration of structured PDUs or ASPs, can be used to define
structured constraints.

A.13.2 Tables for Single Constraints on PDUs
A.13.2.1 Constraint Declaration k

In the TTCiN-tabtia A-eonstra d d-by-5
vided in thg format shown in the following proforma:

PDU Constraint Declaration
PDU Name: PDUidentifier , ‘Constraint Name: CONSid&PARIist
Field Name : Value
" FIELDidentifier Value& Length
Comments:
FreeText

Proforma 20: PDU Constraint Declaration

SYNTAX DEFINITION;

o TTCN_PDUconstraints ;:=$TTCN_PDUconstraints {TTCN_PDUconstraint} {FIELDgroupConstraint}
$End_TTCN_PDUconstraints

o TTCN_PDUconstraiit ;= $Begin_ TTCN_PDUconstraint PDUid CONSid {FVI}+ [Comment]
$End_TTCN_PDUconstraint

o PDJJid ::= $PDVid PDUid&Fullld

¢ PDJid&Fulild’::= PDUidentifier [Fullldentifier]

» PDUJidentifier ::= Identifier

¢ CONSid ::= $CONSid CONSid&PARIist

e CONSid&PARlIist ::= CONSidentifier [FormalPARIist]

» (CONSidentifier ::= ConstraintIdentifier {Dot Constraintidentifier}

e Dot:=""

e ConstraintIdentifier ::= Identifier

¢ FVI:=$FVI {(PDU_VALdcl}+ $End_FVI

¢ PDU_VALdcl ::= $PDU_VALdecl FIELDid CONSvalue $End_PDU_VALdcl

» FIELDid ::= $FIELDid FIELDid&Fullld

o FIELDid&Fullld ::= (FIELDidentifier [Fullldentifier]) | FIELDgroupldentifier

¢ FIELDidentifier ::= Identifier

» FIELDgroupldentifier ::= Identifier

47

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

ISO/IEC 8882-1 : 1993 (E)

» CONSvalue ::= $CONSvalue Value&Length
» ConstraintValue ::= ExtValue | TS_PARidentifier | TS CONSTldentlﬁerIPARldenuﬁerIRelop SlgnedValueIVALllst

| Range

| CONSidentifier [RestrictedCreflist]

©ISO/MEC

o RestrictedCrefList ::= "(" (SignedValue | TS_PARidentifier | TS_CONSTidentifier | PARidentifier) { Comma
(SignedValue | TS_PARidentifier | TS_CONSTidentifier | PARidentifier)}")" '

¢ Value&Length ::= ConstraintValue ["[* LengthConstraint "]"]

¢ LengthConstraint ::= SingleLengthConstraint | RangeLengthConstraint
+ SinglelengthConstraint ::= Number | TS_PARidentifier | TS_CONSTidentifier | FIEL.Didentifier | PARidentifier
» RangeLengthConstraint ::= (Number | TS_PARidentifier | TS_CONSTidentifier) To SingleLengthConstraint

When defining ¢
constraint need 1

A.13.2.2 Constr

Each field entry
an ASP or PDU,
need not repeat 4]
length of a PDU
"a" .."2"). In the
used as constrain

ot repeat the full 1dent1f1er

aint Values

n the field name column shall have been declared in the relevant ASP or PDU type declaration. When defining
ind any of the original ASP parameters or PDU fields was defined as having both a short name and full identifier
he full identifier. Values assigned to each field shall be of the type specified in the ASP or(®DU declaration.
field may be specified. The value may be an explicit value or, where the type definition allows it, a range or list
case of numeric types a relational operator may be used (e.g. >10). Test suite parameters/and test suite constan
t values. Special symbols may also be used in constraints as may parameter or field group names.

identifier, the

constraints on
the constraint
Dptionally, the
pf values (e.g.
s may also be

PDU Constraint Declaration

PDU Name: PDU_B Constraint Name: Cl1
Field Name Value
FLD1 >3
FLD2 TRUE
FLD3 *A STRING"

Example 35: A Constraint, called C1, on the PDU called PDU_lj}

http://Sing1eLengthConstm.int
https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

©ISO/IEC ISO/IEC 8882-1 : 1993 (E)

A.13.2.3 Base Constraints

For every PDU type declaration at least one base constraint shall be specified. A base constraint specifies a set of base, or default, values for
each and every field defined in the appropriate declaration. There may be any number of base constraints for any particular PDU.

When a subsequent constraint is defined for a PDU that has a base constraint, any fields not re-specified in the modified constraint will default
to the values specified in the base constraint. The name of the modified constraint will be the concatenation of the name of the base constraint

and the modified constraint, separated by a dot ("."). A base constraint is recognizable in that it does not have a dot (*.") in its name. There is
no limit on the depth of modified constraints.

EXAMPLE 36 - C0.C1.C2.C3

Value fields may be explicitly omitted if the symbol "-" is present as a field value. The rules for building a constraint from a base constraint are
thus:

a) field and|value not specified in constraint = value in parent constraint used (i.e. the value is inherited),
b) field and|value specified in the constraint => specified value replaces the inherited value;
c) field has|"-" specified as a value = omit this field and value from the constraint.
EXAMPLE 37 - Suppose that we have the following PDU type declaration:
PDU Type Declaration
BDU Name: PDU_A PCO Type: Comments: This is the declaration
of-the protocol data unit named
PDU_A
PDU Field Information
Field Name Type Comments
FLD1 INTEGER
FLD2 HEXSTRING
FLD3 BITSTRING
FLD4 BOOLEAN
A bage constraint for PDU_A could bé:
PDU Constraint Declaration
PDU Name: PDU (A Constraint Name: CO
Field Name Value
FLD1 0
FLD2 "FE’H
FLD3 '00'B
FLD4 TRUE
Comments:

49

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

ISO/MEC 8882-1 : 1993 (E)

A modified constraint to the base constraint CO could be:

OISO/IEC

PDU Constraint Declaration

PDU Name: PDU_A Constraint Name: C0.C1
Field Name Value
FLD1 1

Comments: FLDT has value 1

The congtraint C0.C1 is exactly the same as CO except that the value of FLD1 is now the integer value '1°.

We can further build on C0.C1:
PDU Constraint Declaration
l PDU Name: PDU_A Constraint Name: C0.C1.C2
Field Name Value
| FLD2 ‘ -
FLD3 ?

‘Cothments: Field FLD2 omitted. Any legal value acéepted for FLD3

The cons

Because of the 1

PDU constraint

traint C0.C1.C2 specifies the following values forPDU_A.:

FLD1=1

FLD2 is omitted

FLD3 = any (legal) value is accepted
FLD4 = TRUE

tan be made from a behaviotr description using the last identifier in the dotted identifier. However the full d

shall still appear in the constraint’s name field.

EXAMPLE 38 - the identifiers C0, C1 and C2 are unique. The constraints reference PDU_A [C1} is the same as saying P)

[CO.C1]

land the constraints reference PDU_A [C2] is the same as saying PDU_A [C0.C1.C2]. The constraints referend

be further shortened by omitting PDU_A, simply specifying C0, C1 or C2 as appropriate.

quirement for uniqueness.of constraint identifiers and components of dotted identifiers within the test suite al reference to a

btted identifier

DU.A
es can

A13.2.4 Para:Leterhed Constraints

Constraint valu

may be parameterized. In such cases the constraint name shall be followed by a parameter list and the param

eterized fields

shall have these parameters as values. Each parameter name shall be followed by a colon and then the name of the parameter’s type.

If more than one parameter of the same type is used, the parameter may be specified as a parameter sub-list. When a parameter sub-list is used,
the parameter names shall be separated from each other by a comma. The final parameter in the sub- list:shiall be followed by a colon and then
the name of the parameter sub-list’s type. When more than one parameter and type pair (or parameter sub-list and type pair) is used, the pairs
shall be separated from each other by semicolons.

Test suite and test case variables shall only be used as actual parameters to a constraint in a constraints reference made in a dynamic behaviour
description. Actual values, test suite parameters or test suite constants may, however, be used as actual parameters to a constraint in constraint
references both in dynamic behaviour descriptions and in constraint declarations. When a test suite parameter, or test suite constant, or test suite
or test case variable is used as an actual parameter in a constraint, then the following rules apply:

a) in the case of a SEND event the value of the actual parameter is sent;

b) in the case of a RECEIVE event the value of the actual parameter shall be the same as the value received if the constraint is to apply.

50

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

OISO/IEC

ISO/IEC 8882-1: 1993 (E)

EXAMPLE 39 - The parameterized base constraint C0. A possible invocation of CO from a test case or test step may be: PDU A

[CO (0, TRUE)].

* PDU Constraint Declaration,

| PDU Name: PDU_A { Constraint Name: C0O (P1:INTEGER, P2:BOOLEAN)
Field Name Value
FLD1 P1
ELD2- "ER:H
FLD3 '00'B
FLD4 P2
Comments:

A.13.3 T1bles for Multiple Constraints on PDUs

A.13.3.1 Injtroduction

In cases whiere a constraint contains only a few fields, or when there are only a small number of constraints, the constrain
in a list and|presented in the multiple version of the constraints table proforma: '

ts may be collected

PDU Constraints Declarations
PPDU Name: PDUidentifier
Constraint Name ‘ Field Name Comments
FIELDidentifier 1 FIELDidentifier,,
' CONSid&PARIist 1 Valued&Length 1 i Value& Length 1 FreeText;
CONSid&PARlist, Value&Lengthy | Value&Leng;hZ’ n FreeText,
(CONSid& PARIist), Value&Lengthm’ Ji Value&Length,ﬁ) n FfeeTé}ctm

The multiple constraints proforma has field names across the top of the table, and different instances of the PDU constrainty.
table. If thefe arewn fields i in the PDU type declaration then there shall be » field columns in the mulnple constraint table.

