ISO/IEC 29341-4-14:2008(E)

IEC ISO/IEC 29341-4-14

Edition 1.0 2008-11

INTERNATIONAL
STANDARD

\Z
Information technology — UPnP Device Archi re —
P3rt 4-14: Audio Video Device Control Pro -
Lgvel 2 — Scheduled Recording Service Q

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

pu

3,

THIS PUBLICATION IS COPYRIGHT PROTECTED
Copyright © 2008 ISO/IEC, Geneva, Switzerland

blication, please contact the address below or your local IEC member National Committee for further information.

IEC Central Office

rue de Varembé

CH-1211 Geneva 20

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form
or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from
either IEC or IEC's member National Committee in the country of the requester.

If you have any questions about ISO/IEC copyright or have an enquiry about obtaining additional rights to this

S
En
w

ftzertamd
hail: inmail@iec.ch
bb: www.iec.ch

Abq
The

Intefnational Standards for all electrical, electronic and related technologies.

Abq¢

The
late
= C
The
It al

" |H
Stayf
on-|
= E|
The
in E
Voc
= C
If yg
Cen
Em4g
Tel.
Fax;

but the IEC

International Electrotechnical Commission (IEC) is the leading global organization that prepares and publi

but IEC publications

technical content of IEC publications is kept under constant review by the IEC. Please make sure that you havd
t edition, a corrigenda or an amendment might have been published.

htalogue of IEC publications: www.iec.ch/searchpub
IEC on-line Catalogue enables you to search by a variety of criteria (reference number, text, technical committeg
o gives information on projects, withdrawn and replaced publications.

C Just Published: www.iec.ch/online _news/justpub
up to date on all new IEC publications. Just Published details twiCe a’month all new publications released. Avai
ne and also by email.

ectropedia: www.electropedia.org

world's leading online dictionary of electronic and electricakterms containing more than 20 000 terms and defini
hglish and French, with equivalent terms in additionalidanguages. Also known as the International Electrotech
hbulary online.

istomer Service Centre: www.iec.ch/webstore/custserv

u wish to give us your feedback on this publication or need further assistance, please visit the Customer Se
re FAQ or contact us:

il: csc@iec.ch

+41 22919 02 11

+41 22 919 03 00

Ehes

the

o).

able

ions
hical

vice

mailto:inmail@iec.ch
http://www.iec.ch/
http://www.iec.ch/searchpub
http://www.iec.ch/online_news/justpub
http://www.electropedia.org/
http://www.iec.ch/webstore/custserv
mailto:csc@iec.ch
https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

|EC ISO/IEC 29341-4-14

Edition 1.0 2008-11

INTERNATIONAL
STANDARD

N
Information technology — UPnP Device Arcthcg.lre -

Part 4-14: Audio Video Device Control Pro
Level 2 — Scheduled Recording Serwce\§\

INTERNATIONAL
ELECTROTECHNICAL
COMMISSION PRICE CODE XE

ICS 35.200 ISBN 2-8318-1006-9

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

-2- 29341-4-14 © ISO/IEC:2008(E)

CONTENTS

FOREWORDooiitiiiii ittt e ettt e et e e e ettt e e et et e e sae e e e e e sseeeeaansseeeeansseeeesssaeeesnsseeesanssesnssneaesnnnnnesn 10
ORIGINAL UPNP DOCUMENTS (infOrmatiVe)ccueiieiiiiiee et 12
LI O V=Y V=TV 1 Vo BT o 1SS 14
o I IR [01 /oo [N e i o] [N PROPPRPPPPPPPPRE 14
o V2 o] c= 11 To] o KOOSO PPPPPPPPPPRE 14
+24—DPataypes—— .15
1.2.2 Strings Embedded in Other StriNgs........coouiiiiiiiii e L0000 15
1.2.3 Extended Backus-Naur FOrM ... e 15
113 Derived Data TYPEScoii ittt snre e e e s T e e .16
1.3.1 Comma Separated Value (CSV) Listscccccevviiiiiiiiiiiiiiiiecee e .16
14 Management of XML Namespaces in Standardized DCPS...........ccoovce N, A7
1.4.1 Namespace Prefix Requirements ... 19
1.4.2 Namespace Names, Namespace Versioning and Schema Versioning............cccccevvuvee.ny .20
1.4.3 Namespace Usage Examples.........cooooiiiiiiiiiiiiiin e 21
115 Vendor-defined EXIENSIONSeiiiiiiiiiee e e b e e et e e e e e e e e eeeaaeend .22
U6 REFEIENCES ..ceeeeeeeeeieeeeeeeeeeeeeeeteteeteeeveeeveveeeeseeeeessssssssssssss e Taessssnsssssesesssssnsnsnsnsssssnsnsnsnnennneeed .22
2 ([Service Modeling Definitions........cccceiiiiiiiiiniiir i b .25
P2 B B 1= oV ot 1Y/ o T SRR SSORRRII .25
212 Terms and Abbreviations. ... eV e .25
221 ADDIeVvIiations ... N et e e e e e aeeeeans .25
2.2.2 TOIMNS ettt ettt ettt e e e e e e e e e e e e e e b e b e e et e e e e e s ananeeeen .25
213 ScheduledRecording Service ArchiteGlUIevvveiiieiiiie e .31
Y2 Tt B (- Tolo) 0 [N Yo 4 1o [= SRR .31
2.3.2 FECOIATASK oo e\ ettt ettt ettt eeteaeeeaetesasasasssasasssasasssnsasasebnbnsnsssssnsnsnnnsnnnsnnnnnnnd .32
214 State Variables ... 5l e .33
241 State Variable OVEIVIBIV...........uiii ittt et s s e e et e e s snteee e s sntaeeeesnneeeeeand .33
W o T (07 o= o1/ [= I O SRR .35
2.4.3 SOrtLeVelCaRADIlityooeeeeeeeeeeeeeeeiieeieeeeeeeeeeeeeeeeeteseasrerarerararara—a—a———————————————————————————————.] .35
YA I v- 1 (=10 oo = 1= SRR .35
245 LASICHGNQE ettt et e e e e e e e et e e e e e e e e e nteeneeaaaeaeaannnnneeeaan] .36
246 A _ARG TYPE ProREeIYLIStucuciiiicceieiieeie ettt e ettt e e e e e e s esaaae e e e e e e s e nnnraaneeeaend .38
247 ANARG TYPE DaAtaTyPEIDccccccuueeeeiciiieeiiiieee e seieeee e esteee e enitaeaessntaeeessntaeeassnsaeeessnsaeeenand .39
2.4 8STA ARG TYPE ODJECHD.ccueeeieiiiiei ettt ettt e et e e s stae e e s sbeeee e sneeeeeend .39
249" A ARG TYPE ODJECHDLISEcccoecteeeeiieieieeeectiiee e eetteee e estiee e esitaee e ssntaeeessntaeaassntaeeessnneeeenend .39
24 t0—AARGTFYPEPropertyinfor 39
2411 A ARG TYPE INAEX......uitieeiieieeeeeieie e sitiee e e setteeeeettea e s esstee e s essteaeesnstaeasanstaeasssntanassanseeaeennses 39
2412 A ARG TYPE COUNL....utiiiiiiiieee ettt ettt e e ettt e e ettt e e e e abe e e e s anbee e e e nnbee e e e enbeeeeennnes 39
2413 A ARG TYPE SOMCIIEIIA ...vvveeeeieieeiiiiee e e eeiiee e e seteeeeestteaeseeateaesesteeesennteeassnntenassnnsaeaeennnes 39
2414 A ARG TYPE ReCOIdSCREAUIEuueeeeieeiieciieetee e eeeeeeee et e e e e e s ane e e e e e 39
2415 A ARG TYPE RECOIMATASK ..ouveeeiteieeiiitiieeeiitieeeesitteaessstteeessstteeaesssaeeessnsseeassnnteeassnssanasensses 40
2416 A_ARG TYPE RecordSCheQUIEPAITS............ccccuueiiieeiiiciiieiie e e eeccteeee e e siaan e e e e e e 40
2.5 Eventing and MOAerationeeiiiiiiiiiiiee et 41
ST o1 (o] o ISP O PSSP UR PPt 41
2.6.1 GetSOrtCAPRADINEIES() ...eeeeeeeeeeeeeeeeeieeeeeeeeeeeeeeeeeteeeeeeeeeeeeesesssssssssssssssssassssssssssrsrassrssnsnrssnsnrnnnnes 42
W I A € 1Y (0o L= 0 N 1 P PPRRRR 43

2.6.3 GOIANOWEAVAIUES() .ottt e et e et e e e e e e e e e e e st eaeaaaas 44

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) -3-

2.6.4 GetSIAtQUDAALEID() ..ceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeteaeteteae e aaaetasasaaababarararabatabatabarararararararararana 45
2.6.5 BrowsSeReCOIdSCNEAUIES() ...ueeeeeeeieieeiieieeiee ettt e e ee ettt e e e e e e s e e e e e e st aae e e e e e e e aans 46
2.6.6 BroWSERECOIATASKS() «eeeeeeeeeeeeeeieieeeeeeeeeeeeeeeeeeeeeeeeeaeeeeesessssssssssssssssressssssssssrsrarsrsrsrsrsrnrnrnrnnes 50
2.6.7 CreateReCOIASCAEAUIE()uuueeeeeeeieeiiieieee e ettt e e e et e e e e e e st e e e e e e e s seaasareeeaaeeeaans 52
2.6.8 DeleteReCOIASCREAUIE()couueeeeeeeeeeeeeeeeeeeeeeeeeeeeeteeeeeeeeeeeaeeaeaseaesasesassssssssssrsssrsrsrsrnrssnrnrnrnnes 54
2.6.9 GetRECOIASCREAUIE()uueveeeeeiee ettt ettt e e e e e e e e e st e e e e e e e s sentaraeeeaaeeeaans 56
2.6.10 EnableReCOrASCNEAUIE()cceueeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeteeeeeeaesseaesasssssssasassssssssssssssrnrsrnrnrnsnnes 57
2.6.11 DisableReCOrdSCREAUIE()cuuueeeieieiieieeie ettt e e e e s e e e e e s st rae e e e e e e e aans 58
2612 DeleteRecordTask() .59
2.6.13 GEIRECOIATASK() «uvvveeeeeeeieeiiieeeei e e e ettt e e e e e e s e e e e e e e e s e eantaae e e e e e s s eennreaeeeeeeesesnnnses s Do) .60
2.6.14 ENableRECOIATASK() «.ceeeeeeeeeeeeeeeeeieeeeeeeeeeeeeeeeeeeeeeeeeeesessssssssssssssssssssssssssssssrnssrsrnsnss @i deresed .61
2.6.15 DisableReCOIdTASK()ccccouuueeeeieeiieeciieie e e e e eeecteee e e e e e e s esntrae e e s e e s s esnnraneeeseees Dhahraneeeaend .62
2.6.16 RESEIRECOIATASK() ..ceeeeeeeeeeeeeeeeeeeieeeeeeeeeeeeeeeeeeeeeeeeesesesssssessssssssssssssssssssssssssshesdssssssnnnrnnnnnned .63
2.6.17 GetRecordScheduleConfliCtS().........cccovuuuereeeeiiiiciiieieeeeeeiiecciieeeeeeeeeseeee e e .63
2.6.18 GetRecordTaSKCONTICIS()...uuuueeeeeeeeeeeeieeeieeeeeeeeeeeeeeeeeeeeeeeessessseesssssesesl dnfasenrnrernrnrsrnnnnnnnnnned .65
2.6.19 Common Error Codes........cccovuiiiiiiiieiiiiiiiee e e esieeeeesieeee s b e .66
217 State Diagram Of r€COrATaSK.cccciccciiiiiieeeeeiiciieeeea e e e esecieee s e e e e e e .67
2.7.1 AFull-Featured State Diagramcccooiveeiiiiiiiiiiii e A e .67
2.7.2 A Minimal-Implementation State Diagramco.co @it 72
2.7.3 recordTask State EXample e e 75
218 ScheduledRecording Service Priority MOdelfo .o .76
2.8.1 Introduction of the ScheduledRecording Seryice Priority Modelccccoeeeeiiiiciiiiieneenn, .76
2.8.2 Ordered Priority within Each Priority Level.. a7
2.8.3 Setting the Initial Priority Level of a reGordSchedule...........cuuuieiiiiiicciiiiiieeee e .78
2.8.4 Sorting recordSchedule Instances Based on their Current Priority Settings.................... .80
219 Theory Of OPEIratiON.........cciiiiiiiiii e ottt e e e ee et e e e e e e e et eeeeaeessesasbeeeeeeeesssanssseneaaesessned .80
291 INtrodUCHON ..o 0 .80
2.9.2 Checking the Capabilities-of a ScheduledRecording ServiCeccccvveveeeeiiicciiieeneeenn, .80
2.9.3 Adding a Scheduled Recording Entry to the List............ccooeiiiieiiei i .90
2.9.4 Deleting @ reCOrdSCREAUIEccoieeeeieeee et e e e e e e e e aaneaaa e 103
2.9.5 Browsing recordSchedule and recordTask INSTANCES..........cocveeiiiiiieiiiiiiee e 103
2.9.6 RaAliNG SYS oIuiiiiiiiiei i e e e e e e e e e e e e e e e e e e e ——raaaaeeaaannraaeeaaans 109
2.9.7 ConflictDetection and ResOIULIONc.eoiiiiiiiiiiiiee e 110
D" | IREST=Y VAT B T=T=T o] o T) o TS 111
4 [T eSSt e ieeeeeeeeeeceeeeceeeeeeeceenneneesnenansnsnsmsmsmsmsmsmssessssssssssssssssse 120
Anmex A'(hormative) srs XML DOCUMENLcoriiiimmiiiiire e ssne s s s e 121
A 1A ARG _TYPE RecordSchedule AVDT XML DOCUMENLueveeeeeeeeeeeeeeeeeeeeeeeeeevevevesenannnnd 121
A2 A ARG TYPE RecordTask AVDT XML DOCUMEN(.........cccccooviiieeeiiiiia e 122
A3 A ARG TYPE RecordScheduleParts AVDT XML DOCUMENL.............oueeeeeeeeeeeeeeereeeeeerererennnns 122
Annex B (normative) AV Working Committee Extended Properties........cccccccemririiccciceennnnnnisccnns 124
[B = P LT o o o= o 11 124
= e B (0 o SRR 124
= O 11 TSRS 125

[R o7 1 USSR 125
B.1.4 additionalStatUSINTO...........uueeiieiei ittt e e e e e e e e e aaaaeeaans 125
B.1.5 CASREEIENCE ... 126
B.2 Priority Propertiesccoooooiiiei e 126
= B o 0 1O PPRR 127

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

-4 - 29341-4-14 © ISO/IEC:2008(E)

B.2.2 dESIrEAPYIOLIY ..o 128
B.2.3 deSIr€adPriOMtY@IYDE.......uuveeeeeeeeeieeeieteeee e e e e e eeectte et e e e e e e et e e e e e e e e se e e e e e e e e e annraraaaaaaaaeaaan 129
B.3 Output Control Properti€sooo et ee e e e e e e e e e e e e e e s 130
B.3.1 recordDesStinationccoeeeeii i 130
B.3.2 deSiredRECOIAQUANILY.........cccuueeeeiiteeee ettt et e et e e e e eabee e e e eabae e e e nees 132
B.4 Content Identification Related Properties 134
B.4.1 SCheQUIEACDSODIECEID ..o a e e 134
B.4.2 SChedUIEAdCRANNEIIDcccoeeeeeieeieieeeee ettt e e e e e e e e s e e e e e e e e senbaaaeeeaaeeeanans 135
B.4.3 scheduledStartDateTime 136
B.4.4 SCheduledDUrationccccuue e e e e L) 136
B.4.5 scheduledProgramCodeccccoooeeiiiiiiie N 137
B.5 Matching Content Criteria Properties............cocccvuvieiiieiiiiciiiiieeee e e it 137
B.5.1 matChinGINAMEccoe e e e 138
B.5.2 MAafChINGIDueeeieieeiieee et eeeee e e e e B e e e 139
B.6 Matching Qualifying Criteria Propertiescccccviieeeiiiiieeeiieeeeseee 00 e 140
B.6.1 matchingChannelID...................ccocecuueeeeeeeeeiicciiieeeeeeeeeseeinnneeees e bttt a e e e e seetaraeeeaae e e 140
B.6.2 matchingStartDateTimeRange.............cccccccceeeieieiiiiicceie b D 140
B.6.3 matchingDurationRangecccccceeeeeiiiiiiiiiieeeeee e A e 141
B.6.4 matchingRatingLImIit....................coooeeiieeiiee e e 141
B.6.5 matchingEpIiSOAETYPE..........ccceeeeeeeeeeeeeeieeeeeeeeeeeee s N e 143
B.7 Content Control Propertiesooo oo e 5ot e e e 144
B.7.1 totalDesiredRecordTasks.......cccccoueeeeeeee 8) 144
B.7.2 scheduledStartDate TIMEAGIUSE............cc e tururreeieeeeeiieiiireeeeeeeeessirreeeeaassssnntaseeesaassesnnnd 145
B.7.3 scheduledDurationAdjustc... SO e 145
B.7.4 acCtiVePeriodccccccooeeeeeeeeeeeee e 145
B.7.5 QurationLimit.................cooo oo e 146
B.7.6 channelMigration............... a8 147
B.7.7 HMEMIQIAHIONceei e e et e e e et e e e e e ettt e e e e e e e e e et e e e e e e e e nneeeeeaaaeeaaannnnnneeaaeeeaannd 147
B.7.8 @llOWDUPIICALES;8 e oo 147
B.8 Storage Related Propertiesoooiiiiiiiiiiiiii ettt 148
B.8.1 persiStedRECOIAINGScccoeeeeeeeeeeeeeeeeeeeeeeeeee e 148
B.9 Schedule StateRIOPEIMIESciieeeie ittt e e e e e e e e e e et aa e e e e e nnnaeees 149
B.9.1 SCAEAUIBSEALEccooeeeeeeeeee ettt e e e e e e st e e e e e e e st aaeeeaaaeeeand 149
B.9.2 abnoRmalTaSKSEXISL...........ccoueee e 151
B. 10 StatiStiCs PrOPertiES ... e e a e e e e e araee s 151
B.10.10CUrrentReCOrdTASKCOUNLccccueieeeee e e e e ettt e e e e e ee e e e e e e e e st ee e e e e e e e e sentsaeeeeaaeeesand 151
BAQ.2 fotalCreatedReCOrdTaASKSccoeeeeeeeeeeeeeeee e 151
By10.3 fofalCompletedReCOrdTaSKS .uuueeueeeeeeeererreeiaeeeeeerereeiieeeeerereeeieseeeeeeeeieieeeeeeeeeeeeieed 152
B.11 Task General Properties....... .o ittt e e e e e e e e e e e e e e e e e enneeeeeas 152
B.11.1 recordSchedulelDcooooeeeiiieieei e 152
B.11.2 recOrd@dCDSODJECEIDuueeieeeeeieeieeeee ettt e e e e e e e e e e e e e e st te e e e e e e e e sentaaaeeeaaeeeaans 152
B.12 Task Content Identification Properti€s. ... 153
B.12.1 faSKCDSODJECLIDeeeeeeeeeeeeeeeeeeeeeee et e e e eaeeeeaans 153
B.12.2 fASKCNANNEIID...........ccceeeeieeeee ettt e e e e e e et e e e e e e e st eeeaaeeesenbsaaneeaaaeeanans 154
B.12.3 {askStartDateTimeccooeee e 154
B.12.4 {QSKDUIALION ..o 154
B.12.5 {askProgramCodecccooueieiie e 155
B.12.6 1E€COIAQUANILYcccveeeeeeteee ettt et e e et re e rae e ennes 155

B.13 Task Matched Content Criteria Propertieso 157

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) -5-

B.13.1 MAICAEAINGIME.......cooo ettt et e e e e e e e et e e e e e e e e e nnnneeeaaaeeaaans 157
B.13.2 MALICAEAIDcccoieeeee ettt e e e e e et e e e rae e e e aneee 158
B.14 Task Matched Qualifying Criteria Properties ... 158
0 S 0 (o] = = L1 SRR 158
B.14.2 matchedRatiNG@IYDE.ouuueeeeaieiee e eeteee e ettt e e e etee e ettt e e e st e e e e eabe e e e e snbee e e e antee e e e anbeeeeennnes 159
B.14.3 MatChEAEDISOUETYDEueeeeeeeeeeieeeeeee ettt e e e e e e e nee e e e e e e e e e nnnnneeeaeaeeaaans 159
B.15 Task Matched Content Control Propertiescoeeoiioiiiiiiiiiee e 159
B.15.1 (asSKStarntDate TimMEAGIUSEcoeueeee ettt e ettt e e et e e et e e e e enbee e e e nees 159
B.15.2 taskDurationAdiust 160
B.15.3 @SKDUIAtIONLIMIEueeeeeieieee ettt e e e e sr e e s o L 160
B.15.4 taskDurationLimit@EMfECTo iueeeeeieee ettt N e e 160
B.15.5 taskChanneIMiQrationccccoccceeeeiceeeeeiiieeeeeiieeeesiieeeessiieeesssnieeesssnreeeesnnes Byaihceeeennns 160
B.15.6 {@SKTIMEMIQIAtiONueeeeeieeeee et e e e e e e e e e e e anee e e e e e e e fae s eeeeeaeeeeeeand 161
B.16 Task State Properties..........cccccceiiiiciiiiiiiie e ecreiee e ssnneeeee e B e 161
B.16.1 [ASKSIAIE ..ccocuveeee et iee e e e o Do e e 161
B.17 ContentDirectory Service Imported Properties ... O e 169
Annex C (normative) AV Working Committee Class Definitions.......4. 0, 174
(@ I O F= 1T o 1= = 1 o] 0 Y RSP 174
C.1.1 Relationships between Classes and Properties......... G 175
C.1.2 recordScheduleParts PrOPEITIESuvviiieeiiiiiiiiie sttt eee e e e e e seitareeeeeeseesanraaeeeaeeeeennned 176
C.1.3 recordSchedule Properti€s.ouocuueeeeeeeeeeee e et et 180
C.1.4 recordTask PrOPEITIES........uueiiieei il ettt e e e ettt e e e e e e st e e e e e e e e sntaaeeeaaeeeeanned 183
(.2 Class DEfiNItIONScooii i Nttt e e e ettt e e e e e e e e st e e e e e e e e e e nnreereeaeeeenanneeeas 187
0.3 0DJECT BASE ClaSsSceiiiiiiiiiiiiiee et N ettt 187
C.3.1 object.recordSchedule CIaSssS 8T ettt e e e 189
C.3.2 0bject.reCOrdTasK Classot et e e e e e e e e e e e e e enneeeeeeeaeeeeanned 198
Annex D (normative) EBNF Syntax Definitions.........ccccccciiiiiiiccissmmmnnnin s cccsssess s ss s sssssee e s s esssnnend 200
.1 Priority SYNtaX. ... 8 et sre e e 200
.2 Date&time SYNTAXcoo i ittt e et e e et e e e s ab e e e e abeee e e P00
0.3 Class NamE SYNTaX (.5 ittt e et e e s sbb e e e e sbaeee s sbeeeeeae 201
Annex E (informative) ScheduledRecording Service Relationship to
CoMteNtDIreCtOry SEIVICE.....ccccceeeiiriiiiiicssserre s e esssssssssne e e s s rs s s s s s sssme e e e e eessssssnnn e s e e e eesasssnnnnnsenesessannnnnnnnns 202
Annex F (informative) ScheduledRecording Service Relationship to EPG............ccccciiiiiiiiiiinnned 203
Annex G (informative) AVDT EXAMPIEScccccmirrriiiiiiiienmrrersissssssssssesssssssssssssssssssssssssssssnssssssssssssnsnd 204
A A ARG TYPE RecordSchedule AVDT EXamMPIe.....oooo oo P04
2, 'A)ARG TYPE RecordTask AVDT EXampIe.....c..cooiiiiiiiiiiie e P20
VA ARG TYPE RecordScheduleParts AVDT Examplecccoeveeeiieiiiiiieeiieieieeee e P38

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

-6- 29341-4-14 © ISO/IEC:2008(E)

LIST OF TABLES
Table 1-1: =N | @ T 1Y = (o] = PRSP 16
Table 1-2: CSV EXAMPIES ..ttt e e e e e e e e e e e e e e e e e e anas 17
Table 1-3: Namespace DefiNitioNS...........ooiiiiiiiiiie e 18
Table 1-4: Schema-related INformation ... 19
Table 1-5: Default Namespaces for the AV Specifications............ccccvveeiiiiiiiicii e 20
Tahle 2-1: Y o] o] L= = 4o] SRS .25
Taljle 2-1: Properties in XIMLouuiiieiiiiiiiieiieeieieeeeeeeseeeeeeeeeeseesssessesesssssssssssssssssssnsssssssssssnsbeshiTened 27
Tahle 2-2: State Variables ... e D .33
Taljle 2-3: allowedValuelist for the DataTypelD argument..........ccccccevevciiieeeee e Bfonineeeee e .35
Table 2-4: Allowed Elements in <StateEvent> Element..........cccccooi b M .36
Taljle 2-5: Eventing and Moderation.................ueueiiiiiiieieieieieiiiiieieieieieiee s bd e 41
Tahle 2-6: o 1o o - Y A S 41
Tahle 2-7: Arguments for GetSortCapabilitieS()..........cceevuueeeeeee e SN e 42
Taljle 2-8: Error Codes for GetSortCapabilitieS().........uvuwwwee it 43
Tahle 2-9: Arguments for GEIPrOREIMYLISE() ...uuueeeeeee e ettt e eaaae e 43
Talle 2-10: Error Codes for GetPropertyLiSt()um e euuiiiiiie ettt 44
Tahle 2-11: Arguments for GEtAIIOWEAVAIUES() . oue.foeeiiiiiiieii et a e 44
Taljle 2-12: Error Codes for GetAllowedValueS{)-........ccuv ittt 45
Tahle 2-13: Arguments for GetState UpAatEIII()ccieecueeeieie et a e 46
Talle 2-14: Error Codes for GetStatepAAtelD()ccoueeeiuiiiieie ettt 46
Tahle 2-15: Arguments for BrowseRecordSCheQUIES()uuuuueiiieeciriiiieiee et eeveeea e 46
Taljle 2-16: Error Codes for BrowseRecordSChedUIES()coouiiueiiiiiiniiiiiii e .50
Tahle 2-17: Arguments for BrowSeRECOIATASKS() ...ccuiuiereeeeeie e it e e ee e a e e eareeeeaae e .51
Taljle 2-18: Error Codes.for BrowSeReCOrdTASKS() ...vuuuuuieiuieiiriieiiee ettt .52
Tahle 2-19: Arguments for CreateRecordSCREAUIE()uuuuueeeiiieeeiiiiiieee et .53
Taljle 2-20: Error'Codes for CreateRecordSchedule()cocvuiiueiiiiiiiiiciiei e .54
Tahle 2-21: Arguments for Delete RecordSChedUIE()uuuuuieiiieecciiiiieiee et .55
Taljle 2-22: Error Codes for DeleteRecordSChedUIE().........cc.ciuuiiiuiiiiiiiiiiciiei e .55
Tahle2-23: Arguments for GetRecordSChEAUIE()cccuuuueeiiee i .56
Table 2-24: Error Codes for GefReCOrdSCREAUIB()cuueeveiiariieiiei ettt 56
Table 2-25: Arguments for EnableRecordSCREAUIE().........uuueeieeeiiieeiiieeiiee et 57
Table 2-26: Error Codes for EnableRecordSChedUIB()............ocuuiiceiiieiiiiiiiiie e 57
Table 2-27: Arguments for DisableRecordScheauIE()uuuuuiiiiiecciieiiiee et 58
Table 2-28: Error Codes for DisableRecordSCREAUIE()ciuuiiicieiiiiiiiiciie e 58
Table 2-29: Arguments for DeleteRECOIATASK() . uuuuueeeeiiaeciieiiee e et eeee e e e e e 59
Table 2-30: Error Codes for DeleteRECOIATASK().....cuuuiuuieiiiiiiii ittt 59
Table 2-31: Arguments for GEIRECOIATASK() c.uuuuveeeieeeeeieeiieeie ettt e e e e eeaaaeea e 60
Table 2-32: Error Codes for GefRECOIMATASK() «...uveiueiiieieiiee ittt ettt 60
Table 2-33: Arguments for EnableReCOrdTasK()uuuuiuecuueeeieeeee it e e e eeee e e e e esraaeaaae s 61

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) -7-
Table 2-34: Error Codes for EnableReCOrdTasK()uuuuuueeuiiiieiiiiieii ettt 61
Table 2-35: Arguments for DiSableRECOIATASK() ..vveeuiuueeiiiiieee ittt 62
Table 2-36: Error Codes for DiSableReCOrdTaSK()uuuuiuueeeiiiieie ittt 62
Table 2-37: Arguments for ReSEIRECOIATASK()......uvueiiueieiiiiiiei ittt 63
Table 2-38: Error Codes for ReSetReCOIATASK().....uuuuuiiueeeiiiiiiee ittt 63
Table 2-39: Arguments for GetRecordSchedule CONlICES() «..uvvwiiiumeiiiiiiiie e 64
Table 2-40: Error Codes for GetRecordSchedule CONMlCES() «...uvvuuiuumeiiiiieiiiiiei e 64
Talie Z-2T: Arguments Tor GEIRECOIA T@SKTOMIMICTS(] «-eccoowweeeeeesaaasrenrreramesaaassnmmneeeeesaaassnnnmeeego s .65
Tahle 2-42: Error Codes for GetRecordTaskCONMIICIS() ..uvvveiiueeiiiiiiiiiiiieie e i .65
Tahle 2-43: Common Error COUEScooiiiiiiiiiiiiie it e s enee s D e Do e .66
Tafle 2-44: recordTask State TIMEliNe........ccooicuiiiiiiiiiici e s e .76
Tahle 2-45: Example 1: Fewer recordSchedule instances than the Number of,Supported Priorit

LEVEIS. .o a7
Tahle 2-46: Example 2: More recordSchedule instances than the Number of Supported Priority

LEVEIS. . s e .78
Taljle 2-47: Existing recordSchedule Priortieseuiieiiiicceii e\ i a e .79
Tahle 2-48: desiredPriority Property Sett0 “RS-C’......ueevveee et it .79
Talle 2-49: desiredPriority Property Set to “HIGHEST”, *LAYHI”, OF “RS-A” .covvviiiiieiecieenee .79
Tahle 2-50: desiredPriority Property Set to “LOWEST Y'L3 LOW”, or “RS-B’ccccvvvvveveeeeeiann .80
Tahle 2-51: desiredPriority Property Set 10 “RS-C¥. .0 uueeii it .80
Talle B-1: Base PropertieS OVEIVIEWccod oo iiiiiieeee ettt e e e e e sarraae e e e e e e eeaee 124
Tahle B-2: allowedValueList for the clas&Rroperty ... 125
Tahle B-3: PriOrity Propertiesa e e 126
Taljle B-4: allowedValueList for the priority PrOPErtyccooiccciiieieieee e 127
Taljle B-5: Primary allowedVfalueL.ist for the desiredPriority Property........ccccceceevveeeeeeeeecccvvneen. 128
Taljle B-6: Additional allowedValuelList for the desiredPriority Propertyccccceeeevieccivieeeeeennn, 129
Tahle B-7: allowedValuel.ist for the desiredPriority@type Property.........ccooveeeeeeieicciiveeeeeeeeieennd 130
Tahle B-8: OUutplt Control Properti€Sc.uviiiiiie ittt e e e e re e e e e e 130
Tahle B-9: desiredRecordQuality EXamMPIEoo it 132
Tahle B-10: allowedValuelList for the desiredRecordQuality Propertycccccviieeeiiieeeiiineenennd 133
Tahle B-11: allowedValuelList for the desiredRecordQuality@type Property.........ccccocveeeiiineeennnnd 134
Tahle'B12: Content Identification Related Properties ... 134
Table B-13: allowedValuel.ist for the scheduledChannellD@type Propertyccccccecvveeveeeeeiecnnnns 136
Table B-14: Matching Content Criteria Propertiescccveeeiiiciiiiieee e 137
Table B-15: allowedValuelList for the matchingName@type Propertyccccccvveeeiiiieiiiiieenenns 138
Table B-16: allowedValuelList for the matchingID@type Propertycccoueeiiiiieeeiiiieee e 139
Table B-17: Matching Qualifying Criteria Properties ..o 140
Table B-18: allowedValuel.ist for the matchingRatingLimit Property Using the MPAA Rating

System (matchingRatingLimit@type = “MPAA.ORG”)cocecccveeeeeie et 142
Table B-19: allowedValuel.ist for the matchingRatingLimit Property Using the RIAA Rating

System (matchingRatingLimit@type = “RIAA.ORG”) ..c.cceeeeeecciiieeeie e eeeeiieieeea e 142

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

Table B-20:

-8- 29341-4-14 © ISO/IEC:2008(E)

allowedValuelList for the matchingRatingLimit Property Using the ESRB Rating

System (matchingRatingLimit@type = “ESRB.ORG”).....ceuiiieiiieieiae e 142
Table B-21: allowedValuelList for the matchingRatingLimit Property Using the TVGUIDELINES

Rating System (matchingRatingLimit@type = “TVGUIDELINES.ORG”).......cccccceuu... 142
Table B-22: allowedValuelList for the matchingRatingLimit@type Propertyccccccveeeeiiienennnns 143
Table B-23: allowedValuelList for the matchingEpisodeType Propertyccccveeeiiiieeeiiiieeeenns 144
Table B-24: Content Control Propertiescoooie oot e e e e 144
Table B-25: allowedValuel.ist for the durationLimit@effect Property.........cccovceeeeeeescciveeeeeeeeeeenns 147
Taljle B-26: Storage Related Propertiescccvveeiiiiiiiiiiie e S 148
Tahle B-27: Schedule State Properties ... Nl e 149
Tahle B-28: allowedValuel.ist for the scheduleState Propertyccccceeeeeeciiieeeeeeeeeccee e 150
Tahle B-29: allowedValuel.ist for the scheduleState@currentErrors Property\00 e 150
Talle B-30: Statistics Properties..........oiiii oo B e e a e 151
Tahle B-31: Task General Properties...... ... o et e e e e e e eeea e 152
Tahle B-32: Task Content Identification Properties..........cccooeeveeeeeecn b 153
Tahle B-33: recordQuality EXamMPIEoooooiiiieeeee ey e e e e e e e e 156
Tahle B-34: allowedValuelList for the recordQuality Property.s .. e 157
Tahle B-35: Task Matched Content Criteria Properties ... (0 e 157
Tahle B-36: Task Matched Qualifying Criteria Properti€s:...........coocuviiiiiiiiiiiiiiieiiiee e 158
Tahle B-37: Task Matched Content Control Propertiesccoooo i 159
Taljle B-38: State Related Properti€s.........ooocccoh et 161
Tahle B-39: allowedValueList for the faskState Property ... 162
Tahle B-40: allowedValueList for the faSkState Property ... 163
Tahle B-41: allowedValuelList for the taskState@phase Property..........cccocueeiiiiieeeiiiieee i 164
Tahle B-42: allowedValueListfor the taskState@xxX Propertiescooooioeeeieeiiiiiciieeeeeeeen 167
Tafle C-1: Class Properties Overview for recordScheduleParts Usage..........cccceeevceeeeincieeeennnnn. 177
Tafle C-2: Class Properties Overview for recordSchedule usageccoooveeeeiniieeeencieeeeennn, 180
Tahle C-3: Class.Properties Overview for recordTask USAQEeeeeirueeeeiiieeeeiiiiee et 184
Tahle C-4: object Base Class Propertiesooo oo 188
Tahle C-5: object.recordSchedule Base Class Propertiesccccoveiiiiiiiiiiee e 189
Tahle C;6¢ object.recordSchedule.direct Class Properties. ... 190
Tahle'C-7: object.recordSchedule.direct. manual Class Properties..........ccccccvveeiiiiiciieneeeeeeend 191
Table C-8: object.recordSchedule.direct.cdsEPG Class Propertiescccccoeeiiiiiiiieeiee s 192
Table C-9: object.recordSchedule.direct.cdsNonEPG Class Properties......ccccccovviciieeieeiinnnnne. 193
Table C-10: object.recordSchedule.direct.programCode Class Properties............ccccoeeieeeiinnnne. 193
Table C-11: object.recordSchedule.query Class Propertiesccooooviiiiiiiieee e 194
Table C-12: object.recordSchedule.query.contentName Class Properties.........cooocceeieeriinnneee 195
Table C-13: object.recordSchedule.query.contentID Class Properties..........cccccoiiiiiiiiiiieeniees 197
Table C-14: object.recordTask Base Class Propertie€scoooiooeiiiieaiiiiiiiieeee e 199

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) -9-

LIST OF FIGURES

Figure 1: Creating @ NEW r@COrASCAEAUIEuuueeeeeeee ettt e e e e e e et eaa e e e e 31
Figure 2: Capability ChECK.eeiiiiiie e e e e e e e e e e e e e e e e eannes 32
Figure 3: BrowSe reCOIASCREAUIE.eeiiiiiiiii ittt 32
Figure 4: Delete @ reCOrdSCREAUIEoiiiuiiiiiie ettt 32
Figure 5: A Full-Featured State Diagram...........ooo it 68
Fig]:re 6: A Minimal-Implementation State Diagram............cccceooiiiiiiiiiiie e e 73
Figlire 7: Class hierarchy for the ScheduledRecording Service..........cccooveveiiiiiieiiniee e 00T 174

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

-10 - 29341-4-14 © ISO/IEC:2008(E)

INFORMATION TECHNOLOGY -
UPNP DEVICE ARCHITECTURE -

Part 4-14: Audio Video Device Control Protocol — Level 2 —
Scheduled Recording Service

FOREWORD

9)

IEC
patg

ISO

ISO (International Organization for Standardization) and IEC (International Electrotechnical Commissjon)
the specialized system for worldwide standardization. National bodies that are members of I13©-.or
participate in the development of International Standards. Their preparation is entrusted (o -tech
committees; any ISO and IEC member body interested in the subject dealt with may participate in
preparatory work. International governmental and non-governmental organizations liaising with" ISO and
also participate in this preparation.

In the field of information technology, ISO and IEC have established a joint technical ¢emmittee, ISO/IEC
1. Draft International Standards adopted by the joint technical committee are circulated to national bodie
voting. Publication as an International Standard requires approval by at least(5)% of the national bo
casting a vote.

The formal decisions or agreements of IEC and ISO on technical matters,'éxpress, as nearly as possiblg,

international consensus of opinion on the relevant subjects since each technical committee has representd
from all interested IEC and ISO member bodies.

IEC, ISO and ISO/IEC publications have the form of recommendations for international use and are acce
by IEC and ISO member bodies in that sense. While all reasonable efforts are made to ensure that]
technical content of IEC, ISO and ISO/IEC publications is aceurate, IEC or ISO cannot be held responsibl
the way in which they are used or for any misinterpretatiomby/any end user.

In order to promote international uniformity, IEC and\ISO member bodies undertake to apply IEC, ISO
ISO/IEC publications transparently to the maximum extent possible in their national and regional publicati
Any divergence between any ISO/IEC publication.@nd the corresponding national or regional publication sh
be clearly indicated in the latter.

ISO and IEC provide no marking proceduf€; to indicate their approval and cannot be rendered responsiblg
any equipment declared to be in conformity with an ISO/IEC publication.

All users should ensure that they, have the latest edition of this publication.

No liability shall attach to AE€>or ISO or its directors, employees, servants or agents including indivi
experts and members of their technical committees and IEC or ISO member bodies for any personal in
property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (inclu
legal fees) and expenses ‘arising out of the publication of, use of, or reliance upon, this ISO/IEC publicatig
any other IEC, ISQ.ar ISO/IEC publications.

Attention is drawm to the normative references cited in this publication. Use of the referenced publicatio
indispensablé_for the correct application of this publication.

and ISO'draw attention to the fact that it is claimed that compliance with this document may involve the ug
nts as§ indicated below.

orm
IEC
ical
this
IEC

JTC
for
dies

an
tion

bted
the
b for

and
pbns.
puld

for

dual

ury,

ding
n or

s is

e of

and”lEC take no position concerning the evidence, validity and scope of the putative patent rights. The hol

Hers

of the putative patent rights have assured IEC and ISO that they are willing to negotiate free licences or licences
under reasonable and non-discriminatory terms and conditions with applicants throughout the world. In this respect,
the statements of the holders of the putative patent rights are registered with IEC and ISO.

Intel Corporation has informed IEC and ISO that it has patent applications or granted patents.

Information may be obtained from:

Intel Corporation

Standards Licensing Department
5200 NE Elam Young Parkway
MS: JFS-98

USA - Hillsboro, Oregon 97124

Microsoft Corporation has informed IEC and ISO that it has patent applications or granted patents as listed below:

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

293

41-4-14 © ISO/IEC:2008(E) -11-

6101499 / US; 6687755 / US; 6910068 / US; 7130895 / US; 6725281 / US; 7089307 / US; 7069312 /
10/783 524 /US

Information may be obtained from:

Phili

Microsoft Corporation
One Microsoft Way
USA — Redmond WA 98052

ps International B.V. has informed IEC and ISO that it has patent applications or granted patents.

Information may be obtained from:

us;

NXH

Info

Philips International B.V. — [P&S
High Tech campus, building 44 3A21
NL — 5656 Eindhoven

B.V. (NL) has informed IEC and ISO that it has patent applications or granted patents.
mation may be obtained from:
NXP B.V. (NL)

High Tech campus 60
NL — 56656 AG Eindhoven

205

phts
tent

by

Matgushita Electric Industrial Co. Ltd. has informed IEC and ISO that it has patent applications or granted paten
Infofmation may be obtained from:

Matsushita Electric Industrial Co. Ltd.

1-3-7 Shiromi, Chuoh-ku

JP — Osaka 540-6139
Hewlett Packard Company has informed IEC and ISO that it has patent applications or granted patents as ligted
belgw:

5 956 487 / US; 6 170 007 / US; 6 139 177 / JS; 6 529 936 / US; 6 470 339/ US; 6 571 388 / US; 6

466 / US
Infofmation may be obtained from:

Hewlett Packard Company

1501 Page Mill Road

USA — Palo Alto, CA 94304
Sanjsung Electronics Co. Ltd. hds informed IEC and ISO that it has patent applications or granted patents.
Infofmation may be obtained\from:

Digital MediarBusiness, Samsung Electronics Co. Ltd.

416 Maetan-3-Bong, Yeongtang-Gu,

KR — Suwon City 443-742
Atteption is drawn to the possibility that some of the elements of this document may be the subject of patent ri
othgr than.those identified above. IEC and ISO shall not be held responsible for identifying any or all such pg
rights.
ISO II:f‘ ’)n’!A'I /1 1/1 Was—BFeP- ar d by IIDnD Impl st n# S C. v-p v-nf A ﬂnd nrd p# A’ ur\lrl r fh DI\C p- dur
joint technical committee ISO/IEC JTC 1, Information technology, in parallel with its approval by national bodles of
ISO and IEC.

The list of all currently available parts of the ISO/IEC 29341 series, under the general title Universal plug and play
(UPnP) architecture, can be found on the IEC web site.

This International Standard has been approved by vote of the member bodies, and the voting results may be
obtained from the address given on the second title page.

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

-12 - 29341-4-14 © ISO/IEC:2008(E)

ORIGINAL UPNP DOCUMENTS
(informative)

Reference may be made in this document to original UPnP documents. These references are retained in order to
maintain consistency between the specifications as published by ISO/IEC and by UPnP Implementers Corporation.
The following table indicates the original UPnP document titles and the corresponding part of ISO/IEC 29341:

UPnP Document Title
UPnP Device Architecture 1.0

ISO/IEC 29341 Part
ISO/IEC 29341-1

UPNP Basic:1 Device

UPNP AV Architecture:1

UPNnP MediaRenderer:1 Device
UPnP MediaServer:1 Device

UPnP AVTransport:1 Service

UPNP ConnectionManager:1 Service
UPNP ContentDirectory:1 Service
UPNP RenderingControl:1 Service
UPNnP MediaRenderer:2 Device
UPNP MediaServer:2 Device

UPnP AV Datastructure Template:1
UPnP AVTransport:2 Service

UPnP ConnectionManager:2 Service
UPnP ContentDirectory:2 Service
UPNP RenderingControl:2 Service
UPNP ScheduledRecording:1

UPnNP DigitalSecurityCamera:1 Device

UPNP DigitalSecurityCameraMotionlmage:1 Service

UPnNP DigitalSecurityCameraSettings:1 Service

UPNP DigitalSecurityCameraStilllmage:1 Service

UPnP HVAC_System:1 Device

UPNnP HVAC_ZoneThermostat:1 Device
UPNP ControlValve:1 Service

UPnP HVAC_FanOperatingMode:1 Service
UPnP FanSpeed:1 Service

UPNP HouseStatus:1 Service

UPnP HVAC_SetpointSchedulei Service
UPnP TemperatureSensor: 1¢(Séervice

UPnP TemperatureSetpoinit:1 Service
UPnP HVAC_UserOperatingMode:1 Service
UPnP BinaryLight:1 Device

UPNnP DimmableLight:1 Device

UPNnP Dimming:4.Service

UPNP SwitchPower:1 Service

UPNP InternetGatewayDevice:1 Device
UPnP{ANDevice:1 Device

UPnP WANDevice:1 Device
UPnP“WANConnectionDevice:1 Device
UPNRP WLANAccessPointDevice:1 Device
UPNnP LANHostConfigManagement:1 Service
UPNP Layer3Forwarding:1 Service

UPnP LinkAuthentication:1 Service

UPNP RadiusClient:1 Service

UPnP WANCableLinkConfig:1 Service
UPnP WANCommonlnterfaceConfig:1 Service

LURRPR VAVANNDSL L inkCanfin-1 Saonica

ISO/IEC 29341-2
ISO/IEC 29341-3-1
ISO/IEC 29341-3-2
ISO/IEC 29341-3-3
ISO/IEC 29341-3-10
ISO/IEC 29341-3-11
ISO/IEC 29341-3-12
ISO/IEC 29341-3-13
ISO/IEC 29341-4-2
ISO/IEC 29341-4:3
ISO/IEC 29341:4-4
ISO/IEC 29341+4-10
ISO/IEC29341-4-11
ISO/IEC29341-4-12
ISOMEC29341-4-13
ISOHEC 29341-4-14
ISO/IEC 29341-5-1
ISO/IEC 29341-5-10
ISO/IEC 29341-5-11
ISO/IEC 29341-5-12
ISO/IEC 29341-6-1
ISO/IEC 29341-6-2
ISO/IEC 29341-6-10
ISO/IEC 29341-6-11
ISO/IEC 29341-6-12
ISO/IEC 29341-6-13
ISO/IEC 29341-6-14
ISO/IEC 29341-6-15
ISO/IEC 29341-6-16
ISO/IEC 29341-6-17
ISO/IEC 29341-7-1
ISO/IEC 29341-7-2
ISO/IEC 29341-7-10
ISO/IEC 29341-7-11
ISO/IEC 29341-8-1
ISO/IEC 29341-8-2
ISO/IEC 29341-8-3
ISO/IEC 29341-8-4
ISO/IEC 29341-8-5
ISO/IEC 29341-8-10
ISO/IEC 29341-8-11
ISO/IEC 29341-8-12
ISO/IEC 29341-8-13
ISO/IEC 29341-8-14
ISO/IEC 29341-8-15

ISOUEC 20241 .8 .16

J
UPnP WANEthernetLinkConfig:1 Service
UPnP WANIPConnection:1 Service
UPnP WANPOTSLinkConfig:1 Service
UPnP WANPPPConnection:1 Service
UPnP WLANConfiguration:1 Service
UPnNP Printer:1 Device
UPnP Scanner:1.0 Device
UPnP ExternalActivity:1 Service
UPnP Feeder:1.0 Service
UPnP PrintBasic:1 Service
UPnP Scan:1 Service
UPnP QoS Architecture:1.0
UPnP QosDevice:1 Service
UPNnP QosManager:1 Service
UPNP QosPolicyHolder:1 Service
UPnP QoS Architecture:2
UPnP QOS v2 Schema Files

ISO/IEC 29341-8-17
ISO/IEC 29341-8-18
ISO/IEC 29341-8-19
ISO/IEC 29341-8-20
ISO/IEC 29341-8-21
ISO/IEC 29341-9-1
ISO/IEC 29341-9-2
ISO/IEC 29341-9-10
ISO/IEC 29341-9-11
ISO/IEC 29341-9-12
ISO/IEC 29341-9-13
ISO/IEC 29341-10-1
ISO/IEC 29341-10-10
ISO/IEC 29341-10-11
ISO/IEC 29341-10-12
ISO/IEC 29341-11-1
ISO/IEC 29341-11-2

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) -13 -

UPnP Document Title

UPnP QosDevice:2 Service

UPNnP QosManager:2 Service

UPNP QosPolicyHolder:2 Service
UPnP RemoteUIClientDevice:1 Device
UPnP RemoteUIServerDevice:1 Device
UPnP RemoteUIClient:1 Service

UPnP RemoteUIServer:1 Service
UPNP DeviceSecurity:1 Service

UPnP SecurityConsole:1 Service

ISO/IEC 29341 Part

ISO/IEC 29341-11-10
ISO/IEC 29341-11-11
ISO/IEC 29341-11-12
ISO/IEC 29341-12-1

ISO/IEC 29341-12-2

ISO/IEC 29341-12-10
ISO/IEC 29341-12-11
ISO/IEC 29341-13-10
ISO/IEC 29341-13-11

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

-14 - 29341-4-14 © ISO/IEC:2008(E)

1 Overview and Scope

This service definition is compliant with the UPnP Device Architecture version /.0. It defines a service type
referred to herein as ScheduledRecording service.