Proforma 21: Multiple PDU Constraints Declarations

in rows within the

51

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

ISO/IEC 8882-1: 1993 (E) OISO/IEC

EXAMPLE 40 - Constraints using the multiple constraints proforma. Given PDU_B's declaration to be:

PDU Type Declaration
PDU Name: PDU_B PCO Type: XSAP Comments:
PDU Field Information
Field Name Type . Comiments
FLD1 INTEGER
FLD2 BOOLEAN
FLD3 IASSTRING

the constrpints on PDU_B using the multiple constraints proforma could be:

PDU Constraints Declarations
PDU Name: PDU_B
Constraint Name Field Name Comments
FLD1 FLD2 FLD3
CN1 >3 TRUE "A string"
CN2 (4,5,6) FALSE "A string"
CN3 ‘ 0 ? -

The constraints reference in the dynamic part might then contain entries such as PDU_B[{CN1] and PDU_B[CN2]

EXAMPLE 41 - An example of the intheritance mechanism using the multiple constraint proforma:

PDU Constraints Declarations
PDU Name: PDU_A
Constraint-Name Field Name Comments
FLD1 FLD2 FLD3 FLD4
CNO 0 'FF'H "00’B TRUE
CNO.CN1 1
CNO.CN1.CN2 - ?

Constraint CNO is the base éonstraint in which all fields have a value specified. Constraint CN1 is the modified constraint de-
rived from base constraint CNO. The modified constraint CNO.CN1 is exactly the same as CO except that the value of FLLD1 is
the INTEGER value ’1°.

The constraint CNO.CN1.CN2 further modifies the constraint built by CN0.CN1 to specify the following values for PDU_A:

52

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

OISO/IEC

FLD1 =1
FLD2 is omitted

FLD3 = any (legal) value is accepted

FLLD4 = TRUE

ISO/IEC 8882-1:1993 (E)

Given these constraint definitions, the constraints reference column in the dynamic part could contain entries such as PDU_-

A[CNO], CN1 and PDU_A[CNZ2].
A.13.3.2 Parameterized Multiple Constraints

Multiple constraints may also be parameterized. In such cases the parameterized constraint shall have its constraint name followed by the pa-
renthesized list of parameter names and types. The parameter names shall also appear in the column entry of the corresponding fields.

Esxf? lows: S1, S2, 83, $4, $5(0), S5(1) or S5(Var) where Varis a test case or test suite variable.
PDU Constraints Declarations
PDU Name: PDU_X
Constraint Field Name Comments
Name Pl P2 ‘
S1 0 0
S2 0 1
S3 1 0
S4 1 1
S5(A:INTEGER) 1 A

A.134 Strrctured Constraints for PDUs

A.13.4.1 Infroduction

The field gro
is, a group of
group constr.
groups is equivalent to a macro expansion,

uping mechanism allows one or more contiguous fields of a PDU to be combined and referred to through a sing ;
field identifiers may be replaced by a'field group identifier and the corresponding group of fields are representgd by a single field
hint identifier. Field group identifiers shall be declared in the declarations section of the abstract test suite. The

MPLE 42 - A parameterized multiple constraint. The invocation of the constraints on PDU_X in a test step maly be made

le reference. That

expansion of field

53

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

ISO/IEC 8882-1 : 1993 (E) OISO/IEC

A.13.4.2 Single Field Group Constraints

Single field group constraints information shall be provided in the following proforma:

PDU Field Group Constraint Declaration
Field Group Name: Constraint Name: :
FIELDgroupldentifier CONSid&FARlist
Field Name Value
FIELDidentifier Value&Length
Comments
Free T ext

Proforma 22: PDU Field Group Constraint Declaration

It should be notqd that field group identifiers are not legitimate PDU fields, they aré only references (pointers) to a field groyp (i.e. lists of
fields). Thus, field group identifiers shall not be used in assignment statements.nor in Boolean expressions.

SYNTAX DEFINITION:

* TTCN_PDUconstraints ::= $TTCN_PDUconstraints {TTCN_PDUconstraint} {FIELDgroupConstraint}
$End_TTCN_PDUconstraints , o

. FIELD%%JpConstraint ::= $Begin_FIELDgroupC€onstraint FIELDgroupld CONSid. {(FVI}+ [Comment]
$End_FIELDgroupConstraint o

« FIELDgroupld ::= $FIELDgroupId FIELDgroupldentifier

.« FIELDgfoupldentifier ::= Identifier

* CONSid ::= $CONSid CONSid&PARIist

* CONSid&PARlist ::= CONSidentifier [FormalPARIist]

* FVI:=$FVI {PDU_VALJE)% $End_FVI

» PDU_VALJcl ::= $PDU_VALdcl FIELDid CONSvalue $End_PDU_VALdcl

» FIELDid ::= $SFIELDid FIELDid&Fullld

* FIELDid&Fullld ¢:=)(FIELDidentifier [Fullldentifier]) | FIELDgroupldentifier

A.134.3 MultipLe Field' Group Constraints
Alternatively, field group constraints may be provided in a table for multiple field groups. Multiple field group constraints shall be provided in

54

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

ISO/IEC 8882-1: 1993 (E)

O©ISO/IEC
the following proforma:
PDU Field Group Constraints Declarations
Field Group Name: FIELDgroupldentifier
Constraint Name Field Name ' ‘ Comments
FIELDidentifier ; FIELDidentifier,,
(ONSid& PARlist; ValuedLengthy ; | Value&Length; , FreeText|;
(ONSid&PARlist, Value &Length, ; Value&Length, , FreeTexty
AONSid&PARIi Sty Value&Lengthy,, ; | 7 Value&Length,, , FreeText),

Proforma 23: Multiple PDU Field Group Constraints Declarations

EXAMPLE 43 - The PDU_Y consists of five fields named Y} through Y5. The fields Y1, Y2 and Y3 have been confbined into
eld group called A. In the following, figure A.2 shows the constraints defined on PDU_Y. Figures A:3;Al4 and' A.5
ey exactly the same information; figure A.12- shows the field group A’s constraint specification using the singlq constraint
rma, while figure A.12+ shows A’s constraiitusing the multiple constraint proforma. Both figures also use the nheritance

the f]
convl
prof
mecH

hanism.

For the following figures, it can be seemthat if the constraint YY1 was used, the values for field Y1 through Y§ would be

0,0,0,0,1 respectively, where the valuesfor fields Y1 through Y3 are derived from the field group A using ;:'onstraintu Al Ifthe
conskraint YY?2 was used, the valuesfor Y1 through Y5 would be 0,3,0,1,0 respectively, where the values for fields Y1 through
Y3 are derived from the field group A using constraint A2. R :
V PDU Constraints Declarations
>' PDU Name: PDU_Y
Constraint Name Field Name] Comments
A Y4 : Y5
YY1 Al 0 1
YY2 A2 1 0
YY3 A2 0 i

Figure A.2: A PDU Constraints Table that Uses a Field Group

55

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

ISO/IEC 8882-1 : 1993 (E) ©ISO/IEC

Al is a base constraint of field group A:

PDU Field Group Constraint Declaration

Field Group Name: A Constraint Name: Al
Field Name » Value
Y1 0
Y2 0
Y3 0

Con*nents:

Figure A.3: Field Group A’s Constraint Al in the Single Form

The field group constraint, A2, is a modified constraint derived from Al:

PDU Field Group Constraint Declaration
Field Group Name: A Constraint Name: Al.A2
Field Name Value
Y2 3
Comments:

Figure A.4: Field Group A’s Constraint A2 in the Single Form

PDU Field'Group Constraints Declarations

Field Group Name: A

Constraint Name Field Name Comments
Y1 Y2 Y3
Al 0 0 0
A1.A2 3

— _Figure A.57 Field Group A’s Constraims At amd A2 trthe Muidtiple Formm—————————

When using field groups within PDU constraint declarations, each field name used within the field group declaration must exactly match the
name (or short name, if both the short name and full name were defined) of the PDU field which it represents from the original PDU type dec-
laration.

56

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

OISO/EC

A.13.5 Tables for Single ASP Constraints

ISO/IEC 8882-1: 1993 (E)

Single ASP constraint tables are very similar to single PDU constraint tables. The parameter values for single ASP constraints shall be specified

in the format shown in the following proforma:

ASP Constraint Declaration

ASP Name: ASPidentifier

Constraint Name: CONSid&PARIist

Parameter Name

Value

ASP_PARid& Fullld

Value& Length

Comments:

FreeText

This proforma is used for ASPs and their parameters in the same way that PDU constraint declaration proforma is used f

fields. Thus

Proforma 24: ASP Constraint\Declaration

for further information see clause A.13.2.

SYNTAX DEFINITION:

o TT(N_ASPconstraints ::= $TTCN_ASPconstraints {TTCN_ASPconstraint} { ASP_PARgroupConstrz
$Enfl_TTCN_ASPconstraints \

o TT(N_ASPconstraint ::= $Begin_TTCN-ASPconstraint ASPid CONSid {PVI}+ [Comment]
$End_TTCN_ASPconstraint

o PVI[:=$PVI {ASP_VALdcl}+ $End_PVI
o ASH VALdcl ::= $ASP_VALdcl ASP. PARid CONSvalue $End_ASP_VALdcl

jint}

br PDUs and their

57

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

ISO/IEC 8882-1 : 1993 (E) OISO/MEC

A.13.6 Tables for Multiple ASP Constraints

Multiple ASP constraint tables are very similar to multiple PDU constraint tables. The parameter values for multiple ASP constraints shall be
specified in the following proforma:

ASP Constraints Deplarations
ASP Name: ASPidentifier
Constraint Name ; Parameter Name ‘ Comments
ASP_PARidentifier ASP_PARidentiﬁern
COltJSid&PARlist 1 Value&Length 11 | e Value& Length In FreeTexty
'COIlJSid&PARlisQ Value&Lengthzy] Value&Lengthz,n Freelext)
<ol /Sidd’;PARlistm Value&Lengthy, | Value&L'engthm’ ‘ FreeText,,

Proforma 25: Multiple ASP Constraints Declarations

This proforma ig used for ASPs and their parameters in the same way that PDU constraint declaration proforma is used for PDUs and their
fields. Thus, for|further information see clause A.13.3.

A.13.7 Structyired Constraints on ASPs

Structured constfaints on ASPs using parameter groups are similar to structufed PDU constraints using field groups The constraints on pa-
rameter groups shall be specified in the format shown in the following preforma:

ASP Parameter Group Constraint Declaratioh

Parameter Group Name: ‘| Constraint Name:
ASP_PARgroupldentifier CONSid&PARIist
Parameter Name : Value
ASP_PARid&Fullld Value&Length

CorrT'nents:

FreeText

Proforma 26: ASP Parameter Group Constraint Declaration

This proforma is used for ASP parameter groups and their parameters in the same way that the PDU field group constraint proforma is used for
PDUs and their field groups. For further information see clause A.13.4.

SYNTAX DEFINITION:

s TTCN_ASPconstraints ::= $STTCN_ASPconstraints {TTCN_ASPconstraint} { ASP_PARgroupConstraint}
$End_TTCN_ASPconstraints

58

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

©ISO/IEC

« ASP_PARgroupConstraint ::= $Begin_ASP_PARgroupConstraint ASP_PARgroupld CONSid {PVI}+ [Comment]

$End_ASP_PARgroupConstraint
« CONSid ::= $CONSid CONSid&PARIist

ISO/IEC 8882-1 : 1993 (E)

Alternatively, field group constraints may be provided in a table for multiple field groups. Multiple field group constraints shall be provided in

the following proforma:

ASP Parameter Group Constraints Declarations
Parameter Group Name: ASP_PARgroupldentifier
Constraint Name Parameter Name Comments
ASP_PARidentifier; ASP_PARidentifier
CONSid&PARIist Value&Length; ; Value&Length; , FreeText;
CONSid&PARlist, Value&Lengthz, Ji Valued Lengthy 4 FreeText,
CQNSid&PARIist,, Value&Lengthm’ ;1 L@ Value&Lengthm’ fi FreeText,,

Proforma 27: Multiple®Parameter Group Constraints Declarations

This profornfa is used for ASP parameter groups and their parameters in the same way that the PDU field group constraint

for PDUs andl their field groups. For further information see clause A.13 4.

A.13.8 Field Length Specifications

The length of a field may be specified ip.a single or multiple constraint table by including a number or range in the value ¢
may also be dletermined dynamically-from the contents of another field of the same constraint or as a parameter passed into

following expmple illustrates the/Various methods of defining a length of a PDU field.

The units for| the length specification shall be interpreted as shown below for TICN predefined types and their assignment ¢

Table A.4: Units of Length Used in Field Length Specifications

Type Units of Length
INTEGER bits
BOOLEAN bits
BITSTRING bits
HEXSTRING hex digits
OCTETSTRING octets
character string characters

proforma is used

lumn. The length
he constraint. The

ompatible types:

59

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

ISO/IEC 8882-1 : 1993 (E) ©ISOAEC

EXAMPLE 44 - An example of length specification:

PDU Type Declaration
PDU Name: PDU_Z PCO Type: Comments:
PDU Field Information
Field Name ‘ Type Comments
FLD1 INTEGER {8]
FLD2 HEXSTRING [FLD1]
FLD3 OCTETSTRING

Where a donstraint on PDU_Z could be:

PDU Constraints Declarations
PDU Name: PDU_Z
Constraint Name Field Name Comments
FLD1 FLD2 FLD3

CNoO ? ? 715] CNO uses a constant length

CN1 ? ? ?{1x3] CN1 specifies a length of range 1 to 3
CN2(X:INTEGER) ? ? 2[X] CN2 specifies a variable length
CN3(Y:INTEGER) ? 7(3]) ?[Y]

Explanatipn of PDU_Z constraint:

Constraint CNO allows the length field.of*field FLD1 to be an 8 bit integer as declared in the PDU type declaration and field
FLD2 to Bave a length based on the contents of field FLD1. Field FLD3 will be 5 octets long. Constraint CN1 uses a range for
the lengthf of field FLD3 indicatingthat FLD3 may be between 1 and 3 octets long. Constraint CN2 uses a parameter pased to
the constraint that will be uséd to indicate the length of FLD3. CN3 illustrates a more complex usage of length, wherq field
FLD?2 is df length 3 hexdigits (overriding the declaration) and field FLD3 uses the parameter Y.

A.14 ASN.1 Constraints

A.14.1 Introdyction

This clause describes a method to define constraints in ASN.1, in a way similar to the definition of tabular constraints. The normal ASN.1 value
definition is extended to allow use of wild cards and ranges. Mechanisms to replace or omit parts of ASN.1 constraints, to be used in modified
constraints, are defined. '

ISO 8824 "Specification of Abstract Syntax Notation One" contains mechanisms to define subtypes of existing types. These subtypes can be
used for the same purposes as TTCN tabular constraints. The approach taken is, however, very different from that used in tabular constraints.
Therefore these subtypes are treated in TTCN as ASN.1 types and can not be referenced from the test case/step/default table constraint reference
column.

A.14.2 ASN.1 Constraint Tables
The ASN.1 constraint shall be named so that they can be referenced in the dynamic part. It is possible to parameterize ASN.1 constraints, in

60

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

©ISO/IEC ISO/IEC 8882-1: 1993 (E)

which case the constraint name shall be followed by a formal parameter list.

ASN.1 constraints are typéd. It is required for documentation purposes to mention this type in the header of the ASN.1 constraint table. The
type can be any ASN.1 type as defined in Type in ISO 8824.

If an ASN.1 constraint definition is a modification of an existing ASN.1 constraint, the name of the ASN.1 constraint that is taken as the basis
of this modification shall be referenced in the table.

Single ASN.1 ASP constraint declarations shall be specified in the format shown in the following proforma:

ASN.1 ASP Constraint Declaration

ASP Name: ASPidentifier Constraint Name: CONSid&PARlist

ASN.1 Value

ASNI_ConstraintValue

Proforma 28: ASN.1 ASP Constraint Declaration
SYNTAX DEFINITION:

o ASN1_ASPconstraints ::= $ASN1_ASPconstraints { ASN1_ASPconstraint} {ASN1_ASP_PARconstrgint}

$Enf_ASN1_ASPconstraints
¢ ASN1_ASPconstraint ::= $Begin_ASN1_ASPconstraint’ ASPid CONSid ASN1_Def $End_ASN1_ASPconstraint
e ASN1_Def ::= $ASN1_Def ASN1_ConstraintValue \$End_ASN1_Def

Single ASN.[l PDU constraint declarations shall be specified’in the format shown in the following proforma:

ASN/ PDU Constraint Declaration

PDU Name: PDUlidentifier, Constraint Name: CONSid& PARlist

ASN.1 Value

ASN1_ConstraintValue

Proforma 29: ASN.1 PDU Constraint Declaration

The body of the single ASN.1 ASP and PDU constraints tables contains the ASN.1 constraint definition.
SYNTAX DEFINITION:

* ASN1_PDUconstraints ::= $ASN1_PDUconstraints {ASN1_PDUconstraint} { ASN1_FIELDconstraint}
$End_ASN1_PDUconstraints

e ASNI1_PDUconstraint ::=$Begin_ASN1_PDUconstraint PDUid CONSid ASN1_Def $End_ASN1_PDUconstraint

e ASN1 Def ::= $ASN1_Def ASN1_ConstraintValue $End_ASN1_Def

61

http://ASN1-ASPconstra.int
https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

ISO/IEC 8882-1: 1993 (E) OISOMEC

The following proformas shall be used for multiple ASN.1 ASP and PDU constraints declarations respectively:

ASN.1 ASP Constraints Declarations
ASP Name: ASPidentifier
Constraint name . ASN.1 Value
CONSid&PARIist ASNI_ConstraintValue
CONSid&PARIist ASN1_ConstraintValue

Proforma 30: Multiple ASN.1 ASP Constraints Declarations

ASN.1 PDU Constraints Declarations

PDU Name: PDUidentifier

Constraint name ' ASN.1 Value

CONSid&PARIist ASNI1_ConstraintValue

CONSid&PARlist ASNI_ConstraintValue

Proforma 31: Multiple ASN.T PDU Consfraints Declarations

A.14.3 ASN.1 Constraint Value Definition
A.14.3.1 Introduction

An ASN.1 constraint value definition consists of two parts. The first part, Encoding, is optional. It can be used to define encoding directives.
The second part, the ASN.1 value, is the actual description of the constraint.

SYNTAX DEFINITION;
» ASNI1_ConstraintValue ::= [Encoding] ASN1_ValueTemplate

A.14.3.2 Encoding Directives

The ASN.1 basic encoding rules, ISO 8825, offer multiple ways to encode length. By giving encoding directives, the test suite specifier can

62

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

OISO/IEC

restrict the possible ways of encoding length offered by ISO 8825.

ISO/IEC 8882-1: 1993 (E)

If any legal encoding of the value is acceptable, the specification of encoding constraints for the value may be omitted. Otherwise, the encoding
specification shall have the following syntax:

SYNTAX DEFINITION:

+ Encoding ::= ["[" LengthEncoding "1" .
s LengthEncoding ::= LI |SD | LD | LD Number | IN

where:

LI specifies that any legal encoding of the correct length may be used.

SD 5

LD s

IN s
The length

1 j ncodin

hecifies that the Long Definite length type shall appear in the encoding. The length shall be padd

oftets if number appears.

becifies that the Indefinite length type shall appear in the encoding.

encoding shall consist of a whole number of octets.

A.14.3.3k Vglue Templates

It is possiblelto define complete ASN.1 values as constraints. In order to allow the use of parameters, wild cards and ranges

straints usin,

b a format similar to the ASN.1 value definition, a number of BNF productions are'copied from ISO 8824, and

ductions havie been extended. The productions that are identical to productions used in ISQ-8824 (1989) are indicated by "/*
complete BNF is in {Annex A}.