1.1 Introduction

The ScheduledRecording service is a UPnP service that allows control points to schedule the recording of
content. Generally, this content is broadcast content, but this specification does not limit itself to broadcast
content. This service type enables the following functions:

e Create a recordSchedule so that it is added to the list of recordSchedule instances. Each record§chedule
describes user-level recording instructions for the ScheduledRecording service.

e Browse a list of recordSchedule instances stored by the ScheduledRecording service.
e Delete a recordSchedule so that it is removed from the list of recordSchedule instances.

e Browse a list of recordTask instances, stored by the ScheduledRecording serviee,The
ScheduledRecording service may create zero or more recordlask instances foryeach recordSchedulef A
recordTask represents a discrete recording operation of a recordSchedule.

e Enable or disable individual recordTask instances.
e Enable or disable a recordSchedule.

e Receive notifications indicating change of recordSchedule ot\recordTask list.

ThelScheduledRecording service does not require a dependency on any UPnP services other than a co-located
ContentDirectory service, which provides the following functions:

e A ContentDirectory service provides channel liie*up to allow users to find recordable channels. A
control point may use this metadata when créating a recordSchedule on a ScheduledRecording servige.

e A ContentDirectory service may providé Electronic Program Guide (EPG) features to allow users to
find recordable content. A control pgint may use this metadata when creating a recordSchedule on a
ScheduledRecording service.

e Contents recorded by the SeheduledRecording service may be exposed by a ContentDirectory servicg.

Thel|architectural relationship among the different concepts, defined by the ScheduledRecording service can Ye
summarized as follows: A ScheduledRecording service owns a flat (that is: non-nested) list of recordScheduld
instjnces, meaning that the SeheduledRecording service may create, destroy, or change recordSchedule
instynces. A recordSchédule represents user-level instructions to perform recording operations. Generally, a yser
constructs his instructions to a ScheduledRecording service via a control point that invokes UPnP actions that
affeft the list of recardSchedule instances. In all cases, the ScheduledRecording service MUST be able to
desgribe discreferecording operations for a recordSchedule through a list of associated recordTask instances| A

recqrdTask san‘only exist with a recordSchedule (that is: never orphaned). Thus when a recordTask is created by
the BcheduledRecording service, its lifetime depends on its parent recordSchedule. An individual recordTask|can
be sgléetively enabled or disabled.

This service template does not address:

e Implementations where the ScheduledRecording service and its associated ContentDirectory service are
not co-located in the same device.

1.2 Notation

e In this document, features are described as Required, Recommended, or Optional as follows:

The key words “MUST,” “MUST NOT,” “REQUIRED,” “SHALL,” “SHALL NOT,” “SHOULD,”
“SHOULD NOT,” “RECOMMENDED,” “MAY,” and “OPTIONAL” in this specification are to be
interpreted as described in [RFC 2119].

In addition, the following keywords are used in this specification:

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) -15-

PROHIBITED - The definition or behavior is an absolute prohibition of this specification. Opposite of

REQUIRED.

CONDITIONALLY REQUIRED — The definition or behavior depends on a condition. If the specified

condition is met, then the definition or behavior is REQUIRED, otherwise it is PROHIBITED.

CONDITIONALLY OPTIONAL — The definition or behavior depends on a condition. If the specified

condition is met, then the definition or behavior is OPTIONAL, otherwise it is PROHIBITED.

These keywords are thus capitalized when used to unambiguously specify requirements over protocol

and application features and behavior that affect the interoperability and security of implementations.
When these words are not capitalized, they are meant in their natural-language sense.

1.2.

Thi
datg

nanjespace is used to define property data types [XML SCHEMA-2].

For[UPnP Device Architecture defined Boolean data types,it is strongly RECOMMENDED to use the value
for false, and the value “1” for true. However, when used*as input arguments, the values “false”, “no”, “true”
“ye$” may also be encountered and MUST be accepfed. Nevertheless, it is strongly RECOMMENDED that a

stat

For[XML Schema defined Boolean data types,-it is strongly RECOMMENDED to use the value “0” for false
and|the value “/” for true. However, whenyused as input properties, the values “false”,

enc

represented as “0”” and “/”.

1.2.2 Strings Embedded in Other Strings

Sonje string variablessand-arguments described in this document contain substrings that MUST be independe
idertifiable and extractable for other processing. This requires the definition of appropriate substring delimite
and|an escaping/mechanism so that these delimiters can also appear as ordinary characters in the string and/or|i
indgpendent substrings. This document uses embedded strings in two contexts — Comma Separated Value (CS

lists

Escaping.conventions use the backslash character, “\” (character code U+005C), as follows:

CC\99) 2 ce\\ 9 3 oy
- TCOTITOXTST

1.2

e Strings that are to be taken literally are enclosed in “double quotes”.

e Words that are emphasized are printed in italic.

e Keywords that are defined by the UPnP Device Architecture are printed using theyarch character sty

e Keywords that are defined by the UPnP AV Working Committee are printed using the foxifim character

style.

e A double colon delimiter, “::”, signifies a hierarchical parent-child (parent:child) relationship betwepn

the two objects separated by the double colon. This delimiter is used in multiple contexts, for examp
Service::Action(), Action()::Argument, parentProperty::childProperty:

1 Data Types

specification uses data type definitions from two different sourées. The UPnP Device Architecture defin
types are used to define state variable and action argument-data types [DEVICE]. The XML Schema

CEINT3

variables and output arguments be represented as “0” and “1”.

CLINNT3

true” may also be
untered and MUST be accepted. Nevertheless, it is strongly RECOMMENDED that all properties be

(see Seetion 1.3.1, “Comma Separated Value (CSV) Lists”) and property values in search criteria strings

(132

b. Comma (*,”) is
1. represented as “\,” in individual substring entries in CSV lists
2. not escaped in search strings
c. Double quote (“*”) is
1. notescaped in CSV lists
2. not escaped in search strings when it appears as the start or end delimiter of a property value

ed

‘0”

itly

3. represented as “\”” in search strings when it appears as a character that is part of the property value

.3 Extended Backus-Naur Form

Extended Backus-Naur Form is used in this document for a formal syntax description of certain constructs. The
usage here is according to the reference [EBNF].

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

- 16— 29341-4-14 © ISO/IEC:2008(E)

1.2.3.1 Typographic conventions for EBNF

Non-terminal symbols are unquoted sequences of characters from the set of English upper and lower case
letters, the digits “0” through “9”, and the hyphen (“-”’). Character sequences between 'single quotes' are
terminal strings and MUST appear literally in valid strings. Character sequences between (*comment
delimiters*) are English language definitions or supplementary explanations of their associated symbols.
White space in the EBNF is used to separate elements of the EBNF, not to represent white space in valid strings.
White space usage in valid strings is described explicitly in the EBNF. Finally, the EBNF uses the following
operators:

Table 1-1: EBNF Operators

Operator = Semantics

definition — the non-terminal symbol on the left is defined by one or more alternative
sequences of terminals and/or non-terminals to its right.

alternative separator — separates sequences on the right that are independently.allowed
definitions for the non-terminal on the left.

null repetition — means the expression to its left MAY occur zero or more times.

+ non-null repetition — means the expression to its left MUST occur at least once and MAY
occur more times.

[] optional — the expression between the brackets is optional:

(grouping — groups the expressions between the parentheses.

- character range — represents all characters between the left and right character operands
inclusively.

[&%)

1.3 Derived Data Types

Thig section defines a derived data type that is represented as a string data type with special syntax. This
spegification uses string data type definitions that'originate from two different sources. The UPnP Device
Architecture defined string data type is usedt6/define state variable and action argument string data types. The
XMIL Schema namespace is used to define property xsd:string data types. The following definition applies to
botl} string data types.

1.3.1 Comma Separated Value (CSV) Lists

ThelUPnP AV services use:state variables, action arguments and properties that represent lists — or one-
dimpnsional arrays — of values. The UPnP Device Architecture, Version 1.0 [DEVICE], does not provide for
eithpr an array type.ora/list type, so a list type is defined here. Lists MAY either be homogeneous (all values pre
the pame type) orheterogeneous (values of different types are allowed). Lists MAY also consist of repeated
occyirrences of-lomogeneous or heterogeneous subsequences, all of which have the same syntax and semantics
(same number of values, same value types and in the same order). The data type of a homogeneous list is stri
or xkd:stting and denoted by CSV (x), where x is the type of the individual values. The data type of a
hetdrogerieous list is also string or xsd:string and denoted by CSV (x, y, z), where x, y and z are the types of the
individual values. IT the number of values in the hieterogeneous 11t is t0o large to show each type individually,
that variable type is represented as CSV (heterogeneous), and the variable description includes additional
information as to the expected sequence of values appearing in the list and their corresponding types. The data
type of a repeated subsequence list is string or xsd:string and denoted by CSV ({x, y, z}), where x, y and z are the
types of the individual values in the subsequence and the subsequence MAY be repeated zero or more times.

e A listis represented as a string type (for state variables and action arguments) or xsd:string type (for
properties).

e Commas separate values within a list.

e Integer values are represented in CSVs with the same syntax as the integer data type specified in
[DEVICE] (that is: optional leading sign, optional leading zeroes, numeric ASCII)

e Boolean values are represented in state variable and action argument CSVs as either “0” for false or “1”
for true. These values are a subset of the defined Boolean data type values specified in [DEVICE]: 0,
false, no, 1, true, yes.

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) -17 -

e Boolean values are represented in property CSVs as either “0” for false or “/” for true. These values are
a subset of the defined Boolean data type values specified in [XML SCHEMA-2]: 0, false, 1, true.

e Escaping conventions for the comma and backslash characters are defined in Section 1.2.2, “Strings
Embedded in Other Strings”.

e White space before, after, or interior to any numeric data type is not allowed.

e White space before, after, or interior to any other data type is part of the value.

Table 1-2: CSV Examples

Type refinement Value Comments

of sitring

CSY (string) or “+artist,-date” List of 2 property sort

CSY (xsd:string) criteria.

CSY (int) or “1,-5,006,0,+7” List of 5 integers,

CSY (xsd:integer)

CSY (boolean) or “0,1,1,0” List of 4booleans

CSY (xsd:Boolean)

CSY (string) or “Smith\, Fred,Jones\, Davey” List/of 2 names,

CSY (xsd:string) “Smith, Fred” and
“Jones, Davey”

CSY (i4,string,ui2) “-29837, string with leading blanks,0” Note that the second value

or SV (xsd:int, is “ string with leading

xsdjstring, blanks”

xsdjunsignedShort)

CSY (i4) or “3,4” Illegal CSV. White space

CSY (xsd:int) is not allowed as part of
an integer value.

CSY (string) or . List of 3 empty string

CSY (xsd:string) values

CSY (heterogeneous) | “Alice,Marketing,5,Sue,R&D,21,Dave,Finance,7” | List of unspecified
number of people and
associated attributes. Each
person is described by 3
elements: a name string, a
department string and
years-of-service ui2 or a
name xsd:string, a
department xsd:string and
years-of-service
xsd:unsignedShort.

1.4 Management of XML Namespaces in Standardized DCPs

UPnP specifications make extensive use of XML namespaces. This allows separate DCPs, and even separate
components of an individual DCP, to be designed independently and still avoid name collisions when they share
XML documents. Every name in an XML document belongs to exactly one namespace. In documents, XML
names appear in one of two forms: qualified or unqualified. An unqualified name (or no-colon-name) contains no
colon (“:”) characters. An unqualified name belongs to the document’s default namespace. A qualified name is
two no-colon-names separated by one colon character. The no-colon-name before the colon is the qualified
name’s namespace prefix, the no-colon-name after the colon is the qualified name’s “local” name (meaning local
to the namespace identified by the namespace prefix). Similarly, the unqualified name is a local name in the

default namespace.

The formal name of a namespace is a URI. The namespace prefix used in an XML document is nof the name of
the namespace. The namespace name is, or should be, globally unique. It has a single definition that is accessible
to anyone who uses the namespace. It has the same meaning anywhere that it is used, both inside and outside

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

-18 - 29341-4-14 © ISO/IEC:2008(E)

XML documents. The namespace prefix, however, in formal XML usage, is defined only in an XML document.
It must be locally unique to the document. Any valid XML no-colon-name may be used. And, in formal XML
usage, no two XML documents are ever required to use the same namespace prefix to refer to the same
namespace. The creation and use of the namespace prefix was standardized by the W3C XML Committee in
[XML-NMSP] strictly as a convenient local shorthand replacement for the full URI name of a namespace in
individual documents.

All AV object properties are represented in XML by element and attribute names, therefore, all property names
belong to an XML namespace.

For the same reason that namespace prefixes are convenient in XML documents, it is convenient in specification
ot .] . . : -

13

megning, beyond a single XML document, to all of its text, XML examples, and certain string-valued properties.
Thig expansion of scope does not supercede XML rules for usage in documents, it only augments and
conjplements them in important contexts that are out-of-scope for the XML specifications.

All pf the namespaces used in this specification are listed in the Tables “Namespace Definitions” and “Schemp-
relajed Information”. For each such namespace, Table 1-3, “Namespace Definitions™ gives, a‘brief description| of
it, ifs name (a URI) and its defined “standard” prefix name. Some namespaces included'itythese tables are nof]
direftly used or referenced in this document. They are included for completeness to@ccommodate those
situgitions where this specification is used in conjunction with other UPnP specifiCations to construct a complgte
systpm of devices and services. The individual specifications in such collectiofs’all use the same standard prefix.
Thelstandard prefixes are also used in Table 1-4, “Schema-related Information”, to cross-reference additional
nanjespace information. This second table includes each namespace’s valid XML document root elements (if
any), its schema file name, versioning information (to be discussed in‘more detail below), and links to the entfies
in the Reference section for its associated schema.

The|normative definitions for these namespaces are the documents referenced in Table 1-3. The schemas are
desilgned to support these definitions for both human understanding and as test tools. However, limitations of fhe
XML Schema language itself make it difficult for the UPaP-defined schemas to accurately represent all detailp of
the hamespace definitions. As a result, the schemas will validate many XML documents that are not valid
accgrding to the specifications.

Thel Working Commiittee expects to continue reéfining these schemas after specification release to reduce the
nunjber of documents that are validated by the schemas while violating the specifications, but the schemas will
still|be informative, supporting documents) Some schemas might become normative in future versions of the
spegifications.

Tahle 1-3: Namespace Definitions

Staridard

Name- Normative Definition

space Document

Prefix Namespace Name Namespace Description Reference

(\ AV Working Committee defined namespaces

av: urnischemas-upnp-org:av:av Common data types for use in AV [AV-XSD]
schemas

avs: urn:schemas-upnp-org:av:avs Common structures for use in AV [AVS-XSD]
schemas

avdt: urn:schemas-upnp-org:av:avdt Datastructure Template [AVDT]

avt-event: | urn:schemas-upnp-org:metadata-1-0/AVT/ Evented LastChange state variable for [AVT]
AVTransport

didl-lite: urn:schemas-upnp-org:metadata-1-0/DIDL- Structure and metadata for [CDS]

Lite/ ContentDirectory

res-event: | urn:schemas-upnp-org:metadata-1-0/RCS/ Evented LastChange state variable for [RCS]
RenderingControl

SIS: urn:schemas-upnp-org:av:srs Metadata and structure for [SRS]
ScheduledRecording

srs-event: | urn:schemas-upnp-org:av:srs-event Evented LastChange state variable for [SRS]
ScheduledRecording

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) -19-

Standard
Name- Normative Definition

space Document
Prefix Namespace Name Namespace Description Reference

upnp: urn:schemas-upnp-org:metadata-1-0/upnp/ Metadata for ContentDirectory [CDS]

Externally defined namespaces

dc: http://purl.org/dc/elements/1.1/ Dublin Core [DC-TERMS]
xsd: http://www.w3.0rg/2001/XMLSchema XML Schema Language 1.0 [XML SCHEMA-1]
[XML SCHEMA-2]
xsi: TP/ 7 WWW. W3- 0127 20017 AIVTCSTITTIa- XvE-Schenmainstance Document sehena |- STetions 2768 3727 of
instance [XML SCHEMA-1]
xml: http://www.w3.org/XML/1998/namespace The “xml:” Namespace [XML-NS]

Tahle 1-4: Schema-related Information

Stardard Relative URI and File
Name- Name

space e Form 1
Prefix e Form 2 Valid Root Element(s) Schema Reference

AV Working Committee Defined Namespaces

av: o av-vn-yyyymmdd.xsd n/a [AV-XSD]

e av-vn.xsd

avs: o avs-vn-yyyymmdd.xsd <Features> [AVS-XSD]

e avs-vn.xsd <stateVariableValuePaizxs>

avdt: e avdt-vn-yyyymmdd.xsd <AVDT> [AVDT]

e avdt-vn.xsd

avt-gvent: |e avt-event-va-yyyymmdd.xsd | <Event> [AVT-EVENT-XSD]

e avt-event-van.xsd

didl-fite: | e didl-lite-vn-yyyymmdd.xsd | <DIDLiLite> [DIDL-LITE-XSD]

o didl-lite-vn.xsd

rcs-epent: | e res-event-vi-yyyymmdd.xsd-{ <Event> [RCS-EVENT-XSD]

e rcs-event-va.xsd

Srs: o srs-vn-yyyymmdd xsd <srs> [SRS-XSD]

e srs-vn.xsd

srs-epent: | e srs-evelitsvn-yyyymmdd.xsd | <StateEvent> [SRS-EVENT-XSD]

o srss¢vent-vn.xsd

upnpy e-upnp-vn-yyyymmdd.xsd n/a [UPNP-XSD]

¢ upnp-vn.xsd

= :
Externatty Defimed-ffamespaces

de: Absolute URL: http://dublincore.org/schemas/xmls/simpledc20021212.xsd [DC-XSD]

xsd: n/a <schema> [XMLSCHEMA-XSD]
Xsi: n/a n/a

xml: n/a [XML-XSD]

1.4.1 Namespace Prefix Requirements

There are many occurrences in this specification of string data types that contain XML names (property names).
These XML names in strings will not be processed under namespace-aware conditions. Therefore, all
occurrences in instance documents of XML names in strings MUST use the standard namespace prefixes as
declared in Table 1-3. In order to properly process the XML documents described herein, control points and
devices MUST use namespace-aware XML processors [XML-NMSP] for both reading and writing. As allowed

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

-20- 29341-4-14 © ISO/IEC:2008(E)

by [XML-NMSP], the namespace prefixes used in an instance document are at the sole discretion of the
document creator. Therefore, the declared prefix for a namespace in a document MAY be different from the
standard prefix. All devices MUST be able to correctly process any valid XML instance document, even when it
uses a non-standard prefix for ordinary XML names. It is strongly RECOMMENDED that all devices use these
standard prefixes for all instance documents to avoid confusion on the part of both human and machine readers.
These standard prefixes are used in all descriptive text and all XML examples in this and related UPnP
specifications. Also, each individual specification may assume a default namespace for its descriptive text. In that
case, names from that namespace may appear with no prefix.

The assumed default namespace, if any, for each UPnP AV specification is given in Table 1-5, “Default
Namespaces for the AV Specifications”.

Notg: all UPnP AV schemas declare attributes to be “unqualified”, so namespace prefixes are never used with
AV [Working Committee defined attribute names.

Table 1-5: Default Namespaces for the AV Specifications

AV Specification Name Default Namespace Prefix
AVTransport:2 avt-event:
CornectionManager:2 n/a

CoritentDirectory:2 didl-lite:

MediaRenderer:2 n/a

MediaServer:2 n/a

RenlderingControl:2 rcs-event:
SchgduledRecording: 1 sts:

1.4.2 Namespace Names, Namespace,Versioning and Schema Versioning
Each namespace that is defined by the AV Working-Committee is named by a URN.

In ofder to enable both forward and backwardCompatibility, the UPnP TC has established the general policy that
nanjespace names will not change with new versions of specifications, even when the specification changes th
defipition of a namespace. But, namespaces still have version numbers that reflect definitional changes. Each
tim¢ the definition of a namespace. is-¢lianged, the namespace’s version number is incremented by one.
Thefefore, namespace version information must be provided with each XML instance document so that the
docpment’s receiver can properly understand its meaning. This is achieved by the following rules:

[¢]

e Every release of-a'schema is identified by a version number and date of the form “n-yyyymmdd”, where
n corresponds tothe namespace definition version number and yyyymmdd is the year, month and day in
the Gregorian calendar that the schema is released.

For gxample, the new version numbers of the pre-existing “DIDL-Lite” and “upnp” schemas are “2”
Versions for new schemas, such as “srs” are “1”.

For each schema, the version-date will appear in two places:

T—Imthe schema fiic name, according 1o e Naming STUCIure SHOW 1 1abic -4, ~Schema-reiate
Information”.

2. As the value of the version attribute of each schema’s schema root element.

Namespaces are referenced in both schema and XML instance documents by namespace name. The namespace
name appears as the value of an xm1lns attribute. The xmlns attribute also declares a namespace prefix that will
be used to qualify names from each namespace. Schemas are referenced in both schema and XML instance
documents by URI in the schemaLocation attribute. See section 1.4.3, “Namespace Usage Examples” . Two
different forms of URI are available, each with a different meaning. All UPnP AV-defined schema URIs share a
common base path of “http://www.upnp.org/schemas/av/”. Each schema URI has two unique relative forms (see
Table 1-4, “Schema-related Information’), according to which version of a namespace and its representative
schema is of interest. The allowed relative URI forms are:

1. schema-root-name “-v” version-date
where version-date is a full version-date of the form n-yyyymmdd. This form references the schema

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) -21-

whose “root” name (typically the standardized prefix name used for the namespace that the schema
represents) and version-date match schema-root-name and version-date, respectively.

2. schema-root-name “-v” version
where version is an integer representing the namespace’s version number. This form references the most
recent version of the schema whose root name and namespace version number match schema-root-name
and the version, respectively.

Usage rules for schema location URIs are as follows:

1.4.3 Namespace Usage Examples

The]
nan
the
list

Ex

San{
nam
bacl

< 7?3
<D]
XN
XN
Xn
Xn
X

for Jhe schemas that need to be located for this instance,docuiment.

e All instance documents, whether generated by a service or a control point, MUST use Form 1.

Validation of XML instance documents in UPnP AV systems potentially serves two purposes..The
is based on standard XML and XML Schema semantics: the document’s creator asserts that the

document is syntactically correct with respect to the referenced schema. The receiving progessor ca
confirm this with a validating parser that uses the referenced schema(s). The second is based on UPnP
AV namespace semantics. The receiving processor knows that the XML instance doctument is suppoped
to conform to one or more specific UPnP AV specifications. Since the second context is actually the
more important context for instance document processing, the receiving processor MAY validate the
instance document against any version of a schema that satisfies its needs ih assessing the acceptability
of the received instance document.

schemaLocation attribute for XML instance documents comés from the XML Schema instance
espace “http:://www.w3.0rg/2002/XMLSchema-instance”. Assingle occurrence of the attribute can declarj
ocation of one or more schemas. The schemaLocat ion attribute value consists of a whitespace separgted
bf values: namespace name followed by its schema locatien URL. This pair-sequence is repeated as necespary

w

mple 1:

ple DIDL-Lite XML Document. This document assumes version-date 2-20060531 of the “didl-lite:”
espace/schema combination and (a possible later) version 2-20061231 of “upnp:”. The lines with the gray
cground show how to express this versioning information in the instance document.

ml version="1.0" encoding="UTF-8"?>
DL-Lite
lns:dc="http://purt.org/dc/elements/1.1/"
lns="urn:schemas-uprp-org:metadata-1-0/DIDL-Lite/"
lns:upnp="urn:gscéhemas-upnp-org:metadata-1-0/upnp/"
Ins:xsi="httpsA/fwww.w3.0rg/2001/XMLSchema-instance"
i:schemaLocdtion="
urn:schemas-Upnp-org:metadata-1-0/DIDL-Lite/
http://www.upnp.org/schemas/av/didl-1ite-v2-20060531.xsd
urn:schemas-upnp-org:metadata-1-0/upnp/
httpi/7/www.upnp.org/schemas/av/upnp-v2-20061231.xsd">
<item* id="18" parentID="13" restricted="0">

L1t am

</DIDL-Lite>

Exa

mple 2:

Sample srs XML Document. This document assumes version 1-20060531 of the “srs:” namespace/schema
combination. Again, the lines with the gray background show how to express this versioning information in the
instance document.

<?xml version="1.0" encoding="UTF-8"7?>

<srs

xmlns="urn:schemas-upnp-org:av:srs"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="

urn:schemas-upnp-org:av:srs
http://www.upnp.org/schemas/av/srs-v1-20060531.xsd" >

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

~22- 29341-4-14 © ISO/IEC:2008(E)
</srs>

1.5 Vendor-defined Extensions

Whenever vendors create additional vendor-defined state variables, actions or properties, their assigned names
and XML representation MUST follow the naming conventions and XML rules as specified in [DEVICE],
Section 2.5, “Description: Non-standard vendor extensions”.

1.6 References

Thig section lists the normative references used in the UPnP AV specifications and includes the tag inside square
bragkets that is used for each such reference:

[AMARCH] — AVArchitecture: 1, UPnP Forum, June 25, 2002.
Avdilable at: http://www.upnp.org/specs/av/UPnP-av-AV Architecture-v1-20020625.pdf.

[AVDT] — AV DataStructure Template: 1, UPnP Forum, May 31, 2006.
Avdilable at: http:// www.upnp.org/specs/av/UPnP-av-AVDataStructure-v1-20060531.pdf;
Latgst version available at: http://www.upnp.org/specs/av/UPnP-av-AVDataStructure-vl’pdf.

[AVDT-XSD] — XML Schema for UPnP AV Datastructure Template: 1, UPnP ForumyMay 31, 2006.
Avdilable at: http://www.upnp.org/schemas/av/avdt-v1-20060531.xsd.
Latgst version available at: http://www.upnp.org/schemas/av/avdt-v1.xsd.

[AV-XSD] — XML Schema for UPnP AV Common XML Data Types, URaR Forum, May 31, 2006.
Avdilable at: http://www.upnp.org/schemas/av/av-v1-20060531.xsd.
Latgst version available at: http://www.upnp.org/schemas/av/av-vl.xsd.

[AVS-XSD] — XML Schema for UPnP AV Common XML Styuctures, UPnP Forum, May 31, 2006.
Avdilable at: http://www.upnp.org/schemas/av/avs-v1-2006053 1.xsd.
Latgst version available at: http://www.upnp.org/schemas/av/avs-v1.xsd.

[AVT] — AVTransport:2, UPnP Forum, May 31, 2006<
Avdilable at: http://www.upnp.org/specs/av/UPnP-av-AV Transport-v2-Service-20060531.pdf.
Latgst version available at: http:// www.upnp.org/specs/av/UPnP-av-AVTransport-v2-Service.pdf.

[AT-EVENT-XSD] — XML Schema for AVTransport:2 LastChange Eventing, UPnP Forum, May 31, 2006
Avdilable at: http://www.upnp.org/schemas/av/avt-event-v2-20060531.xsd.
Latgst version available at: http://www.upnp.org/schemas/av/avt-event-v2.xsd.

[COS] — ContentDirectory:2, UPnP Forum, May 31, 2006.
Avdilable at: http:// www.upnp.org/specs/av/UPnP-av-ContentDirectory-v2-Service-20060531.pdf.
Latgst version available at:\ittp://www.upnp.org/specs/av/UPnP-av-ContentDirectory-v2-Service.pdf.

[CM] — ConnectionManager:2, UPnP Forum, May 31, 2006.
Avdilable at: http#swww.upnp.org/specs/av/UPnP-av-ConnectionManager-v2-Service-20060531.pdf.
Latgst version-available at: http://www.upnp.org/specs/av/UPnP-av-ConnectionManager-v2-Service.pdf.

[DA-XSDI<=XML Schema for UPnP AV Dublin Core.
Avdilable-at: http://www.dublincore.org/schemas/xmls/simpledc20020312.xsd.

Avalilable at: http://www.dublincore.org/schemas/xmls.

[DEVICE] — UPnP Device Architecture, version 1.0, UPnP Forum, June 13, 2000.
Available at: http://www.upnp.org/specs/architecture/UPnP-DeviceArchitecture-v1.0-20000613.htm.
Latest version available at: http://www.upnp.org/specs/architecture/UPnP-DeviceArchitecture-v1.0.htm.

[DIDL] - ISO/IEC CD 21000-2:2001, Information Technology - Multimedia Framework - Part 2: Digital Item
Declaration, July 2001.

[DIDL-LITE-XSD] — XML Schema for ContentDirectory:2 Structure and Metadata (DIDL-Lite), UPnP Forum,
May 31, 2006.

Available at: http://www.upnp.org/schemas/av/didl-lite-v2-2006053 1 .xsd.

Latest version available at: http://www.upnp.org/schemas/av/didl-lite-v2.xsd.

[EBNF] — ISO/IEC 14977, Information technology - Syntactic metalanguage - Extended BNF, December 1996.

http://www.upnp.org/specs/av/UPnP-av-AVArchitecture-v1-20020625.pdf
http://www.upnp.org/specs/av/UPnP-av-AVDataStructure-v1-20060531.pdf
http://www.upnp.org/specs/av/UPnP-av-AVDataStructure-v1.pdf
http://www.upnp.org/schemas/av/avdt-v1-20060531.xsd
http://www.upnp.org/schemas/av/avdt-v1.xsd
http://www.upnp.org/schemas/av/av-v1-20060531.xsd
http://www.upnp.org/schemas/av/av-v1.xsd
http://www.upnp.org/schemas/av/avs-v1-20060531.xsd
http://www.upnp.org/schemas/av/avs-v1.xsd
http://www.upnp.org/specs/av/UPnP-av-AVTransport-v2-Service-20060531.pdf
http://www.upnp.org/specs/av/UPnP-av-AVTransport-v2-Service.pdf
http://www.upnp.org/schemas/av/avt-event-v2-20060531.xsd
http://www.upnp.org/schemas/av/avt-event-v1.xsd
http://www.upnp.org/specs/av/UPnP-av-ContentDirectory-v2-Service-20060531.pdf
http://www.upnp.org/specs/av/UPnP-av-ContentDirectory-v2-Service.pdf
http://www.upnp.org/specs/av/UPnP-av-ConnectionManager-v2-Service-20060531.pdf
http://www.upnp.org/specs/av/UPnP-av-ConnectionManager-v2-Service.pdf
http://www.dublincore.org/schemas/xmls/simpledc20020312.xsd
http://www.dublincore.org/schemas/xmls/
http://www.upnp.org/specs/architecture/UPnP-DeviceArchitecture-v1.0-20000613.htm
http://www.upnp.org/specs/architecture/UPnP-DeviceArchitecture-v1.0.htm
http://www.upnp.org/schemas/av/didl-lite-v2-20060531.xsd
http://www.upnp.org/schemas/av/didl-lite-v2.xsd
https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) -23 -

[HTTP/1.1] — HyperText Transport Protocol — HTTP/I.1, R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L.
Masinter, P. Leach, T. Berners-Lee, June 1999.
Available at: http://www.ietf.org/rfc/rfc2616.txt.

IEC 61883] —IEC 61883 Consumer Audio/Video Equipment — Digital Interface - Part I to 5.
Available at: http://www.iec.ch.

[TEC-PAS 61883] — IEC-PAS 61883 Consumer Audio/Video Equipment — Digital Interface - Part 6.
Available at: http://www.iec.ch.

[ISO 8601] — Data elements and interchange formats — Information interchange -- Representation of dates and
times, International Standards Organization, December 21, 2000.
Avdilable at: ISO 8601:2000.

[MIME] — IETF RFC 1341, MIME (Multipurpose Internet Mail Extensions), N. Borenstein, N. Freed, June 1p92.
Available at: http://www.ietf.org/rfc/rfc1341.txt.

[MR] — MediaRenderer:2, UPnP Forum, May 31, 2006.
Avdilable at: http://www.upnp.org/specs/av/UPnP-av-MediaRenderer-v2-Device-2006053 1.pdf:
Latgst version available at: http://www.upnp.org/specs/av/UPnP-AV-MediaRenderer-v2-Device.pdf.

[MS] — MediaServer:2, UPnP Forum, May 31, 2006.
Avdilable at: http://www.upnp.org/specs/av/UPnP-av-MediaServer-v2-Device-20060531.pdf.
Latgst version available at: http://www.upnp.org/specs/av/UPnP-AV-MediaServer-v2-Device.pdf.

[RAS] — RenderingControl:2, UPnP Forum, May 31, 2006.
Avdilable at: http:// www.upnp.org/specs/av/UPnP-av-RenderingControl<v2-Service-20060531.pdf.
Latgst version available at: http://www.upnp.org/specs/av/UPnP-av-RenderingControl-v2-Service.pdf.

[RAS-EVENT-XSD] XML Schema for RenderingControl:2 LastChange Eventing, UPnP Forum, May 31,
200p.
Avdilable at: http://www.upnp.org/schemas/av/rcs-event-v1-20060531.xsd.

Latgst version available at: http://www.upnp.org/schemas/av/rcs-event-v1.xsd.

[RFIC 1738] — IETF RFC 1738, Uniform Resource-Laocators (URL), Tim Berners-Lee, et. Al., December 1994.
Available at: http://www.ietf.org/rfc/rfc1738.txt.

[RFIC 2119] — IETF RFC 2119, Key words forcise in RFCs to Indicate Requirement Levels, S. Bradner, 1997
Avdilable at: http://www.fags.org/rfes/rfc2119.html.

[RFIC 2396] — IETF RFC 2396, Uniform Resource Identifiers (URI): Generic Syntax, Tim Berners-Lee, et al,
1998.
Avdilable at: http://www.ietf.org/cfc/rfc2396.txt.

[RFIC 3339] — IETF RFC 3339, Date and Time on the Internet: Timestamps, G. Klyne, Clearswift Corporatio|
C. Newman, Sun Microsystems, July 2002.
Avdilable at: http://svww.ietf.org/rfc/rfc3339.txt.

[RTP] — IETF REC 1889, Realtime Transport Protocol (RTP), H. Schulzrinne, S. Casner, R. Frederick, V.
Jacqgbson, January 1996.
Available-af; http://www.ietf.org/rfc/rfc1889.txt.

[RTISPY#IETF RFC 2326, Real Time Streaming Protocol (RTSP), H. Schulzrinne, A. Rao, R. Lanphier, Apr
199%:
Available at: http://www.ietf.org/rfc/rfc2326.txt.

[SRS] — ScheduledRecording: 1, UPnP Forum, May 31, 2006.
Avalilable at: http://www.upnp.org/specs/av/UPnP-av-ScheduledRecording-v1-Service-20060531.pdf.
Latest version available at: http://www.upnp.org/specs/av/UPnP-av-ScheduledRecording-v1-Service-

20060531.pdf.

[SRS-XSD] — XML Schema for ScheduledRecording:1 Metadata and Structure, UPnP Forum, May 31, 2006.
Available at: http://www.upnp.org/schemas/av/srs-v1-20060531.xsd.
Latest version available at: http://www.upnp.org/schemas/av/srs-v1.xsd.

[SRS-EVENT-XSD] — XML Schema for ScheduledRecording:1 LastChange Eventing, UPnP Forum, May 31,
2006.

Available at: http://www.upnp.org/schemas/av/srs-event-v1-20060531.xsd.

Latest version available at: http://www.upnp.org/schemas/av/srs-event-v1.xsd.

i

—

http://www.ietf.org/rfc/rfc2616.txt
http://www.iec.ch/
http://www.iec.ch/
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=26780&ICS1=1&ICS2=140&ICS3=30
http://www.ietf.org/rfc/rfc1341.txt
http://www.upnp.org/specs/av/UPnP-av-MediaRenderer-v2-Device-20060531.pdf
http://www.upnp.org/specs/av/UPnP-AV-MediaRenderer-v2-Device.pdf
http://www.upnp.org/specs/av/UPnP-av-MediaServer-v2-Device-20060531.pdf
http://www.upnp.org/specs/av/UPnP-AV-MediaServer-v2-Device.pdf
http://www.upnp.org/specs/av/UPnP-av-RenderingControl-v2-Service-20060531.pdf
http://www.upnp.org/specs/av/UPnP-av-RenderingControl-v2-Service.pdf
http://www.upnp.org/schemas/av/rcs-event-v1-20060531.xsd
http://www.upnp.org/schemas/av/rcs-event-v1.xsd
http://www.ietf.org/rfc/rfc1738.txt
http://www.faqs.org/rfcs/rfc2119.html
http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc3339.txt
http://www.ietf.org/rfc/rfc1889.txt
http://www.ietf.org/rfc/rfc2326.txt
http://www.upnp.org/specs/av/UPnP-av-ScheduledRecording-v1-Service-20060531.pdf
http://www.upnp.org/specs/av/UPnP-av-ScheduledRecording-v1-Service-20060531.pdf
http://www.upnp.org/specs/av/UPnP-av-ScheduledRecording-v1-Service-20060531.pdf
http://www.upnp.org/schemas/av/srs-v1-20060531.xsd
http://www.upnp.org/schemas/av/srs-v1.xsd
http://www.upnp.org/schemas/av/srs-event-v1-20060531.xsd
http://www.upnp.org/schemas/av/srs-event-v1.xsd
https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

- 24— 29341-4-14 © ISO/IEC:2008(E)

[UAX 15] — Unicode Standard Annex #15, Unicode Normalization Forms, version 4.1.0, revision 25, M. Davis,
M. Diirst, March 25, 2005.
Available at: http://www.unicode.org/reports/tr15/tr15-25 .html.

[UNICODE COLLATION] — Unicode Technical Standard #10, Unicode Collation Algorithm version 4.1.0, M.
Davis, K. Whistler, May 5, 2005.
Available at: http://www.unicode.org/reports/tr10/tr10-14.html.

[UPNP-XSD] — XML Schema for ContentDirectory:2 Metadata, UPnP Forum, May 31, 2006.
Available at: http:// www.upnp.org/schemas/av/upnp-v2-20060531.xsd.
Latest version available at: http://www.upnp.org/schemas/av/upnp-v2.xsd.

S 10] — Unicode Technical Standard #10, Unicode Collation Algorithm, version 4.1.0, revision 14, M.,
is, K. Whistler, May 5, 2005.
ilable at: http://www.unicode.org/reports/tr10/tr10-14.html.

S 351 — Unicode Technical Standard #35, Locale Data Markup Language, version 1.3R1, reyision 5,.M.
is, June 2, 2005.
ilable at: http://www.unicode.org/reports/tr35/tr35-5.html.

L] — Extensible Markup Language (XML) 1.0 (Third Edition), Francois Yergeau,-Tim Bray, Jean Paoli, (.
perberg-McQueen, Eve Maler, eds., W3C Recommendation, February 4, 2004
ilable at: http://www.w3.0rg/TR/2004/REC-xml-20040204.

L-NS] — The “xml:” Namespace, November 3, 2004.
ilable at: http:/www.w3.org/XML/1998/namespace.

L-XSD] — XML Schema for the “xml:” Namespace.
ilable at: http://www.w3.0rg/2001/xml.xsd.

L-NMSP] — Namespaces in XML, Tim Bray, Dave Hollandet, Andrew Layman, eds., W3C
Recpmmendation, January 14, 1999.
Available at: http://www.w3.0rg/TR/1999/REC-xml-names~19990114.

[XML SCHEMA-1] — XML Schema Part 1: Structures] Second Edition, Henry S. Thompson, David Beech,
Mutray Maloney, Noah Mendelsohn, W3C Recommendation, 28 October 2004.
Available at: http://www.w3.0rg/TR/2004/REE-xmlschema-1-20041028.

[XML SCHEMA-2] — XML Schema Part.2: Data Types, Second Edition, Paul V. Biron, Ashok Malhotra, W3C
Recpmmendation, 28 October 2004.
Available at: http://www.w3.0org/TR72004/REC-xmlschema-2-20041028.

[XMLSCHEMA-XSD] — XML Schema for XML Schema.
Avdilable at: http://www.w3sorg/2001/XMLSchema.xsd.

http://www.unicode.org/reports/tr15/tr15-25.html
http://www.unicode.org/reports/tr10/tr10-14,html
http://www.upnp.org/schemas/av/upnp-v2-20060531.xsd
http://www.upnp.org/schemas/av/upnp-v2.xsd
http://www.unicode.org/reports/tr10/tr10-14.html
http://www.unicode.org/reports/tr35/tr35-5.html
http://www.w3.org/TR/2004/REC-xml-20040204/
http://www.w3.org/XML/1998/namespace
http://www.w3.org/2001/xml.xsd
http://www.w3.org/TR/1999/REC-xml-names-19990114
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/
http://www.w3.org/2001/XMLSchema.xsd
https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) -25-

2

2.1
The

Service Modeling Definitions

ServiceType

following service type identifies a service that is compliant with this template:

urn:schemas-upnp-org:service: ScheduledRecording: 1

ScheduledRecording service is used herein to refer to this service type.

Z.i Terms and Abbreviations

2.2.1 Abbreviations

Tahle 2-1: Abbreviations

Definition Description

CD$ ContentDirectory Service.

EPG: Electronic Program Guide.

SRS ScheduledRecording service.

2.2.2 Terms

2.2(2.1 CDS object

An pbject in a ContentDirectory service metadata hierarchy; that is: item or container.

2.2(2.2 User Channel

A User Channel is a ContentDirectory servicelobject that exposes the (continuous) content stream of a particy
brogdcast channel. Usually, the actual channel that the User Channel exposes is determined by the user throug
sonfe device-specific interaction. Examples are: manual programming of a number of channel presets; invokir

of the auto-scan functionality of a device; predefined fixed channel assignments by the device manufacturer.

2.2
A(Q

2.3 Channel Group

hannel Group is a ContentDirectory service container that holds a number of User Channel items. Typica

a Clhannel Group contains User Channel items that are bound to a particular hardware resource. Examples

incl

2.2
A s¢

ide: a single analog cable TV tuner, a HDTV digital tuner, an AM/FM radio tuner, etc.

2.4 _<Channel Line-up

rviee provider-generated list of channels with their associated content provider.

lar

ly,

2.2

.2.5 object

A recordSchedule or a recordTask (see definition of recordSchedule and recordTask below).

2.2

.2.6 class

As defined in the ContentDirectory service specification, a class is used to assign a type to an object. It also
identifies the minimum REQUIRED set of properties that MUST be present on that object and the OPTIONAL
properties that MAY be present. Classes are organized in a hierarchy with certain classes being derived from
others as in a typical object-oriented system. This specification defines two base classes (recordSchedule and
recordTask) from which all other classes are derived.

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

- 26— 29341-4-14 © ISO/IEC:2008(E)

2.2.2.7 object Modification

An object is considered modified when one of its properties (or its list of properties) is modified; that is: added,
removed or changed in value (see definition of property below).

2.2.2.8 recordSchedule

A ScheduledRecording service construct that represents a complete set of recording instructions to the service,
which allows the service to generate recordTask objects as necessary to record the desired content. The creator of
the recordSchedule object assigns it a specific class, based on the type and complexity of the instructions, used to
identify the content.

A rq¢cordSchedule is represented in XML as an <items>..</item> element.

2.2[2.9 Conflicting recordSchedule

A conflicting recordSchedule exists when one or more of its associated recordTask instances is in conflict with
another recordTask instance.

2.2(2.10 recordTask

A StheduledRecording service construct that represents a discrete recording opetation of the underlying
recqrding system. A recordTask is created by its parent recordSchedule and can(not be directly created by thd
usel|. The parent-child relationship of recordSchedule and recordTask can beyl-to-zero or more.

A r¢cordTask is represented in XML as an <items..</item> element,

2.212.11 Conflicting_recordTask

A conflicting recordTask exists when it overlaps in time with‘ene or more other recordTask instances and the
ScheduledRecording service has insufficient resources to.record all of them. Existing pre-roll and post-roll

adjystments (as defined by the scheduledStartDateTinreAdjust and scheduledDurationAdjust properties) MUS$T
be thken into account when determining conflicts.

2.2{2.12 recordScheduleParts

A StheduledRecording service constructthat represents user-level recording instructions to the service, whick
proyide a template to generate complete recordSchedule objects. The creator of the recordScheduleParts objgct
assipns it a specific class, based.omthe type and complexity of the instructions, used to identify the content.

A r¢cordScheduleParts is represented in XML as an <item>...</item> element.

2.2(2.13 Property-set Data Types

Cerfain ScheduledRecording service actions use property-set arguments that contain information about a set df
properties, typically expressed in the form of an srs XML Document (for example, the Elements argument of the
CrefiteRecardSchedule() action). The set of properties that can exist in a property-set argument is
implementation dependent. Indeed, the set of optional properties that a particular ScheduledRecording servicq
chogsesfo implement is vendor dependent.

This specification currently defines three different property-set data types:
e A ARG TYPE RecordSchedule
e A ARG _TYPE RecordTask
e A ARG TYPE RecordScheduleParts

Although these three types are different, they are very similar in nature and are defined using the same SRS
schema [SRS-XSD], which defines all the properties that can ever occur in any of the three property-set data
types. They differ only in the set of properties that can appear in them and in the values that are allowed for these
properties.

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) - 27 -

2.2.2.14 Property

A property in the ScheduledRecording service represents a characteristic of an object. Properties are
distinguished by their names. The ScheduledRecording service defines two kinds of properties — independent and
dependent. Each independent property has zero or more dependent properties associated with it. Independent
property names contain no “(@” symbol; they may contain an XML namespace prefix (see below for an
explanation of the relationship between properties and XML). Each dependent property is associated either with
exactly one independent property or directly with a ScheduledRecording service class. The name of a dependent
property that is associated with an independent property is the concatenation of three parts: its associated
independent property name, the “(@” symbol, and a name for the relationship between the two properties’ values.
The name of a dependent property that is associated directly with a class is just the “@” symbol followed by the
relafionship name. Their data types and meanings are defined n Annex B.

Eveh though ScheduledRecording service properties are not XML objects, XML is used to express them.in al
exchanges between a control point and a ScheduledRecording service implementation. This creates ah
unayoidable relationship between XML syntax and property names and values. In XML, an independéent propprty
is rdpresented as an element. The property name is used as the element name. The property valueris the elemeht
confent. A dependent property is represented as an attribute in XML. The dependent propenty’s relationship npme
is uged as the attribute name. The dependent property’s value is the attribute value. For dependent properties fhat
are pssociated with an independent property, the attribute appears in the start tag of the)elément that representp its
assdciated independent property. For dependent properties that are associated directly with a class, the attribufe
appgars in the top-level start tag for each object of that class.

Examples:

Tahle 2-1: Properties in XML

Property Name XML Representation (srs declared as default namespace)
title] <titles>..</title>

tasklprogranlCOdg <taskProgramCédes..</taskProgramCode>
tas/JProgramC()de@[Vpe <taskProgramCode type="..">..</taskProgramCode>
@id <item id=".">..</item>

2.2(2.15 Member Property

A property is a member of a particular-class when the property is declared to be either REQUIRED or
OPTIONAL for that class.

2.2|2.16 Supported Member Property

A syipported member property is a member property that is supported by a particular ScheduledRecording serpice
imp|ementation, deeording to the information returned by the GetPropertvList() action.

2.2(2.17Multi-valued property

Sonmpe fndependent properties are multi-valued. This means that the property MAY occur more than once in atr
Obj cets

2.2.2.18 Single-valued property

Most independent properties are single-valued. This means thatthe property MUST occur at most once in an
object. Some single-valued properties can contain a CSV list of values. A dependent property is always
considered single-valued, because it can occur at most once with each occurrence of its associated independent
property, even though the independent property may be multi-valued.

2.2.2.19 XML Document

A string that represents a valid XML 1.0 document according to a specific schema. Every occurrence of the
phrase “XML Document” is preceded by the appropriate root element name, italicized, as listed in column 3,
“Valid Root Element(s)” of Table 1-4, “Schema-related Information”.

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

- 28— 29341-4-14 © ISO/IEC:2008(E)

For example, the phrase “svs XML Document” refers to an XML document based on the SRS Schema as defined
in [SRS-XSD]. Such a document comprises a single <srs ...> root element, optionally preceded by the XML
declaration: <?xml version="1.0" ..?>.

Therefore, the string containing the srs XML Document will have one of the following two forms:
“<8rs ..>..</srs>”
or

“<?xml ..?>
<8rs ..>..</srs>”

2.2(2.20 XML Fragment

An XML Fragment is a sequence of XML elements that are valid direct or indirect child elements of the-root
element according to a specific schema. Every occurrence of the phrase “XML Fragment” is preceded-by the
appfopriate root element name, italicized, as listed in column 3, “Valid Root Element(s)” of Table\l -4, “Schema-
relafed Information”.