The complete specification of a constraint using ASN.1 becomes:

SYNTAK DEFINITION:

+ ASN1. ConstraintValue ::= [Encoding] ASN1. Value

« ASN1_Value ::=

out to number

for specifyin g con-
some of these pro-
ISO 8824 */". The

BooleanValue /*1SO 8824 */
| IntegerValue /*1SO 8824 */
| BitStringValue /*ISO 8824 */
I OctetStringValué /*1SO 8824 */
| NullValue /*1S0 8824 */
| Sequence Value /%180 8824 */
I SequenceOfValue /* IS0 8824 */
| SetValue /% ISO 8824 */
[SetOfValue /*1SO 8824 */
l.* ChoiceValue 1 1SO 8824 */
[SelectionValue: /*1SO 8824 #/ -
| TaggedValue /* ISO 8824 */
| AnyValue /* 18O 8824 */
| ObijectldentifierValue [¥1S0 8824 */
| CharacterStringValue /* ISO 8824 */
| EnumeratedValue /* ISO 8824 */
| RealValue /*1SO 8824 */
| UsefulValue /*1SO 8824 */
| ReplaceValue
| ConstraintIdentifier [RestrictedCrefList]
| Wildcard
| Parameter

/* Where they have been used within the ISO 8824 productions: BooleanValue .. UsefulValue , the following ISO 8824 productions have been

redefined: */

63

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

ISO/IEC 8882-1 : 1993 (E)

o Value ::= ASN1_Value
o jdentifier ::= ASN1_Identifier

/* Additional non-ISO 8824 productions: */

s ReplaceValue ::= IN ConstraintIdentifier [RestrictedCrefList] "{" {Replacement} "}"

+ Replacement ::= (REPLACE ReferenceList BY ASN1_Value) | (OMIT ReferenceList)
s - ReferenceList ::= ASN1_Identifier | (ASN1_Identifier Dot ReferenceList) ’
s Parameter ::=TS_PARidentifier | TS_CONSTidentifier | PARidentifier

» ASN1_ldentifier ::= Identifier '

The constraints §

which an incomy

ASN.1 constraiy
of an ASN.1 typ

A.14.3.4 Struc

The mechanism
eter group cons

Single ASN.1 A

SN

g ASN. C
Ing PDU or ASP may be matched.

ts may use the wildcard characters "?" and "*", in patterns of any of the string types or in place of e)iplicit values
e, as defined in clause A.12.3.2.

ured ASN.1 Constraints

imilar to that available in the tabular method, to structure constraint definitions by defining PDU field group ay
aints, can be used in ASN.1 constraints to define PDU field and ASP parameter constraints.

ISP parameters shall be specified in the following proforma:

OISO/MEC

atterns against

of any element

\d ASP param- .

ASN.1 ASP Parameter Constraint Declaration

Parameter Name: Constraint Name:
ASNI1_ASP_PARidentifier CONSid&PARIist
ASN.1 Value

ASNI_ConstraintValue

Proforma 32: ASN.1 ASP Parameter Constraint Declaration

$End_,

SN1._ASP_PARconstraint

Def

64

http://ASN1-ASPcons&a.int
https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

OISOAEC ISO/IEC 8882-1: 1993 (E)

Single ASN.1 PDU fields shall be specified in the following proforma:

ASN.1 PDU Field Constraint Declaration

Field Name: Constraint Name:
ASN1_FIELDidentifier CONSid&PARlIist
ASN.1 Value

ASNI_ConstraintValue

Proforma 33: ASN.1 PDU Field Constraint Declaration '
SYNTAX DEFINITION:

e ASN1_PDUconstraints ::= $ASN1_PDUconstraints { ASN1_PDUconstraint} { ASN1_FIELDconstraint}
$EF,_ASN1_PDUc0nstraints

e ASNI_FIELDconstraint ::= $Begin_ASN1_F IELDconstraint ASNI) FIELDid CONSid ASN1_Def
$End_ASN1_FIELDconstraint
Multiple A§N.1 ASP parameter constraints may also be specified in the following proforma:
ASN.1 ASP Parameter Constraints Declarations
Parameter Name: ASP_PARidentifier
Constraint name ASN.1 Value
CONSid&PARlist ASNI1_ConstraintValue
CONSid&PARIist ASNI_ConstraintValue

Proforma 34: Multiple ASN.1 ASP Parameter Constraints Declarations

65

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

ISO/IEC 8882-1 : 1993 (E) ‘ ©ISO/IEC

Multiple ASN.1 PDU field constraints may also be specified in the following proforma: -

ASN.1 PDU Field Constraints Declarations
Field Name:ASNI _ FIELDidentifier
Constraint name ASN.1 Value
CONSid&PARlist | ASNI_ConstraintValue
CONSid&PARlist ASNI_ConstrgintValue

Proforma 35;: Multiple ASN.1 PDU Field Constraints Declarations

A.14.3.5 Paramieterized ASN.1 Constraints

It is possible to garameterize ASN.1 constraints. The parameter mechanism is identical to that of the tabular constraint definitfon and is de-
scribed in clause |A.13.2.3. : ‘

A.144 Modifi]:d Constraints

ASN.1 constraints can be defined by modifying an existing ASN 1 constraint. Portions of a defined constraint can be redefined t¢ create a new
constraint by usinig the REPLACE/OMIT mechanism in a REPLACE value as the ASN.1 value for the new constraint, where REPLACE value

is defined as follgws:
SYNTAX DEFINITION:
¢+ Replaceyalue = IN ConstraintIdentifief. JActualParameterList] "{" {Replacement} "}"
¢ Replacement ::= (REPLACE ReferenceList BY ASN1_ValueTemplate) | (OMIT Referencel.ist)
¢ ReferengeList ::= ASN1_Identifier | (ASN1_Identifier Dot ReferenceList)

-NOTE - OMIT corresponds to: REPLACE ReferenceList BY { }

A.14.5 Using Formal Parameters

When using an ABN.1 consfraint in the dynamic part of the test, the constraint reference is used along with a list of actual parametprs. The latter
correspond to theflist of formal parameters which were used to specify the referenced constraint. Each actual parameter may eithef be a variable
identifier, test suite parameter, test suite constant or an actual value.

in the

66

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

OISO/EC

dynamic part. Given the following ASN.1 type definition of the PDU:

ISO/IEC 8882-1 : 1993 (E)

ASN.1 PDU Type Declaration

PDU Name: APDU PCO Type:

ASN.1 Definition or Reference

SEQUENCE {INTEGER BOOLEAN}

Aty

pical instance of this PDU could be:

ASN.1 PDU Constraint Declaration

PDU Name: APDU Constraint Name: ThePDU(X:INTEGER; ‘Y:BOOLEAN) k

ASN.1 Value

[SD] {X,Y} -- A Sequence PDU of an integer and a boolean

In t}
whil
test

nis example x and y are identifiers which act as formal parameters'whose sole purpose is to specify those parts
Ch can be substituted by actual parameters whenever the PDUds used in sending data or matching received d
case.

A14.6]

Care should be taken when using both the REPLACE/OMIT and'formal parameter styles that 1ncons1stenc1es between for!

constraint

ized fields ghall not be replaced or omitted in a modified\constraint.

Al1S5 Th

A.15.1 Introduction

The Dyna
SYNTA

+ DyhamicPart ::£$DynamicPart TestCases [TestStepLibrary] [DefaultsLibrary] $End_DynamicPar}

A.15.2 Sy

ing REPLACE/OMIT and Formal Parameters

of the PDU
pta within a

| parameters in the

ader and the occurrence (or non-occurrence) of these parameters in the body of the constraint do not arise. In any case, parameter-

p Dynamic Part

L X DEFINITION:

ecification of Test Case Dynamic Behaviour

A.15.2.1 The Test Case Proforma

The following information shall be supplied for the dynamic behaviour of each test case:

a) a Test Case Reference (clause A.8.2),

ic Part contains.the main\body of the test suite: the test case, the test step and the default behaviour descriptigns.

giving a full name to the test case behaviour description and defines its location in the test suite structure; a test case reference shall conform
to the requirements of clause A.8.2; : i

b) ' a Test Case Identifier,

used to provide a shorter name for a test case; it may be used interchangeably with a test case reference;

¢) abrief description of the Test Purpose,

which shall be an informal statement of purpose of the test case, possibly summarizing the full test purpose given in the relevant test suite
structure and test purposes standard or equivalent section of the test suite standard;

67

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

ISO/IEC 8882-1 : 1993 (E) ©OISO/EC

d) identification of the Default behaviour to be used (clause A.15.14),

which shall be the identifier (including an actuat parameter list if necessary) of a default behaviour description, if any, which applies to the
test case behaviour specification;

e) aBehaviour Description (clause A.15.5),

which shall describe the behaviour of the lower tester and/or upper tester in terms of test events (and their parameners) using the tree notation
described in clause A.15. 6

f) Labels (clause A.15.14),

placed in the labels column to identify TTCN statements either for statement line numbenng and/or to allow jumps using the GOTO state-
ment;

g) Constraints References (clause A.15.16),

placed in the |constraints reference column to associate TTCN statements in a behaviour tree with a reference to specific ASP and/or PDU
values defined in the constraints part (clause A.12);

h) Verdict or result information (clause A.15.17),
placed in the|verdicts column to be associated with TICN statements in a behaviour tree;
i) Comments,

placed in the|comments column to ease the understanding of the TTCN statements by providing short remarks or references to additional
text in the optional extended comments field;

j) Extended cothments,
used to give longer comments and general comments.

This information|shall be provided in the format shown in the following proforma:

Test Case Dynamic Behaviour

Reference: TestCaseReference
Identifier: TestCaseldentifier
Purpose: FreeText

Defaylt: DefaultsReference

Behaviour Description Label Constraints Verdict Comments
Reference
StatementLine
TreeHeader Label Constrainis Verdict FreeTexi
. Reference
StatementLine

Extended CommentsT Freelext

Proforma 36: Test Case Dynamic Behaviour

NOTE - a synchronization requirements field may be added to the proforma at a future date. Synchronization is expected to be addressed in an
addendum to this part of the multipart standard*.

The four columns to the right of the table may be headed: L, Cref, V and C, but shall not be omitted. This enables the behaviour tree column
to be as wide as possible in cases of physical paper size limitations.

68

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

OISO/EC

SYNTAX DEFINITION:

o TestCase ::= $Begin_TestCase TestCaseRef TestCaseld TestPurpose [DefaultsRef] BehaviourDescription
[ExtComments] $End_TestCase

o TestCaseRef ::= $TestCaseRef TestCaseReference

o TestCaseReference ::= (TestGroupReference TestCaseName) | (Suiteldentifier "/" TestCaseName)

o TestGroupReference ::= Suiteldentifier "/" {TestGroupldentifier "/"}+
¢ TestCaseName ::= Identifier
o TestCaseld ::= $TestCaseld TestCaseldentifier

e Test
e Test

Caseldentifier ;:= Identifier

ISO/IEC 8882-1: 1993 (E)

Bu,l;pgsg_;_;;s]:estkuppgse BoundedFreeText

¢ DefgultsRef :i= $DefaultsRef DefaultsReference
o DefgultsReference ::= Defaultldentifier [ActualPARlist}
¢ ExtComments ::= $ExtComments BoundedFreeText

A.15.2.2 Sty

Each test cag

ructure of the Test Case Behaviour

e contains a precise description of sequences of (anticipated) events and related verdicts (This description is s

with TTCN §tatements as nodes in that tree and verdict assignments at its leaves.

In many cas¢

Statement and Verdict

Statement

Statement and Verdict

Test Case
Statement and Verdict

Statement

Statement Statement and Verdict

Figure A.6: Test Case Behaviour Structure

s it is more efficient to Use test steps as a means for substructuring this tree:

Statement
Test Step

ructured as a tree,

Test Case
Statement and Verdict

Statement

Statement Statement and Verdict

69

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

ISO/IEC 8882-1: 1993 (E) ©ISO/IEC

Figure A.7: Structured Test Case Behaviour
In TTCN this explicit modularization is expressed using test steps and the ATTACH statement.

A.15.3 Specification of Test Step Dynamic Behaviour ;
Test step dynamic behaviours are identical to test case dynamic behaviours, except for the following differences:
a) the table has the heading "Test Step Dynamic Behaviour";

b) the test step reference specifies the location of the test step in the test step library; a test step reference shall conform to the requirements of
clause A.8.3; '

c) the test step identifier may be used interchangeably with a test step reference;

d) an optional likt of formal parameters, and their associated types, may be specified immediately following the test step identiﬂier. These pa-
rameters may be used to pass PCOs, constraints or other data objects into the root tree of the test step;

e) test steps do Tot have a test purpose, instead they have an objective. This is an informal statement of the objective of the tes{ step.

This information|shall be provided in the format shown in the following proforma:

Test Step Dynamic Behaviour

Refenence: TestStepReference

Identjfier: TestStepldentifier [FormalPARlzst]
Objective: FreeText

Defaylt: DefaultsReference

Behaviour Description Label Constraints Verdict Comments
e Reference
StatementLine
TreeHeader Label Constraints Verdict FreeTexi
. Reference
StatementLine

Extennded Comments: FreeText'

Proforma 37: Test Step Dynamic Behaviour

SYNTAX DEFINITION:

o TestStep ::= $Begin_TestStep TestStepRef TestStepld Objective [DefaultsRef] BehaviourDescription [ExtComments]
$End_TestStep

» TestStepRef ::= $TestStepRef TestStepReference

» TestStepReference ::= (TestStepGroupReference TestStepName) | (Suiteldentifier "/* TestStepName)

» TestStepGroupReference ::= Suiteldentifier "/" {TestStepGroupldentifier "/}

o TestStepName ::= Identifier

o TestStepld ::= $TestStepld TestStepIdenuﬁer [FormalPARlist]

+ TestStepldentifier ::= Identifier

» Objective ::= $Objective BoundedFreeText

A.15.4 Specification of Dynamic Default Behaviours

A TTCN test specification shall specify alternative behaviour for every possible event. It often happens that in a behaviour tree every sequence

70

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

©ISO/IEC

ISO/IEC 8882-1 : 1993 (E)

of alternatives ends in the same behaviour. This behaviour may be ’factored out’ as default behaviour to this tree. Such default behaviour de-
scriptions are located in the global defaults library.

This information” shall be provided in the format shown in the following proforma:

Default Dynamic Behaviour

Reference: DefaultReference
Identifier: Defaultldentifier [FormalPARlist]
Objective: FreeText ‘

Behaviour Description Label Constraints Verdict |- Comments -
Reference
StatementLine Label Constraints Vierdict FrdeText
Reference ‘

Extended Comments: FreeText

Proforma 38: Default.Dynamic Behaviour

The default{dynamic behaviour proforma shall be identical to the t€st step dynamic behaviour proforma, except for the following differences:

a) the tablg

is headed ""Default Dynamic Behaviour";

b) the defdult reference specifies the location of the default in the defaults library. A default reference shall conform to
clause A.8.4. These complete references shall be-unique within the test suite; :

¢) the defdult identifier may be used interchangelably with a default reference;

d) a defaujt dynamic behaviour proformadoes not have an entry in its heading for a defaults reference since defaults are

defaultd;
¢) itshall ¢

It should be
be passed tqg

NOTE - Foy

ontain only one behaviour-tree.

noted that both PCOsjand other actual parameters may be passed to default behaviour descriptions in the sams
test steps. The.same rules on scope and substitution of these parameters apply as described for tree attachment

the meanifig of defaults see clanse A.15.18.

. SYNTAX DEFINITION:

the requirements of
pot allowed to have

way that they may
(clause A.15.13.2).

EEnd_Default

¢ Defaul(+= $Begin_Default DefaultRef Defaultld Objective BehavxourDescrxpuon [ExtComments] $
o DefaultRef ::= $DefaultRef DefaultReference '
o DefaultReference ::= (DefaultGroupReference DefaultName) | (Suiteldentifier "/" DefaultName)

¢ DefaultGroupReference ::= Suiteldentifier "/* {DefaultGroupldentifier "/" }+

e DefaultGroupldentifier ::= Identifier

¢ DefaultName ::= Identifier

¢ Defaultld ::= $Defaultld Defaultidentifier [FormalPARIist]

¢ DefaultIdentifier ::= Identifier

A.15.5 The Behaviour Description

The behaviour description column of a dynamic behaviour table contains the specification of the combinations of TTCN statements that are
deemed possible by the test suite specifier. The set of these combinations is called the behaviour tree. Each TTCN statement is a node in the

71

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

ISO/IEC 8882-1: 1993 (E) ©ISO/IEC

behaviour tree.

A.15.6 The Tree Notation

In the TTCN notation, each TTCN statement shall be shown on a separate statement line. The statements can be related to one another in two
ways:

- as sequences of TTCN statements;
- as alternative TTCN statements.

Sequences of TTCN statements are represented one statement line after the other, each new TTCN statement being indented once.from left to
right, as time is assumed to progress.

EXAMPLE 46 - TTCN statements in sequence:

EVENT_A ‘
CONSTRUCT_B
EVENT_C

Test TTCN statethents at the same level of indentation and belonging to the same predecessor node represent the|possible altemnative TTCN
statements which|may occur at that time. Alternative TTCN statements shall be given in the order in which the.appropriate testet shall repeat-
edly attempt then} until one occurs.

EXAMPIE 47 - alternative TTCN statements:

CONSTRUCT_B1
STATEMENT_B2
EVENT_B3

EXAMPLE 48 - combining sequences and alternatives to build a tree:

EVENT_A
CONSTRUCT_B1
STATEMENT_B2
EVENT_B3

EVENT_C

The term "set of afternatives" is used generically to describe:
a) true "sets" of more than 1 element, but also "sets" containing only a single element;

b) behavior that ¢an be considered as actual alternatives$.- that is, mutually exclusive behavior - as well as behavior lines that maly, because of
their static or dlynamic semantics, include unreachable behavior lines. An example of unreachable behavior due to static semantics is when
behavior lines|are coded (sequentially) after, and at the same level of indentation as, a TTCN statement such as assignment, which always
succeeds. An|example of unreachable behavior due to dynamic semantics occurs whenever an event matches one of a set of alternatives
on a pass thropgh the set of alternatives, because all the subsequent members of the set of alternatives are then unreachable| In all cases,
subsequent behaviour to non-matched.-alternatives is-unreachable because of dynamic semantics.

A.15.7 Tree Names and Parameter Lists
A.15.7.1 Introduction

Each behaviour d¢scription\shall contain at least one behaviour tree. So that trees may be unambiguously referred to (such as in pn ATTACH
statement) each trge has a'tree name.

The first tree appearing within a behaviour description is called the Toot tree. Ihe name of a root tree is the identifier appearing in the header
of its dynamic behaviour table. That is, the tree name of the root tree of a test step is the test step identifier for that test step, and likewise for
root trees in test case dynamic behaviours and default dynamic behaviours.

Trees other than the root tree which appear within'dynamic behaviour tables are termed local trees. Local trees are prefixed by a tree header
which contains the tree name.

SYNTAX DEFINITION:

o TreeHeader ::= $TreeHeader Header

» Header ::= Treeldentifier [FormalPARlist]

s Treeldentifier ::= Identifier

s FormalPARIist ::= "(" FormalPARsubList {SemiColon FormalPARsubList} ")"

72

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

©ISO/IEC ISO/IEC 8882-1 : 1993 (E)

s FormalPARsubList ::= PARidentifier { Comma PARidentifier} Colon ParameterType
« PARidentifier ::= Identifier

e SemiColon :=";"
LN}

e Colon:=":
+ ParameterType ::= Type | ReferenceType | PCOtypeldentifier

A.15.7.2 Trees with Parameters

All trees, except test case root trees, may make use of parameters. These parameters may be used to provide PCOs, constraints, variables, or
other such items for use within the tree. Test case root trees shall never make use of parameters.