For [example, the phrase “srs XML Fragment” refers to a sequence of XML elements that are defined in the SRS
Schgma as defined in [SRS-XSD]:

“<iltem id=".." ..>.</item>”
or
“<recordDestination mediaType=".." preference=".."»

</fecordDestination>”
or

“<tlitles..</title>
<¢lasss>..</class>
<d>..</.>

<A</

2.2(2.21 actualScheduledStartDateTime

Thelactual scheduled start date&time ofia-program item is defined as:

actjalScheduledStartDateTime = GcheduledStartDateTime + scheduledStartDateTimeAdjust

whdre scheduledStartDateTime is’the scheduled broadcast start date&time of the program item and
scheduledStartDateTimeAdjust is a user-supplied adjustment to that date&time, for example for pre-roll
purposes.

2.2(2.22 actualStartDateTime

The]actual start date&time of a program item is defined as:

actyalStartDateTime = actualScheduledStartDateTime + any device-specific record startup latency.

2.2.2.23 actualScheduledEndDateTime

The actual scheduled end time of a program item is defined as:

actualScheduledEndDateTime = scheduledStartDateTime + scheduledDuration +
scheduledDurationAdjust

where scheduledStartDateTime is the scheduled broadcast start date&time of the program item,
scheduledDuration is the scheduled broadcast duration of the program item and scheduledDurationAdjust is a
user-supplied adjustment to that duration, for example to select just a part of the program for recording.

2.2.2.24 actualEndDateTime

The actual end date&time of a program item is defined as:

actualEndDateTime = actualScheduledEndDateTime + any device-specific record teardown latency.

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) -29-

2.2.2.25 actualScheduledDuration

The actual scheduled duration of a program item is defined as:
actualScheduledDuration = actualScheduledEndDateTime — actualScheduledStartDateTime

= scheduledDuration + scheduledDurationAdjust —
scheduledStartDateTimeAdjust

where scheduledDuration is the scheduled broadcast duration of the program item, scheduledDurationAdjust is a
user-supplied adjustment to that duration, and scheduledStartDateTimeAdjust is a user-supplied adjustment to the
scheduled start date&time.

2.2(2.26 Lexical Sort Order

Lexjcal sort order refers to string sorting — also called collation — based on language and regional corventiony. It

is ngt based on the binary codes of the characters in strings. Furthermore, lexical sorting is not basedion character
sets| a single character set may have multiple sort orders, again according to language and regional conventiops.
It is|also possible to have lexical sorts that are further refined according to user preference. For’a complete
disdussion of this topic see [UTS 10], and the related standards [UAX 15] and [UTS 35]. [UTS 10] defines the
lexifal sort algorithms. It uses a secondary algorithm defined in [UAX 15] and supporting data tables defined|in
[UT|S 35]. These three references together — [UAX 15], [UTS 10] and [UTS 35] — should be sufficient to

impjement a robust lexical sort.

Simple example: one of the most familiar examples is case-insensitive sorting\on the ASCII subset of Unicod¢. In
a bipary ASCII sort, all lower case letters sort after the upper case “Z” because “Z” has a character code of 045A,
and|[all lower case character codes are greater than or equal to 0x61.

[IF%L (1343

Mote complex example: the “6” character in German sorts betweén “n” and “p” characters whereas in Swedigh, it
sortp after “z”.

2.2|2.27 Lexical Matching

Lexjcal matching compares two (sub)strings for equality under certain lexical sorting conditions. /¢ is importdnt
to npte that equality in lexical matching is often Jess’restrictive than equality in lexical sorting. In other words
two|strings that are equal under a lexical sort will always be a lexical match. However, two strings that are a
lexifal match might not be equal under a lexical sort for the same language and region. In some cases, an
impJementation’s lexical sort might consider all alphabetic characters with diacritical marks (accents, umlauts
circhmflexes, etc.) to be distinct, yet'the same implementation might ignore diacritical marks in lexical matching.

£99, 66

For fexample, the strings “resumé>.“resume” and “résumé” might sort as “resume” < “resumé” < “résumé”, byit
£99 Ge

when a lexical match using the string “resume”, might find all three strings “resumé”, “resume” and “résumé”,
For [implementation techniguies, see [UTS 10] Section 8, “Searching and Matching”.

2.2(2.28 Simple.Non-case-sensitive Sort Order

A simple non-cdse-sensitive sort order applies only to Roman alphabetic characters. All lower case ASCII
alpHabetic characters MUST sort the same as their uppercase equivalent, except when compared directly with|
theif upper'case equivalent, in which case the upper case character SHOULD sort before its lower case
equjvalent” This means that of the following three ordering relations, #1 MUST be true, at least one of #2 and|#3
MUST be true, and #2 SHOULD be true

“A” S cca” < “B” S ccb” <. .. < “Y” S ccy” < “Z” S ch”
“A” < “a” < cLB” < cLb” < < ch” < ccy” < ccz” < ch”
“A” — “a” < cLB” — cLb” < < ch” — ccy” < ccz” — ch”

Additionally, the same upper and lower case relationships SHOULD hold for non-ASCII Roman alphabetic
characters. That is, lower case alphabetic characters with diacritical marks SHOULD sort as their upper case
equivalent, except when compared directly with their upper case equivalent, in which case the upper case
character should sort before its lower case equivalent. The ordering relation between ASCII and non-ASCII
alphabetic characters is left unspecified. Also, the ordering relation between non-ASCII alphabetic characters that
are not upper or lower case equivalents of each other is left unspecified. This may be summarized in the
following relations. In each, the letter “c” represents any non-ASCII Roman alphabetic character. #4 SHOULD
be true for all “c”. #5 SHOULD be true for all “c”. If #5 is false for any “c”, it should be false for all “c” and #6
SHOULD be true for all “c”.

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

-30- 29341-4-14 © ISO/IEC:2008

upper(c) < lower(c)

upper(c) < lower(c)

upper(c) = lower(c)

2.2.2.29 Simple Non-case-sensitive Matching
In a simple non-case-sensitive match, relation #0 above MUST be true, and relation #0 above SHOULD be true.

2.2.2.30 Numeric Sort Order

As
valy
valy

2.2
Bog

2.2
A sq
seq
seq
suby
in th
seq

2.2
A s¢

2.2
A sd

2.2

A ldg
sort
sub

For
stra
sort
Hoy
a hy

e is used. If the type of an individual value is string, the string is converted to a number and that numeric
e is used.

2.31 Boolean Sort Order

lean values are sorted with “0” (false) being less than “1” (true).

2.32 Sequenced Sort

quenced sort is a sort applied to a set of values, each of which is composed<f a sequence of subvalues. T
gence is often in a CSV list, but there are other kinds of sequences used for sorting in this specification. T}
jenced sort starts by sorting based on the first subvalue in the sequere€) If all values differ in the first
balue, the sort is finished. Otherwise, each subset of equal subvalugs is then sorted based on the next subv:
e sequence. This process repeats iteratively until there are no/more subsets of equal subvalues or the
jence is exhausted.

2.33 Sequenced Lexical Sort

quenced sort in which all subvalues are strings.and’the subvalues are compared lexically.

2.34 Sequenced Numeric Sort

quenced sort in which each subvalue(is either a number or the number represented by a string.

2.35 Lexical Numeric'Sort

xical numeric sort is ong where one or more substrings are known to represent numbers. The strings are tl
bd using a sequenced-sort, where the sequence is composed of the sequence of non-numeric and numeric
trings from the largerstring.

example, assumera property has the form <letter>-<number>, where <number> ranges from 1 to 10. In a
ght ascending-lexical sort, the values “A-107, “A-17, “A-2” would sort as: “A-17, “A-107, “A-2”. “A-10”
5 before A-2” because they are equal in the first two character positions, but in the third position, “1” <
ever; inva lexical numeric sort, each string is considered to be a sequence of a letter and number separate

(E)

rt order in which values are compared numerically. If the type of an individual value is numeric, the ndmeric

he
e

hlue

I

D>,
| by

phen, These values then sort as “A-17, “A-2”, “A-10" because all three are equal in the first subvalue, “A|
dcubualina caete oc 1 9 10 2.0 ar

but th

2.2

TIC-STCOIC St o v arat-5o0Tts—aS— 15 =5 1T U I oo oracrs

.2.36 type Relationship Sort

This is a sort defined exclusively for independent properties that have a dependent property relationship named
“type”. These properties are sorted as a sequence of two subvalues: the first subvalue is the value of the
property’s xxx(@tvpe dependent property; the second subvalue is the value of the independent property xxx itself.

The

xxx(@type subvalues are sorted as specified for the dependent xxx@tvpe property in its own section. The

independent property subvalues are sorted according to the order specified in its section. Sorting of the
independent property may vary with the value of the dependent property.

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) -31-

2.3 ScheduledRecording Service Architecture

2.3.1 recordSchedule

A ScheduledRecording service implementation has a single, flat list of recordSchedule instances. A
recordSchedule represents the user-level recording instructions to the ScheduledRecording service. These user-
level instructions have various levels of complexity. For example, a simple instruction may state: “record channel
15 at 4PM on March 19, 2004,” while a more complex instruction may state: “record all episodes of the DIY
Home Improvement Show on any channel that has the show for the next month.” The behavior of a
recordSchedule is described by one or more properties, and these properties can be manipulated through several
actipas-

As ghown in Figure 1, when a control point requests a new scheduled recording to the ScheduledRecordig
servfice via the CreateRecordSchedule() action, the control point sets a number of properties and passes‘them fo
the PcheduledRecording service to express user-desired instructions to the scheduled recording. THen; as a
response to the CreateRecordSchedule() action, the ScheduledRecording service creates a recordSehedule,
assipns a unique ID to the recordSchedule and returns the recordSchedule with the complete set‘of initial
property settings. The ScheduledRecording service MUST add OPTIONAL properties to the\recordSchedule)
when a control point did not specify them. Additionally, the ScheduledRecording service MAY add some
infojrmative properties.

If afcontrol point specifies unsupported or unknown properties as input to the CreateRecordSchedule() actionf the
ScheduledRecording service MUST gracefully ignore these. A control point cat“always parse the generated
recqrdSchedule returned in the Result argument of the CreateRecordSchedulé action to verify whether certain
properties were rejected by the ScheduledRecording service. If unsupported values are set for supported
properties, the ScheduledRecording service MUST return an error and 'the recordSchedule MUST NOT be
credted.

D (\
CreatéRecordSchedule(e)
¢ Properties.with desired
values.
s
Point «? 0
Service
L «\RecordSchedulelD
¢ Properties with initially
assigned values
~ Vs ;’ ~ —

Figure 1: Creating a new recordSchedule

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

-32- 29341-4-14 © ISO/IEC:2008(E)

Some properties are defined as optional in the ScheduledRecording service. Therefore, a control point needs to
determine which properties a ScheduledRecording service implementation actually supports. Since support levels
and allowed values for properties can be different for recordScheduleParts, recordSchedule or recordTask usage,
a pair of actions (GetPropertyList() and GetAllowedValues())) are provided to retrieve the relevant information.
Figure 2 illustrates the concept.

D D
GetPropertyList®)

* Property-set Datatype

| o List of property names
supported for the datatype N
chedule
Con_t rol GetAllowedValues(e) Recording
Point > .
e List of property names
L e Allowed values for the listed b(
properties q(b
o O

Figure 2: Capability check.

Figyre 3 illustrates how recordSchedule instances can be browsed by the“control point after they have been
credted, to retrieve the updated/current values of the properties.

O a0

BrowseRetordSchedules() >
<!
Control L Schedu]ed
Point ¢ Currentnvalues of the Recording
propetties of the returned Service
recerdSchedules
- -

Figure 3: Browse recordSchedule.

Figyre 4 illustrates how a control point can delete a recordSchedule from the ScheduledRecording service.

DeleteRecordSchedule(e) |

Scheduled
Recording
Service

Control e RecordSchedulelD

Point

Figure 4: Delete a recordSchedule

2.3.2 recordTask

A recordSchedule will generate one recordTask for each recording operation that matches the criteria of the
recordSchedule. A recordTask also has properties indicating its behavior. A recordTask is different from a
recordSchedule in that it always represents a single recording operation whereas a recordSchedule may actually
represent multiple recording operations. For example, a ScheduledRecording service that interprets a
recordSchedule to lead to three different recording operations could generate three different recordTask
instances over its lifetime. At a given time, a recordSchedule can have zero (no recording operations currently
scheduled) or more recordTask instances associated with it. A ScheduledRecording service MUST report at least
one recordTask when the underlying system is performing a recording operation for some recordSchedule.

When a recordSchedule is created, the ScheduledRecording service generates necessary recordTask instances
associated with each scheduled recording occurrence. The ScheduledRecording service may also later add a new

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) -33 -

recordTask whenever a new scheduled recording occurrence arrives. Similarly, a ScheduledRecording service
may delete recordTask instances when they are no longer needed. This MAY happen in a device dependent
manner. For example, some ScheduledRecording service implementations delete a recordTask when the
recording is finished while other ScheduledRecording service implementations keep maintaining finished
recordTask instances. A recordTask can only be created by the ScheduledRecording service as a result of a
trigger from a recordSchedule. A control point can never create a recordTask directly. Both a recordTask and a
recordSchedule MAY be deleted by the ScheduledRecording service or a control point.

The lifetime of a recordTask is determined in a vendor dependent way. Some implementations maintain a
recordTask even after it finishes its recording while others may delete the recordTask once the recording finishes.
However, in any implementation, when a recordSchedule is deleted, the ScheduledRecording service MUST
deldte all of its associated recordTask instances.

2.4 State Variables

Lik¢ the ContentDirectory service, the ScheduledRecording service is primarily action-based. The'service stafe
varipbles exist primarily to support argument passing within service actions. Information is nof«€xposed direc{ly
through explicit state variables. Instead, a client retrieves ScheduledRecording service information via the retyrn
argyments of the actions defined below. The majority of state variables defined below,€xist simply to provide
datq type information for the arguments of the various actions of this service.

Redder Note: For a first-time reader, it may be more helpful to read the action definitions before reading the
state variable definitions.

2.4.1 State Variable Overview

Table 2-2: State Variables

Variable Name Allowed Value Default Eng.
Value Units

Sor{Capabilities R string CSV (string)

SoriLevelCapability R ui4

StatpUpdatelD R ui4

Las{Change R string

A_ARG TYPE PropertyList R string CSV (string)

A_ARG TYPE DataTypelD R string See Table 2-3

A_ARG_TYPE_ObjectID R string

A_ARG_TYPE DbjectIDList o’ string CSV (string)

A_ARG (TYPE PropertyInfo R string

A_ARGYTYPE Index R ui4

A_ARG TYPE Count R ui4

A_ARG TYPE SortCriteria R string CSV (string)

A_ARG TYPE RecordSchedule R string

A_ARG TYPE RecordTask R string

A_ARG TYPE RecordScheduleParts R string

! R = Required, O = Optional, X = Non-standard.

2 CONDITIONALLY REQUIRED. This argument type variable is REQUIRED when the
GetRecordScheduleConflicts() or GetRecordTaskConflicts() actions are implemented. See Sections 2.6.17,

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

-34- 29341-4-14 © ISO/IEC:2008(E)

“GetRecordScheduleConflicts()” and 2.6.18, “GetRecordTaskConflicts()” to determine when these actions
MUST be implemented.

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © 1SO/IEC:2008(E) ~35-

Table 2-3: allowedValueList for the DataTypelD argument

Value R/O’
“A_ARG_TYPE_ RecordSchedule” R
“A_ARG_TYPE RecordTask” R
“A_ARG_TYPE_ RecordScheduleParts” R
Vendor-defined X

"R =REQUIRED, O = OPTIONAL, X = Non-standard.

2.4.2 SortCapabilities

This state variable contains a CSV list of property names that the ScheduledRecording service.can use
to sort the information returned in the Result argument of various actions, such as
BrowseRecordSchedules() and BrowseRecordTasks(). An empty string indicates thatithe-device does
not support any kind of sorting. A wildcard “srs: *” indicates that any supported property within the
srs namespace can be used for sorting.

2.4.3 SortlLevelCapability

This state variable contains an integer that indicates the maximum number of property names that can
be specified in the SortCriteria argument at the same time.

2.4.4 StateUpdatelD

This state variable is a ScheduledRecording service system-wide numeric value. Its initial value is 0.

e StateUpdateID MUST be incremented by, I whenever any of the following occurs:

o A recordSchedule or recordTask s created or deleted.

e A recordSchedule or record?ask is modified, which means that one or more properties are
added, deleted or had their value changed.

e Any other change to-the state of the ScheduledRecording service that could be observed
by a control peint.“This includes any vendor- or other future-defined behavior.

e When the value of StateUpdatelD is equal to the ui4 maximum value of 4294967295 (2**-1),
incrementingit causes it to roll over to the value 0.

e The inctement and the operation that caused it must occur atomically relative to all
information visible to any control point — including both action out arguments and evented
variable values.

For example, consider the case where a control point invokes CreateRecordSchedule() to
create a new recordSchedule that also immediately spawns exactly one recordTask. Assume
that StateUpdatelD is 10 when the control point invokes the action and that for a short time

period around this invocation, no other activity occurs that affects the value of StateUpdatelD.
During this time period, exactly one of the following MUST be true as seen by all external
observations (including the returned values from this CreateRecordSchedule() invocation):

e StateUpdatelD is 10; and the new recordSchedule has not been created; and the new
recordTask has not been created.

e StateUpdatelD is 11; and the recordSchedule has been created; and the new recordTask
has not been created; and the recordSchedule’s value of currentRecordTaskCount is 0,
indicating that no recordTask has been created.

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

-36 - 29341-4-14 © ISO/IEC:2008(E)

o StateUpdatelD is 12; and the recordSchedule has been created; and the new recordTask
has been created; and the recordSchedule’s value of currentRecordTaskCount is 1,
indicating that the child recordTask has been created.

ScheduledRecording service implementations SHOULD maintain the same value for State UpdatelD
through power cycles and any other disappearance/reappearance of the service on the network. Control
points can use a change in the value of this variable to determine if there has been a change in the
ScheduledRecording service.

The value of the StateUpdatelD state variable, returned within events and returned as an output
argument of certain actions should be monitored very closely by control points. Indeed, whenever an
action returns w1th a State UgdatelD value in its UpdatelD argument that is less than the State UgdatelD

returned by that actron is potentrally stale. A control pomt may want to refresh that 1nformatron for
instance by invoking the appropriate Browsexxx() or Getxxx() action. It is safe to use the information as

long as the StateUpdatelD value returned in the UpdatelD argument of the action is greater than'or
equal to the StateUpdatelD value received in the updatelD attribute from the most recent LastChange
event.

2.4.5 LastChange

Note: It is assumed that the default namespace for this sub-section (2.4.5, “LastChange”) of the
specification is srs-lc.

This state variable is used for eventing purposes to allow clients to regeiye meaningful event
notifications whenever a recordSchedule or recordTask in the ScheduledRecording service changes.
[SRS-EVENT-XSD] defines the schema for the StateEvent XMIL{Document used in this state variable.
The optional XML header <?xml version="1.0" ?>isallowed. One root element,
<StateEvent> MAY have zero or more elements, eachrofiwhich represent one update to a
recordSchedule or recordTask instance. Six types of update”elements are defined as shown in Table 2-4,
“Allowed Elements in <StateEvent > Element”. Future ScheduledRecording service specifications
MAY add other types of update elements. A vendotMAY add vendor-defined elements. The
ScheduledRecording:1 service does not define thévalue for these elements. Vendor-defined element
names MUST follow the rules set forth in Section 1.5, “Vendor-defined Extensions”. Note that future
ScheduledRecording service specifications;MAY define sub-elements for the elements. Also note that
this state variable MUST be properly escaped as defined in [XML].

Table 2-4: Allowed Elements in <StateEvent> Element

Element Name Description

RecordScheduleCxeated A new recordSchedule is created.
RecordScheduleModified One or more properties of a recordSchedule are
modified (added, deleted or values are changed).
RecordSCcheduleDeleted A recordSchedule is deleted.
RecordTaskCreated A new recordTask is created.
RecordTaskModified One or more properties of a recordTask are modified
(added, deleted or values are changed).
RecordTaskDeleted A recordTask is deleted.
Vendor-defined See Section 1.5, “Vendor-defined Extensions”.

Each element MUST have one updatelD attribute, which is set to the value of the StateUpdatelD state
variable at the time of the update and one objectID attribute, whose value is set to the value of the @id
property of the updated recordSchedule or recordTask instance. Future ScheduledRecording service
specifications MAY add other attributes to existing update elements. A vendor MAY add vendor-
defined attributes for existing update elements.

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) -37 -

Example (before XML escaping)

<?xml version="1.0" encoding="UTF-8"?>
<StateEvent
xmlns="urn:schemas-upnp-org:av:srs-event"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="
urn:schemas-upnp-org:av:srs-event
http://www.upnp.org/schemas/av/srs-event-v1-20060531.xsd">
<RecordScheduleCreated updateID="213" objectID="s001"/>
<RecordTaskCreated updateID="214" objectID="s001-001"/>
<RecordTaskModified updateID="215" objectID="s001-001"/>
</StateEvent>

The LastChange state variable is evented and moderated. When multiple updates occurred within a
LastChange moderation period, the new LastChange state variable reports more than one update at.the
same time. A series of updates and the resulting eventing activity are illustrated in their temporal order
in the following example.

Example

0: ScheduledRecording service activity = Power-on.

StateUpdatelD = 0
LastChange (before XML escaping):

<?xml version="1.0" encoding="UTF-8"?>
<StateEvent
xmlns="urn:schemas-upnp-org:av:srs-event"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="
urn:schemas-upnp-org:av:srs-event
http://www.upnp.org/schemas/av/srs-eévent-v1-20060531.xsd">
</StateEvent>

GENA behavior: None
1: ScheduledRecording service activity <= aecordSchedule with @id = “s001” is created.

StateUpdatelD = 1
LastChange (before XML escaping):

<?xml version="1.0" encoding="UTF-8"?>
<StateEvent
xmlns="urn:schemas<upnp-org:av:srs-event"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
x8i:schemalLocation="
urn:schemas<upnp-org:av:srs-event
http: A/WwWw.upnp.org/schemas/av/srs-event-v1-20060531.xsd">
<RecordScheduleCreated updateID="1" objectID="s001">
</RecordScheduleCreateds>
</StatekEvent >

GENA behavior: Nothing is evented since there are no current subscribers.

StateUpdatelD = 1

LastChange (before XML escaping):

<?xml version="1.0" encoding="UTF-8"?>
<StateEvent
xmlns="urn:schemas-upnp-org:av:srs-event"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="
urn:schemas-upnp-org:av:srs-event
http://www.upnp.org/schemas/av/srs-event-v1-20060531.xsd">
<RecordScheduleCreated updateID="1" objectID="s001">

http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

-38-— 29341-4-14 © ISO/IEC:2008(E)

</RecordScheduleCreateds>
</StateEvent>

GENA behavior: Send initial Notify with the LastChange value above.

3: ScheduledRecording service activity = a recordTask with @id = “t001-000” is created. Its
associated recordSchedule with @id = “s001” is modified by the ScheduledRecording service at
the same time because its currentReordTaskCount property is updated to reflect the existence of
the new recordTask.

StateUpdatelD = 3
LastChange (before XML escaping):

1 o NITMD o

=Y ul : 3 e
TAINIL VeLroITOoOII— T .9 \E S ACACAT I B 5 AT o © N R © R

<StateEvent
xmlns="urn:schemas-upnp-org:av:srs-event"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="
urn:schemas-upnp-org:av:srs-event
http://www.upnp.org/schemas/av/srs-event-v1-20060531.xsd>
<RecordTaskCreated updateID="2" objectID="t001-000">
</RecordTaskCreateds>
<RecordScheduleModified updateID="3" objectID="s001V}s
</RecordScheduleModifieds
</StateEvent>

GENA behavior: Wait for the next moderation period to elapse and\then send Notify with the
LastChange value above.

4: ScheduledRecording service activity = a recordTask with(@id = “t001-001” is created. Its
associated recordSchedule with @id = “s001” is modified by the ScheduledRecording service at
the same time because its currentReordTaskCount property is updated to reflect the existence of
the new recordTask. Within the same moderation\period, a recordTask with @id = “t001-002” is
also created. Its associated recordSchedule with [@id = “s001” is modified by the
ScheduledRecording service at the same timebecause its currentReordTaskCount property is
updated to reflect the existence of the new'recordTask.

StateUpdatelD =7
LastChange (before XML escaping):

<?xml version="1.0" encoding="UTF-8"?>
<StateEvent
xmlns="urn:schemalsyupnp-org:av:srs-event"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xs8i:schemalLocation="
urn:schemdsjupnp-org:av:srs-event
http://www.upnp.org/schemas/av/srs-event-v1-20060531.xsd">
<RecordTaskCreated updateID="4" objectID="t001-001">
</RecordTaskCreated>
<RecordScheduleModified updateID="5" objectID="s001">
<YRecordScheduleModified>
<RecordTaskCreated updateID="6" objectID="t001-002">
</RecordTaskCreated>
<RECOTUSCNEedUIeModiTied UpdatelD="7" ObjectlD="5001" ">
</RecordScheduleModified>
</StateEvent>

GENA behavior: Wait for the next moderation period to elapse and then send Notify with the
LastChange value above.

24.6 A ARG TYPE PropertyList

This state variable is introduced to provide type information for various action arguments that contain a
CSV list of property names. Namespace prefixes MUST be included with all property names (see

http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) -39-

Section 1.4, “Management of XML Namespaces”). The exact semantics of these property names
depend on the associated action.

247 A ARG TYPE DataTypelD

This state variable is introduced to provide type information for various action arguments that are used
to identify a specific property-set data type (see Section 2.2.2.13, “Property-set Data Types”). An
argument of type 4 ARG TYPE DataTyvpelD can have the values listed in Table 2-3,
“allowedValueList for the DataTypelD argument”.

24.8 A ARG TYPE ObjectiD

This state variable is introduced to provide type information for various action arguments that uniquely
identify an individual recordSchedule or a recordTask by their object ID.

249 A ARG TYPE ObjectiDList

This state variable is introduced to provide type information for various action arguments that contain a
CSV list of object IDs (@id) used to identify a collection of either recordSchedule ot xecordTask
instances (the list MUST be homogeneous).

2410 A ARG TYPE Propertyinfo

This state variable is introduced to provide type information for variolis action arguments that contain
detailed XML-based information on supported properties and theirjaterdependencies for a particular
ScheduledRecording service implementation. The format of theséarguments is similar to the XML
Service Description (SCPD), but instead of describing state §¥ariables and actions, they describe
properties, their allowed values, and interdependencies.

Refer to [AVDT] for the definition of the AVDT Datastructure Template.

Note that since the format of these arguments is based on XML, it needs to be escaped (using the
normal XML rules: [XML] Section 2.4 Charagter Data and Markup) before embedding in a SOAP
response message.

2411 A ARG TYPE Index

This state variable is introduced-to-provide type information for various action arguments that specify
an offset into an arbitrary set'ef objects. A value of 0 represents the first object in the set.

2412 A ARG~FYPE Count

This state variable is introduced to provide type information for various action arguments that specify a
number of arbitraty objects.

24.13'A ARG TYPE SortCriteria

This state variable is introduced to provide type information for various action arguments that contain a

ofnronerd names nro L on or-hotre-sa aa¥a¥a e Nameon e-n es N\ he

included with all property names that do not belong to the srs namespace. Namespace prefixes MAY be
included with property names that belong to the srs namespace (see Section 1.4, “Management of XML
Namespaces™). The “+” and “-” sort modifier prefixes indicate that the sort is in ascending or
descending order, respectively, with regard to the value of the prefixed property name.

2414 A ARG TYPE RecordSchedule

This state variable is introduced to provide type information for various action arguments that contain a
list of zero or more recordSchedule objects. All instances of this data type MUST comply with the SRS
schema. See Annex A for details.

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

-40 - 29341-4-14 © ISO/IEC:2008(E)

The structure of an argument of data type 4 ARG TYPE RecordSchedule is an srs XML Document:

e Optional XML declaration <?xml version="1.0" ?>
e <srs> is the root element.

e The <srs> element MUST have zero or more <items> elements, each representing a
recordSchedule object.

e FEach <item> element has a set of property values describing the recordSchedule object.
Each property is expressed either as the content of an XML element or as the value of an XML
attribute.

o See [SRS-XSD] for more details on the structure. The ScheduledRecording service-defined

names for metadata are described in Annex B.

Note that since the SRS format of an argument of data type A ARG _TYPE RecordSchedule is XML, it
needs to be escaped (using the normal XML rules: [XML] Section 2.4 Character Data and Maskup)
before embedding in a SOAP response message.

24.15A ARG TYPE RecordTask

This state variable is introduced to provide type information for various action argiments that contain a
list of zero or more recordTask objects. All instances of this data type MUST*comply with the SRS
schema. See Annex A for details.

The structure of an argument of data type 4_ARG TYPE RecordTaskis)an srs XML Document:

e Optional XML declaration <?xml version="1.0"¢ ?>
e <srs> is the root element.

e The <srs> element MUST have zero or moré.< item> elements, each representing a
recordTask object.

e FEach <item> element has a set of property values describing the recordTask object. Each
property is expressed either as the content of an XML element or as the value of an XML
attribute.

e See [SRS-XSD] for more details on the structure. The ScheduledRecording service-defined
names for metadata are described in Annex B.

Note that since the SRS format(of an argument of data type A ARG _TYPE RecordTask is XML, it
needs to be escaped (usingthe'normal XML rules: [XML] Section 2.4 Character Data and Markup)
before embedding in a SOAP response message.

2416 A ARG TYPE RecordScheduleParts

This state yariable is introduced to provide type information for various action arguments that contain a
single recovdScheduleParts object. A recordScheduleParts object indicates the desired values for a
subsetof.properties that provide a template for other recordSchedule objects. Typically, a
recordScheduleParts is used to create new recordSchedule objects. All instances of this data type
MUST comply with the SRS schema. See Annex A for details.

The structure of an argument of data type 4 ARG TYPE RecordScheduleParts is an srs XML
Document:

e Optional XML declaration <?xml version="1.0" ?>
e <srs> is the root element.

e The <srs> element MUST have a single <item> element, representing the
recordScheduleParts object.

e The <items> element has a set of property values describing the recordScheduleParts object.
Each property is expressed either as the content of an XML element or as the value of an XML
attribute.

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) -41-

e See [SRS-XSD] for more details on the structure. The ScheduledRecording service-defined
names for metadata are described in Annex B.

Note that since the SRS format of an argument of data type A_ARG TYPE RecordScheduleParts is
XML, it needs to be escaped (using the normal XML rules: [XML] Section 2.4 Character Data and
Markup) before embedding in a SOAP response message.

2.5 Eventing and Moderation

Table 2-5: Eventing and Moderation

Moderated = Max Event Logical Min Delta
Variable Name Evented @ Event Rate’ Combination | per Event?
SortCapabilities NO NO
SortLevelCapability NO NO
StateUpdatelD NO NO
LastChange YES YES 0.2 seconds
A ARG _TYPE PropertyList NO NO
A ARG_TYPE DataTypelD NO NO
A ARG TYPE ObjectlD NO NO
A ARG TYPE ObjectIDList NO NO
A ARG TYPE Propertyvinfo NO NO
A ARG _TYPE Index NO NE,
A ARG _TYPE Count NO NO
A ARG _TYPE SortCriteria NO NO
A ARG _TYPE RecordSchedule NO NO
A ARG TYPE RecordTask NO NO
A_ARG_TYPE RecordSchedulePai'ts NO NO
! Determined by N, where Rate = (Event)/(N secs).
2 (N) * (allowedValueRange Step).
2.6 Actions
Table 2-6: Actions

Name R/O'
GerSorrCapantitnesy) R
GetPropertyList() R
GetAllowedValues() R
GetStateUpdatelD() R
BrowseRecordSchedules() R
BrowseRecordTasks() R
CreateRecordSchedule() R

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

-42 - 29341-4-14 © ISO/IEC:2008(E)

Name R/O'
DeleteRecordSchedule() R
GetRecordSchedule() R
EnableRecordSchedule() Q2
DisableRecordSchedule() Q2
DeleteRecordTask() 0]
GetRecordTask() R
LoD aeopd Toely) Q3
DisableRecordTask() _Q3
ResetRecordTask() Q3
GetRecordScheduleConflicts() Q4
GetRecordTaskConflicts() Q5

' R = REQUIRED, O = OPTIONAL, X = Non-standard.

2 CONDITIONALLY REQUIRED. The EnableRecordSchedule() and DisdbleRecordSchedule()
actions MUST be implemented as a combination. If one action is implemented, then the other action
MUST also be implemented.

> CONDITIONALLY REQUIRED. The EnableRecordTask(), PisableRecordTask(), and
ResetRecordTask() actions MUST be implemented as a conibination. If one action is implemented, then
the other actions MUST also be implemented.

* CONDITIONALLY REQUIRED. See Section 2.6.17; “GetRecordScheduleConflicts()” to determine
when this action MUST be implemented.

5 CONDITIONALLY REQUIRED. See Section 2.6.18, “GetRecordTaskConflicts()” to determine when
this action MUST be implemented.

2.6.1 GetSortCapabilities()

This action returns a CSV list of property names that can be used in the SortCriteria argument of
various actions.

2.6.1.1 Arguments

Table 2-7: _ YArguments for GetSortCapabilities()

Argument Direction relatedStateVariable
SortCdps our SortCapabilities
SertLevelCap our SortLevelCapability

2.6.1.1.1 SortCaps

This argument contains a CSV list of property names that the ScheduledRecording service can use to
sort the information returned in the Result argument of various actions, such as
BrowseRecordSchedules() and BrowseRecordTasks(). The appropriate namespace prefixes (either
“srs:” or “<vendor-defined namespace prefixs>:”) MUST be included with the returned
property names (see Section 1.4, “Management of XML Namespaces”). An empty string indicates that
the device does not support any kind of sorting. A wildcard “srs: *” indicates that any property within
the srs namespace can be used for sorting. See also Section 2.4.2, “SortCapabilities”

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) —-43 -

2.6.1.1.2 SortLevelCap

This argument contains an integer that indicates the maximum number of property names that can be
specified at the same time in the SortCriteria argument of various actions. See also Section 2.4.3,
“SortLevelCapability.”

2.6.1.2 Dependency on State

None.

2.6.1.3 Effect on State

None.

2.6.1.4 Errors
Table 2-8: Error Codes for GetSortCapabilities()

ErrorCode errorDescription Description

400-499 TBD See UPnP Device Architecture section on Eontrol.
500-599 TBD See UPnP Device Architecture sectiomon Control.
600-699 TBD See UPnP Device Architecture section on Control.

2.6.2 GetPropertyList()

The GetPropertyList() action provides a means to retrieve from'a particular ScheduledRecording
service implementation which properties are actually supported for a specific property-set data type.
The GetPropertyList() action returns a CSV list of property names that may appear in action arguments
of the property-set data type, specified in the DataTypefD input argument. This CSV list MUST
include property names of imported properties fromother namespaces as well as any vendor-defined
property names. For example, the ContentDireetory service imported properties (such as dc:title) that
are included as part of the value of the cdsReference property, MUST be returned.

The appropriate namespace prefixes MUST be included with all property names (see Section 1.4,
“Management of XML Namespaces?).

The set of allowed values for srs\properties and vendor-defined properties (when used for the specified
property-set data type) can beebtained via the GetAllowedValues() action. The set of allowed values
for imported properties cannet be retrieved by the GerdllowedValues() action.

2.6.2.1 Arguments

Table 2-9:.%-Arguments for GetPropertyList()

Argument Direction relatedStateVariable
DataIypelD IN A_ARG_TYPE DataTypelD
Propertytist Ottt A ARG TP Fropertytist

2.6.2.1.1 DataTypelD

The DataTypelD argument identifies the property-set data type for which the set of property names is
to be returned. See Section 2.4.7, “A_ARG TYPE DataTypelD” for details regarding its format. The
set of allowed values is listed in Table 2-3, “allowedValueList for the DataTypelD argument”.

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

—-44 — 29341-4-14 © ISO/IEC:2008(E)

2.6.21.2 PropertyList

The PropertyList argument contains the set of property names (including their namespace prefixes) that
may appear in action arguments of the property-set data type, specified by the DataTvpelD input
argument.

2.6.2.2 Dependency on State

None.

2.6.2.3 Effect on State

None.

2.6.2.4 Errors

Table 2-10: Error Codes for GetPropertyList()

ErrorCode errorDescription Description

400-499 TBD See UPnP Device Architecture section on|/Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture(section on Control.

711 Invalid An invalid value has been¢specified in the DataTypelD input
DataTypelD argument.

2.6.3 GetAllowedValues()

This action is used to determine the allowed valuescand dependencies for srs properties that can appear
within action arguments of the specified propertyZset data type. The set of allowed values that are
returned is static and does not depend on the eurrent state of the ScheduledRecording service. The
property information is returned in an A VDINXML Document as defined in [AVDT]. The set of
properties for which information is returnied is determined by the intersection of the property names in
the Filter argument and the names of-the properties supported by the implementation for the specified
property-set data type in the DatqTypelD argument. All property names MUST belong either to the srs
namespace or a vendor-definedhamespace.

The set of allowed values for'imported properties cannot be retrieved by the GetAllowedValues() action,

2.6.3.1 Arguments

Table 2:11: Arguments for GetAllowedValues()

Argument Direction relatedStateVariable

DuratypeiD 17V ARG TrPEDarafypetD
Filter IN A_ARG_TYPE PropertyList
PropertyInfo our A_ARG_TYPE Propertylnfo

2.6.3.1.1 DataTypelD
See Section 2.6.2.1.1, “DataTypelD”.

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) —-45 -

2.6.3.1.2 Filter

The Filter argument contains a CSV list of property names that indicates for which properties allowed
value information is to be returned in the AVDT XML Document, contained in the Propertylnfo output
argument. The Filter argument SHOULD only include property names that are returned in the
PropertyList argument of the GetPropertyList() action when specifying the same value in the
DataTypelD argument. ScheduledRecording service implementations MUST gracefully ignore other
property names. The “srs:” namespace prefix MUST be included with srs property names in the
Filter argument. Likewise, a namespace prefix MUST be included with all vendor-defined property
names in the Filter argument (see Section 1.4, “Management of XML Namespaces”).

If the Filter argument is set to “*:*” then allowed values for all supported properties (including srs
properties and vendor-defined properties, but excluding imported properties) for the specified property-

set data type MUST be returned. If the Filter argument is set to “srs:*”, then allowed values for all
supported properties in the srs namespace MUST be returned. If the Filter argument is set to
“<vendor-defined namespace prefix>:*”, then allowed values for all vendor-defined
properties in that namespace MUST be returned. If the Filter argument is set to the empty string, no
information is provided (an A VDT XML Document with an empty root element is returned).

Examples of valid Filter argument values include:
e “srs:@id,srs:priority@orderedvalue”
e “srs:title,srs:class”
° ok ox”

e “srg:¥*”

2.6.3.1.3 Propertylnfo

The PropertyInfo argument MUST only include allowed value and dependency information on
properties that are specified in the Filter argument. The.Propertylnfo argument MUST be properly
escaped as defined in [XML]. The particular A VDEXML Document that is returned in the Propertylnfo
argument depends on the property-set data type, specified in the DataTypelD input argument. See
Annex A for further details.

2.6.3.2 Dependency on State

None.

2.6.3.3 Effect on State

None.

2.6.3.4 Errors
Table 2-12: Error Codes for GetAllowedValues()

ErrorCode errorDescription Description

#00-499 TBD St TPnP-Device Architecture sectiom o Corntrot:

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control.

711 Invalid An invalid value has been specified in the DataTypelD input
DataTypelD argument.

2.6.4 GetStateUpdatelD()

This action returns the current value of the StateUpdatelD state variable in the /d output argument. This
action can be used to poll the ScheduledRecording service for any change in the service that might have

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

—-46 - 29341-4-14 © ISO/IEC:2008(E)

occurred since the last time this action was invoked. If the returned /d value is different from the value
that was returned the last time this action was invoked, then there has been a change in one or more
recordSchedule or recordTask objects in the ScheduledRecording service. See Section 2.4.4,
“StateUpdatelD” for more information.

2.6.4.1 Arguments

Table 2-13: Arguments for GetStateUpdatelD()

Argument Direction Related State Variable
Id ouTr StateUpdatelD
26411 Id

The /d argument contains the current value of the StateUpdatelD state variable.

2.6.4.2 Dependency on State

None.

2.6.4.3 Effect on State

None.

2.6.4.4 Errors
Table 2-14: Error Codes for GetStateUpdatelD()

ErrorCode errorDescription Description

400-499 TBD See UPnP,Device Architecture section on Control.
500-599 TBD See UPnP Device Architecture section on Control.
600-699 TBD See UPnP Device Architecture section on Control.

2.6.5 BrowseRecordSchedules()

This action is used to browsethe set of recordSchedule objects in the ScheduledRecording service.

2.6.5.1 Arguments
Table 2-15: Arguments for BrowseRecordSchedules()

Argument Direction relatedStateVariable

Filtex IN A_ARG_TYPE PropertyList
StdptinglIndex IN A_ARG _TYPE Index
RequestedCount IN A_ARG _TYPE Count
SortCriteria IN A_ARG_TYPE SortCriteria
Result our A_ARG _TYPE RecordSchedule
NumberReturned our A_ARG _TYPE Count
TotalMatches our A_ARG _TYPE Count
UpdatelD our StateUpdatelD

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) —-47 -

2.6.5.1.1 Filter

The Filter argument contains a CSV list of property names that indicates which properties are to be
returned in the sr»s XML Document, contained in the Result output argument. Namespace prefixes
MUST be included with all property names, specified in the Filter argument (see Section 1.4,
“Management of XML Namespaces”).

The Filter argument has no impact on the number of objects returned in the Result argument. Instead,
the Filter argument allows control points to control the complexity of the object metadata that is
returned in the srs XML Document for each object. It allows a control point to specify a subset of the
supported properties for inclusion in the srs XML Document. Properties that are REQUIRED by the
SRS Schema MUST always be returned. Compliant ScheduledRecording service implementations
MUST NOT return optional properties unless they are explicitly requested in the Filter input argument

or are needed to create a valid XML document. For example, specifying a dependent property in the
Filter argument, such as prioritv@orderedValue, will cause its associated independent property,
priority, to be included in the svs XML Document.

In all cases, a compliant ScheduledRecording service implementation MUST always respond.to ‘query
requests with the smallest, valid srs XML Document in the Result argument that satisfies the Filter input
argument. If the Filter argument is set to the empty string (*”’), then only the REQUIRED properties are
returned.

If the Filter argument is equal to “* : *”, then all supported properties for all supported namespaces
MUST be returned. If the Filter argument is equal to “<namespace prefixs>:*”, then all of the
REQUIRED srs properties and all of the supported properties within that\single namespace MUST be
returned. For example, “srs: *” is equivalent to listing all srs namespac¢e properties supported by the
device.

Properties defined in the ContentDirectory service MUST only bé imported through the multi-valued
cdsReference property. Therefore, if the Filter argument contains property names from namespaces
defined in the ContentDirectory service specification, th€)appropriate cdsReference property values
MUST be included in the Result output argument and.those values MUST be filtered, according to what
is specified in the Filter argument but also preserving'the validity of the DIDL-Lite XML Document,
returned in the cdsReference property.

Examples of valid Filter argument values inglude:
e “srs:@id,srs:priority®ocrderedvalue”
e “srs:title,dc:titke”
° ok oox?
e “yupnp:*,dc:*,didl lite:*”

A compliant ScheduledRecording service implementation MUST also ignore optional properties
requested in the £i/fer input argument which are not actually present in the matching objects. For
example, a BrowseRecordSchedules() Filter input argument of the form “srs:activePeriod” is
successfuland'returns a Result value that complies with the other BrowseRecordSchedules() input
arguments,'even in the case where the objects represented in the Resul/t argument do not have an
actiyePeriod property defined.

2.0.0.1.2 otartingindex and KequestedCount

This action returns a specified number of recordSchedule objects from the list as indicated by the
RequestedCount argument and starting from a specified index in the list, as indicated by the
Startinglndex argument. The first recordSchedule in the list MUST be indexed by an index value of 0.
Specifying 0 in the RequestedCount argument is PROHIBITED. If the range indicated by the
Startinglndex and RequestedCount arguments reaches beyond the end of the list, then the
ScheduledRecording service MUST return all recordSchedule objects up to the end of the list and
starting from the specified Startingindex.

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

-48 — 29341-4-14 © ISO/IEC:2008(E)

2.6.5.1.3 SortCriteria

The order of the recordSchedule objects in the Result argument is determined by the SortCriteria
argument. When an empty string is specified in the SortCriteria argument, then the order is device
dependent. Additionally, this device dependent ordering MUST remain constant unless the UpdatelD
argument value has changed since the last BrowseRecordSchedules() action. In other words, any two
objects that appear in a Result argument MUST always appear in the same relative order as long as the
UpdatelD argument value (and therefore the StateUpdatelD state variable) did not change.

The SortCriteria argument contains a CSV list of property names (namespace prefixes MUST always
be included). Each property name MUST be prefixed by either a “+” or a “-” sort modifier. The “+”
and “-” modifiers indicate that the sort is in ascending or descending order, respectively, with regard to
the value of its associated property.

The ScheduledRecording service MUST NOT accept any property name in the SortCriteria argument
that is not included in the SortCapabilities state variable.

The objects are first sorted on the value of the first property in the SortCriteria argument. If allyvalues
differ in the first property, the sort is finished. If any values of the first property are equal, each subset
of equal values is then sorted based on the next property in the SortCriteria argument. This process
repeats iteratively until there are no more subsets of equal values or the SortCriteria atghment list is
exhausted.

For example, a value for the SortCriteria argument of the BrowseRecordSchedulés() action of:

“+srs:scheduledStartDateTime, -
srs:scheduledChannellID, +srs:matchingName”

would sort the returned recordSchedule instances first by start date&time in ascending order, then for
each date&time, the instances would be sorted by descending channel ID and finally, for each channel
ID, the instances would be sorted by ascending program name.

Sorting rules for each property depend on that property’s‘semantics. Sorts for individual properties can
be any of: numeric sort, lexical sort, lexical numerie\sort, Boolean sort, sequenced sort, tvpe
relationship sort, or property specific, according to, an explicit ordering of values defined individually
for that property. The definition of each kind ‘ef.sort may be found in Section 2.2.2.26, “Lexical Sort
Order”. The specific sort order rules that MUST be used for each property are given in Annex B.

When a SortCriteria argument containsiproperty names of optional and/or multi-valued properties, the
following rules apply:

If the property is prefixed by ‘+"then:
e Objects that do not-have a value for the property are returned first in their group.

e Objects thatthave at least one value for the property are returned next in their group. Objects
that have-multiple values for the property (either multi-valued or CSV list) are sorted based on
the preperty value that would cause the object to appear earliest in the list.

If the propérty is prefixed by “-” then:

e<—Objects that have at least one value for the property are returned first in their group. Objects
that have multiple values (either multi-valued or CSV list) for the property are sorted based on
the property value that would cause the object to appear earliest in the list.

e Objects that do not have a value for the property are returned last in their group.
Example:

Assume a ScheduledRecording service contains the following items and the current date is Tuesday,
June 21, 2005:

<item id="1">

<scheduledStartDateTime>2006-02-
07T15:30:00</ScheduledStartDateTime>

</item>

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) -49 -

<item id="2">

<scheduledStartDateTime>MONT15:30:00</ScheduledStartDateTime>
<scheduledStartDateTime>WEDT15:30:00</ScheduledStartDateTime>

</item>
<item id="3">

<scheduledStartDateTime>MON-FRIT16:00:00</ScheduledStartDateTime>

</item>
<item id="4">

No <scheduledStartDateTime> property

</item>

A value for the SortCriteria argument of the BrowseRecordSchedules() action of:

“+srs:scheduledStartDateTime”

would sort the returned recordSchedule instances on Tuesday, June 21, 2005 as follows:

<item id="4"/>
<item id="2"/>
<item id="3"/>
<item id="1"/>

because:

e <item id="4"/> has no srs:scheduledStartDatelime property, it therefore appears first.

e <item id="2"/> srs:scheduledStartDateTiie property resolves to
Wednesday, 2005-06-22T15:30:00 since this\s the earliest date&time in the list. It therefore
appears second.

e <item id="3"/> srs:scheduledStartDateTime property resolves to
Wednesday, 2005-06-22T16:00;00:It therefore appears third.

e <item id="1"/> srs:schéduledStartDateTime property resolves to
Tuesday, 2006-02-07T 15*39:00. It therefore appears last.

Sorting on ContentDirectory-$e€rvice imported properties is not supported.

2.6.5.1.4 Result

The Result output-argument contains an XML escaped srs XML Document (see [SRS-XSD]). This
document contains-a set of zero or more recordSchedule objects as described in Annex A. Each of the
returned reeerdSchedule objects MUST NOT have properties other than those specified in the Filter
argument unless they are needed to create a valid srs XML Document. The ScheduledRecording service
implementation MUST ignore unknown properties specified in the Filter argument. If “*:*” is specified
inthe Filter argument, then all supported properties for which the ScheduledRecording service has
meaningful values MUST be returned. The REQUIRED properties (for example, (@id, title, class, ...)