If a tree makes use of parameters, then a list of formal parameters and their types shall appear within parentheses directly following the tree
name. For ¢xample, the formal parameter list for a test step root tree shall appear within parentheses immediately following the test step iden-
tifier in the peader of the test step dynamic behaviour table. Similarly, the formal parameter list for a local tree shall 4ppear immediately after
the tree nanje in the tree header.

In construcfing the formal parameter list, each formal parameter shall be followed by a colon and the name of the formal garameter’s type. If
more than dne formal parameter of the same type is present, these may be combined into a sub-list. When such a sub-list|is used, the formal
parameters within the sub-list shall be separated from each other by a comma. The final formal paraméter-in the sub-list shall be followed by
a colon and|the formal parameter’s type. :

When mord than one formal parameter and type pair (or more than one sub-list and type pair)ds used, the pairs shall be sgparated from each
other by semi-colons.

Formal pargmeters may be of PCO type, constraint type, or one of the other TTCN predefined or user types.
EXAMPLE 49 - A local tree header using formal parameters: EXAMPLE (TREE(L:TSAP; X:INTEGER)

EXAMPLE 50 - A test step root tree using formal parameter sub-lists:

Test Step Dynamic Behaviour

Reference: TTCN_EXAMPLES/CSP_101
Identifier: PREAMBLE(A, B:INTEGER; X:BITSTRING)
Dbjective: To illustrate test step identifierwith a formal parameter list.

Default:
Behaviour Description Label Constraints Verdict Compments
Reference :
CONNECTrequest CR1

A.15.8 TTCN Statements

The tree no‘ation allows the specification of test events initiated by the tester, test events received by the tester, TTCN pseudp-events and TTCN
constructs, T Trents:

SYNTAX DEFINITION:

¢ Statement ::= Event | PseudoEvent | Construct

¢ Event ::= Send | ImplicitSend | Receive | Otherwise | Timeout
¢ Construct ::= GoTo | Attach | Repeat ‘

e PseudoEvent ::= [TTCNExpression] [TimerOperations]

The TTCN Test events are the ASPs or PDUs to be initiated or received by the lower- or upper tester, the OTHERWISE event and the TIME-
OUT event. TTCN also supports the GOTO, ATTACH and REPEAT constructs.

Test events can be accompanied by Boolean expressions, assignments and timer operations. Boolean expressions, assignments and timer oper-
ations can also stand alone, in which case they are called pseudo-events.

73

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

ISO/IEC 8882-1 : 1993 (E) O©ISO/NEC

A.15.9 TTCN Test Events

A.159.1 Sending and Receiving Events
TTCN supports the initiation (sending) of ASPs and PDUs to named PCOs and acceptance (receipt) of ASPs and PDUs at named PCOs. The
PCO model is defined in clause A.11.8.

The names of events to be initiated by the appropriate tester shall be prefixed by an exclamation mark (!). Those events which it is possible for
the appropriate tester to accept shall be prefixed by a question mark (?).

An unqualified SEND event is always successful.

Such names (composed of "!" or "?" followed by an event name) shall be prefixed by one of the PCO names appearing in the formal parameter
list of the tree in which the event appears The PCO name is used to mdlcate the PCO at whlch the test event may occur. If the test suite only

uses one PCO the PCO yu:u)\ ray beomitted:
SYNTAX DEFINITION:

¢ Send :d [PCOldenuﬁerlPARldentlﬁer] " (ASPldenuﬁerIPDUldenuﬁer) [EncodedAs] [TTCNExpressign]
[Timer(ppérations) ’
¢ Receive ::= [PCOidentifier | PARidentifier] "?" (ASPidentifier | PDUidentifier) [DecodesAs] [’ITCNExpre551on]
[Timer(dperations) ‘

In the simplest form an ASP identifier or PDU identifier follows the "!" or "?", as.in the following eXample:
EXAMPLE 51 - !ISUBreq or ?CONind

NOTE - see clause A.15.9.7 for the definition of the lifetime of received event. This definition"covers the minimum scope of r¢ceived events
and may be extefded in future versions of TICN.

A.15.9.2 "Alignment of Test Events

A set of alternatjves (i.e. events, pseudo-events and TTCN constructs) shall be written so that the first symbol of each of the alternatives is
aligned in the same column (level of indentation) within the behaviour description .

EXAMPLE 52 - alignment of alternatives

I7A
L7B
STATEMENT_C

These thiee lines represent a set of alternatives.(The syntax of TTCN statements is discussed in subsequent clauses of thik stan-
dard*).

A.15.9.3 Execution of the Behaviour Tree
A.15.9.3.1 Intrqduction

The test suite specifier shall organize the behaviour tree representing a test case or a test step according to the following rules [regarding test
execution:

- starting from the root of the-tree, the lower or upper tester remains on the first level of indentation until an event occurs. If an{event is to be
initiated the tester initiates.it; if an event is to be received , it is said to occur only if a received real event matches the descriptign of the event
in the behaviour fre€;

- once an event has occurred, the tester remains on the next Ievel of indentation. No return to a previous Ievel of indentation can be made, except
by using the GOTO statement;

- test events at the same level of indentation and following the same predecessor event represent the possible alternative events which may occur
at that time. Alternative events shall be given in the order that the test suite specifier requires the lower or upper tester to attempt either to initiate
or receive them, if necessary, repeatedly, until one occurs.

NOTE - The OTHERWISE event, pseudo-events and TTCN constructs bring further complexity to the above rules. Refer to the relevant clauses
for execution rules.

Suppose that the following sequence of events can occur during a test whose purpose is to establish a connection, exchange
some data, and close the connection. The events occur at the lower tester PCOL:

a) CONNECTrequest, CONNECTconfirm, DATArequest, DATAindication, DISCONNECTrequest;

Progress can be thwarted at any time by the TUT or the service provider. This generates two more sequences:

74

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

©ISO/IEC ISO/EC 8882-1: 1993 (E)

b) CONNECTrequest, CONNECTconfirm, DATArequest, DISCONNECTindication;
" ¢) CONNECTrequest, DISCONNECTindication.

The three sequences of events can be expressed as a TTCN behaviour tree. There are five levels of alternatives, and only three
tips (a to ¢), because the SEND events L! are always successful. Execution is to progress from left to right (sequence), and from
top to bottom (alternatives). The following diagram illustrates this progression, and the principle of the TTCN behaviour tree.

progression of Time >
a EXAMPLE-TREE (L:NSAP)
1 L_.)L! CONNECTrequest
:: L__.,L? CONNECTconfirm
lrl '____,L! DATA;equest
:l L-———->L? DAT Aindication
z/ |——-—)L! DISCONNECTrequest h)
: L 31.7? DISCONNECTindication h)
l L__,I.? DISCONNECTindication C)

Figure A.8: Principle of a TTCN Behaviour Tree

There are o lines, arrows or tip names in the TTCN'notation. The behaviour tree of this example would be rep-'esented in TTCN
as in the fellowing figure: :

Test Case Dynamic Behaviour
eference: TTCN_EXAMPLES/TREE_EXAMPLE _1
%entiﬁer: TREE/EX_1(L:NSAP)
urpose: To illustrate the use of trees.
Default:
Behaviour Description Label Constraints Verdict Conmments
Reference
HECONNECTrequest CR1 Request ...
L?CONNECT confirm CC1 ... Confirm
L 'DATArequest DTR1 Send Data
L?DATAindication DTI1 Receive Data
L !DISCONNECTrequest DSCR1 _pass Accept
L 7DISCONNECTindication DSCI1 Inconc | premature
L ?DISCONNECTindication DSCR1 neonc | premature

Figure A.9: A TTCN Behaviour Tree

NOTE - See clause A.15.19 to see how this example can be simplified by specifying the L? DISCONNECTindications as default behaviour.

75

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

ISO/IEC 8882-1 : 1993 (E) OISOMEC

A.15.9.3.2 The Concept of Snapshot Semantics

The alternative events at the current level of indentation are processed in their order of appearance. TTCN operational semantics (see annex B)
assume that the status of any of the events cannot change during the process of trying to match one of a set of alternatives. This implies that
snapshot semantics are used for received events and TIMEQUTS - i.e. each time around a set of alternatives a snapshot is taken of which events
have been received and which TIMEQUTs have fired. Only those identified in the snapshot can match on the next cycle through the alternatives.

A.159.4 The IMPLICIT SEND Event

In the Remote Test Methods, although there is no explicit PCO above the IUT, it is necessary to have a means of specifying, at a given point
in the description of the behaviour of the Lower Tester, that the IUT should be made to initiate a particular PDU or ASP. For this purpose, the
implicit send event is defined, with the following syntax:

SYNTAX DEFINITION:
o Implicit§end ::= "<" TUT "!" (ASPidentifier | PDUidentifier) ">" [EncodedAs]

The IUT in the syntax takes the place of the PCOidentifier used with a normal SEND or RECEIVE, indicating that the specified ASP or PDU
is to be sent by th¢ IUT. The angle brackets signify that this is an implicit event, i.e. there is no specification of what is done to the JUT to trigger
this reaction, only a specification of the required reaction itself.

An IMPLICIT SEND event is always considered to be successful, in the sense that any alternatives coded after, and at the same ipvel of inden-
tation as the IMPLICIT SEND are unreachable.

An IMPLICIT SEND shall only be used where the relevant OSI* standard(s)* permit the IUT to send the specified ASP or PDU at that point
in its communication with the Lower Tester,

For every IMPLICIT SEND in a test suite, the test suite specifier shall create and reference @question in the partial PIXIT profora that allows
indication of whether the IMPLICIT SEND can be invoked on demand.

An IMPLICIT SHND event shall not be used unless the test method being used is ‘one of the Remote methods. An IMPLICIT SEND event shall
not be used unles the same effect could have been achieved using the DS test method.

When an IMPLIQIT SEND event is specified, the associated internal events within the IUT necessary to meet the requirements of the standard
for the protocol bping tested are also performed, e.g. set timer, initializé state variables.

NOTE - For examjple, when testing a connection-oriented Transport:Protocol implementation, it would be permissible to use IMPILICIT SEND
to get the IUT tolinitiate a CR TPDU because in the DS test method that effect could be achieved by getting the Upper Testet to send a T-
ConReq ASP. On|the other hand, it would not be permissible,to use IMPLICIT SEND to get the IUT to initiate an N-RstReq ASE because that
effect could not He controlled through the Transport Service boundary. The reason for this restriction is to prevent test cases ffom requiring
greater external cpntrol over an IUT than is provided for in the relevant protocol standard*. ‘

The semantics of [MPLICIT SEND is that the SUT shall be controlled as necessary in order to cause the initiation of the specified [ASP or PDU.
The way in whiclj the SUT is to be controlled should be specified in the PIXIT (or documentation referenced by the PIXIT).

Neither a final verdict nor a preliminary(result shall be coded on an IMPLICIT SEND event.

At an appropriate{ point following an IMPLICIT SEND, there should be a RECEIVE event to match the ASP or PDU that should, as a result,
have been sent by| the IUT.

NOTE - Such a RECEIVE.event is often likely to be specified at the next level of indentation immediately after the IMPLICIT|SEND, but it
may be specified further-down the tree if it is expected that there are other PDUs already in transit towards the Lower Tester.

76

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

O©ISO/IEC

EXAMPLE 53 - EXAMPLE use of IMPLICIT SEND

ISO/IEC 8882-1 : 1993 (E)

Test Step Dynamic Behaviour

Reference:

TTCN_EXAMPLES/IMPLICIT _SENDI1
Identifier: IMPI1(LT:N_SAP)

LT ? OTHERWISE

Objective: A partial tree to illustrate the use of IMPLICIT SEND.
Default:
Behaviour Description Label Constraints Verdict Comments
Reference '
qIUT ! CR > CR1
LT?CR CR1-
LT!CC CcC1

A.15.9.5 The OTHERWISE Event

The predefi
the syntax:

SYNTA
o Oth

OTHERWI
natives to th

X DEFINITION:

e OTHERWISE.

ned event OTHERWISE is the TICN mechanism for dealing with-Dfiforeseen test events in a controlled way.

erwise 1:= [PCOidentifier | PARidentifier] "?" OTHERWISE [TTCNExpression] [TimerOperation

OTHERWISE has

et

»]

BE is used to denote that the appropriate tester shallaccept any incoming event which has not previously matched one of the alter-

If a tree usgs multiple PCOs then the OTHERWISE shall be preceded by a PCO identifier. Incoming events, including QTHERWISE, are

considered

EX/

Assyme no evént)is received at PCO1, then receipt of event B at PCO2 results in a pass verdict. Receipt of any otl

PC(Q

nly in terms of the given PCO.

PCO1? A
PCO2?B
PCO12C
PCO22 OTHERWISE

2 results’in a fail verdict.

AMPLE 54 - use of OTHERWISE\with PCO identifiers
PARTIAL_TREE (PCO1:XSAP; PCO2:YSAP)

pass
inconc
fail

her event at

Due to the s1ignificance of ordering of alternatives, incoming events following an (unconditional) OTHERWISE on the sa1ne PCO will never

be matched!

EXAMPLE 55 - incoming events following an OTHERWISE:

PARTIAL_TREE (PCO1:XSAP)

PCO1? A
PCO1?B
PCO1? OTHERWISE
PCO1?7C

The OTHERWISE will match any incoming event other than A or B. The last alternative, 7C, can never be matched.
A.15.9.6 The TIMEOUT Event
A.15.9.6.1 Introduction

The TIMEOUT event allows expiration of a timer, or of all timers, to be checked in a test case. When a timer expires (conceptually immediately

77

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

ISO/IEC 8882-1: 1993 (E) ©ISO/MEC

before a snapshot processing of a set of alternative events), a TIMEOUT event is placed into a timeout list. The timer becomes immediately
inactive. Only one entry for any particular timer may appear in the list at any one time. Since TIMEQUT is not associated with a PCO, a single
timeout list is used.

When a TIMEOUT event is processed, if a timer name is indicated, the timeout list is searched, and if there is a timeout event matching the
timer name, that event is removed from the list, and the TIMEOUT event succeeds. ~

If no timer name is indicated, any timeout event in the timeout list matches. The TIMEOUT event succeeds if the list is not empty; and the list
itself is immediately emptied.

TIMEOUT has the following syntax:
SYNTAX DEFINITION:

¢ Timeout+:=2TIMEOUT [Timerldentifier] [TTCNExpression] [TimerOperations]

EXAMPLE 56 - 7TIMEOUT T

If the timer identjfier is omitted, then the TIMEOUT applies to any timer which has expired.
A.159.6.2 Using TIMEOUT with OTHERWISE
Because TIMEOEJ

EXAMPLE 57 - relationship of TIMEOUT and OTHERWISE:
PARTIAL_TREE (PCO1:XSAP)

T events do not occur at any particular PCO they are not covered by the OTHERWISE event:

PCO1? A pass
PCO1? OTHERWISE fail
ITIMEOUT T inconc
An inconflusive verdict is assigned if no incoming event is received at PCO1{neither A nor anything else) and the timey T ex-

pires.
A.159.7 Lifetime of Events

Identifiers of ASP parameters and PDU fields associated with SEND and RECEIVE shall only be used to reference ASP parameter and PDU
field values on the statement line itself.

Therefore, in the[case of SEND events, relevant ASP parameters and PDU fields can be set, if required, by using them in apprqpriate assign-
ments on the SEND line. Similarly, in the case of RECEIVE evennts, if relevant ASP parameter and PDU field values need to bg subsequently
referenced, eithet the whole ASP or PDU or a relevant part of it'shall be assigned to variables on the RECEIVE line itself. These [variables may
then be referenced in subsequent lines. ‘ '

A.15.10 TTC Expressions
A.15.10.1 Introguction

There are two kinds of expressions: ASSIGNMENTS and BOOLEAN expressions.

¢) Test suite and test case variables;
d) Formal parameters of a test step, default or local tree;
¢) ASPs and PDUs (on event lines).

SYNTAX DEFINITION:

¢ DataObjectldentifier ::= TCVid | PARidentifier | ASP_PDUidentifier
¢ TCVid ::= TS_PARidentifier | TS_ CONSTidentifier | V ARidentifier
s ASP _PDUidentifier ::= ASPidentifier | PDUidentifier

78

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

©ISO/IEC ISO/IEC 8882-1: 1993 (E)

A.15.10.2 References for ASN.1 Defined Data Objects
To refer to components of structured data objects the following access mechanisms are provided:

a) areference to a component of one of the following types: SEQUENCE, SET-and CHOICE is constructed using a dot notation; i.e. appending
a dot and the name (component identifier) of the desired component to the data object identifier;

b) references to unnamed components are constructed by giving the position of the component within the type definition in parentheses; the
component identifier shall be used if specified; numbering of such components of such a type starts with "1".

SYNTAX DEFINITION:

s DataObjectReference ::= (DataObJectIdenuﬁer {ComponentReference}) | (Componemldenuﬁer
{ComponentReference}) =
s ComponemRererence = RecordRef T AITayRef + BitRef
¢ RegordRef ::= Dot (ComponentIdentifier | ComponentPosition)
¢+ Componentdentifier ::= ASP_PARidentifier | FIEL Didentifier
o ComponentPosition ::= "("Number")"
Omitting the data object identifier (i.e. starting the reference with a component identifier) is only allowed for references|to the ASPs/PDUs

associated yith event lines. If this leads to ambiguity (e.g. there is an existing variable with the same name as a referencedl ASP parameter or
‘ PDU field) khe full reference shall be used.

EXAMPLE 58 - example_type = SEQUENCE {

field_1 INTEGER,

field 2 BOOLEAN
OCTETSTRING ¢

If yarl is of ASN.1 type example_type, then we could write:

var] field_1 -- refers to the first INTEGER field --

var].(3) --refers to the third (unnamed) field --

EXAMPLE 59 - XY_PDU_type ::= SEQUENCE {

gser_data OCTETSTRING,
|)
On the statement line: L? XY_PDUj(buffer := user_data)
‘ user_data may be used instead'of XY_PDU.user_data if there is no other data object defined with the‘n'amekuser_data.
An index enclosed in square brackets is used to refer to a component of an ASN.1 SEQUENCE OF or SET OF type.
SYNTAX DEFINITION! |

* yRef ::="[“ComponentNumber "]"
+ ComponentNumber ::= SimpleExpression

The first compenent has the number "0".

The simple expression shall evaluate to a non-negative INTEGER

The same notation is used to refer to elements (bits) of the ASN.1 BITSTRING type. BITSTRING is assumed to be defined as SEQUENCE
OF {BOOLEANY}. If certain bits of a BITSTRING are associated with an identifier (named bit) then the dot notation and this identifier shall
be used to refer to the bit. '

SYNTAX DEFINITION:

s BitRef ::= Dot Bitldentifier| "{" BitNumber "]"
¢ Bitldentifier ::= Identifier
¢ BitNumber ::= SimpleExpression

The leftmost bit has the number "0".

79

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

ISO/IEC 8882-1: 1993 (E) ©ISO/IEC

The simple expression shall evaluate to a non-negative INTEGER.

EXAMPLE 60 - b_type ::= BITSTRING { ack(0), poli(3) }

where bit zero is called “ack" and bit three is called "poll"

If b_stris of ASN.1 type b_type, then we could write:

b_str.ack := TRUE

b_str[2] := FALSE

Note that b_str.poll := TRUE and b_str{3] := TRUE both assign the value TRUE to the "poll" bit.
A.15.10.3 References for Data Objects Defined by the Tabular Method

The same syntax fas defined in A.15.10.2 shall be used to construct references to structured data objects defined in the tabular-foym (i.e. ASPs
and PDUs). To specify a reference to an ASP parameter or PDU field the data object identifier shall be followed by a dot @nd-a parameter or
field identifier. When accessing parameters or fields of ASPs or PDUs on the same statement line they are received/sent, the datg object refer-
ence (i.e. the ASE identifier or PDU identifier) may be omitted resulting in an abbreviated form.