MUST always be included even 1t not specitied 1n the fi/ier argument (the srs XML Document MUS'T
be valid). The ScheduledRecording service implementation MUST ensure that the information returned
in this argument is always consistent. In other words, if during the information gathering process,
certain updates occur, the ScheduledRecording service implementation MUST re-examine the already
gathered information to verify that this information is still accurate before returning from the action
nvocation.

2.6.5.1.5 NumberReturned
The NumberReturned argument MUST indicate the actual number of returned objects.

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

-50 - 29341-4-14 © ISO/IEC:2008(E)

2.6.5.1.6 TotalMatches

The TotalMatches argument MUST indicate the total number of recordSchedule objects that exist in
the ScheduledRecording service.

2.6.5.1.7 UpdatelD

The returned UpdatelD argument MUST be the value of the StateUpdatelD state variable at the time
the returned data has been completely and consistently collected. In other words, if during the
information gathering process, certain updates occur, the ScheduledRecording service implementation
MUST re-examine the already gathered information to verify that this information is still accurate
before returning from the action invocation. Refer to Section 2.4.4, “StateUpdatelD” for additional

information

The UpdatelD argument is used to verify whether the returned information in the Result argument has
not become stale. After the action completes, if the value of the StateUpdatelD state variable is
different from the value returned in the UpdatelD argument, then the information returned in the Result
argument may be stale. In this case, the control point should invoke the appropriate action to refresh its
copy of the desired information (for example, via the BrowseRecordSchedules() or
GetRecordSchedule() action).

2.6.5.2 Dependency on State

None.

2.6.5.3 Effect on State

None.

2.6.5.4 Errors
Table 2-16: Error Codes for BrowseRecordSchedules()

ErrorCode errorDescription Description

400-499 TBD SeecUPnP Device Architecture section on Control.
500-599 TBD See UPnP Device Architecture section on Control.
600-699 TBD See UPnP Device Architecture section on Control.
709 Unsupported-or The sort criteria specified are not supported or are invalid.

invalid'sort criteria

720 Cannot process the | Cannot process the request in a reasonable amount of time.
request

2.6.6 .\BrowseRecordTasks()

This agtion is used to browse the list of recordTask objects associated with a single recordSchedule. In
addition, it can be used to browse the entire list of all recordTask objects available in the entire

PR TR R T~ 1 . CR 1 P o] ']
S CIICUUICURNCCOIUIILE SCIVICC, TIIUCPCIIUCIIL O UHICIT DAICHU FECOTd o CrEdile.

The Result argument contains an XML escaped srs XML Document that contains a set of recordTask
objects. When the RecordSchedulelD input argument contains the @id value of an existing
recordSchedule, then the Result argument returns an XML escaped srs XML Document that contains
the set of recordTask objects associated with that particular recordSchedule. When the
RecordSchedulelD input argument is set to the empty string (‘”’), then the Result argument returns an
XML escaped srs XML Document that contains a list of all available recordTask objects in the entire
ScheduledRecording service.

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) -51-

2.6.6.1 Arguments

Table 2-17: Arguments for BrowseRecordTasks()

Argument Direction relatedStateVariable
RecordScheduleID IN A ARG TYPE ObjectID
Filter IN A_ARG _TYPE PropertyList
StartinglIndex IN A_ARG _TYPE Index
RequestedCount IN A_ARG _TYPE Count
SorfCriteria N A ARG TTYPE_SorfCriteria
Result our A_ARG _TYPE RecordTask
NumberReturned our A_ARG _TYPE Count
TotalMatches our A_ARG _TYPE Count
UpdatelD our StateUpdatelD

The syntax and semantics of the arguments (the RecordSchedulelD argument not included) of the
BrowseRecordTasks() action are identical to those of the BrowseRecordSchedulés() action, except that
the objects returned by this action are recordTask objects instead of recordSchedule objects.

2.6.6.1.1 RecordSchedulelD

The RecordSchedulelD input argument contains the object ID of'the recordSchedule for which all
associated recordTask instances are returned in the Result atgument. If the RecordSchedulelD input
argument contains the empty string (“”’), then all available xecordTask instances in the entire
ScheduledRecording service are returned.

2.6.6.1.2 Filter
See Section 2.6.5.1.1, “Filter”.

2.6.6.1.3 Startingindex and RequestedCount
See Section 2.6.5.1.2, “Startingludex and RequestedCount”.

2.6.6.1.4 SortCriteria
See Section 2.6.5.135<SortCriteria”.

2.6.6.1.5 _Result

See Section'2.6.5.1.4, “Result”. However, the returned objects are recordTask objects instead of
recordSehedule objects.

See Section 2.6.5.1.5, “NumberReturned”.

2.6.6.1.7 TotalMatches

When the RecordSchedulelD input argument contains the @id value of an existing recordSchedule,
then the TotalMatches argument MUST indicate the total number of recordTask objects that exist in the
ScheduledRecording service for the indicated recordSchedule. When the RecordSchedulelD input
argument is set to the empty string (“””), then the TotalMatches argument MUST indicate the total
number of recordTask objects that exist in the entire ScheduledRecording service, independent of their
parent recordSchedule.

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

-52 - 29341-4-14 © ISO/IEC:2008(E)

2.6.6.1.8 UpdatelD
See Section 2.6.5.1.7, “UpdatelD”.

2.6.6.2 Dependency on State

None.

2.6.6.3 Effect on State

None.

2.6.6.4 Errors

Table 2-18: Error Codes for BrowseRecordTasks()

ErrorCode errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control,

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on/€ontrol.

704 No such The specified recordSchedule doestnof exist.
recordSchedule ID

709 Unsupported or The sort criteria specified is\net supported or is invalid.
invalid sort criteria

720 Cannot process the | Cannot process theaequest in a reasonable amount of time.
request

2.6.7 CreateRecordSchedule()

This action creates a recordSchedule (that is:’ascheduled recording list entry) for some media content
(for example, broadcast content, analog input content, etc). This action creates a new object of a class,
derived from the recordSchedule class.Eontrol points that want to schedule a recording invoke the
CreateRecordSchedule() action.

If the CreateRecordSchedule() action returns successfully, then a new recordSchedule object is added
to the list of Record Schedulésimaintained by the ScheduledRecording service. This list can be
consulted through the BrowséRecordSchedules() action. The ScheduledRecording service MAY also
instantiate one or more\recordTask objects to represent the discrete recording tasks that are associated
with the high level §chedule, defined by the recordSchedule. The instantiation of recordTask objects
may happen aftef.the CreateRecordSchedule() action returns successfully. However, if the created
recordSchedule™would lead to the instantiation of one or more recordTask objects, these recordTask
objects MUST be created by the ScheduledRecording service as soon as possible and within a
reasonable’amount of time. If any of these spawned recordTask objects end up in a state that indicates
thatthese recordTask objects should already be recording, then the ScheduledRecording service MUST

ensure that these recordings start as soon as possible, then the CreateRecordSchedule() action MUST
return with error code 720 without any change.

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) -53 -

2.6.7.1 Arguments
Table 2-19: Arguments for CreateRecordSchedule()

Argument Direction relatedStateVariable

Elements IN A_ARG _TYPE RecordScheduleParts
RecordScheduleID our A ARG TYPE ObjectID

Result our A_ARG _TYPE RecordSchedule
UpdatelD our StateUpdatelD

2.6.7.1.1 Elements

The Elements input argument contains an XML escaped srs XML Document (see [SRS-XSD]). This
document contains a single recordScheduleParts. The recordScheduleParts object identifies the désired
property values for the recordSchedule object to be created. The new recordSchedule will bevan
instance of a specific recordSchedule class. Each class defines its set of member properties; some of
which are REQUIRED, and some of which are OPTIONAL. See Annex C for details. All REQUIRED
member properties MUST be specified. If a control point omits supported OPTIONAL member
properties from the Elements argument, then the ScheduledRecording service MUST create the
recordSchedule with the appropriate default value for those omitted memberproperties. If unsupported
properties or unknown properties are specified in the Elements argument, ¢hie ScheduledRecording
service MUST gracefully accept these. If an unsupported value is spegified for a supported member
property, the ScheduledRecording service MUST detect this and return-error code 703.

2.6.7.1.2 RecordSchedulelD

If the ScheduledRecording service accepts the recordSchediule in the Elements input argument, then the
ScheduledRecording service MUST provide a value inthis output argument. The returned
RecordSchedulelD value MUST be a unique valuetwithin the ScheduledRecording service.
RecordSchedulelD values are assumed to be opaque values without special meaning. Although a
ScheduledRecording service may choose to use\a RecordSchedulelD value that was previously assigned
(and later removed from the active list of récordSchedule instances), this specification recommends that
the RecordSchedulelD value be unique jn‘time as well.

2.6.7.1.3 Result

The Result output argument-contains an XML escaped srs XML Document (see [SRS-XSD]). This
document contains the newly created recordSchedule object as described in Annex A. Any properties
specified in the input«£fements argument MUST have the same values in the output recordSchedule.
The ScheduledRecérding service MUST return all supported member properties for which it has
meaningful values./This complete set allows a control point to see the default values of those properties
that it did notispecify in the input Elements argument. Note that some properties such as scheduleState
are defined\aS"REQUIRED for an output recordSchedule and MUST be included in the returned
document-~Refer to Annex C.1.1, “Relationships between Classes and Properties” for the support level
of eachproperty.

The'ScheduledRecording service implementation MUST ensure that the information returned in this

argument is always consistent. In other words, if during the information gathering process, certain
updates occur, the ScheduledRecording service implementation MUST re-examine the already gathered
information to verify that this information is still accurate before returning from the action invocation.

2.6.7.1.4 UpdatelD
See Section 2.6.5.1.7, “UpdatelD”.

2.6.7.2 Dependency on State

None.

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

- 54 — 29341-4-14 © ISO/IEC:2008(E)

2.6.7.3 Effect on State
The value of the StateUpdatelD state variable is changed and the LastChange state variable is updated.

2.6.7.4 Errors

Table 2-20: Error Codes for CreateRecordSchedule()

ErrorCode errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.
500-599 TBD See UPnP Device Architecture section on Control.
600-699 TBD See UPnP Device Architecture section on Control.
701 Invalid Syntax The recordSchedule in the Elements argument has invalid(Syntax.

This includes malformed XML in the Elements input argument or p
general schema violation.

703 Invalid Value One or more properties in the input recordSchedule (in the
Elements argument) have an invalid value.

707 Read only Property | Specifying a read only property is not allowed.

708 Required Property | Omitting a REQUIRED property istnot allowed

720 Cannot Process the | Cannot process the request in,a'reasonable amount of time.
Request

730 Conflict The specified recordSehédule is conflicting with one or more

existing recordSchedule objects.

The ScheduledRecording service MAY reject a conflicting
recordSchedulg and return with this error code.

731 Protected Contents | The specified contents are copy protected.

The ScheduledRecording service MAY reject a recordSchedule
that’specifies copy protected contents and return with this error

code.
732 No Media The specified removable media is not inserted.
733 Media Write The specified removable media is write-protected.
Protect
734 Media No Space The specified media does not have sufficient capacity.
735 Media Error Error related to the specified destination media.
736 Too Many The maximum number of recordSchedule objects is reached.
recordSchedules
737 Resource Error Error related to an application resource.

2.6.8 DeleteRecordSchedule()

The DeleteRecordSchedule() action is used to delete a specific recordSchedule. When the
recordSchedule is deleted, all of the associated recordTask objects MUST also be deleted. The list of
Record Schedules and their associated recordSchedulelD currently maintained by the
ScheduledRecording service can be retrieved through the BrowseRecordSchedules() action.

A recordSchedule can only be deleted when all of its associated recordTask objects are in the “/DLE”
or the “DONE” phase. If any of the associated recordTask objects are in the “ACTIVE” phase, then the
ScheduledRecording service MUST return with error code 705 (active recordTask) without any change.
A control point that wants to recover from this error scenario can first delete the associated active
recordTask objects by invoking the DeleteRecordTask() action on these objects and then delete the

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) - 55—

recordSchedule. The active recordTask objects can be retrieved by properly invoking the
BrowseRecordTasks() action.

It must be noted that a ScheduledRecording service can delete a recordSchedule without control point
intervention. For example, a non-recurring recordSchedule that has completed its last recordTask MAY
(OPTIONALLY) be automatically deleted along with its associated recordTask objects. However, it is
RECOMMENDED that a ScheduledRecording service implementation retains completed
recordSchedule instances and their associated recordTask instances for a reasonable amount of time so
that the user can examine potential error information after recording is completed.

2.6.8.1 Arguments

Table 2-21: Arguments for DeleteRecordSchedule()

Argument Direction relatedStateVariable

RecordSchedulelD IN A_ARG _TYPE ObjectID

2.6.8.1.1 RecordSchedulelD
The RecordSchedulelD argument contains the object ID of the recordSchedule to-be’deleted.

2.6.8.2 Dependency on State

None.

2.6.8.3 Effect on State
The value of the StateUpdatelD state variable is changed andthe LastChange state variable is updated.

2.6.8.4 Errors

Table 2-22: Error Codes for DeleteRecordSchedule()

ErrorCode errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control.

704 No such The specified recordSchedule does not exist.
recordSchedule ID

705 Active recordTask | One or more recordTask instances are actively recording.

720 Cannot process the | Cannot process the request in a reasonable amount of time.
request

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

- 56 — 29341-4-14 © ISO/IEC:2008(E)

2.6.9 GetRecordSchedule()

This action is used to retrieve a single recordSchedule from the ScheduledRecording service.

2.6.9.1 Arguments
Table 2-23: Arguments for GetRecordSchedule()

Argument Direction relatedStateVariable
RecordSchedulelD IN A_ARG TYPE ObjectiD

Filter IN A ARG TYPE PropertyList
Result our A_ARG TYPE RecordSchedule
UpdatelD our StateUpdatelD

2.6.9.1.1 RecordSchedulelD

The RecordSchedulelD contains the object ID of the recordSchedule for which information is to be
returned.

2.6.9.1.2 Filter
See Section 2.6.5.1.1, “Filter”.

2.6.9.1.3 Result

The Result output argument contains an XML escaped srs XML Document that contains a single
recordSchedule identified by the @id value specified inthe RecordSchedulelD argument. For further
details, see Section 2.6.5.1.4, “Result”.

2.6.9.1.4 UpdatelD
See Section 2.6.5.1.7, “UpdatelD”.

2.6.9.2 Dependency on State

None.

2.6.9.3 Effect on State

None.

2.6.9.4 Errors

Table 2-24: Error Codes for GetRecordSchedule()

ErrorCode errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control.

704 No such The specified recordSchedule does not exist.
recordSchedule ID

720 Cannot process the | Cannot process the request in a reasonable amount of time.
request

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) - 57—

2.6.10 EnableRecordSchedule()

This OPTIONAL action is used to enable a previously disabled recordSchedule. Enabling a
recordSchedule is allowed in any state except for the “COMPLETED” state. In this case, the action
MUST return with error code 740.

The invocation of the EnableRecordSchedule() action enables all the associated recordTask objects in
the “IDLE” or “ACTIVE” phase (See Section 2.6.14, “EnableRecordTask()’) except for those which
were disabled individually at the recordTask level via the DisableRecordTask() action. Disabling at the
recordTask level always takes precedence. If any of the associated recordTask objects end up in a state
that indicates that these recordTask objects should already be recording, then the ScheduledRecording
service MUST ensure that these recordings start as soon as possible and within a reasonable amount of

time (this will most likely result in a partial recording) If a ScheduledRecording service
implementation can not ensure that these recordings start as soon as possible, then the
EnableRecordSchedule() action MUST return with error code 720. If the ScheduledRecording seryice
can not enable some of the recordTask objects in the “IDLE” or “ACTIVE” phase, it MUST return etror
code 740 without any change.

Enabling a recordSchedule MUST NOT affect its recordTask objects in the “DONE” phase. These
recordTask objects MUST NOT cause error code 739 to be generated.

2.6.10.1 Arguments

Table 2-25: Arguments for EnableRecordSchedule()

Argument Direction relatedStateVariable
RecordSchedulelD IN A ARG TYPE ObjectiD

2.6.10.1.1 RecordSchedulelD
The RecordSchedulelD argument contains the object\ID of the recordSchedule to be enabled.

2.6.10.2 Dependency on State

None.

2.6.10.3 Effect on State

The value of the StateUpdateli-state variable is changed and the LastChange state variable is updated
(the scheduleState@currentErrors property and some faskState(@xxx error properties might be
updated).

2.6.10.4 Errors
Table 2-26.~ Error Codes for EnableRecordSchedule()

ErrorCode errorDescription Description

4004499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control.

704 No such The specified recordSchedule does not exist.
recordSchedule ID

720 Cannot process the | Cannot process the request in a reasonable amount of time.
request

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

- 58 — 29341-4-14 © ISO/IEC:2008(E)

ErrorCode errorDescription Description

739 Cannot One or more of the associated recordTask objects could not be
enable/disable enabled or disabled.
recordSchedule

740 recordSchedule The recordSchedule has already completed and cannot be enabled
“COMPLETED” or disabled.

2.6.11 DisableRecordSchedule()
This OPTIONAL

able a recordSchedule. Disabling a recordSchedule is allowed in

113

[B Q

= ate- t > t O —aw

action is used to dis
ha OALD L L

The invocation of the DisableRecordSchedule() action disables all associated recordTask objects infthe
“IDLE” phase (See Section 2.6.15, “DisableRecordTask()”) except for those which were enabled
individually at the recordTask level via the EnableRecordTask() action. Enabling at the recordZask
level always takes precedence. If the ScheduledRecording service can not disable some of the
recordTask objects in the “/DLE”’phase, it MUST return error code 739 without any changg.

The DisableRecordSchedule() action has no impact on recordTask objects alreadyn\the “ACTIVE”
phase. These recordTask objects complete as planned.

Also, disabling a recordSchedule MUST NOT affect its recordTask objects(in the “DONE” phase.
These recordTask objects MUST NOT cause error code 739 to be generat€d: A disabled
recordSchedule MUST continue to generate new recordTask objects but'they MUST all be disabled.
This allows control points to understand which recordTask objects will become active, once the
RecordSchedule is re-enabled. This also provides the means for a.control point to enable individual
recordTask objects, even when the recordSchedule is disabled.

2.6.11.1 Arguments
Table 2-27: Arguments for DisableRecordSchedule()

Argument Direction relatedStateVariable

RecordSchedulelD IN A_ARG _TYPE ObjectID

2.6.11.1.1 RecordScheduleib
The RecordSchedulelD argument contains the object ID of the recordSchedule to be disabled.

2.6.11.2 Dependency on State

None.

2.6.11.3 Effect on State

Theyvalue of the StateUpdatelD state variable is changed and the LastChange state variable is updated
(the sCheduleState(@currentErrors property and some taskState(@xxx error properties might be

undated)
) o 7

2.6.11.4 Errors

Table 2-28: Error Codes for DisableRecordSchedule()

ErrorCode errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control.

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) - 59—

ErrorCode errorDescription Description

704 No such The specified recordSchedule does not exist.
recordSchedule ID

720 Cannot process the | Cannot process the request in a reasonable amount of time.
request

739 Cannot One or more of the associated recordTask objects could not be
enable/disable enabled ordisabled.
recordSchedule

740 recordSchedule The recordSchedule has already completed and cannot be enabled
“COMPLETED or disabled.

2.6.12 DeleteRecordTask()

This OPTIONAL action is used to delete a recordTask. For any existing recordTask, this action MUST
always succeed. The recordTask object is removed from the list of recordTask objects thdtis
maintained by the ScheduledRecording service for the (parent) recordSchedule and anydngoing
recording for this recordTask MUST stop immediately. The associated recorded content for that
recordTask MUST NOT be deleted as a result of this action.

2.6.12.1 Arguments
Table 2-29: Arguments for DeleteRecordTask()

Argument Direction relatedStateVariable

RecordTaskID IN A_ARG _TYPE ObjectID

2.6.12.1.1 RecordTaskID
The RecordTaskID argument contains the objeetdID of the recordTask to be deleted.

2.6.12.2 Dependency on State

None.

2.6.12.3 Effect on State
The value of the StatelUpdatelD state variable is changed and the LastChange state variable is updated.

2.6.12.4 Errors

Table 2-30:~ Error Codes for DeleteRecordTask()

ErrorCode | errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control.

713 No such The specified recordTask does not exist.
recordTask 1D

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

-60- 29341-4-14 © ISO/IEC:2008(E)

2.6.13 GetRecordTask()

This action is used to retrieve a single recordTask from the ScheduledRecording service.

2.6.13.1 Arguments

Table 2-31: Arguments for GetRecordTask()

Argument Direction relatedStateVariable
RecordTaskiD IN A_ARG TYPE ObjectiD
Filter IN A ARG TYPE PropertyList
Result our A_ARG TYPE RecordTask
UpdatelD our StateUpdatelD

2.6.13.1.1 RecordTaskID

The RecordTaskID argument contains the object ID of the recordTask for which information is to be
returned.

2.6.13.1.2 Filter
See Section 2.6.5.1.1, “Filter”.

2.6.13.1.3 Result

The Result output argument contains an XML escaped srs XML Document that contains a single
recordTask instance, identified by the @id value specifiedhin the RecordTaskID argument. The Result
argument is identical to the Result argument of the BrewSeRecordTasks() action. See Section 2.6.6.1.5,
“Result” for further details.

2.6.13.1.4 _UpdatelD
See Section 2.6.5.1.7, “UpdatelD”.

2.6.13.2 Dependency on State

None.

2.6.13.3 Effect on-State

None.

2.6.13.4-Errors

Tabhle;2-32: Error Codes for GetRecordTask()

ErrorCode errorDaccrintion

400-499 TBD See UPnP Device Architecture section on Control.
500-599 TBD See UPnP Device Architecture section on Control.
600-699 TBD See UPnP Device Architecture section on Control.
713 No such The specified recordTask does not exist.

recordTask ID

720 Cannot process the | Cannot process the request in a reasonable amount of time.
request

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) -61-

2.6.14 EnableRecordTask()

This OPTIONAL action is used to first de-synchronize the recordTask enable/disable behavior from the
(parent) recordSchedule and then individually enable the recordTask, if not already enabled.

e A recordTask that is enabled in the “/DLE” phase will record content in the future unless the
occurrence of an error prevents that.

e A recordTask that is enabled in the “4ACTIVE” phase MUST start recording content as soon as
possible and within a reasonable amount of time unless the occurrence of an error prevents that.
In that case, it MUST return error code 720 without any change.

Invoking EnableRecordTask() on a recordTask in the “DONE” phase MUST NOT affect the state of

the recordTack and MUST fail wiath error-code 741

Enabling a recordTask always takes persistent precedence over enabling/disabling activities perfornied
at the (parent) recordSchedule level. A recordTask that is enabled by invoking EnableRecordTask()
remains enabled until explicitly disabled by invoking DisableRecordTask() on that recordTask.
Invoking EnableRecordSchedule() or DisableRecordSchedule() on the (parent) recordScheduide does
not affect the recordTask anymore. A recordTask enable/disable behavior can be re-synchronised to the
(parent) recordSchedule by invoking the ResetRecordTask() action. From that point enwards, a
recordTask will follow any enabling/disabling activities performed at the (parent).fécordSchedule level
again.

2.6.14.1 Arguments

Table 2-33: Arguments for EnableRecordTask()

Argument Direction relatedStateVariable

RecordTaskiD IN A_ARG TYPE ObjectiD

2.6.14.1.1 RecordTaskID
The RecordTaskID argument contains the obje€tID of the recordTask to be enabled.

2.6.14.2 Dependency on State

None.

2.6.14.3 Effect on State
The value of the StateUpdatelD state variable is changed and the LastChange state variable is updated.

2.6.14.4 Errors

Table 2-34: ~ Error Codes for EnableRecordTask()

ErrorCode errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control.

713 No such The specified recordTask does not exist.
recordTask ID

720 Cannot process the | Cannot process the request in a reasonable amount of time.
request

741 recordTask in A recordTask in the “DONE” phase cannot be enabled or disabled.
“DONE” phase

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

-62 - 29341-4-14 © ISO/IEC:2008(E)

2.6.15 DisableRecordTask()

This OPTIONAL action is used to first de-synchronize the recordTask enable/disable behavior from the
(parent) recordSchedule and then individually disable the recordTask, if not already disabled. A
disabled recordTask MUST behave identical to an enabled recordTask, except for the following:

e A disabled recordTask in the “/IDLE” phase MUST report error code 101 (Disabled) in the
taskState(@pendingErrors property.

e A disabled recordTask in the “ACTIVE” phase MUST NOT record content and it MUST
report error code 101 (Disabled) in the taskState@currentErrors and taskState(@errorHistory
properties.

WhenazecordTask inthe “ACTIVE” phqcp 1S r‘“oq]'\]pr" 1t MUST efnlr) rpr\nrr“ng mmmediatelsz Ifthat is

not possible, it MUST return error code 720 without any change. Invoking DisableRecordTask() on a
recordTask in the “DONE” phase MUST NOT affect the state of the recordTask and MUST fail with
error code 741.

Disabling a recordTask always takes persistent precedence over enabling/disabling activities performed
at the (parent) recordSchedule level. A recordTask that is disabled by invoking DisableReéordTask()
remains disabled until explicitly re-enabled by invoking EnableRecordTask() on thatwecordTask.
Invoking EnableRecordSchedule() or DisableRecordSchedule() on the (parent) re¢ondSchedule does
not affect the recordTask anymore. A recordTask enable/disable behavior can be te-synchronised to the
(parent) recordSchedule by invoking the ResetRecordTask() action. From that point onwards, a
recordTask will follow any enabling/disabling activities performed at the {parent) recordSchedule level
again.

2.6.15.1 Arguments

Table 2-35: Arguments for DisableRecordTask()

Argument Direction relatedStateVariable

RecordTaskiD IN. A_ARG TYPE ObjectiD

2.6.15.1.1 RecordTaskID
The RecordTaskID argument containsthe object ID of the recordTask to be disabled.

2.6.15.2 Dependency on State

None.

2.6.15.3 Effect on State
The value of the.StateUpdatelD state variable is changed and the LastChange state variable is updated.

2.6.15.4 Errors

Table 2-36: Error Codes for DisableRecordTask()

ErrorCode errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.
500-599 TBD See UPnP Device Architecture section on Control.
600-699 TBD See UPnP Device Architecture section on Control.
713 No such The specified recordTask does not exist.
recordTask ID
720 Cannot process the | Cannot process the request in a reasonable amount of time.
request

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) - 63—

ErrorCode errorDescription Description

741 recordTask in A recordTask in the “DONE” phase cannot be enabled or disabled.
“DONE” phase

2.6.16 ResetRecordTask()

This OPTIONAL action is used to force a previously enabled or disabled recordTask to follow any
enabling/disabling activities performed at the (parent) recordSchedule level again.

If the (parent) recordSchedule is in the “ENABLED” state, then the effect of invoking the
RevetRecm dTa ?k() action on an associated iecordT ask 1s 1dent1ca1 to 1nvok1ng the EnableRecordT ask()

performed at the (parent) recor: dSchedule 1evel again for that iecordT avk

If the (parent) recordSchedule is in the “DISABLED” state, then the effect of invoking the
ResetRecordTask() action on an associated recordTask is identical to invoking the DisableRecordTask()
action on that recordTask and from that point onwards, following any enabling/disabling activities
performed at the (parent) recordSchedule level again for that recordTask.

2.6.16.1 Arguments
Table 2-37: Arguments for ResetRecordTask()

Argument Direction relatedStateVariable

RecordTaskID IN 4 MRG_TYPE ObjectID

2.6.16.1.1 RecordTaskID
The RecordTaskID argument contains the object ID of the recordTask to be reset.

2.6.16.2 Dependency on State

None.

2.6.16.3 Effect on State
The value of the StateUpdatelD state variable is changed and the LastChange state variable is updated.

2.6.16.4 Errors

Table 2-38: Error Codes for ResetRecordTask()

ErrorCode errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.
500599 TBD See UPnP Device Architecture section on Control.
600-699 TBD See UPnP Device Architecture section on Control
713 No such The specified recordTask does not exist.
recordTask ID
720 Cannot process the | Cannot process the request in a reasonable amount of time.
request

2.6.17 GetRecordScheduleConflicts()

This action returns a CSV list of recordSchedule objects that conflict with the recordSchedule indicated
by the RecordSchedulelD argument.

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

-64 - 29341-4-14 © ISO/IEC:2008(E)

Support of this action is REQUIRED if the ScheduledRecording service implementation allows
conflicting recordSchedule instances to be created.

2.6.17.1 Arguments
Table 2-39: Arguments for GetRecordScheduleConflicts()

Argument Direction relatedStateVariable
RecordScheduleID IN A ARG TYPE ObjectID
RecordScheduleConflictIDList our A_ARG _TYPE ObjectIDList
UpdatelD our StateUpdatelD

2.6.17.1.1 RecordSchedulelD

The RecordSchedulelD argument contains the object ID of the recordSchedule for which all'eonflicting
recordSchedule object ID values are to be returned in the RecordScheduleConflictIDList output
argument.

2.6.17.1.2 RecordScheduleConflictIDList

This output argument contains the CSV list of recordSchedule object IDs that-Conflict with the
recordSchedule, indicated by the RecordSchedulelD argument.

2.6.17.1.3 UpdatelD

The returned UpdatelD argument MUST contain the most récent value of the StateUpdatelD state
variable before the action began collecting information to'create the value returned in the
RecordScheduleConflictIDList argument. This ensures_that any changes that occur during the gathering
of information can be detected by comparing the value of the UpdatelD argument to the updatelD
attribute value in the most recent LastChange event.'"Refer to Section 2.4.4, “StateUpdatelD” for more
detailed information on the use of this argumetit.

2.6.17.2 Dependency on State

None.

2.6.17.3 Effect on._State

None.

2.6.17.4Errors

Table2-40: Error Codes for GetRecordScheduleConflicts()

ErrorCode errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control.

704 No such The specified recordSchedule does not exist.
recordSchedule ID

720 Cannot process the | Cannot process the request in a reasonable amount of time.
request

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) -65-

2.6.18 GetRecordTaskConflicts()

This action returns a CSV list of @id values of all the recordTask instances that conflict with the
recordTask indicated by the RecordTaskID argument.

Support of this action is REQUIRED if the ScheduledRecording service implementation allows
conflicting recordTask instances to be created.

2.6.18.1 Arguments

Table 2-41: Arguments for GetRecordTaskConflicts()

Argument Direction relatcaStateVariabic
RecordTaskiD IN A_ARG TYPE ObjectiD
RecordTaskConflictIDList our A_ARG TYPE ObjectIDList
UpdatelD our StateUpdatelD

2.6.18.1.1 RecordTaskID

The RecordTaskID argument contains the object ID of the recordTask for whichyall conflicting
recordTask object ID values are to be returned in the RecordTaskConflictIDEist dutput argument.

2.6.18.1.2 RecordTaskConflictIDList

This output argument contains the CSV list of recordTask object, IDs-that conflict with the recordTask,
indicated by the RecordTaskID argument.

2.6.18.1.3 UpdatelD

The returned UpdatelD argument MUST contain the'most recent value of the StateUpdatelD state
variable before the action began collecting information to create the value returned in the
RecordTaskConflictIDList argument. This ensures that any changes that occur during the gathering of
information can be detected by comparing the value of the UpdatelD argument to the updatelD
attribute value in the most recent LastChénge event. Refer to Section 2.4.4, “StateUpdatelD” for more
detailed information on the use of this argument.

2.6.18.2 Dependency on-State

None.

2.6.18.3 Effect on State

None.

2.6.18:4 Errors
Table 2-42: Error Codes for GetRecordTaskConflicts()

ErrorCode | errorDescription Description

400-499 TBD See UPnP Device Architecture section on Control.
500-599 TBD See UPnP Device Architecture section on Control.
600-699 TBD See UPnP Device Architecture section on Control.
713 No such The specified recordTask does not exist.
recordTask ID
720 Cannot process the | Cannot process the request in a reasonable amount of time.
request

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

— 66 —

2.6.19 Common Error Codes

The following table lists error codes common to actions for this service type. If an action results in
multiple errors, the most specific error should be returned.

Table 2-43:

ErrorCode

Common Error Codes

errorDescription

Description

400-499 TBD See UPnP Device Architecture section on Control.

500-599 TBD See UPnP Device Architecture section on Control.

600-699 TBD See UPnP Device Architecture section on Control

700 Reserved for future extensions.

701 Invalid Syntax The recordSchedule in the Elements argument has invalid'syntax.
This includes malformed XML in the Elements input argtiment or
general schema violation.

702 Reserved for future extensions.

703 Invalid Value One or more properties in the input recordStlredule (in the
Elements argument) have an invalid value!

704 No such The specified recordSchedule does ot exist.

recordSchedule ID

705 Active recordTask | One or more recordTask instanCes are actively recording.

706 Reserved for future extensions.

707 Read-only property | Unable to specifytead-only property.

708 Required property | Omitting a REQUIRED property is not allowed

709 Unsupported or The sort ciiteria specified are not supported or are invalid.

invalid sort criteria
710 Reserved for future extensions.
711 Invalid An invalid value has been specified in the DataTypelD input
DataTypelD argument.

712 Reserved for future extensions.

713 No such The specified recordTask does not exist.
recordTask ID

714-719 Reserved for future extensions.

720 Cannot process the | Cannot process the request in a reasonable amount of time.

request

721729 Reserved for future extensions.

730 Conflict The cppr\iﬂpr] recordSchedule is r‘nnﬂir\ting with one ormore
existing recordSchedule objects.

The ScheduledRecording service MAY reject a conflicting
recordSchedule and return with this error code.

731 Protected Contents | The specified contents are copy protected.

The ScheduledRecording service MAY reject a recordSchedule
that specifies copy protected contents and return with this error
code.

732 No Media The specified removable media is not inserted.

29341-4-14 © ISO/IEC:2008(E)

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) -67 -

ErrorCode errorDescription Description

733 Media Write The specified removable media is write-protected.
Protect

734 Media No Space The specified media does not have sufficient capacity.

735 Media Error Error related to the specified destination media.

736 Too many record The maximum number of recordSchedule objects is reached.
schedules

737 Resource Error Error related to an application resource.

738 Reserved for future extensions.

739 Cannot One or more of the associated recordTask objects could notbe
enable/disable enabled or disabled.
recordSchedule

740 recordSchedule The recordSchedule has already completed and capnot be enabled
“COMPLETED” or disabled.

741 recordTask in A recordTask in the “DONE” phase canngt-b¢ enabled or disabled.
“DONE” phase

Note: 800-899 Error Codes are not permitted for standard actions. See UPnP Device Architecture
section on Control for more details.

2.7 State Diagram of recordTask

In the ScheduledRecording service, the state of each recordZask is represented by its state properties
(that is: taskState and its associated properties faskState(@xxx). The definitions are described in Annex
B.16, “Task State Properties”. Additionally, the state behavior of a recordTask is illustrated by a state
diagram to give a visual description of each state-and the state transitions. State diagrams are provided
for informational purposes. Whenever there is:a, discrepancy between the state diagram and the textual
description of state and state transition, the wormative textual description takes precedence.

2.7.1 AFull-Featured State Diagram

As described above, the faskState-property reflects the current state of the recordTask. Its value changes
over time as the recordTaskprogresses through its life-cycle. The following state transition diagram
shows the possible states and state transitions that a given recordTask may take throughout its life time.
It is assumed that all (REQUIRED and OPTIONAL) normative states and attributes of a recordTask are
supported by the dévice. Further, it is assumed that a device is able to resume recording in the middle of
the “ACTIVE” phase., The GetAllowedValues() action can be used to determine if a device supports all
states and atttibuites.

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

— 68 —

29341-4-14 © ISO/IEC:2008(E)

recordTask PH = @phase property
STM = @startDateTimeMet property
Created ETM = @endDateTimeMet property
Rec = @recording property
SBR = @someBitsRecorded property
FBR = @firstBitsRecorded property
LBR = @lastBitsRecorded property
SBM = @someBitsMissing property
CE = @currentErrors property
EH = @errorHistory property
FE = @fatalErrorFlag property
FES> 1 PE = @pendingErrors property
PE)_D)QLE Info = @infolist property
SBM->1 > = Triggers a transition when set to new value
> = Transition causes a new value to be set
STVS 1 =? = Transition target determined by current value
PH->ACTIVE
\ / hd
/ CE>++
ACTIVE. ACTIVE. I\EH>++
TRANSITION. TRANSITION. SBM>1
FROMSTART RESTART
ACTIVE.
NOTRECOR
DING
ACTIVE'Q ACTIVE.
RECORDING. RECORDING.
FE>1 R RT. RESTART.
Rec>0 ATRISK
EfiSer
PH->DONE
SBM->1
SBR =7 K
0 1
ETM>1 0 ETM->1 ETM>1
Rec>0 0 Rec>0 PH->DONE
PH->DONE 0 PH->DONE,
¥ LBR>1 0 LBR>1

LL

recordTask Deleted

DONE.
PARTIAL

Figure S: A Full-Featured State Diagram

2.71.1 “IDLE” Phase

The states in this phase indicate that the recordTask’s start time has not yet been reached and that the
target content is not yet available for recording. The recordTask will remain in the “/DLE” phase (that
is: in any of the IDLE states), until either the recordTask’s start time is reached or a fatal error is
detected. If/when the start time is reached, the recordTask will transition to one of the states in the
“ACTIVE” phase. If a fatal error is detected, the recordTask will transition directly to the

“DONE.EMPTY” state within the “DONE” phase.

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) -69 -

27111 “IDLE.READY” State

This state indicates that the recordTask is waiting for the start time to be reached and that no error
conditions (either fatal or non-fatal) have been detected. If/when the start time is reached, the
recordTask will transition to one of the states in the “4ACTIVE” phase. If, while waiting for the start
time, a non-fatal error is detected, the recordTask will transition to the “/DLE.ATRISK” state indicating
that the recordTask is at risk of not completing successfully due to some non-fatal error condition.

271.1.2 “IDLE.ATRISK” State

This state indicates that the recordTask is waiting for the start time to be reached, but that at least one
non-fatal error condition has been detected. If/when the start time is reached, the recordTask will

transition to one of the states in the “ACTIVE>. p]'mcp H': while um;ﬁ'ng for the start ﬁn'\P7 the non-fatal

error is resolved, the recordTask will transition back to the “/DLE.READY” state.

2.71.2 “ACTIVE” Phase

The states in this phase indicate that the recordTask’s start time has been reached and that.the target
content is available for recording. While in this phase (that is: in one of these states), the device will
attempt to record the content. The recordTask will remain in this phase until either thésecordTask’s
end time is reached (that is: the content is no longer available) or until a fatal erretyis’detected. If/when
the end time is reached, the recordTask will transition to the appropriate “DONE> state based on how
much of the content was recorded (that is: all - “DONE.FULL”, part — “DONE.PARTIAL”, or none —
“DONE.EMPTY”). If a fatal error is detected, the recordTask will transitionto either the
“DONE.PARTIAL” or the “DONE.EMPTY” state, depending on how fnuch of the content was recorded
(that is: part or none).

2.71.21 “ACTIVE.TRANSITION.FROMSTART” State

This state indicates that the recordTask is attempting to‘begin recording the recordTask’s content from
the beginning of the designated start time. The record¥usk remains in this state until either the device
actually begins recording data to the media or until ahon-fatal or fatal error occurs. If the device
actually starts to record data to the media, the wecordTask will transition to
“ACTIVE.RECORDING.FROMSTART” states'where the content continues to be recorded. If the initial
recording attempt fails due to a non-fataleiror, the recordTask transitions to the
“ACTIVE.NOTRECORDING” state where one or more attempts is made to resolve the problem and re-
start the recording. If a fatal error is(detected, the recordTask will transition to either the
“DONE.PARTIAL” or the “DONE.EMPTY” state, depending on how much of the content was actually
recorded (that is: part or none):

Although the recordTaskremains in this state for a relatively short period of time, this state bridges an
inherent discontinuitysbetween the “/DLE” states and the “ACTIVE” states. Specifically, at the instant
when the recordTask’s start time is reached, the recordTask (by definition) must transition out of the
“IDLE” phase and-into the “ACTIVE” phase, However, since the device has not yet attempted to record
any content-dataon to the media, it is unknown which “ACTIVE” state the recordTask should transition
to. Firstly;nit.is not appropriate to transition to any of the “ACTIVE.RECORDING.xxx” states because
the deviee has not yet actually recorded any content data. Secondly, it is not appropriate to transition to
the CACTIVE.NOTRECORDING” state because this state (by definition) means that a non-fatal error
has occurred resulting in the loss of content. Since no other “ACTIVE” states are appropriate at this

nstant in tme, the ~ACITVE. TRANSITION-xxx ~ States exist as a bricl transition point wiile the true
disposition of the recordTask is determined.

2.71.2.2 “ACTIVE.TRANSITION.RESTART” State

This state indicates that the recordTask is attempting to re-start the recording of the recordTask’s
content some time after the beginning of the designated start time. This implies that either the initial
recording attempt failed or that the initial recording attempt succeeded, but was later disrupted due to a
non-fatal error. The recordTask remains in this state until either the device actually begins recording
data to the media or until a non-fatal or fatal error occurs. If the device actually starts to record data to
the media, the recordTask will transition to “ACTIVE.RECORDING.RESTART” states where the
content continues to be recorded. If the initial recording attempt fails due to a non-fatal error, the

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

-70- 29341-4-14 © ISO/IEC:2008(E)

recordTask transitions to the “ACTIVE.NOTRECORDING” state where one or more attempts is made
to resolve the problem and re-attempt to start the recording. If a fatal error is detected, the recordTask
will transition to either the “DONE.PARTIAL” or the “DONE.EMPTY” state, depending on how much
of the content was recorded (that is: part of none).

Although the recordTask remains in this state for a relatively short period of time, this state bridges an
inherent discontinuity between the “ACTIVE.NOTRECORDING” state and the
“ACTIVE.RECORDING.xxx” states. Specifically, at the instant when a current non-fatal error has been
resolved, the recordTask (by definition) must transition out of the “ACTIVE.NOTRECORDING” state
and into one of the other “4CTI/VE” states. However, since the device has not yet attempted to restart
the recording of content data on to the media, it is unknown which “ACTIVE” state the recordTask
should transition to. Firstly, it is not appropriate to transition to any of the “4CT/VE.RECORDING.xxx”

states because the device has not yet actually (re)started to record any content data. Secondly, 1t 1S not
appropriate to transition back to the “ACT/VE.NOTRECORDING” state because there are no
unresolved non-fatal errors. Since no other “ACT/VE” states are appropriate at this instant in time,‘the
“ACTIVE.TRANSITION.xxx” states exists as a brief transition point while the true disposition of the
recordTask is determined.

2.71.23 “ACTIVE.RECORDING.FROMSTART.OK” State

This state indicates that the recordTask has reached its start time and that all of the target content has
been recorded continuously from the beginning. Additionally, no non-fatal or-fatal errors have occurred
or have been detected which would otherwise threaten the future continuity,0fthe recording. The
recordTask remains in this state until either the recordTask’s end time is\reached or until a non-fatal or
fatal error occurs or a pending non-fatal or fatal error is detected.

If the recordTask reaches its end time, the recordTask halts the récording and transitions to the
“DONE.FULL” state indicating that the entire target contentvasrecorded uninterrupted. If a non-fatal
error actually occurs, the recording has already halted and(the'recordTask transitions to the “ACTIVE.
NOTRECORDING” state where one or more attempts ar¢ made to resolve the problem and restart the
recording. If a fatal error actually occurs, the recording has already halted and the recordTask
transitions directly to the “DONE.PARTIAL” state indicating that part of the target content was
recorded. If a pending non-fatal or fatal error is"detected (but has not yet occurred), the recordTask
transitions to the “ACTIVE.RECORDING.EROMSTART.ATRISK” state indicating that the target
content has been recorded continuously. frein the beginning, but a pending error has been detected that
threatens the remainder of the recording,

271.24 “ACTIVE.RECORDING.FROMSTART.ATRISK” State

This state indicates that thewdcordTask has reached its start time and that all of the target content has
been recorded continuously from the beginning. Although no non-fatal or fatal errors have occurred,
one or more pending-non-fatal or fatal errors have been detected that threaten the future continuity of
the recording. Th€ retordTask remains in this state until either the recordTask’s end time is reached or
until all of the pending non-fatal and fatal errors have been resolved or until a non-fatal or fatal error
actually occurs.

If the yecordTask reaches its end time, the recordTask halts the recording and transitions to the
“D@NE.FULL” state indicating that the entire target content was recorded uninterrupted. If all of the
peénding errors have been resolved, the recordTask transitions to the

ITA Yalsat'a 92l

DI ADINIAIS ION A L0 4D 1239 L L . 1oiid 4 4 4 1 1 11
ACTTY L NG CUNDTING L LTINTU VIO T AT UIN - SLALC HIUICAULTE UIdU UIT 1dI Z01 CULIICTIL I1dS UCTIT TCCOTIUCU

continuously from the beginning and that no pending non-fatal or fatal errors have been detected. If a
non-fatal error actually occurs, the recording has already halted and the recordTask transitions to the
“ACTIVE. NOTRECORDING” state where one or more attempts are made to resolve the problem and
restart the recording. If a fatal error actually occurs, the recording has already halted and the
recordTask transitions directly to the “DONE.PARTIAL” state indicating that part of the target content
was recorded.

2.71.25 “ACTIVE.RECORDING.RESTART.OK” State

This state indicates that the recordTask has reached its start time and that the target content data is
being recorded onto the media. However, at some point in the past, the recording was disrupted either at

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) -71-

the beginning or somewhere in the middle so that part of the content was not recorded. Fortunately, no
pending non-fatal or fatal errors have been detected which would otherwise threaten the future
continuity of the recording. The recordTask remains in this state until either the recordTask’s end time
is reached or until a non-fatal or fatal actually occurs or a pending non-fatal or fatal error is detected.

If the recordTask reaches its end time, the recordTask halts the recording and transitions to the
“DONE.PARTIAL” state indicating that part, but not all, of the target content was recorded. If a non-
fatal error actually occurs, the recording has already halted and the recordTask transitions to the
“ACTIVE. NOTRECORDING” state where one or more attempts are made to resolve the problem and
again restart the recording. If a fatal error actually occurs, the recording has already halted and the
recordTask transitions directly to the “DONE.PARTIAL” state indicating that part of the target content
was recorded. If a pending non-fatal or fatal error is detected (but has not yet occurred), the recordTask

transitions to the "AC/IVE. KECOKDING. KESTART ATKISK™ state indicating that part of the target
content has been recorded and that additional non-fatal or fatal errors are pending which threaten the
remainder of the recording.

271.2.6 “ACTIVE.RECORDING.RESTART.ATRISK” State

This state indicates that the recordTask has reached its start time and that the target content data is
being recorded onto the media. However, at some point in the past, the recording was-disrupted either at
the beginning or somewhere in the middle so that part of the content was not regorded. Additionally,
one or more pending non-fatal or fatal errors have been detected that threaten-the’future continuity of
the recording. The recordTask remains in this state until either the recordfask’s end time is reached or
until all of the pending non-fatal and fatal errors have been resolved or-until a non-fatal or fatal actually
occurs.

If the recordTask reaches its end time, the recordTask halts the récording and transitions to the
“DONE.PARTIAL” state indicating that part, but not all, of the target content was recorded. If all of the
pending errors have been resolved, the recordTask transitions'to the
“ACTIVE.RECORDING.RESTART.OK” state indicatingthat the target content continues to be
recorded, but with some content missing, and that no-pending non-fatal or fatal errors have been
detected. If a non-fatal error actually occurs, the recerding has already halted and the recordTask
transitions to the “ACTIVE. NOTRECORDING? state where one or more attempts are made to resolve
the problem and again restart the recording, {f @ fatal error actually occurs, the recording has already
halted and the recordTask transitions direetly to the “DONE.PARTIAL” state indicating that part of the
target content was recorded.

2.71.2.7 “ACTIVE.NOTRECORDING” State

This state indicates that a non*fatal error has occurred while the device was recording the target content
or while the device was.attempting to start recording the target content. The recordTask remains in this
state until either the-recordTask’s end time is reached or until all of the current non-fatal errors are
resolved, or untila fatal error actually occurs.

If the recordFask reaches its end time, the recordTask transitions to either the “DONE.PARTIAL” or
“DONE.EMPTY” depending on how much of the content was actually recorded (that is: part or none). If
all of the'eurrent non-fatal errors have been resolved, the recordTask transitions to the
“AJTIFE.TRANSITION.RESTART” state where one or more attempts are made to restart the recording.
If\d fatal error is detected, the recordTask transitions to either the “DONE.PARTIAL” or the

SeIN

L oA LD YD - - 1 h 1 1 ook | - 11 1 1 1 e
LIVIVL . IVIT 11 SLdlT ucpcuuulg Ull HUOW TITUCII O UIT CUILIICIIU Wd> a\,tuauy ICTCOUIUCU \LllaL IS. l)dlL Ul
none).