A.15.10.4 Assignments
A.15.10.4.1 Intrpduction

The effect of ah assignment is to bind the test case or test suite variable (or ASP parameter or PDU field) to the value of the pxpression if,
and only if, the eyent occurs. The expression shall contain no unbound variables.

The rules for use jof assignments within events are as follows:

a) all assignmengts occur in the order in which they appear, that is left to right processing;

b) on a SEND eYent all assignments are performed gfter the Boolean expression is evaluated and before the ASP or PDU is trafnsmitted;

c) on SEND events assignments are allowed for the fields of the ASP or PDU being’transmitted;

d) on a RECEIVEE event assignments are performed after the event occurs arid'cannot be made to fields of the ASP or PDU just received.
EXAMPHE 61 - use of assignments with évent lines:

X:=1)
(Y:=2)
LA (Y:=0, X:=Y) (A .field1:=Y)
L7B (Y:=B.field2) (X:=X%1)

When PDJU A is successfully transmitted the contents of the test case variables X and Y will be zero, and field1l of PDU A will
in zero. Upon receipt of PDU B the test case variable Y would be assigned the contents of field2 from PDU B afd the

nt ;= "(" SimpleAssignment {Comma Simple Assignment} ")

signment ::=DataObjectReference "::=" Expression

ipn ::= SimpleéExpression [Relop SimpleExpression]

s SimpleEkpression:= Term { AddOp Term}

s Term ::={FaCtor'{MultiplyOp Factor}

¢ Factor ;:={UnaryOp]-Primary

o Primary ::= DataObjectReference | R | UserOperation | "(" Expression ")" | Number | Cstring | Hstring | Ostring | Bstring
| BooleanValue | ASN1_EnumeratedIdentifier | ASN1_NamedIntegerIdentifier

¢ ASN1_Enumeratedldentifier ::= Identifier
o ASNI1_NamedIntegerldentifier ::= Integer

e AddOp:= "+"I"-"IOR
o MultiplyOp ::= "*" "/ IMOD | AND
.o UnaryOp ::= "+"1"-"1 NOT

» UserOperation ;:= OPidentifier [ActualPARlist]

The types on the left-hand side and the right-hand side of an assignment shall be assignment compatible (as defined in clause A.11.2.4).

80

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

OISO/IEC

ISO/IEC 8882-1: 1993 (E)

The result of performing the MOD operation on two INTEGER values gives the remainder of dividing the first INTEGER by the second.

The result of performing the division operation ("/") on two INTEGER values gives the whole INTEGER value resulting from dividing the
first INTEGER by the second (i.e. fractions are discarded).

A.15.10.4.2

Assignment Rules for String Types

If length restricted string types are used within an assignment the following rules apply:

a) if the destination string type is defined to be shorter than the source string, the source string is truncated on the right to the maximum length
of the destination string type;

b) if the source string is shorter than that allowed by the destination string type, then the source string is left aligned and padded with fill char-
acters up to the maximum size of the destination string type.

Fill ch:j
o (bl

"0" (zer

A.15.10.5 Boolean Expressions

An event m
occur if bot}

If both a Bo
SYNTA

¢ Bog
¢ Rel

A.15.10.6 A

It is allowed
assignment
pression hol
if the event

If aRECEIY
ean expressi
and/or PDU|
the specifieq
care’ value,

Boolean exp
of assighme

EX
EX

isu

epression is used, this Boolean becomes an additional condition for accepting any incoming event. If an assignmen

acters are:
k) for all character strings;

) for BITSTRINGs, HEXSTRINGs and OCTETSTRINGs.

hy be qualified by placing a Boolean expression after the event. This qualification shall be taken to mean that
| the event matches and the Boolean expression evaluates to TRUE.

)p = n=|| | n<" I n>v| | n<>n I n>=u | n<=n

Assignments and Boolean Expressions with Events

to associate an event with either an assignment, or a Boolean expression or both. If an event is followed by
s executed only if the event occurs. If an event is followed by a Boolean expression, the event may occur only]
ds. If an event is followed by both, the event may oceur only if the Boolean expression holds, and the assignme;
beeurs.

'E event is qualified by a Boolean expression.and the event that has occurred potentially matches the specified ey
on shall be evaluated in the context of the @vent that has occurred. If the Boolean expression contains a reference
fields then the values of those parameters and/or fields are taken from the event that has occurred and shall also
| constraint; in such cases the valuginthe relevant constraints declaration of each ASP parameter and/or PDU fig
a list of values, or a range of valugs.

ressions may be broken down into a sequence of Boolean expressions. Similarly, assignments may be broken do
hts. The separate assighments are performed sequentially, left-to-right.

AMPLE 62 - ?CR(W=1]{X<2] (Y:=3) (Z:=4) is equivalent to ?CR [W=1 AND X<2] (Y:=3, Z:=4)
AMPLE 63 -The*OTHERWISE event may be used together with Boolean expressions and/or assignments. If

ed, the assignment will take place only if all conditions for matching the OTHERWISE are satisfied. For exam

a match may only

blean expression and an assignment are associated with the same event, then the Boolean expression shall appelar first.
X DEFINITION:
leanExpression ::= "[" Expression "1" /* Expression shall evaluaté:to°a Boolean Value */

an assignment, the
if the Boolean ex-
nt is only executed

ent, then the Bool-
to ASP parameters
be consistent with
1d shall be a ‘don’t

wn into a sequence

a Boolean

t statement
ple,

PARTIAL_TREE (PCO1:XSAP; PCO2:YSAP)

DPOEOTIA

TCOTT 7} pass
PCO27B [X=2] inconc
PCO1?7C pass
PCO2? OTHERWISE [X<>2] (Reason:="X not equal 2") fail
PCO2? OTHERWISE (Reason:="X equals 2 but event not B") fail

Assume that no event is received at PCO1. Receipt of event B at PCO2 when X=2 gives an inconclusive verdict. Receipt of any
other event at PCO2 when X<>2 results in a fail verdict and assigns a value of "X not equal 2" to the character string variable:
Reason. If an event is received at PCO2 that satisfies neither of these scenarios then the final OTHERWISE will match.

EXAMPLE 64 - Use of a qualified SEND event

PARTIAL_TREE
7A pass
IB[X=3] inconc

81

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

ISO/IEC 8882-1 : 1993 (E) ©ISO/IEC

? OTHERWISE fail

A verdict of fail will be assigned if neither A is received nor B is sent due to X<>3. If X=3 an inconclusive verdict is assigned
and the OTHERWISE never occurs.

A.15.10.7 Assignments and Boolean Expressions Without Events

It is permitted to use assignments and Boolean expressions by themselves on a statement line in a behaviour tree, without any associated
event. These stand-alone expressions are called pseudo-events. Only the following combinations are allowed:

a) assignments alone; the assignments are executed,

b) Boolean expressions alone; the Boolean expressions are evaluated, execution continues with subsequent behaviour (if any) only if the ex-
pressions hold;

¢) Boolean expfessions followed by assignments; the assignments are executed only if the Boolean expression holds.

A.15.11 The ENCODE and DECODE Expressions
A.15.11.1 Intrdduction
The ENCODE ahd DECODE expressions allow the specification of the encoding of PDUs embedded in ASPS br other PDUs.

It is recommended that the static chaining of constraints mechanism (clause A.15.11.1) is used for specifying ASPs with embedded PDUs, If ‘
desired this chaiging mechanism can be used in combination with parameterized constraints. See { Annex C} for examples of thesp mechanisms.

NOTE - ENCODE and DECODE are discouraged, but they are still part of TTCN for reasons, of\upward compatibility. The ptatic chaining
mechanism was pot available in DP versions of TTCN and therefore ENCODE and DECODE-were used instead.

A.15.11.2 The ENCODE Expression
The ENCODE operator is written as *, and should be read as "is encoded as". An ENCODE expression is only associated with 2a SEND events:

The ENCODE ekpression has the syntax:

SYNTAX DEFINITION:
s Send ;=3 [PCOidentifier | PARidentifier] "!" (ASPidentifiér | PDUidentifier) [EncodedAs] [TTCNExpressi¢n]
[Timer(Dperations]

o EncodeglAs ::= "<" DataObjectReference "A" PDUidentifier [EncodedAs] ">"

‘The left-hand side of the ENCODE expression shall be thename given to the ’user data field in the appropriate ASP or PDU type declaration.
'A.15.113 The DECODE Expression
The DECODE operator is written as ~, and should be read as "decodes as". A DECODE expression is only associated with a RECEIVE event:
The DECODE efpression has the syntax:
SYNTAX DEFINITION:

» Receivd ::= [PCOidentifier | PARidentifier] "?" (ASPidentifier | PDUidentifier) [DecodesAs] [TTCNExpregsion]
[Timer(Pperations]
s ‘DecodesAs ;:= "< DataObjectReference "~" PDUidentifier {DecodesAs] ">"

The left-hand side of the ENCODE expression shall be the name given to the user data field in the appropriate ASP or PDU type declaration.

A.15.12 Timer Management
A.15.12.1 Introduction

A set of operations are used to model timer management. These operations can appear in combination with events or as stand-alone pseudo-
events. They can be applied to:

- aset of timers, which is specified by omitting the timer name;
- anindividual timer, which is specified by following the timer operation by the timer name.

It is assumed that the timers used in a test suite are either inactive or running. All ranning timers are automatically cancelled at the end of each
test case. There are three predefined TTCN timer operations: START, CANCEL and READ TIMER. More than one timer operation may be
specified on a TTCN statement if necessary. This is indicated by separating the operations by commas.

82

https://iecnorm.com/api/?name=f6115238d6174908824f7df8cae4c92f