2.7.1.3 “DONE” Phase

The states in this phase indicate that the device is finished with this recordTask. Each “DONE” state
indicates the success or failure of the recordTask based on how much of the target content was actually
recorded. Once the recordTask reaches one of the “DONE” states, it remains in that state until the
recordTask is deleted and none of the recordTask’s property values change.

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

-72- 29341-4-14 © ISO/IEC:2008(E)

2.71.31 “DONE.FULL” State

This state indicates that all of the recordTask’s target content was recorded in its entirety without any
interruptions. No error occurred while recording the target content. The recordTask remains in this state
until the recordTask is deleted.

2.71.3.2 “DONE.PARTIAL” State

This state indicates that part of the recordTask’s target content was recorded, but not all of it. One or
more errors occurred while recording the target content that prevented part of that content from being
recorded. The recordTask remains in this state until the recordTask is deleted.

2.7.1.3.3 "DONEEMPTY” State

This state indicates that none of the recordTask’s target content was recorded. One or more errors
occurred that prevented the recording from even getting started. The recordTask remains in this tate
until the recordTask is deleted.

2.7.2 A Minimal-Implementation State Diagram

The simplest state diagram based on the minimum required state related propertigs,isillustrated below
to show the behavior of such a device and the progression of its state. The suppottlevel of these state
related properties is defined in Annex C.3.2, “object.recordTask Class”. This example only uses the set
of REQUIRED allowed values for the faskState property. In the example\below, it is assumed that the
device is UNABLE to resume recording once the “ACTIVE” phase is entered. By definition, any device
MUST support at least the following 5 illustrated states.

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) -73-

r rdTask PH = @phase property
ecordTas STM = @startDateTimeMet property
Created ETM = @endDateTimeMet property

Rec = @recording property

SBR = @someBitsRecorded property
FBR = @firstBitsRecorded property
LBR = @lastBitsRecorded property
SBM = @someBitsMissing property
CE = @currentErrors property

EH = @errorHistory property

FE = @fatalErrorFlag property

FES> 1 PE = @pendingErrors property
PE)_D)QLE Info = @infolist property
SBM->1 > = Triggers a transition when set to new value
> = Transition causes a new value to be set
\ / =? = Transition target determined by current value
STM> 1
\PH-)ACTIVE’
\ / v
/ CE>++
0 ACTIVE. I\EH>++
0 TRANSITION. SEMA
' RESTART
0
0
0 ACTIVE.
0 NOTRECOR-
' DING
0
0
0
0
0
ACTIVE. ACTIVE. 0 ACTIVE@ ACTIVE.
RECORDING. RECORDING. 0 RECORDING. RECORDING.
;éECT_))I’ FROMSTART FROMSTART | ¢ R&RT. RE%IASIIR(T.
e .OK .ATRISK (] O
PH-DONE 0
SBR =?
0 1
\ ETM>1 / 0 ETM>1 ETM>1
Rec>0 (] Rec>0 PH->DONE
" PH>DONE 0 PH->DONE
Y (LBR>1 l' 0 LBR>1

o DONE.
LL PARTIAL

recordTask Deleted

Figure 6: A Minimal-Implementation State Diagram

2.7.21 “IDLE” Phase

In this phase, the device is not able to detect pending errors (that is: faskState@pendingErrors MUST
be empty); therefore, once the start time is reached, the device will go to the
“ACTIVE.RECORDING.FROMSTART.OK” state and start recording. If the device can not start
recording, it is treated as a fatal error, and the recordTask will transition directly to the
“DONE.EMPTY” state. Also, anytime during the “/DLE” phase, a fatal error can occur, and the
recordTask will transition directly to the “DONE.EMPTY” state.

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

-74 - 29341-4-14 © ISO/IEC:2008(E)

2.7.211 “IDLE.READY” State

Because there is no error detecting mechanism (that is: taskState@pendingErrors) supported, this state
indicates that the recordTask is waiting for the start time to be reached and that no errors conditions
(either fatal or non-fatal) have been detected. If/when the start time is reached, the recordTask will
attempt to record immediately.

2.7.21.2 “IDLE.ATRISK” State

Because there is no error detecting mechanism (that is: taskState@pendingErrors) supported, this state
is not supported.

2.7.2.2 "ACTIVE” Phase

Because there is no pending error (that is: faskState@pendingErrors) detection mechanism supported,
nor is an interrupted “ACTIVE” recording or late recording (that is: the start time is missed) able'to
resume recording (due to device limitations), only one state MUST be supported in the “ACTIVE”
phase, that is: “ACTIVE.RECORDING FROMSTART.OK”. It indicates a perfect recording corndition.

2.7.2.21 “ACTIVE.TRANSITION.FROMSTART” State
This state is not supported.

2.7.2.2.2 “ACTIVE.TRANSITION.RESTART” State
This state is not supported.

2.7.2.2.3 “ACTIVE.RECORDING.FROMSTART.OK% State

This is the only state that MUST be supported in the “ACTIVE” phase. It indicates the perfect recording
condition. The recordTask has reached its start time ahd all of the target content has been recorded
continuously from the beginning. The recordTask fémains in this state until either the recordTask’s end
time is reached or until a fatal error is detected.

If the recordTask reaches its end time, the recoidTask halts the recording and transitions to the
“DONE.FULL” state indicating that the entite target content was recorded uninterrupted. If the
recording is interrupted for any reason;-it'is treated as a fatal error, and the recordTask immediately
transitions to either the “DONE.PARDIAL” or the “DONE.EMPTY” state.

2.7.2.24 “ACTIVE.RECORDING.FROMSTART.ATRISK” State
This state is not supported since the device does not support pending errors.

2.7.2.25 “ACTIVE.RECORDING.RESTART.OK” State

This state isnet supported since the device can not resume an interrupted recording or catch a late
recording that misses the beginning.

27226 “ACTIVE.RECORDING.RESTART.ATRISK” State

1'his state 18 not supported Since the device does not support pending €rrors.

2.7.2.2.7 “ACTIVE.NOTRECORDING” State

This state is not supported since the device can not resume interrupted recording. Any interruptions
during the middle of recording will cause a transition to the “DONE” phase.

2.7.2.3 “DONE” Phase

The states in this phase indicate that the device is finished with this recordTask. Each “DONE” state
indicates the success or failure of the recordTask based on how much of the target content was actually
recorded.

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) -75-

2.7.231 “DONE.FULL” State

This state indicates a perfect recording. The recordTask’s target content was recorded in its entirety
without any interruptions.

2.7.23.2 “DONE.PARTIAL” State

This state indicates that part of the recordTask’s target content was recorded, but not all of it. This state
is reached from an “ACTIVE” recordTask due to a fatal error.

2.7.2.3.3 “DONE.EMPTY” State
This state indicates that none of the recordTask’s target content was recorded. It is a result of a

recording that has never been started due to a fatal error.

2.7.3 recordTask State Example

The following example illustrates the use of state attributes. In this example, it is assumed, that a device
is able to resume a recording after it is interrupted.

The events occurs at:
e TO: Sytem is idle.

e TI1: Error 1 (for example, DRM protected is being broadcast) and Ertor 3 (for example,
conflicted-loser) are predicted.

e T2: The recordSchedule reaches the scheduled start time,\but Error 1 prevents the recording
from starting.

e T3: Suddenly, a new Error 2 occurs (for examplesdisabled)

e T4: Error 1 is fixed (for example, the protected part ends.), but Error 3 is still predicited.
e T5: Error 2 is fixed (for example, enabled by user), but Error 3 is still predicited.

e T6: Error 3 occurs (for example, otherprioritized program starts)

e T7: Error 3 is fixed (for examplez the prioritized program ends)

e T8: The recordSchedule reached the scheduled end time

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

-76 - 29341-4-14 © ISO/IEC:2008(E)

Table 2-44: recordTask State Timeline

a|npayss Buipiodsay

aur awiy

TO “IDLE.READY” “pLE” |0]10]0(0|0|0(0|0|O|O| O
T1 “IDLE.ATRISK” “IDLE” {0]0(0]0[0(0|0O|0| O [1,31-0
T2 “ACTIVE NOTRECORDING” “ACTIVE”[0[O [1[1(0[0[0 [0 | INT3 1
T3 “ACTIVE.NOTRECORDING” “Active”{ 00|11 (0|00 [0 }1,2] 3| 1,2
T4 “ACTIVE.NOTRECORDING” “Active”{ 00| 1|1 (0000 2| 3| 1,2
TS “ACT.RECORDING.RESTART.ATRISK” |“ACTIVE”| 1 |1 |1 100400 O |3 | 1,2
T6 “ACTIVE.NOTRECORDING” “AcTivE” |0 |1 |1 [0 |0]0(0]| 3 |0 |1,2,3
T7 “ACT.RECORDING.RESTART.OK” “Active”| 11491 (0|0]0(0| O | O |1,2,3
T8 “DONE.PARTIAL” “DONE” |0%1Y1(1]|1]0(1|0]|O | O |1,2,3

2.8 ScheduledRecording Service Priority Model

2.8.1 Introduction of the ScheduledRecording Service Priority Model

The ScheduledRecording service priority modgl‘allows control points to provide desired priority
information in order to help the ScheduledRégcording service prioritize conflicting recordTask instances
that were generated by different recordSéliedule instances. The ScheduledRecording service priority
model does not remove these conflicts™from the system, but it does help the ScheduledRecording
service make scheduling decisions’that more closely match the desires of the end-user.

The ScheduledRecording service priority model is based on a “priority level” system in which each
recordSchedule is assigned.aspecific priority level. The recordTask inherits the priority of its parent
recordSchedule. In other words, the recordTask instances generated by a recordSchedule of a higher
priority level are giventhigher priority than those recordTask instances generated by a recordSchedule
of a lower priority level. Except for those ScheduledRecording service implementations that support
“ordered priority” (described below), all of the recordTask instances generated by any of the
recordSchethilé instances assigned to the same priority level will have the same priority. If conflicts
arise between any of these (same priority) recordTask instances, the ScheduledRecording service MAY
give preference to any of these recordTask instances in a device-dependant manner.

Thé number of distinct priority levels supported by a ScheduledRecording service is vendor-dependent.

I 1 - st] 1. A | 4o o 1 1o +k Lol N4 IQT 1 +1 £ (194 2 la (13 kI
TaCiT PITOTTTY TOVOT IS TACTIOTICU O Y I TIAC- WINTUIT VIO O T Ia vV U thICTOTIT T~ WIICTC Lo 1S dIT

abbreviation for “Level” and <x> is a number ranging from 1 to some device-specific maximum value n
where n is the total number of distinct priority levels supported by the ScheduledRecording service.

For example, a ScheduledRecording service that supports 5 distinct priority levels will have the
following priority levels named as follows:

e “LI” (Highest priority level)
o “L2”
o “L3”
o “Lg”

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) -77 -

o “L5” (Lowest priority level)

The list of priority levels supported by a ScheduledRecording service is obtainable via the
GetAllowedValues() action by examining the allowed value list of the priority property. Each existing
recordSchedule (on a given ScheduledRecording service) MUST be assigned one of these supported
priority levels. The priority property of each recordSchedule indicates the current priority level
assigned to that recordSchedule which can be retrieved via the BrowseRecordSchedules() action.

2.8.2 Ordered Priority within Each Priority Level

In addition to supporting one or more priority levels, some ScheduledRecording service
implementations are able to prioritize the recordSchedule instances within each priority level. When
ordered priority 18 supported, each recorddchedule (1n addition to 1ts assigned priority level) 1s also
assigned a unique “ordered priority slot” ranging from 1 to <n> where <n> is the total number of
recordSchedule instances within the ScheduledRecording service. A value of 1 represents the highest
priority recordSchedule within the ScheduledRecording service; that is: the highest priority
recordSchedule within the highest priority level “L/”. The value <n> represents the lowest priority
recordSchedule within the ScheduledRecording service; that is: the lowest recordSchedule*within the
lowest priority level. The ordered priority slot assigned to each recordSchedule can be'obtained via the
recordSchedule’s priority@orderedValue property. A ScheduledRecording servicé thiat support ordered
priority MUST expose this property for each of their recordSchedule instancescConversely, a
ScheduledRecording service that does not support this capability MUST NQT expose the
prioritv@orderedValue property. Within a given ScheduledRecording service, each ordered priority
slot is assigned to exactly one recordSchedule.

As a natural consequence, the recordSchedule instances assigned te_ahigher priority level will always
have a higher ordered priority than the recordSchedule instances-assigned to a lower priority levels.

The following examples shows a ScheduledRecording seryice that supports ordered priority values
within each of its 5 priority levels. The first example shows'a ScheduledRecording service with fewer
recordSchedule instances than the number of priorityevels supported by that ScheduledRecording
service. The second example shows a ScheduledRecording service with more recordSchedule instances
than the number of priority levels supported by, the ScheduledRecording service.

Of particular note, recordSchedule instances\do not need to be evenly distributed between the different
priority levels. Ordered priority slots are €ontiguously assigned starting with the highest priority
recordSchedule down to the lowest priority recordSchedule.

Table 2-45: Example 1: Fewer recordSchedule instances than the Number of
Supported Priority Levels.

Priority Level Ordered Priority Slot

“L1” (highest priority’level) RS-4 1

«p 2

“r3” RS-C 2
RS-B 3

«<fg

“L5” (lowest priority level)

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

-78— 29341-4-14 © ISO/IEC:2008(E)

Table 2-46: Example 2: More recordSchedule instances than the Number of
Supported Priority Levels.

Priority Level Ordered Priority Slot

“L1” (highest priority level) RS-4 1
«p 0 RS-F 2
GGQS’ RS_C 3

RS-B 4
“H” RS—E 5
“L5” (lowest priority level) RS-G 6

RS-D 7

2.8.3 Setting the Initial Priority Level of a recordSchedule

The initial priority level of a recordSchedule is determined by the ScheduledRecording sepvice when
the recordSchedule is created. When determining the initial priority level, the ScheduledRecording
service MUST examine the recordSchedule’s incoming desiredPriority property, and“if provided, set
the recordSchedule’s initial priority level as indicated. If the desiredPriority prepenty is not set, then the
ScheduledRecording service MUST assign the recordSchedule to one of thessupported priority levels
based on some device-dependent assignment algorithm. As described belew, the desiredPriority
property can be set to one of many different values which allow controlpoints to express the desired
priority in a number of different ways. The GetdllowedValues() action-ean be used to determine which
values a ScheduledRecording service allows for its desiredPriority property.

The desiredPriority property has an associated desiredPriority(@iype property that MUST be set to
“PREDEF” except when an object ID is specified in the desiredPriority property. In this case the
desiredPriority@type property MUST be set to “OBJECTID” (see below for details).

In the simplest case, the incoming desiredPriority property is set to the name of one of the supported
priority levels. This value indicates that the recofdSchedule MUST be assigned to the specified priority
level. If the ScheduledRecording service is not.able to complete the assignment, then it MUST fail the
creation request.

If a control point does not have a desired priority for a recordSchedule that it is about to create, the
control point may set the incoming«desiredPriority property to the value “DEFAULT”. This value
indicates that the control point js\willing to accept the ScheduledRecording service’s default priority
level assignment.

If the ScheduledRecording, service supports ordered priority (that is: the ScheduledRecording service
supports the priority@ovrderedValue property), the ScheduledRecording service MUST also support
some additional yalues for its desiredPriority property. Firstly, the ScheduledRecording service MUST
support a value.with the following format (without the double-quotes): “<@id>" where <@id> is the
(@id property Value of an already existing recordSchedule. (The associated desiredPriority@type
propertyMUST be set to “OBJECTID” in this case). This value indicates that the new recordSchedule
MUST-be assigned to the same priority level as the existing recordSchedule identified by <@id>.
Furthermore, the new recordSchedule MUST be assigned the ordered priority slot of the existing
retardSchedule with the existing recordSchedule and all other lower priority recordSchedule instances
shifted to the next lower ordered priority slot. (See examples below.)

Additionally, when ordered priority is supported, the ScheduledRecording service MUST also support a
number of convenience values corresponding to the highest and lowest ordered priority slots within
each of its supported priority level. These convenience values MUST have the form “L<x>_ HI” or
“L<x>_ LOW” where “L” is an abbreviation for “Level”, <x> is a number ranging from 1 to some
device-specific maximum value n where n is the total number of distinct priority levels supported by the
ScheduledRecording service. For example, a ScheduledRecording service that supports 5 priority levels
and also ordered priority MUST support the values “L/_HI”, “L1_LOW”,“L2_HI”,“L2 LOW”,
“L3_HIP’,“L3_LOW”,“L4_HI’,“L4_LOW”, “L5_HI, “L5_LOW for the desiredPriority property.
Furthermore, the ScheduledRecording service MUST also support two additional convenience values
corresponding to the highest and lowest priority within the ScheduledRecording service. These two

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) -79-

additional convenience values are “HIGHEST” (which is equivalent to the highest ordered priority slot
in the highest priority level “L/_HI”), and “LOWEST” (which is equivalent to the lowest priority slot
within the lowest priority level “L<n> LOW” when n is the total number of priority slots supported by
the ScheduledRecording service).

All of these additional convenience values behave just like a “<@id>* value. The primary benefit of
the convenience values is that they can be used to specify a specific ordered priority slot without having
to determine the @id of the existing recordSchedule currently assigned to that slot. Additionally, as
with a “<@jid>* value, the existing recordSchedule already assigned to that desired ordered priority
slot and those recordSchedule instances assigned to lower priority slots, are shifted to the next lower
slot. However, all recordSchedule instances remain within their same priority level.

In the fn]]n\ving mmmphﬁq the Q(‘hedll]PdRP(‘nrding service suppaorts 3 prinrifv levels and also supports

ordered priority. The examples begin with the following recordSchedule priorities already assigned.

Table 2-47: Existing recordSchedule Priorities

“L1” (highest priority level) RS-4 1
“L2” RS-C 2
“L3” (lowest priority level) RS-B 3

Then the CreateRecordSchedule() action is invoked with the desired Prigrity property set to “RS-C”.
After the action completes, a new recordSchedule is created with the (@id property set to “RS-D”. The
set of recordSchedule instances is now prioritized as follows:

Table 2-48: desiredPriority Property Set to “RS-C”

“L1” (highest priority level) RS-4 1
“L2” RS-D 2

RS-C 3
“L3” (lowest priority level) RSB 4

Next the CreateRecordSchedule() action is invoked with the desiredPriority property set to
“HIGHEST”, “L1_HI”, or “RS<A4” (all values have the same effect). After the action completes, a new
recordSchedule is created with the @id property set to “RS-E”. The set of recordSchedule instances is
now prioritized as follows:

Table 2-49: desiredPriority Property Set to “HIGHEST”, “L1_HF’, or “RS-A”

Priority Level Ordered Priority Value
“L1” (highest priority level) RS-E 1
RS-A 2
LY RS-D 3
RS-C 4
“L3” (lowest priority level) RS-B 5

Now the CreateRecordSchedule() action is invoked with the desiredPriority property set to
“LOWEST”, “L3_LOW”, or “RS-B” (all values have the same effect). After the action completes, a new
recordSchedule is created with the @id property set to “RS-F. The set of recordSchedule instances is
now prioritized as follows:

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

-80- 29341-4-14 © ISO/IEC:2008(E)

Table 2-50: desiredPriority Property Set to “LOWEST”, “L3 LOW”, or “RS-B”

Priority Level Ordered Priority Value

“L1” (highest priority level) RS-E 1
RS-A 2
4‘Q3’ RS_D 3
RS-C 4
“L3” (lowest priority level) RS-B 5
RS-F 6

h b 11] pal baY 10 7 11 L — — 1 1 LR TR |] - o - " VTS 2 Ve a1
Taiy, v CrediCnecordocricd e/ aLUUIN TS MIIVURCU WIUT UIC GES 7 CUT FTOTITYy PIUPUILY SULTU RNO=T .

After the action completes, a new recordSchedule is created with the @id property set to “RS-G”. The
set of recordSchedule instances is now prioritized as follows:

Table 2-51: desiredPriority Property Set to “RS-C”

Priority Level RecordSchedulelD Ordered Priority Value
“L1” (highest priority level) RS-E 1
RS-A 2
“Q,’ RS—D 3
RS-G 4
RS-C 5
“L3” (lowest priority level) RS-B 6
RS-F 7

2.8.4 Sorting recordSchedule Instances Based on their Current Priority
Settings

Control points can obtain the list of recordSchedirle instances sorted either by their current priority
level or by their ordered priority slot. In order to sort the list of recordSchedule instances by their
current priority level (in descending ordery that is: highest priority level recordSchedule instances listed
first), control points can invoke the BrewseRecordSchedules() action with the SortCriteria argument set
to “+srs:priority”. In order tolsort the list of recordSchedule instances sorted by their current
ordered priority slot number (in‘descending order with the lowest ordered priority slot; that is: the
highest slot number listed first), the control point can invoke the BrowseRecordSchedules() action with
the SortCriteria argument set’'to “-srs:priority@Orderedvalue”.

2.9 Theory of Operation

2.9.1 Introduction

The fellowing sections walk through several scenarios to illustrate the various actions supported by the
ScheduledRecording service. It should be noted that these scenarios are for example purposes only and
do'not have any normative value. Vendors may combine the described components in a variety of ways.

NOTE: For easy readability, The srs XML Documents of the examples presented below are shown
before XML-escaping to improve readability. However, they need to be escaped before embedding in a
SOAP message. Also, a shorthand notation method is used to describe the actions. The SOAP envelope
is omitted in the examples and replaced by a shorthand notation.

2.9.2 Checking the Capabilities of a ScheduledRecording Service

The following examples illustrate how to check the capabilities of the ScheduledRecording service by
using the GetSortCapabilities(), GetPropertyList(), and GetAllowedValues() actions.

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) -81-

2.9.2.1 Checking the Sort Capabilities

Assume that the ScheduledRecording service supports sorting on title, scheduledStartDateTime, and
priority only. Then the request:

Request:
GetSortCapabilities ()

will result in the following response:

Response:
GetSortCapabilities("srs:title, srs:scheduledStartDateTime, srs:priorit
yll)

2.9.2.2 Checking Supported Properties and their Allowed Values

A number of properties are OPTIONAL and therefore, vendors are free to decide whether or ot to
support those properties for their particular ScheduledRecording implementations. The
GetPropertyList() and GetAllowedValues() actions provide the means for a control point to°determine
which properties a particular ScheduledRecording service supports (GetPropertyList{).action) and also
what the allowed values are for these properties (GetAllowedValues() action). Sinee_the set of supported
properties and their allowed values may depend on the context within which thése properties are used,
the GetPropertyList() and GetAllowedValues() actions allow the control poifit to specify the property-
set data type for which the control point wants to retrieve support level information.

29.2.21 Minimal Implementation Example

As a first example, assume that this particular ScheduledRecording service is a truly minimal
implementation (only the object.recordSchedule.direct.cdsNonEPG class is supported and only
required properties are supported).

Assume further that the control point wants to deterniine which properties it can specify in the Elements
input argument of the CreateRecordSchedule() aetion of this minimal ScheduledRecording
implementation. It first issues the following request (The Elements input argument of the
CreateRecordSchedule() action is of data type 4 ARG TYPE RecordScheduleParts):

Note: This A_ ARG TYPE RecordScheduleParts example is marked by a white background for better
reader orientation.

Request:
GetPropertyList ("A-ARG TYPE RecordScheduleParts")

Then the following respense will be generated:

Response:

GetPropertyhist (

"srs:@idsys:title,srs:class, srs:scheduledCDSObjectID,
srs:schéduledStartDateTime, srs:scheduledDuration")

If the ontrol point then wants to investigate further what values it may use for those properties when
building a recordSchedule, it can retrieve that information using the following request:

Note: specitying “* : *” 1n the [i/ter argument 1s equivalent to specifying the complete list of property
names that was returned in the PropertyList argument of the GetPropertyList() action with the
DataTypelD argument set to “A_ARG _TYPE RecordScheduleParts”.

Request:
GetAllowedValues ("A ARG TYPE RecordScheduleParts", "*:x")

The following response will be generated:

Response:

GetAllowedValues ("

<?xml version="1.0" encoding="UTF-8"?>
<AVDT

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

-82 - 29341-4-14 © ISO/IEC:2008(E)

xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:srs="urn:schemas-upnp-org:av:srs"
xmlns="urn:schemas-upnp-org:av:avdt"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="

urn:schemas-upnp-org:av:srs
http://www.upnp.org/schemas/av/srs-v1-20060531.xsd

urn:schemas-upnp-org:av:avdt
http://www.upnp.org/schemas/av/avdt-v1l-20060531.xsd">

<contextID>
uuid:device-UUID: :urn:schemas-upnp-org:service:ScheduledRecording:1
</contextID>

<dataStructType>A ARG TYPE RecordScheduleParts</dataStructTypes>

<fieldTable>

<field>
<name>srs:@id</names
<dataType>xsd:string</dataType>
<minCountTotal>I1</minCountTotal>
<allowedValueDescriptors>

<allowAny></allowAny>

</allowedValueDescriptors>

</fields>

<field>
<name>srs:title</names>
<dataType>xsd:string</dataType>
<minCountTotal>I1</minCountTotal%
<allowedValueDescriptors>
<allowAny></allowAny>
</allowedValueDescriptor>
</fields>

<fields>
<name>srs:class</name>
<dataType>xsd:string</dataType>
<minCountTotal>Z</minCountTotal>
<allowedValueDescriptors>
<allowedValueList>
<aldowedValue>
OBJECT.RECORDSCHEDULE . DIRECT . CDSNONEPG
/adllowedvValues>
«/allowedValuelist>
</é&lYowedValueDescriptors>
</field>

zfield>
<name>srs:scheduledCDSObjectID</name>
<dataType>xsd:string</dataType>
<minCountTotal>1</minCountTotal>

KGllUWCLlTVTG.lbLCDCD\/J. J'.b)tUJ.
<allowAny></allowAny>
</allowedValueDescriptors>
</field>

<field>
<name>srs:scheduledStartDateTime</name>
<dataType>xsd:string</dataType>
<minCountTotal>I1</minCountTotals>
<allowedValueDescriptors>

<allowAny></allowAny>

</allowedValueDescriptors>

</field>

http://www.w3.org/2001/XMLSchema-instance
https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) -83 -

<field>
<names>srs:scheduledDuration</names
<dataType>xsd:string</dataType>
<minCountTotal>I1</minCountTotal>
<allowedValueDescriptors>

<allowAny></allowAny>

</allowedValueDescriptors>

</fields>

</fieldTable>
</AVDT>")

http://www.w3.org/2001/XMLSchema-instance
https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E)

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) - 85—

<minCountTotal>I1</minCountTotals>
<allowedValueDescriptors>
<allowAny></allowAny>
</allowedValueDescriptor>
</field>

<fields>
<names>srs:currentRecordTaskCount</names>
<dataType>xsd:unsignedInt</dataType>
<minCountTotal>I</minCountTotals>
<allowedValueDescriptors>
<allowAny></allowAny>
</allowedValueDescriptors>

</field> QD
</FieldTable> q/QQ
</AVDT>") b;'
N

Assume further that the control point wants to determine which properties it can expect to|gét returned
in the Result output argument of the GetRecordTask() action of that same minimal ScheéduledRecording
implementation. It issues the following request (The Result argument of the GetRecozdTask() action is
of data type A ARG_TYPE_ RecordTask):

Note: This 4 ARG TYPE RecordTask example is marked by a light turquoise)background for better
reader orientation.

Request:
GetPropertyList ("A ARG TYPE RecordTask")

The following response will be generated:

Response:

GetPropertyList (

"srs:@id,srs:title,srs:class, srs:priority,
srs:recordDestination, srs:recordbestinatione@emediaType,
srs:recordDestination@preference,
srs:recordSchedulelD,
srs:taskChannellID, srs:taskChannelID@type, srs:taskStartDateTime,
srs:taskDuration, srs:recexrdQuality, srs:recordQualitye@type,
srs:taskState, srs:taskState@phase,
srs:taskState@recording, srs:taskState@someBitsRecorded,
srs:taskState@someBitisMissing, srs:taskState@efatalError,
srs:taskStatee@currentErrors, srs:taskStateeerrorHistory,
srs:taskState@pendingErrors, srs:taskState@infolist")

If the control point then wants to investigate further what values it may expect for some of those
properties whembrowsing a recordTask, it can retrieve that information using the following request (the
Filter argunent contains only a subset of the possible properties in this example):

Note:specifying “* : *” in the Filter argument is again equivalent to specifying the complete list of
properties returned in the PropertyList argument of the GetPropertyList() action with the DataTypelD
atgutnent set to “4_ARG_TYPE RecordTask”.

Request:

GetAllowedValues ("A ARG TYPE RecordTask",
"srs:recordDestination, srs:recordDestinationemediaType,
srs:taskState, srs:taskState@currentErrors")

The following response will be generated:

Response:

GetAllowedValues ("

<?xml version="1.0" encoding="UTF-8"?>
<AVDT

xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:srs="urn:schemas-upnp-org:av:srs"

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

- 86— 29341-4-14 © ISO/IEC:2008(E)

xmlns="urn:schemas-upnp-org:av:avdt"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
x8i:schemalocation="
urn:schemas-upnp-org:av:srs
http://www.upnp.org/schemas/av/srs-v1-20060531.xsd
urn:schemas-upnp-org:av:avdt
http://www.upnp.org/schemas/av/avdt-v1l-20060531.xsd">

<contextID>
uuid:device-UUID: :urn:schemas-upnp-org:service:ScheduledRecording:1
</contextID>

<dataStructType>A ARG TYPE RecordTask</dataStructType>

<fieldTable>
<field>
<name>srs:recordDestination</name>
<dataType>xsd:string</dataType>
<minCountTotal>I1</minCountTotal>
<allowedValueDescriptors>
<allowedValuelList>
<allowedValues>Hard Disk</allowedValue>
</allowedValueList>
</allowedValueDescriptor>
</field>

<field>
<name>gsrs:recordDestination@mediaType< /name>
<dataType>xsd:string</dataType>
<allowedValueDescriptors>
<dependentField>
<name>srs:recordDestindtion</name>
<anyValue></anyValues
</dependentField>
<minCount>I1</minCounts
<allowedValueList>
<allowedValuesHDD</allowedValue>
</allowedValuelidst>
</allowedValueDescriptor>
</field>

<field>
<name>srs *taskState</names>
<datalype maxSize="64">xsd:string</dataType>
<minCountTotal>I1</minCountTotal>
<allowedValueDescriptors>
<allowedValuelList>
<allowedValue>IDLE.READY</allowedValue>
<allowedValue>
ACTIVE.RECORDING.FROMSTART.OK
</allowedValue>
<allowedValue>

ACTIVE . KECURDUDING. FPRUMSIAKITI . AIKIOSN
</allowedValues>
<allowedValue>DONE. FULL</allowedValue>
<allowedValue>DONE.PARTIAL</allowedValue>
<allowedValue>DONE.EMPTY</allowedValue>
</allowedValueList>
</allowedValueDescriptor>
</field>

<field>
<name>srs:taskState@currentErrors</name>
<dataType>xsd:string</dataType>
<allowedValueDescriptors>

http://www.w3.org/2001/XMLSchema-instance
https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) - 87—

<dependentFields>
<name>srs:taskState</name>
<anyValue></anyValue>

</dependentField>

<minCount>I1</minCounts>

<allowedValueList>
<allowedValue></allowedValue>
<allowedValue>100</allowedValue>

</allowedValuelist>

</allowedValueDescriptors>
</field>

</fieldTable>

</AVDT>")

2.9.2.2.2 Full-fledged Implementation Example

In this example, it is assumed that this particular ScheduledRecording service supports all,optional
functionality, offered by the ScheduledRecording service specification.

Assume that the control point wants to determine which properties it can specify in'the Elements input
argument of the CreateRecordSchedule() action of this full-fledged ScheduledReeording
implementation. It issues the following request (The Elements input argument of'the
CreateRecordSchedule() action is of data type 4 ARG TYPE RecordSchéduteParts):

Note: This A_ ARG TYPE RecordScheduleParts example is marked by a‘'white background for better
reader orientation.

Request:
GetPropertyList ("A ARG TYPE RecordScheduleParts")

Then the following response will be generated:

Response:

GetPropertyList (

"srs:@id,

srs:title,

srs:class,

srs:desiredPriority,
srs:desiredPriorityetype’
srs:recordDestination}
srs:recordDestinatienemediaType,
srs:recordDestination@targetURL,
srs:recordDestination@epreference,
srs:desiredRefordQuality,
srs:desiredRecordQuality@type,
srs:scheduledCDSObjectID,
srs:scheduledChannellID,
srs:sch€éduledChannelIDetype,
srs:gcheduledStartDateTime,

syvs »scheduledDuration,

gr's”: scheduledProgramCode,
s¥s:scheduledProgramCode@type,

srs:matchingName,
srs:matchingName@type,
srs:matchingName@subStringMatch,
srs:matchingID,
srs:matchingIDe@type,
srs:matchingChannellID,
srs:matchingChannel IDe@type,
srs:matchingStartDateTimeRange,
srs:matchingDurationRange,
srs:matchingRatingLimit,
srs:matchingRatinglLimitetype,
srs:matchingEpisodeType,
srs:totalDesiredRecordTasks,

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

- 88— 29341-4-14 © ISO/IEC:2008(E)

srs:scheduledStartDateTimeAdjust,
srs:scheduledDurationAdjust,
srs:activePeriod,

srs:durationLimit,
srs:durationLimiteeffect,
srs:channelMigration,
srs:timeMigration,
srs:allowDuplicates,
srs:persistedRecordings,
srs:persistedRecordings@latest,
srs:persistedRecordings@prelAllocation,
srs:persistedRecordings@storedLifetime")

If the control point then wants to investigate further what values it may use when building a Q(b
recordSchedule, it can retrieve that information using the following request:

Request: .
A

GetAllowedValues ("A ARG TYPE RecordScheduleParts", "*:*") b(

The following response will be generated:

™
Response: QJ

See Annex G.3, “4_ARG TYPE RecordScheduleParts AVDT Example” for a%plete response

message.

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) -89 -

srs:matchingName@subStringMatch,
srs:matchingID,
srs:matchingIDetype,
srs:matchingChannelID,
srs:matchingChannelIDetype,
srs:matchingStartDateTimeRange,
srs:matchingDurationRange,
srs:matchingRatingLimit,
srs:matchingRatinglLimit@type,
srs:matchingEpisodeType,
srs:totalDesiredRecordTasks,
srs:scheduledStartDateTimeAdjust,
srs:scheduledDurationAdjust,

srs:activePeriod,

srs:durationLimit, Q§b
srs:durationLimiteeffect, Q
srs:channelMigration, }1/
srs:timeMigration, ,\b‘
srs:allowDuplicates, b(
srs:persistedRecordings, N
srs:persistedRecordings@latest, tx
srs:persistedRecordings@preAllocation, Cgb
srs:persistedRecordings@storedLifetime, (L'
srs:scheduleState, ()
srs:scheduleState@currentErrors, Q/
srs:abnormalTasksExist, Q>
srs:currentRecordTaskCount, ()
srs:totalCreatedRecordTasks, <?)
srs:totalCompletedRecordTasks") é}

If the control point then wants to investigate further wha @Jes it may expect for all of those properties
when browsing a recordSchedule, it can retrieve that iﬁérrnation using the following (The Result
output argument of the CreateRecordSchedule() ac‘t\@}'s of data type A ARG _TYPE RecordSchedule):

Request: (%)
GetAllowedValues("A_ARG_TYPE_RQ@BrdSchedule", Wz g M)

The following response will be generat&@

Response: XSD
See Annex G.1, “A4_ARG TYPFE.[RecordSchedule AVDT Example” for a complete response message.

SO
Assume further that the control*point wants to determine which properties it can expect to get returned

in the Result output argument of the BrowseRecordTasks() action of that same full-fledged
ScheduledRecording 4mplementation. It issues the following request (The Result output argument of the
BrowseRecordTasks() action is of data type A ARG TYPE RecordTask):

Note: This 4_ARG TYPE RecordTask example is marked by a light turquoise background for better
reader orieffation.

Request+
GetPropertyList ("A ARG TYPE RecordTask")

The follovwang resnonse-will be generated:
o r t=]

Response:

GetPropertyList (

"srs:@id,

srs:title,

srs:class,
srs:additionalStatusInfo,
srs:cdsReference,
srs:cdsReference@link,
srs:priority,
srs:priority@orderedvValue,
srs:desiredPriority,
srs:desiredPriorityetype,

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

Srs
Srs
Srs
Srs

:recordDestination,
:recordDestination@mediaType,
:recordDestination@targetURL,
:recordDestination@preference,

srs:desiredRecordQuality,

Srs
Srs
Srs
Srs
Srs
Srs
Srs
Srs

:desiredRecordQualityetype,
:recordSchedulelD,
:recordedCDSObjectID,
:recordedCDSObjectID@link
:taskCDSObjectID,
:taskCDSObjectIDelink,
:taskChannelID,
:taskChannelID@type,

—-90 -

29341-4-14 © ISO/IEC:2008(E)

Srs
Srs
Srs
Srs
Srs
Srs
Srs
Srs
Srs
Srs
Srs
Srs
Srs
Srs
Srs
Srs
Srs
Srs
Srs
Srs
Srs
Srs
Srs
Srs
Srs
Srs
Srs
Srs
Srs
Srs
Srs
Srs
Srs

If the control'point then wants to investigate further what values it may expect for all of those properties
when browsing a recordTask, it can retrieve that information using the following (The Result output
argument-of the BrowseRecordTasks() action is of data type A ARG _TYPE RecordTask):

:taskStartDateTime,
:taskDuration,
:taskProgramCode,
:taskProgramCode@type,
:recordQuality,
:recordQualityetype,
:matchedName,
:matchedName@type,
:matchedID,

:matchedIDetype,
:matchedRating,
:matchedRating@type,
:matchedEpisodeType,
:taskStartDateTimeAdjust,
:taskDurationAdjust,
:taskDurationLimit,
:taskDurationLimit@effect,
:taskChannelMigration,
:taskTimeMigration,
:taskState,
:taskState@phase,
:taskState@startDateTimeMet,
:taskState@endDateTimeMet,
:taskState@recording,
:taskState@someBitsRecokxded,
:taskState@someBitsMissing,
:taskState@firstBitgsRecorded,
:taskState@lastBiksRecorded,
:taskStatee@fatalE¥ror,
:taskState@currentErrors,
:taskStateeerrvorHistory,
:taskState®@pendingErrors,
:taskState@infolList")

Reguest:

GetAllowedValues ("A ARG TYPE RecordTask",

The following response will be generated:

Response:
See Annex G.2, “A_ARG_TYPE RecordTask AVDT Example” for a complete response message.

2.9.3 Adding a Scheduled Recording Entry to the List

The following examples illustrate how to create a recordSchedule entry in the list of recordSchedule
instances by invoking the CreateRecordSchedule() action, using the different available recordSchedule
classes. It is assumed that the implementation used in the examples that follow supports the allowed
values for the desiredRecordQuality and desiredRecordQuality(@type properties as indicated in Table

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) -91-

B-9, “desiredRecordQuality Example” and for the recordQuality and recordQuality(@type properties as
indicated in Table B-33, “recordQuality Example”.

2.9.3.1 object.recordSchedule.direct classes

The object.recordSchedule.direct classes are used when the control point has all the necessary
information available to uniquely identify the content to be recorded. The ScheduledRecording service
does not have to perform searches or matching to determine what content is eligible for recording. Note
that the control point might need to interact with external databases (like EPG information) to allow the
user to make a selection of the content that he wants to record. Once the content is selected however, all
information is available to set up the recordSchedule unambiguously.

2.9.3.1.1 Creating a object.recordSchedule.direct. manual Class recordSchedule

The object.recordSchedule.direct.manual class is used when the control point has access to the three
basic components of information that are needed to uniquely identify the content to record:

e The scheduled channel that is used for broadcast of the content (where)
e The scheduled start date and time of the recording (when)
e The scheduled duration of the recording (how long)

It is assumed that the control point has some out-of-band means to retrieve this information. It passes
this information into the recordSchedule using the REQUIRED properti¢s seheduledChannellD and
scheduledChannellD@type, scheduledStartDateTime, and scheduledDuyuation.

The control point creates a properly escaped srs XML Documenti¢hat MUST contain all the

properties necessary to create the object.recordSchedule.direct. manual class
recordSchedule. The control point can add any OPTIONAL groperty that is applicable to the
object.recordSchedule.direct. manual class.

As an example, the control point wants to create a reclrring recordSchedule to record the BBC news
that is broadcast for one hour every evening at 7 pmon channel 47. Assume that the current date&time
is Tuesday, June 28, 2005, 9:15 pm. If possible;‘the control point would like this recording to be stored
on the internal hard disk, but if, for some reason, the hard disk is not available at the time of recording,
the DVD+R drive may also be used as a secondary destination. The control point further specifies that
this recording should be encoded using-a low record quality setting of standard definition (“SD”). If that
is not possible, any other record quality may be used (“AUTO”). A pre-roll time of two and a half
minutes and a post-roll time of five minutes are also specified. The control point further instructs the
ScheduledRecording service to-Keep at least the latest three recordings around. Older recordings may be
discarded and no preallocation is desired.

To achieve the behavior specified above, the control point needs to provide the following srs XML
Document in the Elements input argument of the CreateRecordSchedule() action:

Request:

CreateRécordSchedule ("

<?xml (version="1.0" encoding="UTF-8"?>

<srs

xmlns="urn:schemas-upnp-org:av:srs"

Xwlns :xsi="http://www.w3.0rg/2001/XMLSchema-instance"

X51:schemalLocation="
urn:schemas-upnp-org:av:srs
http://www.upnp.org/schemas/av/srs-v1-20060531.xsd">
<item id="">

<desiredPriority type="PREDEF">L2</desiredPriority>

<recordDestination mediaType="HDD" preference="1">
Hard Disk

</recordDestination>

<recordDestination mediaType="DVD+R" preference="2">
DVD Recorder

</recordDestination>

http://www.w3.org/2001/XMLSchema-instance
https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

-92 - 29341-4-14 © ISO/IEC:2008(E)

<desiredRecordQuality type="DEFAULT">
SD, AUTO
</desiredRecordQuality>

<totalDesiredRecordTasks>0</totalDesiredRecordTasks>
<scheduledStartDateTimeAdjust >
-P00:02:30
</scheduledStartDateTimeAdjust>
<scheduledDurationAdjust>
+P00:05:00
</scheduledDurationAdjust>
<activePeriod>NOW/INFINITY</activePeriod>
<persistedRecordings (§b
latest="1" Q
preAllocation="0" «CL
storedLifetime="ANY"> hjk
3 b(
</persistedRecordings>
</item>

; ™
</srs>") Cgb

If the creation of the recordSchedule is successful, the CreateRecordSchedule() action returns the
following srs XML Document in the Result output argument. The Sched ecording service MUST
add unspecified supported OPTIONAL properties to convey default gs (Note that this srs XML
Document MUST be properly escaped). One or more recordT ask nces may be created as a result
of the recordSchedule creation. In this example, it is assumed thégé‘recordT ask instances are spawned
immediately and it is also assumed that 2 new items are c%dg the associated ContentDirectory

service that will hold the recorded content once the recordings are made (object IDs “rec00001” and
“rec00002” are assigned).

Response: 5\0\\
CreateRecordSchedule ("s101","
<?xml version="1.0" encoding:"gggb8"°>
<srs
xmlns="urn:schemas-upnp-or v:srs"
xmlns:xsi="http://www. w3\§g%/2001/XMLSchema instance"
xs1i:schemalLocation="

urn:schemas-upnp-o ﬁav:srs

http://www.upnp . /schemas/av/srs-v1-20060531.xsd">

<item id="s101" N

riority type="PREDEF">L2</desiredPriority>

UL ATIL o
_Ik}c— DT TO T

<l 4 Pakmt PaPaY i

U o L L TUl C\.UJ—MHMGJ—J—\—‘Y
SD, AUTO

</desiredRecordQuality>

<totalDesiredRecordTasks>0</totalDesiredRecordTasks>
<scheduledStartDateTimeAdjust>

-P00:02:30
</scheduledStartDateTimeAdjust>
<scheduledDurationAdjust>

+P00:05:00
</scheduledDurationAdjust>

http://www.w3.org/2001/XMLSchema-instance
https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) -93-

<activePeriod>NOW/INFINITY</activePeriods>
<persistedRecordings
latest="1"
preAllocation="0"
storedLifetime="ANY">
3
</persistedRecordings>

<totalCreatedRecordTasks>2</totalCreatedRecordTasks>
<totalCompletedRecordTasks>0</totalCompletedRecordTasks> QQ)
</item>

</srs>") (LQ

29.3.1.2 Creating a object.recordSchedule.direct.cdsEPG Class record

The object.recordSchedule.direct.cdsEPG class is used when the control point has
ContentDirectory service EPG database. The content to be recorded is uniquel idéntified by an EPG
item in the associated ContentDirectory service. The association between a téntDirectory service
and a ScheduledRecording service is established by having both sewices&‘ within the same UPnP
MediaServer device.

In this case, the basic component of information that is needed to u@aely identify the content to record
is the object ID of the EPG item (contains the where, when and long information) that represents
that content. The control point passes this information into t@ recordSchedule using the REQUIRED
scheduledCDSObjectID property.

The control point creates a properly escaped srs XML Rocument that MUST contain all the

properties necessary to create the obi&)‘becordSchedule. direct.cdsEPG class
recordSchedule. The control point can add an; TIONAL property that is applicable to the
object.recordSchedule.direct.cdsEPG class. *\>

As an example, the control point wants tg/oreate a recordSchedule to record the “UPnP Awards
Ceremony” that is broadcast for a marathon fifteen hours on April 1%, at 9 am on channel 215. It finds
this program in the EPG database &@w associated ContentDirectory service and retrieves the object ID
(value of the did[-lite:@id pro of the EPG item). Due to the length of the program, the recording
must be stored on the internalhard disk. If, for some reason, the hard disk is not available at the time of
recording, the recording niﬁ? be canceled. Further, if the recording would last longer than the
anticipated 15 hours, ecording must be limited to 15 hours and the first part of the program
discarded. The con oint also specifies that this recording should be encoded using a low record
quality setting 0@3”. If that is not possible, the recording will not be made. A pre-roll time of two
minutes and st-roll time of 15 minutes are also specified. The control point further instruct the
Schedule rding service to keep track of this item in case the broadcaster decides to move it to a
differe annel and/or time.

T ieve the behavior specified above, the control point needs to provide the following srs XML
ument in the Elements input argument of the CreateRecordSchedule() action:

Request:

CreateRecordSchedule ("

<?xml version="1.0" encoding="UTF-8"?>

<srs

xmlns="urn:schemas-upnp-org:av:srs"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalLocation="
urn:schemas-upnp-org:av:srs
http://www.upnp.org/schemas/av/srs-v1-20060531.xsd">
<item id="">

http://www.w3.org/2001/XMLSchema-instance
https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

- 94 - 29341-4-14 © ISO/IEC:2008(E)

<desiredPriority type="PREDEF">Ll</desiredPriority>
<recordDestination mediaType="HDD" preference="1">
Hard Disk
</recordDestinations>
<desiredRecordQuality type="QLEVEL">
Q3
</desiredRecordQuality>

<totalDesiredRecordTasks>1</totalDesiredRecordTasks>
<scheduledStartDateTimeAdjust >
-P00:02:00
</scheduledStartDateTimeAdjust>
<scheduledDurationAdjust> (§b
+P00:15:00 Q
</scheduledDurationAdjust> «CL
<activePeriod>NOW/INFINITY</activePeriods> b‘
<durationLimit effect:"LAST">P15:OO:OO</durationLimitb(
<channelMigration>1l</channelMigrations>
<timeMigration>l</timeMigrations> b‘
<persistedRecordings Q)
latest="1" (ﬁb
preAllocation="0"
storedLifetime="ANY"> Q/
1 \
</persistedRecordings> ()
</item> \\%

</srs>")

If the creation of the recordSchedule is successful, the %p ecordSchedule() action returns the
following srs XML Document in the Result output ar; nt. The ScheduledRecording service MUST
add unspecified supported OPTIONAL properties éﬁ vey default settings (Note that this srs XML
Document MUST be properly escaped). One recg ask instance may be created as a result of the

recordSchedule creation. In this example, it i med that the recordTask instance is spawned
immediately. $
Response: 4>

CreateRecordSchedule (

<?xml version="1.0" en ng—"UTF—8"°>

<srs \f‘

xmlns="urn:schem \hpnp org:av:srs"

xmlns:xsi="http: jcgww w3.0rg/2001/XMLSchema-instance"

xs1i:schemaLoca
urn:schem

http://

np org:av:srs
‘upnp.org/schemas/av/srs-v1-20060531.xsd" >
sl02">

<desiredPriority type="PREDEF">Ll</desiredPriority>

<desiredRecordQuality type="QLEVEL">
Q3
</desiredRecordQuality>

<totalDesiredRecordTasks>1</totalDesiredRecordTasks>
<scheduledStartDateTimeAdjust>

-P00:02:00
</scheduledStartDateTimeAdjust>
<scheduledDurationAdjust>

http://www.w3.org/2001/XMLSchema-instance
https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) -95-

+P00:15:00
</scheduledDurationAdjust>
<activePeriod>NOW/INFINITY</activePeriods>
<durationLimit effect="LAST">P15:00:00</durationLimit>
<channelMigration>1l</channelMigrations>
<timeMigration>l</timeMigrations>
<persistedRecordings
latest="1"
preAllocation="0"
storedLifetime="ANY">

1
</persistedRecordings>

<totalCreatedRecordTasks>1</totalCreatedRecordTasks> IP‘/
<totalCompletedRecordTasks>0</totalCompletedRecordT s>
</item>

; ™
</srs>") Cb(b

2.9.3.1.3 Creating a object.recordSchedule.direct.cdsNonEPG @}ss recordSchedule

The object.recordSchedule.direct.cdsNonEPG class is used when the co point has access to a local
ContentDirectory service database that contains items that identify @1‘[that will be available for
recording at the time the recording is scheduled to start. N

A typical example of this is TV tuner that is represented as a h@neleuQ container, containing items
of class object.item.videoltem.videoBroadcast, each repr ing a channel to which the tuner can be
tuned (User Channel). The association between a Cont ectory service and a ScheduledRecording
service is established by having both services reside in the same UPnP MediaServer device.

In this case, the basic components of informatior@lsl}t are needed to uniquely identify the content to

record are: \‘S\

e The object ID of the ContentDi ry service item that represents the User Channel that is
used for broadcast of the cont@t where)

e The scheduled start date 3&9 time of the recording (when)
e The scheduled dur; t:\tss)of the recording (how long)

It is assumed that the control point has some out-of-band means to retrieve this information. It passes
this information into ecordSchedule using the REQUIRED properties scheduledCDSObjectID,
scheduledStartD&:)@ne, and scheduledDuration.

The control -creates a properly escaped srs XML Document that MUST contain all the
operties necessary to create the object.recordSchedule.direct.cdsNonEPG class
ule. The control point can add any OPTIONAL property that is applicable to the

ordSchedule.direct.cdsNonEPG class.

I&Ym(ample, assume that today’s date is Tuesday, June 28, 2005 and the control point wants to create
a recordschiedule to record the snow Lile of a Soltware Developer - that is broadcast on channe

every Monday evening at 7 pm, starting on July 4™, The show lasts for an hour and runs for 13 episodes
(until the end of September). The first fifteen minutes of each show are dedicated to a reading of the
“Most Popular Software Code Quote of the Week™. The user found all this information in a printed TV
Guide. The ContentDirectory service has no EPG data.

The control point finds the User Channel that represents channel 5 in the associated ContentDirectory
service and retrieves its object ID (value of the did/-lite:(@id property of the User Channel item). The
recording should be stored on the internal hard disk. If, for some reason, the hard disk is not available at
the time of recording, the recording might also be recorded on an external network storage device. All
episodes (13) of the show should be recorded. The control point also specifies that this recording
should be encoded using a high record quality setting of High Definition (“AD”). The “Most Popular

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

- 96 - 29341-4-14 © ISO/IEC:2008(E)

Software Code Quote of the Week” part of the show must be skipped but a pre-roll time of two minutes
and a post-roll time of three minutes are also specified. All episodes must be preserved until deleted by
the user.

To achieve the behavior specified above, the control point needs to provide the following srs XML
Document in the Elements input argument of the CreateRecordSchedule() action:

Request:

CreateRecordSchedule ("

<?xml version="1.0" encoding="UTF-8"?>

<srs

xmlns="urn:schemas-upnp-org:av:srs"

xmlns: xs1—"http //www.w3.0rg/2001/XMLSchema-instance"

P e S] J. bLllCllld.LlULd. | J.Ull_
urn:schemas-upnp-org:av:srs

http://www.upnp.org/schemas/av/srs-v1-20060531.xsd">

<item id="">

<desiredPriority type="PREDEF">Ll</desiredPriority>
<recordDestination mediaType="HDD" preference="1"> b‘

Hard Disk
Ke

</recordDestinations> QL

1
targetURL="http://192.168.0.12/MyNAS/Reco

Shared Content \
</recordDestinations> ()
<desiredRecordQuality type="DEFAULT"> Qb

HD o

</desiredRecordQuality>

<recordDestination mediaType="HDD" preferenc
r€§;&V">

>13</totalDesiredRecordTaSks>

<tota1De51redRecordT§Pn
eAdjust>

<schedu1edStartDateTi
+P00:13:00
</scheduledStar \teTlmeAdjust>
<scheduledDur nAdjust>
+P00:03:
</scheduledDurationAdjust>
<activeP§§§od>NOW/O9—30T23:59:59</activePeriod>
<persi Recordings
late i
o) location="0"
edLifetime="INFINITY">
13
ﬁek/persistedRecordings>

Q}item>
4@‘:8 >")
If the creation of the recordSchedule is successful, the CreateRecordSchedule() action returns the
following srs XML Document in the Result output argument. The ScheduledRecording service MUST
add unspecified supported OPTIONAL properties to convey default settings (Note that this srs XML
Document MUST be properly escaped). One or more recordTask instances may be created as a result

of the recordSchedule creation. In this example, it is assumed that 2 recordTask instances are spawned
immediately.

Response:

CreateRecordSchedule ("s103","

<?xml version="1.0" encoding="UTF-8"?>
<srs
xmlns="urn:schemas-upnp-org:av:srs"

http://www.w3.org/2001/XMLSchema-instance
https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) -97 -

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="
urn:schemas-upnp-org:av:srs
http://www.upnp.org/schemas/av/srs-v1-20060531.xsd">
<item id="s103">

<desiredPriority type="PREDEF">Ll</desiredPriority>

<desiredRecordQuality type="DEFAULT"> |
HD N?‘

</desiredRecordQuality> ’

<totalDesiredRecordTasks>13</totalDesir,

QD cordTasks>
<scheduledStartDateTimeAdjust>

+P00:13:00
</scheduledStartDateTimeAdjust> Q
<scheduledDurationAdjust> <D

+P00:03:00 Q

</scheduledDurationAdjust>
<activePeriod>NOW/09-30T23: §Q>59</act1vePerlod>
<persistedRecordings

latest="1"

preAllocation="0" q?

storedLifetime="INF 0

13

</persistedRecor 'G§s>

<to eatedRecordTasks>2</totalCreatedRecordTasks>
<t 1CompletedRecordTasks>0</totalCompletedRecordTasks>

</1i
</s;€g?>

&Sﬁ .4 Creating a obiect.recordScheduIe.direct.proqramCode Class recordSchedule

user, most llkely) to a program code The content to be recorded is uniquely identified by this program
code in the sense that the program code contains in encoded form all necessary information for
recording the program item (where, when and how long). If the ScheduledRecording service supports a
particular program code type, that implies that the ScheduledRecording service must understand how to
interpret and decode the program code into its where, when and how long components.

In this case, the basic component of information that is needed to uniquely identify the content to record
is the program code of the program item that represents that content. The control point passes this
information into the recordSchedule using the REQUIRED properties scheduledProgramCode and
scheduledProgramCode(@type.

http://www.w3.org/2001/XMLSchema-instance
https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

-98 - 29341-4-14 © ISO/IEC:2008(E)

The control point creates a properly escaped srs XML Document that MUST contain all the

properties necessary to create the object.recordSchedule.direct.programCode class
recordSchedule. The control point can add any OPTIONAL property that is applicable to the object.
recordSchedule.direct.programCode class.

As a hypothetical example, the control point wants to create a recordSchedule to record a program
item, identified by a program code of type “upnpexample.com_upnpProgramCode” time. The
upnpProgramCode type specifies the encoding to be simply:

program code = <channel number> <StartDateTime> <Duration>

The user retrieved the program code from some external source (a printed program guide) and the
advertised title of the program is “Everything you ever wanted to know about SRS”.

It is assumed that the ScheduledRecording service supports the
“upnpexample.com_upnpProgramCode” program code type and therefore knows how to decode t Q
program code into its basic where, when and how long components. The recording must be store(cn,on
the internal DVD+RW drive. If, for some reason, the DVD+RW drive is not available at the,%i?fe’of
recording, the recording must be stored on the internal hard disk. The control point also speeifies that
this recording should be recorded using any available record quality setting. No pre-ro}k post-roll

times are specified. b&
To achieve the behavior specified above, the control point needs to provide th wing srs XML
Document in the Elements input argument of the CreateRecordSchedule() a@n.
Request: \\
CreateRecordSchedule (" O
<?xml version="1.0" encoding="UTF-8"?> \%
<srs L
xmlns="urn:schemas-upnp-org:av:srs" o
xmlns:xsi="http://www.w3. org/2001/XML&ma— instance"
xsi:schemalLocation=" Q
urn:schemas-upnp-org:av:srs N\
http://www.upnp. org/schemas/a@s—vl -20060531.xsd">

<item id="">

<desiredPriority type EDEF">Ll</desiredPrioritys>

<recordDestination me&diaType="DVD+RW" preference="1">
DVD Drive (o)

</recordDestinations>

<recordDestinQ§§§h mediaType="HDD" preference="2">

Hard Diskcg
</recordDestihations>

<desired ordQuality type="DEFAULT">

AUTCO

</des dRecordQuality>

totalDesiredRecordTasks>1l</totalDesiredRecordTasks>

<Jitem>
&/KS Sn)
If the creation of the recordSchedule is successful, the CreateRecordSchedule() action returns the
following srs XML Document in the Result output argument. The ScheduledRecording service MUST
add unspecified supported OPTIONAL properties to convey default settings (Note that this srs XML
Document MUST be properly escaped). One recordTask instance may be created as a result of the

recordSchedule creation. In this example, it is assumed that the recordTask instance is spawned
immediately.

Response:

CreateRecordSchedule ("s104","

<?xml version="1.0" encoding="UTF-8"?>
<srs
xmlns="urn:schemas-upnp-org:av:srs"

http://www.w3.org/2001/XMLSchema-instance
https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) -99 -

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="
urn:schemas-upnp-org:av:srs
http://www.upnp.org/schemas/av/srs-v1-20060531.xsd">
<item id="s104">

<desiredPriority type="PREDEF">Ll</desiredPriority>

<desiredRecordQuality type="DEFAULT">

AUTO),

</desiredRecordQuality> b"

<totalDesiredRecordTasks>1</totalDesiredRecordT

<scheduledStartDateTimeAdjust> (l/
+P00:00:00 Q

</scheduledStartDateTimeAdjust> Q/

<scheduledDurationAdjust> \\
+P00:00:00 O

</scheduledDurationAdjust> %

<activePeriod>NOW/INFINITY</activePeé\od>

<

<durationLimit effect="LAST">INFI /durationLimit>
<persistedRecordings Q
latest="1" Q
preAllocation="0" \\
storedLifetime="ANY"> $\\>
0 @

</persistedRecordings> O

<totalCreat ecordTasks>1</totalCreatedRecordTasks>
<totalCo@'&tedRecordTasks>O</tota1Comp1etedRecordTasks>

/item
</s:|<:s>") g C)O

2.9.3.2 @ét.recordSchedule.query classes

The obl;@ecordSchedule.querv classes are used when the control point only has partial information to
identifyf possible candidates for recording. The ScheduledRecording service must perform further
inuous) searching or matching to determine what content is eligible for recording. The

eduledRecording service must consult with external databases (like EPG information or over-the-
wire Service Information) to find content that matches all the criteria, specified in the recordSchedule.
Every time a match is found, a new recordTask is created.

2.9.3.2.1 Creating a object.recordSchedule.query.contentName Class recordSchedule

The object.recordSchedule.query.contentName class is used when the control point has knowledge
about the (partial) name of the content to be recorded. This could either be a series name or a program
name. Other properties, specified in the recordSchedule are also used to further narrow down what will
be recorded (activePeriod, totalDesiredRecordTasks, etc.). It is the responsibility of the
ScheduledRecording service to continuously search available external databases (like EPG or Service

http://www.w3.org/2001/XMLSchema-instance
https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

- 100 - 29341-4-14 © ISO/IEC:2008(E)

Information) and create a recordTask instance for every complete match (all specified matching criteria
are satisfied) it finds within those external databases.

In this case, the basic piece of information that is needed to identify the content to record is the (partial)
program or series name of the program item or series. The control point passes this information into the
recordSchedule using the REQUIRED properties matchingName and matchingName@type.

The control point creates a properly escaped srs XML Document that MUST contain all the

properties necessary to create the object.recordSchedule.query.contentName class
recordSchedule. The control point can add any OPTIONAL property that is applicable to the
object.recordSchedule.query.contentName class.

As an example, the control point wants to create a recordSchedule to record the series entitled “Meet
the UPnP Guys™ (exact title). The control point has no turther information, except that the series 1S
broadcast during summer season and the series finale is planned somewhere during the month of QQ)
September.

The recordings must be stored on the internal Hard Disk. If, for some reason, the Hard Disk i %’[
available at the time of recording, the recording must be canceled. The control point also specifies that
these recordings should be encoded using a low record quality (“SD”). If that is not possible, medium
record quality (“£D”’) may also be used. If that is not possible, no recording will b e. No pre-roll
or post-roll times are specified. If the broadcaster decides to change broadcast c 1 or date&time,
the ScheduledRecording service is supposed to track.

To achieve the behavior specified above, the control point needs to provi e following srs XML
Document in the Elements input argument of the CreateRecordSched:da}Sl ction:

2
Request:
CreateRecordSchedule (" 6\\
<?xml version="1.0" encoding="UTF-8"?> Q

<srs Q

xmlns="urn:schemas-upnp-org:av:srs" Q_;
xmlns:xsi="http://www.w3. org/2001/)%L chema-instance"
xsi:schemalocation=" 5\0
urn:schemas-upnp-org:av:srs
http://www.upnp. org/schemas{{@v/srs—vl—20060531 .xsd">
<item id="">

<desiredPriority e="PREDEF">Ll</desiredPriority>
<recordDestinatiPn mediaType="HDD" preference="1">
Hard Disk

O
@tion>

</recordDestl
<desi red§’qrdQual ity type="DEFAULT">
SD, ED

ecordQuality>

atchingStartDateTimeRange>
NOW/09-30T23:59:59

Q/C) </matchingStartDateTimeRange>

\\ <totalDesiredRecordTasks>0</totalDesiredRecordTasks>
<channelMigration>l</channelMigration>
<timeMigration>l</timeMigrations>

</item>
</srs>")

If the creation of the recordSchedule is successful, the CreateRecordSchedule() action returns the
following srs XML Document in the Result output argument. The ScheduledRecording service MUST
add unspecified supported OPTIONAL properties to convey default settings (Note that this srs XML
Document MUST be properly escaped). One or more recordTask instances may be created as a result
of the recordSchedule creation. In this example, it is assumed that one recordTask instance is spawned
immediately (12 remaining matches need to be found in the future, when new EPG data is available, for
instance).

http://www.w3.org/2001/XMLSchema-instance
https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) -101 -

Response:

CreateRecordSchedule ("s201", "

<?xml version="1.0" encoding="UTF-8"?>

<srs

xmlns="urn:schemas-upnp-org:av:srs"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalLocation="
urn:schemas-upnp-org:av:srs
http://www.upnp.org/schemas/av/srs-v1-20060531.xsd">
<item id="s201">

<desiredPriority type="PREDEF'">Ll</desiredPriority>

<desiredRecordQuality type="DEFAULT">
SD, ED b‘,
</desiredRecordQuality>

<matchingStartDateTimeRange> (b
NOW/09-30T23:59:59 @
</matchingStartDateTimeRange> Q}
<totalDesiredRecordTasks>O</totalDesirq%ézkordTasks>
<scheduledStartDateTimeAdjust> \
+P00:00:00 O‘\
</scheduledStartDateTimeAdjust> Q
<scheduledDurationAdjust>
+P00:00:00 1%
</scheduledDurationAdjust> \\
<activePeriod>NOW/INFINITY<ﬁQgtivePeriod>
<durationLimit effect:"LQESD>INFINITY</durationLimit>
<persistedRecordings R
latest="1"
preAllocation="0" ’{&
storedLifetime="ANY">
0 x§

</persistedRecordings>

1CreatedRecordTasks>1</totalCreatedRecordTasks>
alCompletedRecordTasks>0</totalCompletedRecordTasks>

The object.recordSchedule.query.contentID class is used when the control point has knowledge about
the ID of the content to be recorded. This could either be a series ID or a program ID. Other properties,
specified in the recordSchedule are also used to further narrow down what will be recorded
(activePeriod, totalDesiredRecordTasks, etc.). It is the responsibility of the ScheduledRecording
service to continuously search available external databases (like EPG or Service Information) and
create a recordTask instance for every complete match (all specified matching criteria are satisfied) it
finds within those external databases.

In this case, the basic piece of information that is needed to identify the content to record is the program
ID or series ID of the program item or series. The control point passes this information into the
recordSchedule using the REQUIRED properties matchinglD and matchinglD@type.

http://www.w3.org/2001/XMLSchema-instance
https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

-102 - 29341-4-14 © ISO/IEC:2008(E)

The control point creates a properly escaped srs XML Document that MUST contain all the

properties necessary to create the object.recordSchedule.query.contentID class
recordSchedule. The control point can add any OPTIONAL property that is applicable to the
object.recordSchedule.query.contentID class.

As an example, the control point wants to create a recordSchedule to record the program with program
ID “123456” from service provider “MyLocalProvider.net”. It has obtained this ID through means
outside the scope of this specification. The control point has no further information.

The recordings must be stored on the internal Hard Disk. If, for some reason, the Hard Disk is not
available at the time of recording, the recording must be canceled. The control point also specifies that
the recording should be encoded using a high record quality setting of “720p60”. If that is not possible,

are Qrding De 1mag NO pre-roll Q

change broadcast channel or date&time, the ScheduledRecording service is supposed to track. (b

To achieve the behavior specified above, the control point needs to provide the following srs XM@
Document in the Elements input argument of the CreateRecordSchedule() action: b‘ .

Request: b(
CreateRecordSchedule (" P
<?xml version="1.0" encoding="UTF-8"?> bx
<srs (b
xmlns="urn:schemas-upnp-org:av:srs" (fb
xmlns:xsi:"http://www.w3.org/2001/XMLSchema—instaqE?'
xs1i:schemalLocation="

urn:schemas-upnp-org:av:srs Q}
http://www.upnp.org/schemas/av/srs-v1-200 éghl.xsd">
<item id="">

<desiredPriority type="PREDEF">L

esiredPriority>
<recordDestination mediaType= "HQ)

preference="1">

Hard Disk N
</recordDestination> 5\\}
<desiredRecordQuality type£)ATSC">

720p60 YR\(\

</desiredRecordQuality

<totalDesiredRe dTasks>1l</totalDesiredRecordTasks>
<channelMigra s'&?n>l</channelMigration>
<timeMigrati€I)>l</timeMigration>

</item> o
</srs>") (S§>
tgaé recordSchedule is successful, the CreateRecordSchedule() action returns the
'L Document in the Result output argument. The ScheduledRecording service MUST

ed supported OPTIONAL properties to convey default settings (Note that this srs XML
UST be properly escaped). One recordTask instance may be created as a result of the

If the creation

Response:

CreateRecordSchedule ("s202", "

<?xml version="1.0" encoding="UTF-8"?>

<srs

xmlns="urn:schemas-upnp-org:av:srs"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalLocation="
urn:schemas-upnp-org:av:srs
http://www.upnp.org/schemas/av/srs-v1-20060531.xsd">
<item id="s202">

http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) - 103 -

<desiredPriority type="PREDEF">Ll</desiredPriority>

<desiredRecordQuality type="ATSC">
720p60
</desiredRecordQuality>

<totalDesiredRecordTasks>1</totalDesiredRecordTasks>
<scheduledStartDateTimeAdjust>
+P00:00:00
</scheduledStartDateTimeAdjust> QQ)
<scheduledDurationAdjust> Q
+P00:00:00 »(1/
</scheduledDurationAdjust> ;\b"
<activePeriod>NOW/INFINITY</activePeriods> ,
<durationLimit effect="LAST" >INFINITY</durationLimit‘,{/
<persistedRecordings b‘
latest="1" (b
preAllocation="0" (19
storedLifetime="ANY"> Q
: ¢

</persistedRecordings>

<totalCreatedRecordTasks>1</t CreatedRecordTasks>
<totalCompletedRecordTasks> otalCompletedRecordTasks>
</item> (%)
</srs>") £S>

2.9.4 Deleting a recordSch’g@ule

A control point can delete a particulap recordSchedule by invoking the DeleteRecordSchedule() action
and specifying its object ID in te)Q,RecordScheduleID argument.

Assume that the recordScﬁédﬁe to be deleted has its @id property set to “s301” .
To delete this recordé%édule, the control point generates the following request:

Request: O
DeleteReg hedule("s301")

ResponQ~ .
e

Cg Browsing recordSchedule and recordTask instances

A control point can mvestigate which recordSchedule and/or recordTask mstances are currently present
within a ScheduledRecording service implementation by invoking the BrowseRecordSchedules() and
BrowseRecordTasks() actions.

For example purposes, it is assumed that the control point has invoked the CreateRecordSchedule()
action once for each of the cases described in Sections 2.9.3.1.1 through 2.9.3.1.4 and Sections
2.9.3.2.1 and 2.9.3.2.2. As a result, six recordSchedule instances as specified in the sections above have
been created. In addition, eight recordTask instances have been created so that the available
recordSchedule and recordTask instances in this particular ScheduledRecording service
implementation are as follows:

recordSchedule (@id = “s101”, class = “OBJECT.RECORDSCHEDULE.DIRECT MANUAL”)

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

- 104 - 29341-4-14 © ISO/IEC:2008(E)

recordTask (@id = “t101-001”, class = “OBJECT.RECORDTASK”)

recordTask (@id = “t101-002”, class = “OBJECT.RECORDTASK”)

recordSchedule (@id = “s102”, class = “OBJECT.RECORDSCHEDULE.DIRECT.CDSEPG”)

recordTask (@id = “t102-001”, class = “OBJECT.RECORDTASK)

recordSchedule (@id = “s103”, class = “OBJECT.RECORDSCHEDULE.DIRECT.CDSNONEPG”)

recordTask (@id = “t103-001”, class = “OBJECT.RECORDTASK”)

recordTask (@id = “t103-002”, class = “OBJECT.RECORDTASK”)

recordSchedule (@id = “s104”, class = “OBJECT.RECORDSCHEDULE.DIRECT. PROGRAMCODE”)

recordTask (@id = “t104-001”, class = “OBJECT.RECORDTASK”) Q(b

recordSchedule (@id = “s201”, class = “OBJECT.RECORDSCHEDULE.QUERY.CONTENTNAME”) (]/Q

recordTask (@id = “t201-001”, class = “OBJECT.RECORDTASK”) y\b‘ :

/
recordSchedule (@id = “s202”, class = “OBJECT.RECORDSCHEDULE.QUERY. CONTENTID’K ,b&

recordTask (@id = “t202-001”, class = “OBJECT.RECORDTASK”) (bb(

2.9.5.1 Browsing recordSchedule instances q/

When a control point wants to gather detailed information on currently a%&fng recordSchedule
instances, it can do this by invoking the BrowseRecordSchedules() %co.x The following request:

Request: \\
BrowseRecordSchedules ("", 0, 10, "+srs:title

returns the following response (the result only returns t QUIRED properties (Filter argument is set
to “””) and is sorted according to the value of the tztle%) erty):

Response: 6\

BrowseRecordSchedules (

<?xml version="1.0" encodlng— "85}‘ 8"7?>

<srs

xmlns:"urn:schemas—upnp—gggbav:srs"
xmlns:xsi:"http://www.way
xsi:schemalocation="
urn:schemas-upnp- :av:srs
http://www.up Eb g/schemas/av/srs-v1-20060531.xsd">
<item i1id="s104"

rg/2001/XMLSchema-instance"

</item>
<item id="g101">

http://www.w3.org/2001/XMLSchema-instance
https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E)

</item>
<item id="s103">

<item id="s201"

</item> '

</item>
<item id="s202">

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

- 106 - 29341-4-14 © ISO/IEC:2008(E)

</item>
<item id="s102">

</item
</srs>", g *:Sb
o)

6, 6, 123456)

2.9.5.2 Browsing recordTask instances anglated with a single
recordSchedule N\
When a control point wants to gather detailed infot‘(@;ﬁon on currently existing recordTask instances

that are associated with a particular recordSch%\@, it can do this by invoking the
BrowseRecordTasks() action. b\

As an example, assume that the control t wants to browse all recordTask instances, associated with
the recordSchedule with its @id property set to “s101”. It wants to retrieve all supported properties
(Filter argument set to “*:*¥””) and &ng is not important (SortCriteria argument set to).

The following request: C)\\C)
Request: .
BrowseRecordTa ("s101", "*:x" 0, 10, "")

returns the follm@;g response:

Respons ‘

Brows?zg%brdTasks("

<?xml rsion="1.0" encoding="UTF-8"?>

<s
éé;%s="urn:schemas—upnp—org:av:srs"
Xilns:xsi="http://www.w3 . org/2001/XMLSchema-instance"

xsi:schemaLocation="
urn:schemas-upnp-org:av:srs
http://www.upnp.org/schemas/av/srs-v1-20060531.xsd">
<item id="t101-001">

<cdsReference 1link="LINK1">

<!l--
The following DIDL-Lite XML Document needs to be interpreted as a

simple string and therefore needs to be properly escaped
-->

http://www.w3.org/2001/XMLSchema-instance
https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) -107 -

<!-- End of DIDL-Lite XML Document -->

</cdsReferences>

<desiredPriority type="PREDEF">L2</desir

<desiredRecordQuality type="D
SD, AUTO
</desiredRecordQuality>

CDSObjectID 1link="LINK1">
001
rdedCDSObjectID>

<taskStartDateTimeAdjust>
-P00:02:30
</taskStartDateTimeAdjust>
<taskDurationAdjust>
+P00:05:00
</taskDurationAdjusts>

startDateTimeMet="0"
endDateTimeMet="0"

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

- 108 — 29341-4-14 © ISO/IEC:2008(E)

firstBitsRecorded="0"
lastBitsRecorded="0"

</item>
<item id="t101-002">

<cdsReference 1ink="LINK1"> QD

<!-- ()
The following DIDL-Lite XML Document needs to be interpreted a%‘q/
simple string and therefore needs to be properly escaped

. b&

’

b
<!-- End of DIDL- thiSKML Document -->

</cdsReferen€Q

lority type="PREDEF">L2</desiredPriority>

Q/ <desiredRecordQuality type="LABEL">
AN SD, AUTO
</desiredRecordQuality>

<recordedCDSObjectID 1link="LINK1">
rec00002

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) - 109 -

</recordedCDSObjectID>

<taskStartDateTimeAdjust>
-P00:02:30
</taskStartDateTimeAdjust>
<taskDurationAdjusts>
+P00:05:00
</taskDurationAdjusts>

startDateTimeMet="0" !

endDateTimeMet="0" Q

firstBitsRecorded="0" ,\/
lastBitsRecorded="0"

</item> o
</srs>", Q
2, 2, 123456) Q

L
2.9.6 Rating System O

A ScheduledRecording service offers the OPTIONAL ability to impose rating limits on recordable
content. QA

A ScheduledRecording service implemer@ﬁ)n may provide a list of supported ratings. The supported
ratings can be retrieved by invoking thel(\}etAllowed Values() action and specifying the
matchingRatingLimit property in t@ilter argument.

In the United States, TV mal@rers are REQUIRED to provide built-in support for the TV Parental
Guidelines Monitoring Bodrd,rating system. (See http://www.tvguidelines.org.)

.

Motion picture content'is rated on a voluntary basis by the Motion Picture Association of America. (See
http://www.mpaa.org:

Since it is not sg»fple matter to determine the rating system applicable to recordable content, the
control poi %uld provide values for all applicable rating systems when specifying a rating limit.

For ex if the control point was configured to limit content for children, it may provide the
foll g rating limit properties.

chingRatingLimit type="TVGUIDELINES.ORG">

1Vv=G
</matchingRatingLimit>
<matchingRatingLimit type="MPAA.ORG">
G
</matchingRatingLimit>

Since the intent of the rating limit is a limiting value, the ScheduledRecording service MUST exclude
unrated content or content whose rating system does not match any of the rating types in the
matchingRatingLimit properties provided by the control point.

Since rating limits are intended to preclude some (subset of) users from accessing content, it is up to the
control point to identify users and apply the appropriate rating profile to individual users.

http://www.tvguidelines.org/
http://www.mpaa.org/
https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

-110 - 29341-4-14 © ISO/IEC:2008(E)

2.9.7 Conflict Detection and Resolution

Conlflicts between recordTask instances arise when the recording events, associated with those
recordTask instances, overlap in time and there are not enough resources available to record all of the
requested recording events.

Conlflict detection always happens at the recordTask level. It is possible that, at recordSchedule
creation time, the ScheduledRecording service is not able to accurately indicate whether scheduling
conflicts may arise in the future. Indeed, a ScheduledRecording service is not required or even capable
(for a query-type recordSchedule) of generating all the recordTask instances that will ever be
associated with the recordSchedule. Furthermore, a ScheduledRecording service implementation is
allowed to either reject the creation of a recordSchedule that creates a scheduling conflict (the
CregteRecordSchedule() action returns with error code 730, “Conflict”) or accept such a

recordSchedule. A control point can therefore only rely on the occurrence of error code 401,
“Conflicting Program Loser” or error code 402, “Conflicting Program Winner” in the
taskstate@currentErrors property of all the recordTask instances to accurately determine whethet
scheduling conflicts exist. Note that the ScheduledRecording service always picks a Conflicting
Program Winner, based upon priority settings and/or other vendor-defined criteria.

At this time, conflict resolution is not adequately supported by this specification. When'ene or more
recordTask instances are conflicting, there is currently no straightforward way for 8)¢ontrol point to
change the Conflicting Program Winner. Instead, a control point may disable specific recordTask
instances so that the intended recordTask becomes the Conflicting Program Winner. The drawback of
this approach is that if the newly appointed Conflicting Program Winner changes over time (due to
channel- or time migration, for instance), the disabled recordTask instances remain disabled and will
not record, even if that would have become possible.

Alternatively, a control point may use the DeleteRecordSchedule(). and CreateRecordSchedule() actions
to reschedule the recordSchedule with a different priority leyel. The drawback of this approach is that
all recordTask instances associated with the deleted recordSehedule are also deleted and any
customization by the user that happened at the recordZask level will get lost as well.

A future version of this specification will address the-¢onflict resolution issue in detail.

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) -111 -

3 XML Service Description

<?xml version="1.0" encoding="UTF-8"?>
<scpd xmlns="urn:schemas-upnp-org:service-1-0">
<specVersion>
<major>l</major>
<minor>0</minor>
</specVersion>
<actionList>

<action>

<argumentList>
<argument>
<name>SortCaps</name>
<direction>out</direction>
<relatedStateVariable>
SortCapabilities
</relatedStateVariable>
</argument>
<argument>
<name>SortLevelCap</name>
<direction>out</direction>
<relatedStateVariable>
SortLevelCapability
</relatedStateVariable>
</argument>
</argumentList>
</action>

<action>
<name>GetPropertyList</nameé>
<argumentList>
<argument>
<name>DataTypeID</name>
<direction>in</direction>
<relatedStateVariable>
A ARG TYPE DataTypelID
</reldtedStateVariable>
</argument>
<argument>
<name>PropertyList</name>
<direction>out</direction>
<relatedStateVariable>
A ARG TYPE PropertyList
</relatedStateVariable>
</argument>
</argumentList>
</action>

<action>
<name>GetAllowedValues</name>
<argumentList>
<argument>
<name>DataTypeID</name>
<direction>in</direction>
<relatedStateVariable>
A ARG TYPE DataTypeID
</relatedStateVariable>
</argument>
<argument>
<name>Filter</name>

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

——————</fargumentist

</action>

-112 -

<direction>in</direction>
<relatedStateVariable>
A ARG TYPE PropertyList
</relatedStatevVariable>
</argument>
<argument>
<name>PropertyInfo</name>
<direction>out</direction>
<relatedStateVariable>
A ARG TYPE PropertyInfo
</relatedStatevVariable>
</argument>

29341-4-14 © ISO/IEC:2008(E)

<action>

<name>GetStateUpdateID</name>
<argumentList>
<argument>
<name>Id</name>
<direction>out</direction>
<relatedStateVariable>
StateUpdatelD
</relatedStatevVariable>
</argument>
</argumentList>

</action>

<action>

<name>BrowseRecordSchedules< /name>
<argumentList>
<argument>
<name>Filter</name>
<direction>in</dirxection>
<relatedStateVariable>
A ARG TYPE) PropertyList
</relatedStatevariable>
</argument>
<arguments
<namesStartingIndex</name>
<difrection>in</direction>
<relatedStateVariable>
A ARG TYPE Index
</relatedStatevVariable>
</argument>
<argument>
<name>RequestedCount</name>
<direction>in</direction>
<relatedStateVariable>
A ARG TYPE Count
</relatedStateVariables

</argument>

<argument>
<name>SortCriteria</name>
<direction>in</direction>
<relatedStateVariable>

A ARG TYPE SortCriteria

</relatedStatevVariable>

</argument>

<argument>
<name>Result</name>
<direction>out</direction>
<relatedStateVariable>

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) -113 -

A ARG TYPE RecordSchedule
</relatedStatevVariable>
</argument>
<argument>
<name>NumberReturned</name>
<direction>out</direction>
<relatedStateVariable>
A ARG TYPE Count
</relatedStatevVariable>
</argument>
<argument>
<name>TotalMatches</name>

3 g cela ;

<relatedStateVariable>
A ARG TYPE Count
</relatedStatevVariable>
</argument>
<argument>
<name>UpdateID</name>
<direction>out</direction>
<relatedStateVariable>
StateUpdatelD
</relatedStatevVariable>
</argument>
</argumentList>
</action>

<action>
<name>BrowseRecordTasks</name>
<argumentList>
<argument>
<name>RecordScheduleID</name>
<direction>in</direction>
<relatedStateVariable>
A ARG TYPE ObjectID
</relatedStateVariable>
</argument>
<argument>
<name>Filter</name>
<direcbion>in</direction>
<rellatedStatevVariable>
A ARG TYPE PropertyList
</relatedStateVariable>
</argument>
<argument>
<name>StartingIndex</name>
<direction>in</direction>
<relatedStateVariable>
A ARG TYPE Index
</relatedStatevVariable>

</argument>
<argument>

<name>RequestedCount</name>
<direction>in</direction>
<relatedStateVariable>
A ARG TYPE Count
</relatedStatevVariable>
</argument>
<argument>
<name>SortCriteria</name>
<direction>in</direction>
<relatedStateVariable>
A ARG TYPE SortCriteria

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

— 114 -

</relatedStatevVariable>
</argument>
<argument>
<name>Result</name>
<direction>out</direction>
<relatedStateVariable>
A ARG TYPE RecordTask
</relatedStatevVariable>
</argument>
<argument>
<name>NumberReturned</name>
<direction>out</direction>
relatedStateVariabl

29341-4-14 © ISO/IEC:2008(E)

A ARG TYPE Count
</relatedStatevVariable>
</argument>
<argument>
<name>TotalMatches</name>
<direction>out</direction>
<relatedStateVariable>
A ARG TYPE Count
</relatedStatevVariable>
</argument>
<argument>
<name>UpdateID</name>
<direction>out</direction>
<relatedStateVariable>
StateUpdatelD
</relatedStatevVariable>
</argument>
</argumentList>
</action>

<action>
<name>CreateRecordSchedule</name>
<argumentList>
<argument>
<name>Elements</name>
<direction>in</direction>
<relatedStateVariable>
A J)ARG TYPE RecordScheduleParts
</relatedStatevVariable>
</argument>
<argument>
<name>RecordScheduleID</name>
<direction>out</direction>
<relatedStateVariable>
A ARG TYPE ObjectID
</relatedStatevVariable>
</argument>

<argument>
<name>Result</name>
<direction>out</direction>
<relatedStateVariable>
A ARG TYPE RecordSchedule
</relatedStatevVariable>
</argument>
<argument>
<name>UpdateID</name>
<direction>out</direction>
<relatedStateVariable>
StateUpdatelD
</relatedStatevVariable>

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) -115 -

</argument>
</argumentList>
</action>

<action>
<name>DeleteRecordSchedule</name>
<argumentList>
<argument>
<name>RecordScheduleID</name>
<direction>in</direction>
<relatedStateVariable>
A ARG TYPE ObjectID
frelatedstateVaxriable

</argument>
</argumentList>
</action>

<action>
<name>GetRecordSchedule</name>
<argumentList>
<argument>
<name>RecordScheduleID</name>
<direction>in</direction>
<relatedStateVariable>
A ARG TYPE ObjectID
</relatedStatevVariable>
</argument>
<argument>
<name>Filter</name>
<direction>in</directions>
<relatedStateVariable>
A ARG TYPE PropertyList
</relatedStatevVariable>
</argument>
<argument>
<name>Resultg/name>
<direction>out</direction>
<relatedStatevVariable>
A ARG TYPE RecordSchedule
</relabtedStatevariable>
</argument>
<argument>
<name>UpdateID</name>
<direction>out</direction>
<relatedStateVariable>
StateUpdatelD
</relatedStatevVariable>
</argument>
</argumentList>
</action>

<action>
<name>EnableRecordSchedule</name>
<argumentList>
<argument>
<name>RecordScheduleID</name>
<direction>in</direction>
<relatedStateVariable>
A ARG TYPE ObjectID
</relatedStatevVariable>
</argument>
</argumentList>
</action>

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

- 116 -

<action>
<name>DisableRecordSchedule</name>
<argumentList>
<argument>
<name>RecordScheduleID</name>
<direction>in</direction>
<relatedStateVariable>
A ARG TYPE ObjectID
</relatedStatevVariable>
</argument>
</argumentList>

— </action

29341-4-14 © ISO/IEC:2008(E)

<action>
<name>DeleteRecordTask</name>
<argumentList>
<argument>
<name>RecordTaskID</name>
<direction>in</direction>
<relatedStateVariable>
A ARG TYPE ObjectID
</relatedStatevVariable>
</argument>
</argumentList>
</action>

<action>
<name>GetRecordTask</name>
<argumentList>
<argument>
<name>RecordTaskID</hame>
<direction>in</direction>
<relatedStateVariable>
A ARG TYPE ObjectID
</relatedStateVariable>
</argument>
<argument>
<name>Filter</name>
<direcbion>in</direction>
<rellatedStatevVariable>
A ARG TYPE PropertyList
</relatedStateVariable>
</argument>
<argument>
<name>Result</name>
<direction>out</direction>
<relatedStateVariable>
A ARG TYPE RecordTask
</relatedStatevVariable>

</argument>
<argument>

<name>UpdateID</name>
<direction>out</direction>
<relatedStateVariable>
StateUpdatelD
</relatedStatevVariable>
</argument>
</argumentList>
</action>

<action>
<name>EnableRecordTask</name>

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) - 117 -

<argumentList>
<argument>
<name>RecordTaskID</name>
<direction>in</direction>
<relatedStateVariable>
A ARG TYPE ObjectID
</relatedStatevVariable>
</argument>
</argumentList>
</action>

<action>

— <name>DisableRecordTask</rome

<argumentList>
<argument>
<name>RecordTaskID</name>
<direction>in</direction>
<relatedStateVariable>
A ARG TYPE ObjectID
</relatedStatevVariable>
</argument>
</argumentList>
</action>

<action>
<name>ResetRecordTask</name>
<argumentList>
<argument>
<name>RecordTaskID</name>
<direction>in</directions>
<relatedStateVariable>
A ARG TYPE ObjectID
</relatedStatevVariable>
</argument>
</argumentList>
</action>

<action>
<name>GetRecordScheduleConflicts</name>
<argumentLisb>
<argument>
<name>RecordScheduleID</name>
<direction>in</direction>
<relatedStateVariable>
A ARG TYPE ObjectID
</relatedStatevVariable>
</argument>
<argument>
<name>RecordScheduleConflictIDList</name>
<direction>out</direction>
<relatedStateVariable>

A ARG TYPE ObjectIDList
</relatedStatevVariable>
</argument>
<argument>
<name>UpdateID</name>
<direction>out</direction>
<relatedStateVariable>
StateUpdatelID
</relatedStatevVariable>
</argument>
</argumentList>
</action>

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

- 118 - 29341-4-14 © ISO/IEC:2008(E)

<action>
<name>GetRecordTaskConflicts</name>
<argumentList>
<argument>
<name>RecordTaskID</name>
<direction>in</direction>
<relatedStateVariable>
A ARG TYPE ObjectID
</relatedStatevVariable>
</argument>
<argument>

R I TaskConfliet IDLint/ name

<direction>out</direction>
<relatedStateVariable>
A ARG TYPE ObjectIDList
</relatedStatevVariable>
</argument>
<argument>
<name>UpdateID</name>
<direction>out</direction>
<relatedStateVariable>
StateUpdatelD
</relatedStatevVariable>
</argument>
</argumentList>
</action>

</actionList>

<serviceStateTable>
<stateVariable sendEvents="no">
<name>SortCapabilities</name>
<dataType>string</dataType>
</stateVariable>

<stateVariable sendEyents="no">
<name>SortLevelCapability</name>
<dataType>uidx/dataType>
</stateVariable>

<stateVariable sendEvents="no">
<nameSStateUpdateID</name>
<dataType>ui4</dataType>

</stateVariable>

<statevVariable sendEvents="yes">
<name>LastChange</name>
<dataType>string</dataType>

</stateVariable>

<stateVariable sendEvents="no">
<name>A ARG TYPE PropertylList</name>
<dataType>string</dataType>
</statevVariable>

<stateVariable sendEvents="no">
<name>A ARG TYPE DataTypeID</name>
<dataType>string</dataType>
<allowedValueList>
<allowedValue>A ARG TYPE RecordSchedule</allowedValue>
<allowedValue>A ARG TYPE RecordTask</allowedValue>

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) -119 -

<allowedValue>A ARG TYPE RecordScheduleParts</a1lowedValue>
</a110wedVa1ueLlst>
</stateVariable>

<stateVariable sendEvents="no">
<name>A ARG TYPE ObjectID</name>
<dataType>str1ng</dataType>
</statevVariable>

<stateVariable sendEvents="no">
<name>A ARG TYPE ObjectIDList</name>

————————————<dataType>string</datalyp

</statevVariable>

<stateVariable sendEvents="no">
<name>A ARG TYPE PropertyInfo</name>
<dataType>str1ng</dataType>
</statevVariable>

<stateVariable sendEvents="no">
<name>A ARG TYPE Index</name>
<dataType>u14</dataType>

</statevVariable>

<stateVariable sendEvents="no">
<name>A ARG TYPE Count</name>
<dataType>ui4</dataType>

</statevVariable>

<stateVariable sendEvents="no">
<name>A ARG TYPE SortCr1ter1a</name>
<dataType>str1ng</dataType>
</stateVariable>

<stateVariable sendEyvernts="no">
<name>A ARG TYPE RecordSchedu1e</name>
<dataType>strlng</dataType>
</stateVariablex>

<stateVariable ' sendEvents="no">
<name>A ARG TYPE RecordTask</name>
<dataType>string</dataType>
</stateVariable>

<stateVariable sendEvents="no">
<name>A ARG TYPE RecordScheduleParts</name>
<dataType>str1ng</dataType>
</statevVariable>

<c/serviceStateTables

</scpd>

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

-120 - 29341-4-14 © ISO/IEC:2008(E)

4 Test

No semantic tests have been specified for this service.

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) -121 -

Annex A
(normative)

srs XML Document

This section describes the srs XML Document that is used in action arguments of the property-set data
type. Any srs XML Document MUST conform to the SRS schema as defined in [SRS-XSD]. Each srs
XML Document contains one of the following data types: 4 ARG _TYPE RecordSchedule,

A ARG _TYPE RecordTask or A_ ARG _TYPE RecordScheduleParts. All property-set data types are
based on properties in the srs namespace and are therefore based on the SRS schema.

Due to limitations of the XML Schema syntax, the SRS schema in itself is often not adequate to
accurately describe the limitations and restrictions imposed by a particular ScheduledRecording'service
implementation. For example, the set of supported properties and their allowed values may, vary among
implementations.

To allow ScheduledRecording service implementations to indicate which properties’and their allowed
values they support, the concept of the AV Datastructure Template (AVDT) is introduced. A
ScheduledRecording service implementation can provide very detailed inforination about supported
properties and their allowed values by means of an AVDT XML Document{The AVDT XML Document
MUST conform to the AVDT schema as defined in [AVDT].

An AVDT XML Document can be retrieved by invoking the GetAllowedValues() action. The
DataTypelD input argument identifies the data structure to be described by the A VDT XML Document.
Indeed, depending on the particular ScheduledRecording sefvice implementation, the set of supported
properties and their allowed values of a given property-serdata type may vary. For example, the set of
properties that can be specified in the Elements input.argument (of data type

A ARG _TYPE RecordScheduleParts) of the CreateRecordSchedule() action may differ substantially
between implementations. Additionally, the set of properties supported by different data types will
obviously vary as well.

At this time, this specification identifies thiee different 4VDT XML Document manifestations,
depending on the data type of the objects'described in the A VDT XML Document:

e The A ARG TYPE RecordSchedule AVDT XML Document
e The A ARG TYPENRetcordTask AVDT XML Document
e The A ARG TYPE RecordScheduleParts AVDT XML Document

A1 A ARG TYPE RecordSchedule AVDT XML Document

This type of WDT XML Document is used to describe the data structure of a recordSchedule object for
a particulaty ScheduledRecording service implementation. Examples of action arguments that use this
data type-include the Result output argument of the BrowseRecordSchedules() and
GetRetordSchedule() actions.

e The <contextID> field MUST be set to “uuid:device- UUID::urn:schemas-upnp-
org:service:ScheduledRecording:1”.

e The <dataStructTypes> field MUST be setto “4_ARG TYPE RecordSchedule”.

e The <fieldTablex> field MUST contain field elements for all the REQUIRED properties of
all the object.recordSchedule.xxx classes supported by the service. Refer to Table C-2, “Class
Properties Overview for recordSchedule”, recordSchedule-related columns.

e The <fieldTables> field MUST also contain field elements for all the supported
OPTIONAL properties of all the object.recordSchedule.xxx classes implemented by the

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

-122 - 29341-4-14 © ISO/IEC:2008(E)

service. Refer to Table C-2, “Class Properties Overview for recordSchedule”, recordSchedule-
related columns.

Field specific rules:
e There must be one and only one field with the subelement <name > set to “class”

e The allowed values for this field MUST only be derived from the object.recordSchedule
virtual class.

e The <name> subelement of all <field> elements MUST only contain names of
recordSchedule properties.

For a full-fledged example of a 4 ARG TYPE RecordSchedule AVDT XML Document, see Annex

G.1,“A_ARG TYPE RecordSchedule AVDT Example

A.2 A ARG TYPE RecordTask AVDT XML Document

This type of AVDT XML Document is used to describe the data structure of a recordTask object for a
particular ScheduledRecording service implementation. Examples of action arguments,that use this data
type include the Result output argument of the BrowseRecordTasks() and GetRecordTask() actions.

When using the AVDT XML Document in this context, the following rules apply:

e The <contextID> field MUST be set to “uuid:device-UUID::urn;schemas-upnp-
org:service:ScheduledRecording:1”.

e The <dataStructTypes> field MUST be set to “4 _ARG~FYPE RecordTask”.

e The <fieldTable> field MUST contain field elements for all the REQUIRED properties of
the object.recordTask class. Refer to Table C-2, “Class Properties Overview for
recordSchedule”, recordTask-related column.

e The <fieldTable> field MUST also contain field elements for all the supported
OPTIONAL properties of the object.recordTask class. Refer to Table C-2, “Class Properties
Overview for recordSchedule”, recordTask-related column.

Field specific rules:
e There must be one and only one'field with the subelement <name > set to “class”

e The allowed values for this-field MUST only be derived from the object.recordTask class.

e The <name> subelement of all <field> elements MUST only contain names of recordTask
properties.

For a full-fledged example of a A_ ARG TYPE RecordTask AVDT XML Document, see Annex G.2,
“A_ARG TYPE ReecordTask AVDT Example”.

A.3 ACARG TYPE RecordScheduleParts AVDT XML Document

This This type of AVDT XML Document is used to describe the data structure of a recordScheduleParts
objeet/for a particular ScheduledRecording service implementation. Examples of action arguments that
use‘this data type include the Elements input argument of the CreateRecordSchedule() action.

When using the AVDT XML Document in this context, the following rules apply:

e The <contextID> field MUST be set to “uuid:device-UUID::urn:schemas-upnp-
org:service:ScheduledRecording:1”.

e The <dataStructType> field MUST be set to “4_ARG TYPE RecordScheduleParts”.

e The <fieldTable> field MUST contain field elements for all the REQUIRED properties of
all the object.recordSchedule.xxx classes supported by the service. Refer to Table C-1, “Class
Properties Overview ”, recordSchedule-related columns.

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) -123 -

e The <fieldTable> field MUST also contain field elements for all the supported
OPTIONAL properties of all the object.recordSchedule.xxx classes implemented by the
service. Refer to Table C-1, “Class Properties Overview ”, recordSchedule-related columns.

Field specific rules:
e There must be one and only one field with the subelement <name > set to “class”

e The allowed values for this field MUST only be derived from the object.recordSchedule
virtual class.

e The <name> subelement of all <field> elements MUST only contain names of
recordSchedule properties.

For a full-fledged example of a A_ARG TYPE RecordScheduleParts AVDT XML Document, see
Annex G.3, “A_ARG TYPE RecordScheduleParts AVDT Example”.

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

- 124 - 29341-4-14 © ISO/IEC:2008(E)

Annex B
(normative)

AV Working Committee Extended Properties

The tables and sections below list all properties defined by the AV Working Committee. A property is
expressed in XML as either an XML element or an XML attribute.

followed by th specifics pertaining to INPUT and OUTPUT usage for this property. The INPUT usag
indicates how the property is used in a recordScheduleParts object. The OUTPUT usage indicates how
the property is used in a recordSchedule and/or reccordTask object.

Note: The NS column in the tables contains the namespace prefix of the namespace to which the
property name belongs. The M-Val column indicates whether the property is multi-valued{M-Val =
YES) or single-valued (M-Val = NO). See Section 2.2.2.17, “Multi-valued property” and Section
2.2.2.18, “Single-valued property”.

B.1 Base Properties

Table B-1: Base Properties Overview

Property Name NS Data Type M-Val Reference
wid STS xsd:string NO Annex B.1.1
title STS xsdistring NO Annex B.1.2
class ST xsd:string NO Annex B.1.3
additionalStatusinfo STS xsd:string NO Annex B.1.4
cdsReference SIS xsd:string YES Annex B.1.5
cdsReference(@link STS xsd:string NO Annex B.1.5.1

BA1 @id

Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The @iu property identifies a recordSchedule or recordTask object. The value MUST be
unique in the ScheduledRecording service. The value MUST be set by the ScheduledRecording service.

Default Value;*N/A — Required on input.
Sort Oxder: Lexical or Lexical Numeric.

Each.iimplementation SHOULD use the sort method most appropriate for its method of generating @id
values. If @id values contain a numeric (sub)string that contains values that increment with each new
object creation, then use Lexical Numeric; otherwise, use Lexical.

Input: When creating a new recordSchedule object, the @id property MUST be specified to satisfy the
SRS XML Schema and MUST be set to the empty string.

Output: The unique object ID set by the ScheduledRecording service.

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) - 125 -

B.1.2 title
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: Primary title of the object. The tit/e property contains a friendly name to identify the
object. This property can be either user-supplied or derived from the content name the object represents.
This property is not to be confused with the matchingName or matchedName property. See also
http://dublincore.org/documents/dces.

Default Value: N/A — Required on input.
Sort Order: Lexical.

Input: The desired setting.

Output: The current setting.

B.1.3 class
Namespace: srs Property Data Type: xsd:string Multi-Vialued: NO

Description: The class property identifies the class of the object. A ScheduledRecording service
implementation MUST list all classes it supports. If some (vendor-defined) classes‘ane derived from
other classes, then both the derived classes and the parent classes MUST be listed-See Annex C for
details.

Default Value: N/A — Required on input.
Sort Order: Sequenced Lexical. Sequence subvalues are substringg.sgparated by periods.
Input: The desired setting.

Output: The current setting.

B.1.3.1 allowedValuelList for the class Property

Table B-2: allowedValueList for the ¢lass Property

Value R/O Description

“OBJECT.RECORDSCHEDULE.DIRECT.MANUAL” [0}
“OBJECT.RECORDSCHEDUIAFDIRECT.CDSEPG” [0}
“OBJECT.RECORDSCHEDULE.DIRECT.CDSNONEPG” R .
Control points should support
“OBJECT.RECORDSCHEDULE.DIRECT.PROGRAMCODE” | O all predefined values in these
“OBJECT.RECORDSCHEDULE.QUERY.CONTENINAME® |0 | ™™
“OBJECT.RECORDSCHEDULE.QUERY.CONTENTID” [0)
“OBJECT.RECORDTASK” @)
ventlon-defined. X See Annex C.1, “Class
Vendor-defined class names MIUIST obev the rules set forth in Hlegarcl(lly’t’ fOI;ll'lllleS on
Annex D.3, “Class Name Syntax”. vendor-cetined class
extensions.
B.1.4 additionalStatusinfo
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The additionalStatusinfo property is a general-purpose property that can hold text-based
additional status information.

Default Value: N/A — Output only.
Sort Order: Lexical.

http://dublincore.org/documents/dces
https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

- 126 - 29341-4-14 © ISO/IEC:2008(E)

Input: N/A.

Output: The current setting.

B.1.5 cdsReference
Namespace: srs Property Data Type: xsd:string Multi-Valued: YES

Description: The cdsReference property MUST only contain metadata of a ContentDirectory service
object that is referenced (directly or indirectly) by a recordSchedule or recordTask object.

Note that this is a multi-valued property so that metadata of multiple referenced ContentDirectory
service objects can be stored. A recordSchedule or recordTask object references ContentDirectory
service objects through properties, such as the scheduledCDSObjectlD property,

recordedCDSObjectID property, etc. (collectively indicated by the notation: xxxCDSObjectID
property). To indicate which cdsReference property is associated with which xxxCDSObjectID property,
both properties have a dependent property, cdsReference@link and xxxCDSObjectID@link respectively,
that MUST contain the same unique, vendor-defined link identifier.

The cdsReference property MUST contain a valid and properly escaped DIDL-Lite XML/Document.
The DIDL-Lite XML Document describes a device-dependent (sub)set of imported properties
(metadata) of the ContentDirectory service object that is referenced by the linkeddnxCDSObjectID
property. See Annex B.17, “ContentDirectory Service Imported Properties” for details.

Default Value: N/A — Output only.

Sort Order: Sorting on this property is meaningless and will be ignored!
Input: N/A.

Output: The current setting.

B.1.5.1 cdsReference@link
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The cdsReference(@link contains\a unique, vendor-defined link identifier that
unambiguously links its cdsReference property to a particular xxxCDSObjectID property within the
same recordSchedule or recordTask object. See Annex B.17, “ContentDirectory Service Imported
Properties” for details.

Default Value: N/A — Output only.

Sort Order: Lexical or Lexical Numeric.

Each implementationsSHOULD use the sort method most appropriate for its method of generating
cdsReference@linkvalues. If cdsReference@link values contain a numeric (sub)string that contains
values that increment with each new object creation, then use Lexical Numeric; otherwise, use Lexical

Input: N/AC

Output: Fhe current setting.

5% Prioritvp |'

Table B-3: Priority Properties

Property Name NS Data Type M-Val Reference
priority srs | xsd:string NO Annex B.2.1
priority@orderedValue STS xsd:unsignedInt NO Annex B.2.1.2

desiredPriority STS xsd:string NO Annex B.2.2

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) -127 -

B.2.1 priority
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The priority property indicates the priority level of the associated object (a
recordSchedule or a recordTask). The priority-value format syntax of the priority property is
described in Annex D, “

(normative)

EBNF Syntax Definitions”.

Example values for this property include: “L7”, “L2”, “L3”, ... where “L1” represents the highest
priority level with subsequent values representing progressively lower priority levels.

Note: Desired priority settings are specified via the desiredPriority property passed into the
CreateRecordSchedule() action. See Section 2.8, “ScheduledRecording Service Priority Model” for
details.

Default Value: N/A — Output only.
Sort Order: Property Specific, based on priority order. Ascending: lowest priority firs,
Input: N/A.

Output: The current setting.

B.2.1.1 allowedValuelList for the priority Property
Table B-4: allowedValueList for the priority Property

Value R/O Description

“LI” R The highest priority level supported by the
device.

“L2” Q The next progressively lower priority level
supported by the device.

Ee o Progressively lower priority level supported by
the device.

“L<x>" [0) The lowest priority level supported by the device
where <x> is the total number of distinct priority
levels supported by the device.

Notes:

All devices MUST ‘support 1 or more priority levels.
If “L<x>” issupported, then all values between “L/” and “L<x>" MUST be supported.

B.2,1:2 priority@orderedValue
Naniespace: srs Property Data Type: xsd:unsignedInt Multi-Valued: NO

Description: The priority(@orderedValue property imndicates the relative numerical priority value ot the
associated object (a recordSchedule or a recordTask). A value of 1 indicates that this object is the
highest priority object of that object type (that is: of all recordSchedule instances or all recordTask
instances). Other ascending values indicate that the object has a progressively lower priority relative to
the other objects of that type. A value of N (where N is the total number of objects of that type)
indicates that the object is the lowest priority object of that type. No two objects of the same type will
have the same value for this property.

Note: This property is not evented when the priority of the object changes (for example due to the
creation of a new object with a higher priority).

Default Value: N/A — Output only.

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

- 128 - 29341-4-14 © ISO/IEC:2008(E)

Sort Order: Numeric.
Input: N/A.

Output: The current setting.

B.2.2 desiredPriority
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The desiredPriority property specifies the desired priority level of the associated object (a
recordSchedule or a recordTask). The priority-value format syntax of the desiredPriority
property is defined in Annex D.

Except as noted below, the value for this property MUST match one of the allowed values returned by
the GetlnputPropertylnfo() action for this property. The allowed values MUST comply with the table-in
Annex B.2.2.1, “allowedValueLists for the desiredPriority Property” below. Additionally, if the
priority@orderedValue property is supported, the desiredPriority property can also be set to.one of the
allowed values listed in Table B-6, “Additional allowedValueList for the desiredPriority Rroperty”.

Default Value: “DEFAULT”.

Sort Order: Sorting on this property is meaningless and will be ignored.
Input: The desired setting.

Output: The current setting.

B.2.2.1 allowedValuelLists for the desiredPriority Property

Table B-5: Primary allowedValueL.ist for the desiredPriority Property

Value R/O Description

“DEFAULT” R No priority preference. The device itself will
determine the object’s priority.

“L1” @) The highest priority level supported by the devicq.

“L2” o The next to highest priority level supported by the
device.

. @) Progressively lower priority levels between 1 and
<X>’ 4‘@9” “LA,’, etc_

“L<x>” @) The lowest priority level supported by the device
where <x> is the total number of distinct priority
levels supported by the device.

Notes:

All devices MUST support 1 or more priority levels.

If#E<k>" is supported, then all values between “L/” and “L<x>" MUST be continuously supported,
thatis: a device MUST not support only “L/”, “L3”, and “L5”.

Additionally, if the device supports the priority@orderedValue property, then the device MUST also
support the following allowed values. Conversely, if any of these allowed values are supported, then the
device MUST support the priority@orderedValue property. These allowed values provide a mechanism
for more precise prioritization control with those devices that support it.

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E)

-129 -

Table B-6: Additional allowedValuelList for the desiredPriority Property

Value R/O Description

“HIGHEST” R The highest level possible. — Same as “L/_HI”
defined below.

“LOWEST” R The lowest level possible. — Same as “L<x> LOW”
defined below.

“L1_HI R The highest priority possible within the highest
priority level.

“I /_I 181 % R The lowest prinritv pnqcihlp within the highpcf
priority level.

“L2_HI R The highest priority possible within the next.to
highest priority level.

“L2_LOow” R The lowest priority possible withifn.the next to
highest priority level.

. R Progressively lower priorjty Tevels.

“L<x> HI” R The highest priority pessible within the lowest
priority level wher€,<x> is the total number of
distinct priority levels supported by the device.

“L<x>_LOW” R The lowest,priority possible, but within the lowedt
priority level where <x> is the total number of
distinct priority levels supported by the device.

<@id> R Thenext highest priority “slot” immediately highpr
than (but within the same priority level of) the
existing object whose (@id is specified by <@id

Notes:

1. If a device supports the priority(@erderedValue property, then the device MUST also support

these CONDITIONALLY REQUIRED allowed values. Conversely, if any of these allowed
values are supported, then the device MUST support the prioritv@orderedValue property.

2. These allowed values provide a mechanism for more precise prioritization control with those
devices that supportit:-If “L<x> LOW” is supported, then all values between “L/_HI” and
“L<x>_LOW” MUST be continuously supported; that is: a device MUST not support only
“LI_HI,“LISNLOW?”, “L3_HI”,“L3 _LOW”,“L5 HI” and “L5_LOW” or only “LI_HI”,

“L2_HI”, and*L3_HI”.

B.2.3 desiredPriority@type

Namespace: srs

Property Data Type: xsd:string

Multi-Valued: NO

Description: When the desiredPriority@type property is set to “PREDEF”, it indicates that the
desiredPriority property contains one of the predefined priority labels (“L/”, “L2_LOW”, etc.). When

STt OBJECTID Ttimdicates that the desired o rioriry property COMains alr Object 1D (wid vatue):

Default Value: “PREDEF™.

Sort Order: Sorting on this property is meaningless and will be ignored.

Input: The desired setting.

Output: The current setting.

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

-130 - 29341-4-14 © ISO/IEC:2008(E)

B.2.3.1 allowedValuelLists for the desiredPriority@type Property

Table B-7: allowedValueList for the desiredPriority@type Property

Value R/O Description
“PREDEF” R
“OBJECTID” R

B.3 Output Control Properties

Property Name Data Type Reference
recordDestination srs | xsd:string YES Annex BS.1
recordDestination@mediaType srs | CSV (xsd:string) | NO Annéx‘B.3.1.1
recordDestination@targetURL srs | xsd:anyURI NO Annex B.3.1.2
recordDestination@preference srs | xsd:unsignedInt | NO Annex B.3.1.3
desiredRecordQuality srs | xsd:string NO Annex B.3.2
desiredrecordQuality@type srs | xsd:string NO Annex B.3.2.2

B.3.1 recordDestination
Namespace: srs Property Data Type: xsd:string Multi-Valued: YES

Description: The recordDestination property identifies'the storage unit to be used for the recording.
This identifier, which is to be generated by the ScheduledRecording service, SHOULD be a user-
friendly name for the storage unit so that its value issmeaningful to a user when displayed.

This is a multi-valued property so that more than one record destination can be specified for a
recording. The recordDestination@preferenee property allows the order of preference among multiple
record destinations to be specified. If nene’of the specified record destinations is available at the time of
recording, then the recording MUST-NOT take place.

Examples: “Hard Disk Drive”, “DVD-17, “LINE1”, “AUX-out” etc.
Default Value: Vendor-defined.
Sort Order: Lexical.

Input: The desired'setting.

Output: The.current setting.

B.3.1:1 recordDestination@mediaType
Namiespace: srs Property Data Type: CSV (xsd:string) Multi-Valued: NO

Description: The recordDestionation(@medialype property indicates the type ot media that 1S to be
used for the recording.

If the media type of the specified record destination is fixed (not removable), then the value of the
recordDestination@mediaType property MUST match the actual physical media type of the record
destination. This single value can be retrieved through the GetAllowedValues() action.

If the media of the specified record destination is manually removable (requires explicit user
intervention) then the currently inserted physical media MUST match one of the values in the
recordDestination@mediaType property. In other words, the specified list of media types indicates
those that are acceptable for the recording. If the current physical media does not match one of the
acceptable media types, then the recording MUST NOT take place on this record destination.

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) -131 -

If the specified record destination supports automatic swapping of media, such as a jukebox recorder,
then the recordDestination@mediaType property indicates which media type(s) MUST be used for the
recording. Recording MUST occur on the available media type that appears earliest in the list. If none
of the specified media types is available for recording, then the recording MUST NOT take place on
this record destination.

If recording can not take place as described above, then lower preference record destinations MAY be
used (see Section B.3.1.3, “recordDestination@preference”). The set of allowed values for the
recordDestination@mediaType property can be retrieved through the GetAllowedValues() action.

Examples: “HDD”, “DVD-RW”
Default Value: Vendor-defined.

Sort Order: Sequenced Lexical.
Input: The desired setting.
Output: The current setting.

B.3.1.1.1 allowedValueList for the recordDestination@mediaType Property

One of the allowed values for the AV Transport.:RecordStorageMedium state vartable MUST be
specified. Please refer to the AVTransport service specification for the table of'allowed values.

B.3.1.2 recordDestination@targetURL
Namespace: srs Property Data Type: xsd:anyURI Multi-Valued: NO

Description: The recordDestination(@targetURL property MUST contain a URL that identifies the
location, such as the location of a directory, where the recordéd content is to be stored.

Examples:
“file:///D:/MyDocuments/MyVideos?
“http://10.0.0.1/MyDocumentgyMyVideos”
Default Value: Vendor-defined.
Sort Order: Lexical.
Input: The desired setting.
Output: The current setting:

B.3.1.3 reeordDestination@preference
Namespace: srs Property Data Type: xsd:unsignedInt Multi-Valued: NO

Description; The recordDestination@preference property is useful when multiple recordDestination
properties-are specified within the same recordSchedule or recordTask object. In this case, the values
indicate-the preference order of the multiple record destinations. Higher numbers indicate lower
preferénce. The values do not have to be contiguous.

I multinle vocordDoctin ation(Dnroforonco nranertics h e-the me
Prer Prope <

I e - s d haachd) RS
in which their associated record destinations are chosen is device-dependent.

If the recordDestination(@preference property is not supported by an implementation, then the order of
preference of all specified record destinations is device-dependent.

Default Value: Vendor-defined.

Sort Order: Numeric.
Input: The desired setting.

Output: The current setting.

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

-132 - 29341-4-14 © ISO/IEC:2008(E)

B.3.2 desiredRecordQuality
Namespace: srs Property Data Type: CSV (xsd:string) Multi-Valued: NO

Description: The desiredRecordQuality property is used to express the desired or preferred recording
quality level(s) for a particular recordSchedule. Multiple recording quality levels can be specified in the
comma-separated value list of the desiredRecordQuality property. If there is more than one value
specified, then the values indicate the desired recording quality, in order of preference, highest
preference first. The value “4AUTO” MUST be supported by all implementations. When “AUTO” is
included in the list, it MUST appear as the last value in the list and indicates that if none of the
preceding values are available, then the ScheduledRecording service is free to use any recording quality
level to maximize the probability that the recording actually takes place. When the “AUTO” value is the

only value in the list _then the thpdnledRer‘m‘ding service is free to nse any rer‘nrding quality level

There are many ways to express recording quality. Some implementations use bitrates, some use user=
friendly labels etc. Some implementations might even support multiple ways to express recording
quality simultaneously. The desiredRecordQuality property is used in conjunction with the
desiredRecordQuality@type to allow implementations to express these variations. However, since the
desiredRecordQuality property can appear only once, the acceptable recording quality leviels for a
particular recordSchedule are restricted to a single type variation.

If an implementation is capable of encoding or transcoding, then it MAY do so i erder to achieve the
desired recording quality.

Example: Assume a (hypothetical) implementation that supports the type driations “DEFAULT”,
“ATSC” and “QLEVEL” for the desiredRecordQuality@type property-The following table expresses
the supported desiredRecordQuality property values for those variatiefts and also indicates how the
different type variations interrelate for this particular implementation:

Table B-9: desiredRecordQuality Example

“1080p302,
“1080p24> “or
<L080i60”
“720p60”
“720p30” “02
“720p24”
“ED” “480p60”
“480p30”
AR3 “480p24”
“480i60”

“HD”

“Q:))”

e Specitymg HD, LD 1 the desiredKecordQuality property and "DEFAULL 1 the
desiredRecordQuality@type property will result in the following:

e Ifpossible, the recording will be made using “HD” quality. In this case, it is up to the
implementation to determine exactly which recording quality level within the “HD” range
will be used for the recording.

e Ifrecording using “HD” quality is not possible, the recording will be made using “ED”
quality, if possible. Again, it is up to the implementation to determine exactly which
recording quality level within the “£D” range will be used for the recording.

e If the recording cannot be made in either “HD” or “ED” quality, then no recording will be
made.

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) -133 -

e Specifying “ED,SD,AUTO” in the desiredRecordQuality property and “DEFAULT” in the
desiredRecordQuality@type property will result in the following:

e Ifpossible, the recording will be made using “£ED” quality. It is up to the implementation
to determine exactly which recording quality level within the “£D” range will be used for
the recording.

e If'that is not possible, the recording will be made using “SD” quality, if possible. It is up
to the implementation to determine exactly which recording quality level within the “SD”
range will be used for the recording.

e If the recording cannot be made in either “£D” or “SD” quality, then the recording will be
made using any other available recording quality.

e Specifying “720p60” in the desiredRecordQuality property and “A7SC” in the
desiredRecordQuality(@type property will result in the following:

e Ifpossible, the recording will be made using “720p60” quality.
e If'that is not possible, no recording will be made.

When the ScheduledRecording service responds to a GetAllowedValues() action with
desiredRecordQuality information, then the allowed values MUST be listed in orderof quality from
highest quality to lowest. The value “4AUTO” MUST always be present and appear as the last item in
the list.

Default Value: Vendor-defined.

Sort Order: Property Specific, based on the allowedValueList forthe’ desiredRecordQuality property.
Ascending: lowest quality first.

Input: The desired setting.

Output: The current setting.

B.3.2.1 allowedValuelList for the desiredRecordQuality Property

Table B-10: allowedValueList for the‘desiredRecordQuality Property

Value R/O Description

“AUTO” R If none of the quality levels preceding the
“AUTQO” value are available, then any recording
quality level may be used. The “4AUTO” value
MUST always appear last in the list when present.

Vendor-defined X

B.3.2.2 desiredRecordQuality@type
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Deseription: There are many ways to express recording quality. Some implementations use bitrates,
some use user-friendly labels etc. Some implementations might even support multiple ways to express

recording quality simultaneously. The desiredRecordQuality(@tvpe property is used to express which
type variation is used in its associated independent desiredRecordQuality property. The “DEFAULT”
value MUST be supported and indicates which of the supported type variations is preferred by the
device when expressing recording quality levels.

Default Value: Vendor-defined.

Sort Order: Lexical.

Input: The desired setting.

Output: The current setting.

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

- 134 - 29341-4-14 © ISO/IEC:2008(E)

B.3.2.2.1 allowedValueList for the desiredRecordQuality@type Property

Table B-11: allowedValueList for the desiredRecordQuality@type Property

Value R/O Description

“DEFAULT” R Indicates the type variation that is preferred by
the device when expressing recording quality
levels.

Vendor-defined X

B4 ContentldentificationRelated-P "

Table B-12: Content Identification Related Properties

Property Name NS Data Type M-Val Reference
scheduledCDSObjectID STS xsd:string NO AnnexB.4.1
scheduledCDSObjectID@link STS xsd:string NO Annex B.4.1.1
scheduledChannellD SIS xsd:string NO Annex B.4.2
scheduledChannellD(@type srs | xsd:string NO Annex B.4.2.1
scheduledStartDateTime SIS xsd:string YES Annex B.4.3
scheduledDuration SIS xsd:string NO Annex B.4.4
scheduledProgramCode STS xsd:string NO Annex B.4.5
scheduledProgramCode@type STS xsd;string NO Annex B.4.5.1

B.4.1 scheduledCDSObjectiD
Namespace: srs Property‘Data Type: xsd:string Multi-Valued: NO
Description: The scheduledCDSObject/D> property contains the didl-lite:(@id property value of the

ContentDirectory service object from which relevant metadata information is extracted to create the
recordSchedule.

Default Value: N/A — Required on input.
Sort Order: Lexical or Lexical Numeric.

Each implementationfSHOULD use the sort method most appropriate for its method of generating
didl-lite:(@id valpes:f didl-lite:(@id values contain a numeric (sub)string that contains values that
increment withyeach new object creation, then use Lexical Numeric; otherwise, use Lexical.

Input: Thédesired setting.

Output:=The current setting.

NA A4 A4 baaliladANONL: YT aVY~YH")
.. 1.1 LDUITCUUICUVVLIOVNJCUGULI\WIITTITN
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The scheduledCDSObjectID@Iink contains a unique, vendor-defined link identifier that
unambiguously links its scheduled CDSObjectID property to a particular cdsReference property instance
within the same recordSchedule object. See Annex B.17, “ContentDirectory Service Imported
Properties” for details.

Default Value: N/A — Output only.
Sort Order: Same as cdsReference@link.

Input: N/A.

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) - 135 -

Output: The current setting.

B.4.2 scheduledChannellD
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The scheduledChannellD property provides channel information for the recordSchedule.
Its format depends on the scheduledChannellD@type property as follows:

If scheduledChannellD@type = “ANALOG” then the scheduled ChannellD property contains the
(analog) channel number.

Examples: “5”, “7”, etc.

If scheduledChannellD@type = “DIGITAL” then the scheduled ChannellD property contains the
(digital) channel number pair “<Major Channel Number>,<Minor Channel Number>".

Examples: “5,17, ©5,2”, etc.

If scheduledChannellD@type = “FREQUENCY” then the scheduledChannellD property eontains the
channel center frequency, expressed in Hz.

Examples: “150125000” (VHF band), “615000000” (UHF band), “96500000” (EM’band), etc.

If scheduledChannellD@type = “SI” then the scheduled ChannellD property,contains the Service
Information Triplet “<Network ID>,<Transport Stream ID>, <Service ID>"’;~embedded in the content
stream.

Examples: “0x1234,0xFEDC,0x0102”, “12345,23456,32109”, etc,

If scheduledChannellD@type = “LINE” then the scheduledChamiellD property contains a vendor-
defined label identifying the line input.

Examples: “Line 17, “AUX”, “Front”, “Rear”, etc.
p 2 2 2 9

If scheduledChannellD@type = “NETWORK” then the scheduledChannellD property contains the URI
that uniquely identifies the content to be recorded:

Examples: “http://upnp-server/streaml.mp2/”,
“http://internet/stream2.mp2/*

Default Value: N/A — Required on input.
Sort Order: fype Relationship.
“ANALOG”: Numeric.

“DIGITAL”: Sequencednumeric.
“FREQUENCY”; Numeric.

“SI”: Sequenced. lexical.

“LINE”: exical.

“NEFWORK”: Lexical.

Kendor-defined: Vendor-defined sorting.

Input: The desired setting.
Output: The current setting.

B.4.2.1 scheduledChannellD@type
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The scheduledChannellD@type property determines the format that is used for the
scheduledChannellD property as defined above.

Default Value: N/A — Required on input.

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

- 136 - 29341-4-14 © ISO/IEC:2008(E)

Sort Order: Property Specific, based on the order in Table B-13. Ascending: first table entry first. If
there is a single vendor-defined value, it sorts in table position. If there are multiple vendor-defined
values, they sort lexically among themselves, all after the Table B-13 entries in ascending order and all
before the Table B-13 entries in descending order.

Input: The desired setting.

Output: The current setting.

B.4.21.1 allowedValuelList for the scheduledChannellD@type Property

Table B-13: allowedValueList for the scheduledChannellD@type Property

Value R/O Description
“ANALOG” 0]
“DIGITAL” 0]
) At least one value in these rows MUST be
REQUENCY 0 supported by a compliant ScheduledRecording
wgp 0 service implementation. Control points should
— — support all values in these.rows.
“L]NE,’ Q
“NETWORK” 0]
Vendor-defined X

B.4.3 scheduledStartDateTime
Namespace: srs Property Data Typetxsd:string Multi-Valued: YES

Description: The scheduledStartDateTime property indicates what date or day(s) and time the
recording will take place. This property does not acceunt for any recording time adjustments such as
scheduledStartDateTimeAdjust, and device lateneies.

The sched-start format syntax of the séheduledStartDateTime property is defined in Annex D.

Examples: “02-07T15:30:00” (February 7", 3:30pm), “2005-02-07T15:30:00” (February 7™, 2005,
3:30pm), “MONT15:30:00” (Mondays at 3:30pm), “T15:30:00” (Every day at 3:30pm)

Recording(s) will occur on the next occurrence(s) of the specified date or day(s) and time until the total
number of desired recordings (as indicated by the fotalDesiredRecordTasks property) has been made.

Note that the scheduledStartDateTime property is a multi-valued property. Therefore, multiple
date× can be specified for the same recordSchedule. Recording will occur on every next
occurrence of any ofthe specified start date× until the total number of desired recordings (as
indicated by the tofalDesiredRecordTasks property) has been made.

See AnnexB.7.1, “totalDesiredRecordTasks” for further details on the use of the
totalDésiredRecordTasks property.

The'wvalue “NOW” is defined by this specification to indicate that the recording MUST start
immediately (as soon as possible).

Default Value: N/A — Required on input.
Sort Order: Property Specific, in chronological order.
Input: The desired setting.

Output: The current setting.

B.4.4 scheduledDuration
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) - 137 -

Description: The scheduledDuration property indicates the scheduled duration of the recording. The
duration format syntax of the scheduledDuration property is defined in Annex D.

Examples: “P01:30:00” (one hour and thirty minutes), “P2D01:15:00” (two-day and seventy five
minutes recording).

This property does not necessarily represent the exact recording duration but represents the scheduled
recording duration. This property does not account for any recording time adjustments such as
scheduledDurationAdjust, and device latencies.

Default Value: N/A — Required on input.

Sort Order: Property Specific, based on elapsed time. Ascending: shortest elapsed time first.

Input: The desired setting.
Output: The current setting.

B.4.5 scheduledProgramCode
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The scheduledProgramCode property indicates the program code previded by a program
guide service of a particular program item. The format of the program code is defined by the program
guide service. A scheduledProgramCode(@type property MUST be specified with this property to
identify the program guide service used.

Default Value: N/A — Required on input.
Sort Order: Sorting on this property is meaningless and will be ignored.
Input: The desired setting.

Output: The current setting.

B.4.5.1 scheduledProgramCode@type
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The scheduledProgramCodelatype property indicates the type of the program guide
service that defines the program code specified in the scheduledProgramCode property. The format of
this property is “<ICANN registeréd-domain>" “_” “<program code name>".

Example: “epg.com_GuideCode”.

Default Value: N/A — Required on input.

Sort Order: Sorting-on this property is meaningless and will be ignored.
Input: The desired’setting.

Output: The-current setting.

B.5 Matching Content Criteria Properties

Table B-14: Natching Content Criteria Properties

Property Name NS Data Type M-Val Reference
matchingName STS xsd:string NO Annex B.5.1
matchingName@type SIS xsd:string NO Annex B.5.1.1
matchingName@subStringMatch STS xsd:boolean NO Annex B.5.1.2
matchinglD STS xsd:string NO Annex B.5.2
matchingID@type STS xsd:string NO Annex B.5.2.1

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

- 138 - 29341-4-14 © ISO/IEC:2008(E)

B.5.1 matchingName
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The matchingName property contains (part of) the name of a program or series. To match
the criteria of this recordSchedule, an external item’s name information MUST (partially) match the
specified matchingName value. Matching SHOULD be done using lexical matching (see Section
2.2.2.27, “Lexical Matching”). It MAY be done using simple non-case-sensitive matching (see Section
2.2.2.29, “Simple Non-case-sensitive Matching”).

Example: “NFL Worldcup 2005”, “Friends”.
Default Value: N/A — Required on input.

Sort Order: Lexical.

Note: This is an exception to the normal rule of fype Relationship sorting. The equivalent of fype
Relationship sorting may be achieved by including “+srs :matchingName@type” in the sort
property list immediately in front of “+srs:matchingName”.

Input: The desired setting.

Output: The current setting.

B.5.1.1 matchingName@type
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: IF set to “PROGRAM”, then the matchingName propétty Contains a program name. If set
to “SERIES”, then the matchingName property contains a series fiarme.

Default Value: N/A — Required on input.
Sort Order: Property Specific, based on the order in Tdble"B-15. Ascending: first table entry first.
Input: The desired setting.

Output: The current setting.

B.5.1.1.1 allowedValueList forthe matchingName@type Property

Table B-15: allowedValueList for the matchingName@type Property

Value R/O Description
“PROGRAM” R
“SERIES” R

B.5.1.2 matchingName@subStringMatch
Namespace: srs Property Data Type: xsd:boolean Multi-Valued: NO

Description: If set to “/”, the value specified in the matchingName property is used for a substring
mateh search within the program or series name (title). If set to “0” the value specified in the

i/[ultl’lil[g 'v'umc plUpCl L_y ITIUSU IIldLbh LhC pl Ugl dlll OI' 5CI iCb Id111cC U)&dbLiy.
Default Value: “/”.

Sort Order: Boolean.

Input: The desired setting.

Output: The current setting.

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) -139 -

B.5.2 matchingID
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The matchingID property contains the unique ID of a program or series. To match the
criteria of this recordSchedule, an external item’s ID information MUST match the specified

matchingID value.

If the matchingID@type property is set to “SI_PROGRAMID”, then the matchingID property is
formatted as follows:

“<Network ID> <Transport Stream ID>,<Service ID>,<Program ID>".

If the matchingID@type property is set to “SI_SERIESID”, then the matchingID property is formatted

as tollows:

“<Network ID>,<Transport Stream ID>,<Service ID>,<Series ID>".

If the matchingID@type property is set to <ICANN Name>, then the matchingID property is formatted
as follows:

“<Unique content ID, defined by the data provider>".

Default Value: N/A — Required on input.

Sort Order: Sorting on this property is meaningless and will be ignored.
Input: The desired setting.

Output: The current setting.

B.5.2.1 matchinglD@type
Namespace: srs Property Data Typeixsd:string Multi-Valued: NO

Description: The matchingID@type property indicates.the type of the ID that is contained in the
matchingID property.
Default Value: N/A — Required on input.

Sort Order: Sorting on this property is m¢aningless and will be ignored.
Input: The desired setting.

Output: The current setting.

B.5.2.1.1 allowedValueList for the matchingID@type Property

Table B-16: allowedValueList for the matchingID@type Property

Value R/O Description

“SI_PRQGRAMID” R

“SI SERIESID” R

&JCANN Name>_ <lIdentifier> o <ICANN Name>: The ICANN name of the

organization that defines the format and values of
the matchinglD property.

<Identifier>: A unique identifier for the particular
ID type, defined by that organization.

Examples: “mycompany.com_ID1”,
“upnp.org_SpeciallD”.

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

- 140 - 29341-4-14 © ISO/IEC:2008(E)

B.6 Matching Qualifying Criteria Properties

Table B-17: Matching Qualifying Criteria Properties

Property Name NS Data Type M-Val Reference
matchingChannellD srs | xsd:string YES Annex B.6.1
matchingChannellD@type srs | xsd:string NO Annex B.6.1.1
matchingStartDateTimeRange srs | xsd:string YES Annex B.6.2
matchingDurationRange srs | xsd:string YES Annex B.6.3
matchingRatingLimit srs | xsd:string YES Annex B.6.4
matchingRatingLimit@type srs | xsd:string NO Annex B.6.42
matchingEpisodeType srs | xsd:string NO Annex B.6:5

B.6.1 matchingChannellD
Namespace: srs Property Data Type: xsd:string Multi-Valued: YES

Description: The matchingChannellD property contains a scheduled ChanngtlD'Walue. Its format
depends on the matchingChannellD@type property. To match the criteria/of'this recordSchedule, an
external item’s channel information (after translation into the format of-a\scheduledChannellD
property) MUST match one of the specified matchingChannellD values! If this property is omitted
from the recordSchedule, the external item’s channel information 1510t taken into consideration to
determine a match.

Default Value: N/A — Not used if omitted on input.
Sort Order: Same as scheduledChannellD.

Input: The desired setting.

Output: The current setting if specified on input. Otherwise not present.

B.6.1.1 matchingChanneflD@type
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The matchingCliannellD@tvpe property determines the format that is used for the
matchingChannellD propetty as defined in Annex B.4.2, “scheduledChannellD” and Annex B.4.2.1,
“scheduledChannellD@tvpe”.

Default Value: /A > Not used if omitted on input .
Sort Order:.Same as scheduledChannellD@type.

Input: The desired setting.

Output: The current setting if specified on input. Otherwise not present.

B.6.2 matchingStartDate imeRange
Namespace: srs Property Data Type: xsd:string Multi-Valued: YES

Description: The matchingStartDateTimeRange property contains a date range. The start-range
format syntax of the matchingStartDateTimeRange property is defined in Annex D.

The value specified after the “/” MUST be equal or greater than the value specified before the “/”.

To match the criteria of this recordSchedule, an external item’s start date and time information MUST
fall within one of the specified matchingStartDateTimeRange ranges. If this property is omitted from
the recordSchedule, the external item’s start date and time information is not taken into consideration to
determine a match.

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) -141 -

Note: The matchingStartDateTimeRange property is different from the activePeriod property in that
the first identifies the actual matching criteria whereas the second identifies the period of time when
potential matches are to be examined.

Default Value: N/A — Not used if omitted on input.

Sort Order: Sequenced Sort of two date&time subvalues separated by “/”.
Both subvalues are sorted in chronological order.

Input: The desired setting.

Output: The current setting if specified on input. Otherwise not present.

B.6.3 matchingDurationRange
Namespace: srs Property Data Type: xsd:string Multi-Valued:JES

The matchingDurationRange property contains a duration range. The duration-range fortat
syntax of the matchingDurationRange property is defined in Annex D.

The value specified after the “/” MUST be equal or greater than the value specified before the “/”.

To match the criteria of this recordSchedule, an external item’s duration information (after translation
into the format of a scheduledDuration property) MUST fall within the specified
matchingDurationRange range. If this property is omitted from the recordSchédule, the external item’s
duration information is not taken into consideration to determine a match,

Default Value: N/A — Not used if omitted on input.
Sort Order: Sequenced Sort of two duration subvalues separated, by “/”.
Input: The desired setting.

Output: The current setting if specified on input. Otherwise not present.

B.6.4 matchingRatingLimit
Namespace: srs Property Data Type: xsd:string Multi-Valued: YES

Description: The matchingRatingLimit\property indicates a maximum allowed rating. Several different
rating systems are available. The rating system is indicated in the matchingRatingLimit@type property.
The allowed values for the matchingRatingLimit property depend on the rating system used.

Common rating systems as(well as their allowed rating values (in order of ascending restriction level
beginning with the most lenient) for each rating system are defined below.

Other values MAY (be specified using other rating systems identified by their ICANN domain names.

To match the criteria of this recordSchedule, an external item’s rating information MUST be less than
or equal to alkof the specified matchingRatingLimit values. If this property is omitted from the
recordSahetule, the external item’s rating information is not taken into consideration to determine a
match.If the external item does not contain rating information and this property is specified, the
external item will not be recorded.

Defanlt Value: N/A — Not used if omitted on input

Sort Order: fype Relationship.

For each value of matchingRatingLimit@type, based on the order in the table associated with the
matchingRatingLimit@type property below. Ascending: first table entry first.

Input: The desired setting.

Output: The current setting if specified on input. Otherwise not present.

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

- 142 - 29341-4-14 © ISO/IEC:2008(E)

B.6.4.1 allowedValuelList for the matchingRatingLimit Property

The allowed values for the matchingRatingLimit property depends on the matchingRatingLimit@type
property. The following tables list the allowed values for each defined rating system.

Table B-18: allowedValueList for the matchingRatingLimit Property Using the MPAA
Rating System (matchingRatingLimit@type = “MPAA.ORG”)

Value R/O Description

“G” R General Audiences.

“PG” R Parental Guidance Suggested.
“PG-13” R Parents Strongly Cautioned.

“R” R Restricted.

“NC-17" R No One 17 and Under Admitted.
“NR” R Not Rated Yet.

Table B-19: allowedValueList for the matchingRatingLimit Property Using the RIAA
Rating System (matchingRatingLimit@type = “RIAA.ORG”)

Value R/O Description

=~}

Non-explicit Content

“PA-EC” R Parental Advisory — Explicit Content

Table B-20: allowedValueList for the matchingRatingLimit Property Using the ESRB
Rating System (matchingRatingLimit@type = “ESRB.ORG”)

Value R/O Description

“EC” R Early Childhood.

“E” R Everyone.

“E10+” R Everyone 10 and Older.
“r R Teen.

“M” R Mature.

“A40” R Adults Only.

“RP” R Rating Pending.

Table B-21; “allowedValueList for the matchingRatingLimit Property Using the
TVGUIDELINES Rating System (matchingRatingLimit@type =
“TVGUIDELINES.ORG”)

Value R/O Description

P piy Att-Chitdren:

“Iv-Yrs R Directed to Older Children.

“TV-Y7FV” R Directed to Older Children — Fantasy Violence.
“IV-G” R General Audience.

“TV-PG” R Parental Guidance Suggested.

“TV-14” R Parents Strongly Cautioned.

“IV-MA” R Mature Audience Only.

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) - 143 -

B.6.4.2 matchingRatingLimit@type
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The matchingRatingLimit@type property indicates the rating system used in the
matchingRatingLimit property. Several different rating systems are available. The allowed values for
the matchingRatingLimit property depend on the rating system used.

Other rating systems MAY be specified using their ICANN domain names.

This is not a matching property. It is used in conjunction with the matchingRatingLimit property and
identifies the used rating system.

Default Value: N/A — Required in input.

Sort Order: Lexical.
Input: The desired setting.

Output: The current setting.

B.6.4.2.1 allowedValueList for the matchingRatingLimit@type Property

Table B-22: allowedValueList for the matchingRatingLimit@type Property

Value R/O Description Remarks
“MPAA.ORG” [0) The Motion Picture
Association of America, At least one value in these row:
“RIAA.ORG” O | The Recording Industry MUST be supported by a
Association of Afierica. compliant ScheduledRecording
- service implementation. Contrg
“ESRB.ORG” o The Entertainment points should support all value
Software Rating Board. in these rows.
“TVGUIDELINES.ORG” 0] TV Patental Guidelines.
<ICANN Name>_<lIdentifier> | X <ICANN Name>: The
ICANN name of the
organization that defines
the rating.

<Identifier>: A unique
identifier for a particular
rating system, defined by
that organization.

Examples:
“mycompany.com_RS1”,
“upnp.org_ratingx”.

B.6.5 matchingEpisodeType
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The matchingEpisodeType property indicates the type of content to be recorded in terms
of its broadcast novelty. To match the criteria of this recordSchedule, an external item’s episode type
information MUST match the specified matchingEpisodeType value. If this property is omitted from
the recordSchedule, the external item’s episode type information is not taken into consideration to
determine a match. If the external item does not contain episode type information and this property is
specified, the external item will not be recorded.

Default Value: N/A — Not used if omitted on input.
Sort Order: Property Specific, based on the order in Table B-23. Ascending: first table entry first.
Input: The desired setting.

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

- 144 - 29341-4-14 © ISO/IEC:2008(E)

Output: The current setting if specified on input. Otherwise not present.

B.6.5.1 allowedValuelList for the matchingEpisodeType Property

Table B-23: allowedValueList for the matchingEpisodeType Property

Value R/O Description

“ALL” R All programs are recorded.

“FIRST-RUN” R Only programs that have an original air date equal
to the current date are recorded.

“REPEAT” R Only programs that have an original air date

earlier than the current date are recorded.

B.7 Content Control Properties

Table B-24: Content Control Properties

Property Name NS Data Type M-Val Reference
totalDesiredRecordTasks srs | xsd:unsignedInt | N@ Annex B.7.1
scheduledStartDateTimeAdjust STS xsd:string NO Annex B.7.2
scheduledDurationAdjust STS xsd:string NO Annex B.7.3
activePeriod STS xsd:string NO Annex B.7.4
durationLimit STS xsd:String NO Annex B.7.5
durationLimit@effect srs | xsd:string NO Annex B.7.5.1
channelMigration SIS xsd:boolean NO Annex B.7.6
timeMigration STS xsd:boolean NO Annex B.7.7
allowDuplicates STS xsd:boolean NO Annex B.7.8

B.7.1 totalDesiredRecordTasks
Namespace: srs Property Data Type: xsd:unsignedInt Multi-Valued: NO

Description: The rotalResiredRecordTasks property indicates the maximum number of recordTask
instances, associated-with a given recordSchedule that will ever be generated over the lifetime of the
recordSchedule. (A ydlue of 0 means that an unlimited number of recordTask instances can be spawned
from the recortdSchedule.

This propetty is used to enable or disable recurrence. If a value different from 1 is specified in the
totalDésirédRecordTasks property, then the recordSchedule MUST remain active after the first
recdrdiFask has been spawned and MUST monitor its internal state to determine if the conditions that
caudsed the first recordTask to be spawned are met again in the future. Whenever this happens, a new

recor (/ZTLL\I,\ IVIUST bC bdellCd l,llltil lllC lULdl llullleI Uf bdellCd recurdTa»k illdellLCb ICdL‘lle LilC
value, specified in the fotalDesiredRecordTasks property. The activePeriod property can be used to
terminate this process prematurely.

Default Value: 1 (recurrence is disabled by default).
Sort Order: Numeric.
Input: The desired setting.

Output: The current setting.

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) - 145 -

B.7.2 scheduledStartDateTimeAdjust
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The scheduledStartDateTimeAdjust property indicates a time period to be applied as an
adjustment to the scheduled start time. The duration-adj format syntax of the
scheduledStartDateTimeAdjust property is defined in Annex D.

Note that the scheduledStartDateTimeAdjust property can take on both positive and negative values.
Negative values provide pre-roll functionality (notice the + sign in the formula below) whereas positive
values allow for starting the recording a certain period of time into the recording. The actual scheduled
start time is calculated as:

[ScheduledSiarDateTi — ccheduledSiarDateTi heduledSiarDateTi I
Default Value: Vendor-defined.

Sort Order: Property Specific, based on elapsed time. Ascending: from longest negative elapsed time
to longest positive elapsed time.

Input: The desired setting.

Output: The current setting.

B.7.3 scheduledDurationAdjust
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The scheduledDurationAdjust property indicates a pefiod of time to be applied as an
adjustment to the scheduled duration time. The duration-ad¥ format syntax of the
scheduledDurationAdjust property is defined in Annex D.

Note that the scheduledDurationAdjust property can takeyon/both positive and negative values. Positive
values provide post-roll functionality whereas negative values allow for ending the recording a certain
time period before the end of the recording. The actual'scheduled end time and actual scheduled
duration are calculated as:

actualScheduledEndDateTime = schedulédStartDateTime + scheduledDuration +
schéduledDurationAdjust

actualScheduledDuration = _ actualScheduledEndDateTime — actualScheduledStartDateTime

= scheduledDuration + scheduledDurationAdjust —
scheduledStartDateTimeAdjust

Default Value: Vendor-defined.

Sort Order: Property, Specific, based on elapsed time. Ascending: from longest negative elapsed time
to longest positivie elapsed time.

Input: The desired setting.

Output;\The current setting.

B7.4 activePeriod
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The activePeriod property indicates the date&time range within which the
recordSchedule is active; that is: the recordSchedule MUST NOT spawn any recordTask instances
whose actualStartDateTime fall outside the period specified in the activePeriod property. The start -
range format syntax of the activePeriod property is defined in Annex D.

The value specified after the “/” MUST be equal or greater than the value specified before the “/”.

A recordSchedule MUST not generate new recordTask instances for programs broadcast after the
expiration date.

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

- 146 - 29341-4-14 © ISO/IEC:2008(E)

Note: The activePeriod property is different from the matchingStartDateTimeRange property in that
the first identifies the period of time when potential matches are to be examined whereas the second
identifies the actual matching criteria.

Default Value: “NOW/INFINITY”.

Sort Order: Sequenced Sort of two date&time subvalues separated by “/”.
Both subvalues are sorted in chronological order.

Input: The desired setting.

Output: The current setting.

B.7.5 durationLimit
Namespace: srs Property Data Type: xsd:string Multi-Valued:AO

Description: The durationLimit property indicates the maximum allowed duration of the recording.
The duration-long format syntax of the durationLimit property is defined in Annex B,

If the actual duration of the recording exceeds the value specified in the durationLimit property, then
the ScheduledRecording service MUST stop recording and either delete the partiallyyrecorded content
so far or preserve part of the recorded content depending on the current setting ©f the
durationLimit@effect property.

If the durationLimit property is set to “/NFINITY”, then no limit is in effeet

Example: the value “P02:30:00” indicates that the recording MUST be stopped after two and a half
hours.

Default Value: Vendor-defined.
Sort Order: Property Specific, based on elapsed time. Ascénding: shortest elapsed time first.
Input: The desired setting.

Output: The current setting.

B.7.5.1 durationLimit@effect
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The durationLimit@effect property determines the behavior of the recordSchedule when
the duration of the content gxceeds the value specified in the durationLimit property.

If set to “SKIP”, then the partially recorded content is deleted once the actualDuration of the recording
exceeds the value specified in the durationLimit property.

If set to “LAST, 'then only the latest part (in length equal to the value specified in the durationLimit
property) of-the.content is preserved, effectively deleting the first part of the recording.

If set to $FIRST”, then only the initial part (in length equal to the value specified in the durationLimit
property) of the content is preserved, effectively deleting the last part of the recording.

DPefault Value: Vendor-defined.

Sort Order: Property Specific, based on the order in Table B-25. Ascending: first table entry first.
Input: The desired setting.
Output: The current setting.

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) - 147 -

B.7.5.1.1 allowedValuelList for the durationLimit@effect Property

Table B-25: allowedValueList for the durationLimit@effect Property

Description
SKIP o At least one value in these rows MUST be
“LAST” @) supported. Control points should support all
«<FIRST" 0 values in these rows.
B.7.6 channelMigration
Namespace: srs Property Data Type: xsd:boolean Multi-Valued: NO

Description: A program’s scheduled channel may change between the time the recordSchedule was
created and the actual broadcast time. If this property is set to “/”, then the ScheduledRecording s€rvice
MUST automatically follow the program if it moves to another channel (The reservation will'be
tracking broadcast channel change). If this value is set to “0”, then the ScheduledRecording service
does not follow the program, and the recording will take place on the channel that was specified at the
time the recordSchedule created the accociated recordTask.

Default Value: Vendor-defined.
Sort Order: Boolean.
Input: The desired setting.

Output: The current setting.

B.7.7 timeMigration
Namespace: srs Property Data Type: xsd:boolean Multi-Valued: NO

Description: A program’s scheduled date&time may change between the time the recordSchedule was
created and the actual broadcast time. If this pteperty is set to “/”, then the ScheduledRecording service
MUST automatically follow the program if\it moves to another date&time (The reservation will be
tracking broadcast date&time change). If\this value is set to “0”, then the ScheduledRecording service
does not follow the program, and the.recording will take place at the date&time that was specified at the
time the recordSchedule created the.accociated recordTask.

Default Value: Vendor-defined-
Sort Order: Boolean.

Input: The desired/setting.
Output: The current setting.

B.7.8.\" allowDuplicates
Nariespace: srs Property Data Type: xsd:boolean Multi-Valued: NO

Description: et to “/” then programs are recorded, even if a duplicate program has already be
recorded as a result of the recordSchedule. If set to “0”, no duplicates are recorded. Detection of
duplicate programs is device- and EPG-dependent.

Default Value: Vendor-defined.

Sort Order: Boolean.
Input: The desired setting.

Output: The current setting.

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

- 148 - 29341-4-14 © ISO/IEC:2008(E)

B.8 Storage Related Properties

Table B-26: Storage Related Properties

Property Name NS Data Type M-Val Reference
persistedRecordings srs | xsdrunsignedInt | NO Annex B.8.1
persistedRecordings@latest srs | xsd:boolean NO Annex B.8.1.1
persistedRecordings@preAllocation srs | xsd:boolean NO Annex B.8.1.2
persistedRecordings@storedLifetime srs | xsd:string NO Annex B.8.1.3

B.8.1 persistedRecordings
Namespace: srs Property Data Type: xsd:unsignedInt Multi-Valued; NO

Description: The persistedRecordings property indicates the minimum number of recordings\for a
given recordSchedule that will be preserved at all times, once available. Even when the
ScheduledRecording service needs to make space for other recordings, this minimumnumber of
recordings (that is: the actual content) generated by the recordSchedule will not befdeleted. However, if
more recordings, associated with the recordSchedule exist, then these excess recordings MAY be
deleted by the ScheduledRecording service. Whether the oldest or the newest excess recordings will be
deleted depends on the value of the persistedRecordings@latest property:

Default Value: Vendor-defined.

Sort Order: Numeric.
Input: The desired setting.

Output: The current setting.

B.8.1.1 persistedRecordings@Iatest
Namespace: srs Property Data Type: xsd:boolean Multi-Valued: NO

Description: The persistedRecordings@latest property indicates whether newest or oldest recordings
are preserved. If set to “/”, then the newest recordings are preserved. The recordings prior to these
MAY be deleted when more recent eontent is recorded.

If set to “0”, then the oldest récordings are preserved. Older content will never be deleted to make room
for newer content.

Default Value: Vender-defined.
Sort Order: Boolean.
Input: The desired setting.

Output:(The current setting.

B:8:1.2 persistedRecordings@preAllocation

Namespace: srs Property Data Type: xsd:boolean Multi-Valued: NO

Description: The persistedRecordings@preAllocation property indicates whether to reserve storage
space on beforehand to accommodate for the number of recordings as indicated by the
persistedRecordings property. If set to “1”, adequate storage space is reserved. To reserve storage
space, the ScheduledRecording service calculates a best estimate based on parameters such as record
quality, start time and duration adjustment etc. However, the ScheduledRecording service can never
guarantee that sufficient storage space is reserved to accommodate the total number of recordings,
specified in the persistedRecordings property. If set to “0”, no storage space is reserved.

Default Value: Vendor-defined.

Sort Order: Boolean.

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) - 149 -

Input: The desired setting.

Output: The current setting.

B.8.1.3 persistedRecordings@storedLifetime
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The persistedRecordings@storedLifetime property indicates the minimum time recorded
content associated with a recordSchedule will be preserved after the recording completes. This will
prohibit a recording from being deleted by the auto-delete operation within the specified time period.
The duration-any format syntax of the persistedRecordings(@storedLifetime property is defined in
Annex D

If the value is set to “/NFINITY”, then the content MUST never be automatically deleted.

A value of “4NY” indicates that the content can be deleted at any time by the auto-delete operation,
However, it is RECOMMENDED that a ScheduledRecording service implementation only deletes
content when space is needed.

Default Value: Vendor-defined.

Sort Order: Property Specific, based on elapsed time. Ascending: shortest elapsédtime first. “ANY” is
considered the shortest elapsed time possible; “/NFINITY” is considered the longest elapsed time
possible.

Input: The desired setting.

Output: The current setting.

B.9 Schedule State Properties

Table B-27: Schedule State Properties

Property Name NS Data Type M-Val Reference
scheduleState STS xsd:string NO Annex B.9.1
scheduleState@currentErrors STS CSV (xsd:int) NO Annex B.9.1.2
abnormalTasksExist SIS xsd:boolean NO Annex B.9.2

B.9.1 scheduleState
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: Thes¢heduleState property indicates the overall state of the recordSchedule itself.
Default Value:iN/A — Output only.

Sort Order: Property Specific, based on the order in Table B-28. Ascending: first table entry first.
Inpat;)N/A.

Output: The current setting.

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

- 1560 - 29341-4-14 © ISO/IEC:2008(E)

B.9.1.1 allowedValuelList for the scheduleState Property

Table B-28: allowedValueList for the scheduleState Property

Value R/O Description

“OPERATIONAL” R recordSchedule is operating and spawning
recordTask instances as scheduled.

“COMPLETED” R recordSchedule is completed and reached final
disposition. No properties will change.

“ERROR” R recordSchedule ceases spawning recordTask
IMSTances due 1o error-

B.9.1.2 scheduleState@currentErrors

Namespace: srs Property Data Type: CSV (xsd:int) Multi-Valued: NO

Description: The scheduleState(@currentErrors property indicates the current error(s) that‘cause the
schedule to be in the “£RROR” state. This error list pertains specifically to the behavior'of a
recordSchedule and describes a recordSchedule’s inability to create new tasks. Wlien the srs
scheduleState property has the value “OPERATIONAL”, the scheduleState(@curyentErrors property
MUST be empty. The list of error codes are listed in the recordSchedule error code section.

Default Value: N/A — Output only.

Sort Order: Sequenced Numeric.
Input: N/A.

Output: The current setting.

B.9.1.2.1 allowedValueList for the scheduleState@currentErrors Property

Table B-29: allowedValueList for the sCheduleState@currentErrors Property

Value R/O Description

0-99 N/A Reserved

100 R Gengral error — an error is detected but the cause can not be identified.

101 o The number of spawned recordTask instances has reached some device
dependent limit.

102 O EPG information not available.

103 [0) recordSchedule is disabled by the user.

104 @) Insufficient memory — The system does not have enough system memory to
create any additional recordTask instances.

105 @) General resource error — some system related resource is causing the
recordSchedule to malfunction

106-149 0] Reserved for future recordSchedule error codes.

150-199 X Vendor extended recordSchedule error codes.

200 and above N/A Reserved for future extensions.

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) - 1561 -

B.9.2 abnormalTasksExist
Namespace: srs Property Data Type: xsd:boolean Multi-Valued: NO

Description: If this property is set to “/”, then that indicates that at least one abnormal recordTask
exists for the recordSchedule. If this property is set to “0”, then no abnormal recordTask exists for the
recordSchedule. A recordTask is considered abnormal if it reaches any state other than “/DLE.READY”,
“ACTIVE.RECORDING.FROMSTART.OK” or “DONE.FULL”.

Default Value: N/A — Output only.

Sort Order: Boolean.

Input: N/A.

Output: The current setting.

B.10 Statistics Properties

Table B-30: Statistics Properties

Property Name NS Data Type M-Val Reference

currentRecordTaskCount srs | xsd:unsignedInt | NO Annex B.10.1
totalCreatedRecordTasks srs | xsd:unsignedInt |\NO Annex B.10.2
totalCompletedRecordTasks STS xsd:unsignedInt NO Annex B.10.3

B.10.1 currentRecordTaskCount
Namespace: srs Property Data Typehxsd:unsignedInt Multi-Valued: NO

Description: The currentRecordTaskCount property indicates the number of existing recordTask
instances that are currently associated with a given‘kecordSchedule. Previously generated recordTask
instances that have finished recording and that have been (auto-)deleted by the ScheduledRecording
service are not taken into account.

Default Value: N/A — Output only.
Sort Order: Numeric.
Input: N/A.

Output: The current setting.

B.10.2 totalCreatedRecordTasks
Namespace: sfs Property Data Type: xsd:unsignedInt Multi-Valued: NO

Description; The fofalCreatedRecordTasks property indicates how many recordTask instances have
been created during the lifetime of the associated recordSchedule. This includes previously generated
recdrdiFask instances that have finished recording and that have been (auto-)deleted by the
ScheduledRecording service.

Default Value: N/A — Output only.
Sort Order: Numeric.
Input: N/A.

Output: The current setting.

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

- 1562 - 29341-4-14 © ISO/IEC:2008(E)

B.10.3 totalCompletedRecordTasks
Namespace: srs Property Data Type: xsd:unsignedInt Multi-Valued: NO

Description: The fotalCompletedRecordTasks property indicates how many recordTask instances have
been completed (that is: reached any of the “DONE.xxx” states, during the lifetime of the associated
recordSchedule. This includes previously generated recordTask instances that have finished recording
and that have been (auto-)deleted by the ScheduledRecording service.

Default Value: N/A — Output only.

Sort Order: Numeric.

Input: N/A.

Output: The current setting.

B.11 Task General Properties

Table B-31: Task General Properties

Property Name NS Data Type M-Val Reference
recordSchedulelD srs | xsd:string NO Annex B.11.1
recordedCDSObjectID srs | xsd:string NO Annex B.11.2
recordedCDSObjectID@link SIS xsd:string NO Anmnex B.11.2.1

B.11.1 recordSchedulelD
Namespace: srs Property Data Typehxsd:string Multi-Valued: NO

Description: The recordSchedulelD property contaifisithe value of the @id property of the
recordSchedule that generated the recordTask.

Default Value: N/A — Output only.
Sort Order: Lexical or Lexical Numeric,

Each implementation SHOULD use thé sort method most appropriate for its method of generating @id
values. If @id values contain a numeric (sub)string that contains values that increment with each new
object creation, then use Lexical Numeric; otherwise, use Lexical.

Input: N/A.

Output: The current setting.

B.11.2 recordedCDSObjectiD
Namespaee: sts Property Data Type: xsd:string Multi-Valued: NO

Description: The recordedCDSObjectID property contains the didl-lite:(@id property value of the
ContentDirectory service object that represents the content recorded by the recordTask.

erauit value. N/ A — ULleLl[01’11}’.
Sort Order Lexical or Lexical Numeric.

Each implementation SHOULD use the sort method most appropriate for its method of generating
didl-lite:(@id values. If didl-lite:(@id values contain a numeric (sub)string that contains values that
increment with each new object creation, then use Lexical Numeric; otherwise, use Lexical.

Input: N/A.

Output: The current setting.

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) - 1563 -

B.11.2.1 recordedCDSObjectiD@link
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The recordedCDSObjectID@link contains a unique, vendor-defined link identifier that
unambiguously links its recordedCDSObjectID property to a particular cdsReference property instance
within the same recordTask object. See Annex B.17, “ContentDirectory Service Imported Properties™
for details.

Default Value: N/A — Output only.
Sort Order: Same as cdsReference(@link property.
Input: N/A.

Output: The current setting.

B.12 Task Content Identification Properties

Table B-32: Task Content Identification Properties

Property Name NS Data Type M-Val Reference
taskCDSObjectID srs | xsd:string NO Annex B.12.1
taskCDSObjectID@link srs | xsd:string NO Annex B.12.1.1
taskChannellD srs | xsd:string NO Annex B.12.2
taskChannellD@type srs | xsd:string NO Annex B.12.2.1
taskStartDateTime srs | xsd:string NO Annex B.12.3
taskDuration srs | xsdéstring NO Annex B.12.4
taskProgramCode srs \xsd:string NO Annex B.12.5
taskProgramCode@type Srs~ | xsd:string NO Annex B.12.5.1
recordQuality srs | xsd:string YES Annex B.12.6
recordQuality@type srs | xsd:string NO Annex B.12.6.2

B.12.1 taskCDSObjectiD
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The tasECDSObjectID property contains the didl-lite@id property value of the
ContentDirectory-service object from which relevant metadata information was extracted to create the
recordSchedule that generated this recordTask.

Default Value: N/A — Output only.
Sort Order: Lexical or Lexical Numeric.

Each implementation SHOULD use the sort method most appropriate for its method of generating
1€ Jo J1 -4 O 3

ALY I I P i 1 <L 1 s PP e PR VN that £ 1 that
ararrite it vargCSTIT qiarrire ot v arg eSS Cotrta i a M e e S oy St g tiar cottas T varasar

increment with each new object creation, then use Lexical Numeric; otherwise, use Lexical.
Input: N/A.

Output: The current setting.

B.12.1.1 taskCDSObjectiID@link
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The taskCDSObjectID@link contains a unique, vendor-defined link identifier that
unambiguously links its taskCDSObjectID property to a particular cdsReference property instance

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

- 154 - 29341-4-14 © ISO/IEC:2008(E)

within the same recordTask object. See Annex B.17, “ContentDirectory Service Imported Properties”
for details.

Default Value: N/A — Output only.
Sort Order: Same as cdsReference(@link property.
Input: N/A.

Output: The current setting.

B.12.2 taskChannellD
.N.amespam- SLS Drnpnrty Data |¥pe- de'St;-].Hg Multi-Valued: NQ

Description: The taskChannellD property indicates the actual channel that is used for the recording(Its
format depends on the taskChannellD@type property. The possible formats and the dependencyyon.the
taskChannellD(@type property are identical to the possible formats of the scheduledChannellD. and its
dependency on the scheduledChannellD@type property as described in Annex B.4.2,
“scheduledChannellD” and Annex B.4.2.1, “scheduledChannellD@type”.

Default Value: N/A — Output only.
Sort Order: Same as scheduledChannellD property.
Input: N/A.

Output: The current setting.

B.12.2.1 taskChannellD@type
Namespace: srs Property Data Type;xsd:string Multi-Valued: NO

Description: The taskChannellD@type property determines the format that is used for the
taskChannellD property as defined above. See AnnexyB.4.2.1, “scheduledChannellD@type” for details
and allowed values.

Default Value: N/A — Output only.
Sort Order: Same as scheduledChannellD(@type property.
Input: N/A.

Output: The current setting.

B.12.3 taskStartDateTime
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The taskStartDateTime property indicates the actual start date&time (based on the current
information)Xof the recording. This date&time does not include any adjustments. These are reflected in
the taskStariDateTimeAdjust property. The date-time format syntax of the taskStartDateTime
property is defined in Annex D.

Default Value: N/A — Output only.

Sort Order: Property Specific, in chronological order.
Input: N/A.

Output: The current setting.

B.12.4 taskDuration
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The taskDuration property indicates the actual duration (based on the current
information) of the recording. This duration does not include any adjustments. These are reflected in

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) - 1565 -

the taskDurationAdjust property. The durat ion format syntax of the taskDuration property is
defined in Annex D.

Default Value: N/A — Output only.
Sort Order: Property Specific, based on elapsed time. Ascending: shortest elapsed time first.
Input: N/A.

Output: The current setting.

B.12.5 taskProgramCode

Description: The taskProgramCode property indicates the actual program code that is used for the
recording. The format is identical to the format of the scheduledProgramCode property. See Annex
B.4.5, “scheduledProgramCode” for details.

Default Value: N/A — Output only.

Sort Order: Sorting on this property is meaningless and will be ignored.
Input: N/A.
Output: The current setting.

B.12.5.1 taskProgramCode@type
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The taskProgramCode(@type property indicatés'the type of the program guide service that
defines the program code specified in the taskProgramCede/property. The format is identical to the
format of the scheduledProgramCode(@type propertysSée Annex B.4.5.1,
“scheduledProgramCode(@type” for details.

Default Value: N/A — Output only.

Sort Order: Sorting on this property is meaningless and will be ignored.
Input: N/A.

Output: The current setting.

B.12.6 recordQuality
Namespace: srs Property Data Type: xsd:string Multi-Valued: YES

Description: Th¢ recordQuality property expresses the recording quality level that is used for a
particular recordZask.

When thexécordTask is in the “IDLE” phase (the actual recording has not started yet), this property
contains\a-best-known estimate of the recording quality for the recording. Therefore, the recordQuality
property MUST contain one of the vendor-defined values supported by the ScheduledRecording
service. The value “4UTO” is not allowed. If the implementation does not have enough information to
-gencrate a value witll Some accuracy, then the value ~UNKNOWN - MUST be used.

When the recordTask is in the “ACTIVE” or “DONE” phase, the recordQuality property MUST contain
one of the values supported by the implementation, that describes the actual recording quality. The
values “AUT0O” and “UNKNOWN” are not allowed.

There are many ways to express recording quality. Some implementations use bitrates, some use user-
friendly labels etc. Some implementations might even support multiple ways to express recording
quality simultaneously. The recordQuality property is used in conjunction with the recordQuality@type
to allow implementations to express these type variations.

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

- 156 - 29341-4-14 © ISO/IEC:2008(E)

For each type variation, the allowed values for the recordQuality property MUST be the same as the
allowed values supported for the corresponding type variation of the desiredRecordQuality property,
except that “UNKNOWN?” replaces “AUTO”.

Note that the recordQuality property is a multi-valued property. Therefore, the actual recording quality
level can be expressed using different type variations simultaneously. As a baseline, all implementations
MUST support type variation “DEFAULT”. All record quality levels expressed in a certain type
variation MUST have equivalent quality levels expressed in all other type variations, supported by the
implementation. If an implementation supports multiple type variations to express recording quality,
then it MUST provide the recording quality level expressed in all supported type variations.

Example: Assume a (hypothetical) implementation that supports the type variations “DEFAULT”,

CATSC” and “OILEVEL” for the recordQualitv@ivne property The Fnﬂnvving table expresses the

supported recordQuality property values for those variations and also indicates how the different type
variations interrelate for this particular implementation:

Table B-33: recordQuality Example

“1080p30~
601080p24’7 6$Q],’
“1080i60”

“HD”

“720p60”
60720p30’7 G‘QZ”
“720p24”

“ED” “480p60”
“480p30”
“SD” “480p24%
“480160”
“UNKNOWN” SUNKNOWN” “UNKNOWN”

“Qj”

e Assuming the actual reeording quality of a recordTask is “720p60” (as an example), then the
recordTask object MUST include three instances of the recordQuality property as illustrated
by the following XML fragment:

<recordQualtity type="DEFAULT">HD</recordQualitys>
<recordQuality type="ATSC">720p60</recordQuality>
<recoxdQuality type="QLEVEL">Q2</recordQuality>

e AsSuming the actual recording quality of a recordTask is “480p60”, then the recordTask
opject MUST include three instances of the recordQuality property as illustrated by the
following XML fragment:

<recordQuality type="DEFAULT">ED</recordQuality>

<crecordOuali Ly types"ATSCN-480p60c /recordOuali tyz
<recordQuality type="QLEVEL">Q3</recordQuality>

When the ScheduledRecording service responds to a GetdllowedValues() action with recordQuality
information, then the allowed values MUST be listed in order of quality from highest quality to lowest.

Default Value: N/A — Output only.
Sort Order: fype Relationship.
Input: N/A.

Output: The current setting.

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) - 1567 -

B.12.6.1 allowedValuelList for the recordQuality Property
Table B-34: allowedValueList for the recordQuality Property

Value R/O Description

“UNKNOWN” R The recording quality is unknown by the
ScheduledRecording service. Only applicable
when the recordTask is in the “/DLE” phase.

Vendor-defined X

R 42 6 9 PN T aYTPN H IV Y TWIZ V-

L T4 U4 IAA A IR A 4L IILDA\ZAY S "4

Namespace: srs Property Data Type: xsd:string Multi-Valued: N

Description: There are many ways to express recording quality. Some implementations use bitrates,
some use user-friendly labels etc. Some implementations might even support multiple ways to express
recording quality simultaneously. The recordQuality(@type property is used to express which type
variation is used in its associated independent recordQuality property. The “DEFAULT’~alue MUST
be supported.

Default Value: N/A — Output only.

Sort Order: Sorting on this property is meaningless and will be ignored.
Input: N/A.

Output: The current setting.

B.13 Task Matched Content Criteria Properties

Table B-35: Task Matched Content Criteria Properties

Property Name NS Data Type M-Val Reference
matchedName srs | xsd:string NO Annex B.13.1
matchedName@type srs | xsd:string NO Annex B.13.1.1
matchedID srs | xsd:string NO Annex B.13.2
matchedID@type srs | xsd:string NO Annex B.13.2.1

B.13.1 matchedName
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description:“Fhe matchedName property contains the full matched name of a program or series. This is
the full pregram or series name of the external item that (partially) matched the name specified in the
matchingName property of the recordSchedule.

Défault Value: N/A — Output only.

Sort OTder: Same as maic/ingName property.
Input: N/A.

Output: The current setting.

B.13.1.1 matchedName@type
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: IF set to “PROGRAM”, then the matchedName property contains a program name. If set
to “SERIES”, then the matchedName property contains a series name. The format is identical to the
format of the matchingName@type property. See Annex B.5.1.1, “matchingName@type” for details.

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

- 1568 - 29341-4-14 © ISO/IEC:2008(E)

Default Value: N/A — Output only.
Sort Order: Same as matchingName(@type property.
Input: N/A.

Output: The current setting.

B.13.2 matchedID
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Descrlptlon The matchedID property contams the matched ID of a program or series. This is the ID of

format is 1dent1cal to the format of the matc hmg]D property See Annex B 5 2,¢ natclnngl for
details.

Default Value: N/A — Output only.
Sort Order: Sorting on this property is meaningless and will be ignored.
Input: N/A.

Output: The current setting.

B.13.2.1 matchedID@type
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The matchedID@type property indicates the type of the ID that is contained in the
matchedID property. The format of this property is identical to the format of the matchingID@type
property. See Annex B.5.2.1, “matchingID@type” for details:

Default Value: N/A — Output only.

Sort Order: Sorting on this property is meaningless.and will be ignored.
Input: N/A.

Output: The current setting.

B.14 Task Matched Qualifying Criteria Properties

Table B-36: Task Matched Qualifying Criteria Properties

Property Name NS Data Type M-Val Reference

matchedRating STS xsd:string YES Annex B.14.1
matchedRatingtdtype SIS xsd:string NO Annex B.14.2
matchedEpisodeType STS xsd:string NO Annex B.14.3

B14.1 matchedRating
Namespace: srs Property Data Type: xsd:string Multi-Valued: YES

Description: The matchedRating property contains the actual rating of the recording. This is the rating
of the external item that matched (was less or equal to) a rating limit specified in one of the
matchingRatingLimit properties of the recordSchedule. The format is identical to the format of the
matchingRatingLimit property. See Annex B.6.4, “matchingRatingLimit for details.

Default Value: N/A — Output only.

Sort Order: Same as matchingRatingLimit property.
Input: N/A.

Output: The current setting.

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) - 159 -

B.14.2 matchedRating@type
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The matchedRating(@tvpe property indicates the rating system used in the matchedRating
property. The format is identical to the format of the matchingRatingLimit@tvpe property. See Annex
B.6.4.2, “matchingRatingLimit@type” for details.

Default Value: N/A — Output only.
Sort Order: Same as matchingRatingLimit@type property.
Input: N/A.

Output:-The current-setting
=]

B.14.3 matchedEpisodeType
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The matchedEpisodeType property contains the actual episode type of the re¢ording. This
is the episode type of the external item that matched episode type specified in the matchingEpisodeType
property of the recordSchedule. The format is identical to the format of the matchineFEpisodeType
property. See Annex B.6.5, “matchingEpisodeType” for details.

Default Value: N/A — Output only.
Sort Order: Same as matchingEpisodeType property.
Input: N/A.

Output: The current setting.

B.15 Task Matched Content Control Properties

Table B-37: Task Matched Content Control Properties

Property Name NS Data Type M-Val Reference

taskStartDateTimeAdjust srs | xsd:string NO Annex B.15.1
taskDurationAdjust srs | xsd:string NO Annex B.15.2
taskDurationLimit srs | xsd:string NO Annex B.15.3
taskDurationLimit@effect srs | xsd:string NO Annex B.15.4
taskChannelMigrafion srs | xsd:boolean NO Annex B.15.5
taskTimeMigration srs | xsd:boolean NO Annex B.15.6

B.15.4\. taskStartDateTimeAdjust

Namespace: srs Property Data Type: xsd:string Multi-Valued: NO
Ilescniption‘ The taskStartDate Time Adiust p;g_peﬁe; is-set to the value of the

scheduledStartDateTimeAdjust property of the parent recordSchedule. The format is identical to the
format of the scheduledStartDate TimeAdjust property. See Annex B.7.2,
“scheduledStartDateTimeAdjust” for details.

Default Value: N/A — Output only.
Sort Order: Same as scheduledStartDateTimeAdjust property.
Input: N/A.

Output: The current setting.

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

- 160 - 29341-4-14 © ISO/IEC:2008(E)

B.15.2 taskDurationAdjust
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The taskDurationAdjust property is set to the value of the scheduledDurationAdjust
property of the parent recordSchedule. The format is identical to the format of the
scheduledDurationAdjust property. See Annex B.7.3, “scheduledDurationAdjust” for details.

Default Value: N/A — Output only.

Sort Order: Same as scheduledDurationAdjust property.
Input: N/A.

Output:-The current-setting
=]

B.15.3 taskDurationLimit
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

The taskDurationLimit property is set to the value of the durationLimit property of the parent
recordSchedule. The format is identical to the format of the durationLimit property. SeerAnnex B.7.5,
“durationLimit” for details.

Default Value: N/A — Output only.

Sort Order: Same as durationLimit property.
Input: N/A.

Output: The current setting.

B.15.4 taskDurationLimit@effect
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

The taskDurationLimit@effect property is set to the value of the durationLimit@effect property of the
parent recordSchedule. The format is identical'to the format of the durationLimit@effect property. See
Annex B.7.5.1, “durationLimit@effect” fordetails.

Default Value: N/A — Output only.

Sort Order: Same as durationLimit@effect property.
Input: N/A.

Output: The current setting.

B.15.5 taskChannelMigration
Namespace: Srs Property Data Type: xsd:boolean Multi-Valued: NO

Description: The taskChannelMigration property is set to the value of the channelMigration property
of the parent recordSchedule. The format is identical to the format of the channelMigration property.
See Annex B.7.6, “channelMigration” for details.

Detault Value: N/A — Output only.

Sort Order: Same as channelMigration property.
Input: N/A.

Output: The current setting.

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) - 161 -

B.15.6 taskTimeMigration
Namespace: srs Property Data Type: xsd:boolean Multi-Valued: NO

Description: The taskTimeMigration property is set to the value of the timeMigration property of the
parent recordSchedule. The format is identical to the format of the timeMigration property. See Annex
B.7.7, “timeMigration” for details.

Default Value: N/A — Output only.

Sort Order: Same as timeMigration property.
Input: N/A.

Output:-The current-setting
t=]

B.16 Task State Properties

Table B-38: State Related Properties

Property Name NS Data Type M-Val Reference
taskState STS xsd:string NO Annex B.16.1
taskState(@phase srs | xsd:string N@ Annex B.16.1.2
taskState(@startDateTimeMet STS xsd:boolean NO Annex B.16.1.3
taskState@endDateTimeMet STS xsd:boolean NO Annex B.16.1.4
taskState(@recording STS xsd:booledn NO Annex B.16.1.5
taskState(@someBitsRecorded STS xsd:boolean NO Annex B.16.1.6
taskState(@someBitsMissing srs | xsd:boolean NO Annex B.16.1.7
taskState(@firstBitsRecorded STS xsd:boolean NO Annex B.16.1.8
taskState(@lastBitsRecorded ST'S xsd:boolean NO Annex B.16.1.9
taskState(@fatalError STS xsd:boolean NO Annex B.16.1.10
taskState(@currentErrors STS CSV (xsd:int) NO Annex B.16.1.11
taskState(@errorHistory STS CSV (xsd:int) NO Annex B.16.1.12
taskState@pendingErrors STS CSV (xsd:int) NO Annex B.16.1.13
taskState(@infoList STS CSV (xsd:int) NO Annex B.16.1.14

B.16.1 _taskState
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Desgription: The taskState property indicates the overall state of the recordTask.
Défault Value: N/A — Output only.

Sort Order: Property Specific, based on the order in Table B-39. Ascending: first table entry first.
Input: N/A.

Output: The current setting.

B.16.1.1 allowedValuelList for the taskState Property

This section defines the normative allowed values for the faskState property. Each of these values
represents a semantically meaningful combination of values for some of the “low-level” state properties
(that is: taskState(@xxx). Although it is possible to derive the value of the taskState property from some

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

- 162 - 29341-4-14 © ISO/IEC:2008(E)

of the “low-level” faskState(@xxx properties, the taskState property provides a more convenient
mechanism to determine the current state of the recordTask.

The definition of each state is shown in the table below. This table represents the normative definitions
of the various states. Although some of the low-level state properties have been declared as optional,
their underlying semantics and their significance towards the definition of each valid taskState value is
not diminished. Regardless of whether or not a given device is able to expose all of the low-level state
properties, every device has a conceptual notion of property semantics. For example, some devices may
not be able to support the faskState(@lastBitsRecorded property, however, even these devices have an
internal concept that the last bits of the content have or have not been recorded.

In some cases, a specific low-level state property does not contribute to the definition of a given state.
In other words _the low-level property can have any value without nffbrﬁng the semantics of the state

This situation is indicated by a “-” in the table entry.

[T3RL]

The “@” symbol is used to indicate an empty attribute. The “{}” symbol is used when the attribute\is
not empty.

Following this table, a more intuitive informational description of each state value and their-support
level is described.

Table B-39: allowedValueList for the taskState Property

‘IDLE READY’ “IDLE” | ONNO | 0| 0 | @0 | O 0o |lo o] o
‘[DLE.ATRISK” “DLE” £, 0| 0 | 0| 0| @|{ 0|0 0] o0
‘ACTIVE.TRANSITION.FROMSTART” “ACTIRE'l 0 | 0 | 0 | 0 | @ | - 1|o]o]|o
‘ACTIVE.TRANSITION.RESTART” “AcFvE’l 0 | - |1 o || - |1 |lo] -0
‘ACTIVE.RECORDING.FROMSTART.OK” ‘active’| 1 | 1 | o | 0 | @ | @ 1ol 1|0
‘ACTIVE.RECORDING. FROMSTART ATRISK” |“AcTivE”| 1 | 1 | 0 | 0 |@ | 3| @ | 1 |0 | 1|0
‘ACTIVE.RECORDING.RESTART AR “ctver| 1 |1 |1 o |l e | g1 lo] - |0
‘ACTIVE.RECORDING.RESTART.ATRISK” “activer| 1 1|1l o o gl ol o] - |0
‘ACTIVE.NOTRECORDING? “actver| o | - |1 o | g -] 1o -0
‘DONE.FULL” “poNE” | 0 | 1 o | o |@]| -|o| 1|1]|1]1
‘DONE.PARTIALR “pONE” | 0 | 1 |1 |o|le | - |G| v] 1] -]-

“poNe” | 0 | 1 |1 |1 |le]| - |G| -]0]|-]-
‘DONEEMPTY” “pDONE” | 0 | 0o |1 | o |@]| - |G| -]1]01]o0

“pONE” | 0 | 0 | 1 | 1 |@]| - |G| -]o0o]o0]o

sUlllL/ ilupl\du\dﬁaﬁuuo llld_y IIUt bA}JUD\z tll\zbb 111d1v1dua1 lJlUlJLdtibD tU tllb bUlltlU} }}Uillt. IIUWL/VLA, ill
this case, all visible external behavior of the device MUST be as if it implemented all of the
properties as specified in the table above.

In the following table, a more intuitive informational description of each state value and its support
level is described.

mailto:taskState@xxx
https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E)

Table B-40:

Value

“IDLE.READY”

- 163 -

R/O
R

allowedValuelList for the taskState Property

Description

The recordTask is waiting for the start time
to be reached. No errors have been
detected.

“IDLE.ATRISK”

IS

The recordTask is waiting for the start time
to be reached while some pending errors
exist.

“ACTIVE. TRANSITION.FROMSTART”

IS

The device’s record mechanism has been

nitiated to record the content irom its
beginning but no actual recording has
occurred.

“ACTIVE. TRANSITION.RESTART”

IS

The device’s record mechanism\fas been
re-initiated following someicontent loss
from previous error conditions.

“ACTIVE.RECORDING.FROMSTART.OK”

=¥

The device’s record mechanism is
currently continuously recording from the
beginning. Na current or pending errors
exist.

“ACTIVE.RECORDING.FROMSTART.ATRISK”

IS

The device’s record mechanism is
currently continuously recording from the
beginning. Some pending errors are
detected.

“ACTIVE.RECORDING.RESTART.OK”

1S

The device’s record mechanism is
currently recording content, following
some content loss from previous error
conditions. No current or pending errors
exist.

“ACTIVE.RECORDING.RESTART.ATRISK”

IS

The device’s record mechanism is
currently recording content following som¢
content loss from previous error
conditions. One or more pending errors ar¢
detected, which will block the recording in
the future.

“ACTIVE.NOTREGORDING”

IS

The device’s record mechanism is
currently NOT recording content due to
one or more error conditions.

“DONE.FYULL”

[~

The recordTask has reached its final
disposition and no other property or
attribute changes will occur. All of the
content has been recorded.

“DONE.PARTIAL”

[~

The recordTask has reached its final
disposition and no other property or
attribute changes will occur. The content is
only partially recorded due to error(s).

“DONE.EMPTY”

[~

The recordTask has reached its final
disposition and no other property or
attribute changes will occur. No content
has been recorded at all due to error
conditions.

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

- 164 - 29341-4-14 © ISO/IEC:2008(E)

B.16.1.2 taskState@phase
Namespace: srs Property Data Type: xsd:string Multi-Valued: NO

Description: The taskState(@phase property indicates the current phase of a recordTask within its
normal lifetime. The following allowed values for this property are sequentially assigned at the
appropriate points in time within the recordTask’s normal lifetime: “/DLE” = “ACTIVE” - “DONE”.
In certain cases, some of the phase values may be skipped, for example, when a fatal error is detected.

Default Value: N/A — Output only.
Sort Order: Property Specific, based on the order in Table B-41. Ascending: first table entry first.
Input: N/A.

Output: The current setting.

B.16.1.2.1 allowedValueList for the taskState@phase Property

Table B-41: allowedValueList for the taskState@phase Property

Value R/O Description

“IDLE” R Indicates that the recordTask’s start time has not
yet been reached.

“ACTIVE” R Indicates that the\eCordTask is in between the
“IDLE” and“PONE” phases. Typically, the
recordTask*s-Content is (partially) available and
an attempt'is made to record the remaining
contert.

“DONE”

=~}

Tudicates that the recordTask’s final disposition
has been reached. For example, the recordTask’s
end time has been reached or a fatal error has
occurred. Once the device reaches this phase, no
additional state changes occure.

B.16.1.3 taskState@startDateTimeMet
Namespace: srs Property Data Type: xsd:boolean Multi-Valued: NO

Description: The taskStatetstartDate TimeMet property indicates whether the recordTask’s
actualStartDateTime has been reached. See Section 2.2, “Terms” for the definition of
actualStartDateTime

If a recordTask has reéached the “DONE” phase, this property indicates the last status before the
recordTask hasweached the “DONE” phase. Note: if the recordTask terminates prematurely (that is:
reaches theSDONE” phase before the start time is reached, for example, due to a fatal error), this
property(isinot updated.

Default Value: N/A — Output only.

Sert Order: Boolean.

Input: N/A.

Output: The current setting.

B.16.1.4 taskState@endDateTimeMet
Namespace: srs Property Data Type: xsd:boolean Multi-Valued: NO

Description: The taskState@endDateTimeMet property indicates whether the recordTask’s
actualEndDateTime has been reached. See Section 2.2, “Terms” for the definition of
actualEndDateTime.

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) - 165 -

If a recordTask has reached the “DONE” phase, this property indicates the last status before the
recordTask has reached the “DONE” phase. Note: if the recordTask terminates prematurely (that is:
reaches the “DONE” phase before the end time is reached, for example, due to a fatal error), this
property is not updated.

Default Value: N/A — Output only.
Sort Order: Boolean.
Input: N/A.

Output: The current setting.

B.16.1.5 taskState@recording
Namespace: srs Property Data Type: xsd:boolean Multi-Valued: Y€

Description: The taskState(@recording property indicates whether one of the device’s record
destinations is currently recording the content identified by the recordTask.

Default Value: N/A — Output only.
Sort Order: Boolean.

Input: N/A.

Output: The current setting.

B.16.1.6 taskState@someBitsRecorded
Namespace: srs Property Data Type: xsd:boolean Multi-Valued: NO

Description: The taskState(@someBitsRecorded propertyindicates whether some portion of the content
identified by the recordTask has been recorded.

Default Value: N/A — Output only.
Sort Order: Boolean.

Input: N/A.

Output: The current setting.

B.16.1.7 taskState@someBitsMissing
Namespace: srs Property Data Type: xsd:boolean Multi-Valued: NO

Description: The tgskState(@someBitsMissing property indicates whether some portion of the content
identified by the recordTask has not been recorded. This property will be “0” as long as all the bits that
have been available so far have also been recorded.

Default Value: N/A — Output only.
Sort Order: Boolean.

Input: N/A.

Output: The current setting.

B.16.1.8 taskState@firstBitsRecorded
Namespace: srs Property Data Type: xsd:boolean Multi-Valued: NO

Description: The taskState@firstBitsRecorded property indicates whether the first portion of the
content identified by the recordTask has been recorded.

Default Value: N/A — Output only.

Sort Order: Boolean.

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

- 166 - 29341-4-14 © ISO/IEC:2008(E)

Input: N/A.

Output: The current setting.

B.16.1.9 taskState@lastBitsRecorded
Namespace: srs Property Data Type: xsd:boolean Multi-Valued: NO

Description: The taskState(@lastBitsRecorded property indicates whether the ending portion of the
content identified by the recordTask has been recorded.

Default Value: N/A — Output only.

Sort Order: Boolean

Input: N/A.
Output: The current setting.

B.16.1.10 taskState@fatalError
Namespace: srs Property Data Type: xsd:boolean Multi-Valued: NO

Description: The taskState@fatalError property indicates whether a fatal errorhas occurred. A fatal
error is defined to be an error condition that causes the recordTask to terminate before its
actualEndDateTime has been reached.

Default Value: N/A — Output only.
Sort Order: Boolean.
Input: N/A.

Output: The current setting.

B.16.1.11 taskState@currentErrors
Namespace: srs Property‘Data Type: CSV (xsd:int) Multi-Valued: NO

Description: The taskState(@currentErig7s property identifies the CSV list of errors that are currently
preventing the recordTask from recording. An empty CSV list indicates that there are no errors
currently blocking the recording. Multiple errors are listed in order of occurrence starting with the
oldest error and ending with the-most recent.

When the errors are not resolyed before reaching the “OONE” phase, they MAY be persisted in the
“DONE” phase. If a deyice persists current errors, the value of this property MUST be set to the value
that this property had.immediately prior to entering the “OONE” phase.If a device does not persist
current errors, thetaskState(@currentErrors MUST be empty in the “DONE” phase.

By definitions.this property MUST be empty while in the “/DLE” phase. The current errors are also
copied tothetaskState@errorHistory property.

Default-Value: N/A — Output only.

Sort Order: Sequenced Numeric.

Input: N/A.
Output: The current setting.

B.16.1.11.1 allowedValueList for the faskState@currentErrors Property and Other
Error Properties

The following table defines error codes for all error properties of a recordTask, such as
taskState(@currentErrors, taskState(@errorHistory, etc. to expose error conditions. This error list can
be extended in the future or by vendors. The errors are grouped into separate categories and labeled
1xx, 2xx, 3xx, and 4xx groups, each group representing the nature of errors; that is: general errors,
media errors, system errors and content errors, respectively. The grouping of error codes allows a

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) - 167 -

control point to be able to understand the nature of errors when an unknown error code (that is:
extended specification or vendor extended) is encountered. For example, if an unknown error is labeled
3xx, it can be interpreted by the control point as 300.

Table B-42: allowedValueList for the taskState@xxx Properties

Value R/O Description

Non-positive N/A These error codes are reserved for future use. Control points should
gracefully ignore any non-positive error codes.

001-099 N/A Reserved.

100-199 N/A General Error Code Group - arbitrary errors, which do not belong to other
groups.

100 R General Problem — a problem is confirmed, but no specific reason canlbe
identified.

101 [0} Disabled - the recordTask is disabled by the user.

102 [0} The recordTask’s enable/disable behavior is overriding-thé default behavior
specified by the associated recordSchedule.

103-149 N/A Reserved for future General Error Codes.

150-199 N/A Reserved for vendor-defined General Error.Codes.

200-299 N/A Media Error Code Group - arbitrary media related errors.

200 @) General Media Problem — some trouble related to media is detected.
Replacing the media may likely-résolve it.

201 [0} No Media — necessary mediadis missing from the recording device.

202 [0} Media Write Protect - Write access to the recording media is prohibited.

203 @) Insufficient Media‘Space - recording media does not have enough available
space to complete the recordTask.

204 [0} Media Low\Space - the recording media has low available space and the
recordlask may fail. The criteria to determine “low space” is vendor
dependent and may be independent from the size of the scheduled content
tere¢ord.

205-249 N/A Reserved for future Media ErrorCodes.

250-299 A Reserved for vendor-defined Media Error Codes.

300-399 N/A System Error Code Group - arbitrary system related error.

300 @) General System Problem — a problem related to the system is detected. It
may affect all recordTask instances in the ScheduledRecording service.

301 [0} Insufficient Memory- the system does not have enough system memory to
complete the recordTask.

302 [0} Insufficient Processing - the system does not have enough CPU power to
execute the recordTask.

303 [0} Low Memory - the system has low available memory and the recordTask
may fail. The criteria to determine “low memory” is vendor dependent and
may be independent from the size of the scheduled content to record.

304 @) Low Processing - the system has low available CPU power and the
recordTask may fail. The criteria to determine “low processing” is vendor
dependent and may be independent from the size of the scheduled content
to record.

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

- 168 - 29341-4-14 © ISO/IEC:2008(E)

Value R/O Description

305 @) Signal Lost - the system has lost the input signal.

306 @) Low Signal - The system has low input signal and the recordTask may fail.
The criteria to determine “low processing” is vendor dependent.

307 [0} No EPG - the system lost access to the EPG.

308-349 N/A Reserved for future System Error Codes.

350-399 N/A Reserved for vendor-defined System Error Codes.

400-499 N/A Content Error Code Group - arbitrary errors related to the content program
to be recorded.

400 [0} General Content Problem — a problem related to the content is detected\It
may be associated with the content that is being recorded.

401 [0} Conflicting Program Loser — there are other conflicting programs ‘with
overlapping time period, and the current recordTask is superseded by the
conflicting program.

402 [0} Conflicting Program Winner - there are other conflicting programs with
overlapping time period, and the current recordLask 'superseded the
conflicting program.

403 [0} PPV (Pay per View) - the content is PPV and‘some procedures are needed
for the recordTask to begin.

404 [0} Content Rescheduled - the originally scheduled content has been
preempted.

405-449 N/A Reserved for future Content Error Codes.

450-499 N/A Reserved for vendor-defined Content Error Codes.

500 and above N/A Reserved for futurdnew category information extensions.

B.16.1.12 taskState@errorHistory
Namespace: srs Property Data Type: CSV (xsd:int) Multi-Valued: NO

Description: The taskState(@eriorHistory property identifies the CSV list of errors that have (at any
time) prevented the recordlask from completing successfully. This includes both past and current
recording errors. Multiple errors are listed in order of occurrence starting with the oldest error and
ending with the mosttecent. An empty list indicates that none of the recordTask’s content has yet been
prevented from being/recorded. By definition, this list will always be empty while in the “/DLE” phase.
Note: Any errors listed in taskState@currentErrors MUST also be copied to and persisted in this

property.
Default Value: N/A — Output only.

Sort Order: Sequenced Numeric.

Input: N/A
r

Output: The current setting.

B.16.1.12.1 allowedValuelList for the taskState@errorHistory Property
See Annex B.16.1.11.1, “allowedValueList for the taskState@currentErrors Property” for details.

B.16.1.13 taskState@pendingErrors
Namespace: srs Property Data Type: CSV (xsd:int) Multi-Valued: NO

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) - 169 -

Description: The taskState@pendingErrors property identifies the CSV list of errors that may prevent
the recordTask from completing successfully at some time in the future unless resolved. An empty CSV
list means that no pending errors have been detected. The list of errors that the device is able to detect
before they actually occur may be obtained via the GetdllowedValues() action.

Those devices that are not able to detect any pending errors before they actually occur MAY always
return an empty list for the value of this property. In this case, the value returned by
GetAllowedValues() for this property MUST also be an empty list.

If any of these pending errors actually occur, they MUST be added to the taskState(@currentErrors list
and taskState(@ErrorHistory and removed from this list. When the pending errors did not occur, these
errors MAY be persisted to the “DONE” phase. If a device does not persist any pending errors that have

not occurred vet_then the raskState@nendinoErrors MIUIST he empty in the “DONE> phnqp Qtherwise

the value of this property MUST be set to the value that this property had immediately prior to entering
the “DONE” phase.

Default Value: N/A — Output only.
Sort Order: Sequenced Numeric.
Input: N/A.

Output: The current setting.

B.16.1.13.1 allowedValuelList for the taskState@pendingErrors Property
See Annex B.16.1.11.1, “allowedValueList for the taskState@currentErrors Property” for details.

B.16.1.14 taskState@infoList
Namespace: srs Property Data Type{CSV (xsd:int) Multi-Valued: NO

Description: The taskState(@infoList property identifies the CSV list of additional conditions that have
been detected but will not block the current recordZask, for example, conflict winner.

The list of possible information that the deviceds able to detect may be obtained via the
GetAllowedValues() action.

Devices that are not able to detect any additional information MUST always return an empty list. In this
case, the value returned by GetAllowedValues() for this property MUST also be an empty list.

Note: a device can also use additionalStatusinfo to expose information in text format.

Default Value: N/A — Output only.

Sort Order: Sequenced\Numeric.
Input: N/A.

Output: The:current setting.

B.16.4:14.1 allowedValuelList for the taskState@infoList Property
See Annex B.16.1.11.1, “allowedValueList for the taskState@currentErrors Property” for details.

B.17 ContentDirectory Service Imported Properties

ContentDirectory service properties are imported through the cdsReference multi-valued property. The
main reason to import properties (metadata) from ContentDirectory service objects into a
recordSchedule or recordTask object is to make that object self-contained; that is: a control point can
retrieve relevant metadata from the ScheduledRecording service object without having to first extract
the object IDs of external ContentDirectory service objects and then retrieve the metadata from these
objects via additional actions. In addition, even when the referenced object in the ContentDirectory
service is deleted, its metadata is still preserved within the ScheduledRecording service. It is the
responsibility of the device to maintain consistency between the actual ContentDirectory service
object’s metadata and the metadata contained in the corresponding cdsReference property.

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

- 170 - 29341-4-14 © ISO/IEC:2008(E)

The cdsReference property MUST contain a valid (it MUST contain all the REQUIRED properties as
dictated by the DIDL-Lite Schema; also, if dependent properties are imported, their independent
properties MUST be imported as well.) and properly escaped DIDL-Lite XML Document as defined in
the ContentDirectory service specification. (Care must be taken to correctly define namespaces.)

The DIDL-Lite XML Document describes a device-dependent (sub)set of imported properties
(metadata) of the ContentDirectory service object that is referenced by the linked xxxCDSObjectID
property. The information contained in the DIDL-Lite XML Document MUST exactly match the DIDL-
Lite XML Document that would be returned in the Result argument of the ContentDirectory::Browse()
action with its input arguments set as follows:

ObjectID: The linked xxxCDSObjectID property value.

browsetlag: Setto “LrowseMetaData™.

Filter: Set to the list of property names that are imported from the ContentDirectory service by the
ScheduledRecording service.

Startinglndex: 0.
RequestedCount: 0.

[330)

SortCriteria: “”, the empty string.
The following example illustrates the possible content of a cdsReference property’in the context of a
recordSchedule object (expressed in XML).

<?xml version="1.0" encoding="UTF-8"?>
<srs
xmlns="urn:schemas-upnp-org:av:srs"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xs1i:schemalLocation="
urn:schemas-upnp-org:av:srs
http://www.upnp.org/schemas/av/grs-v1-20060531.xsd" >
<item id="sched001">
<class>OBJECT.RECORDSCHEDULEYPIRECT.CDSEPG</class>
<title>My Schedule</titlex

—» <scheduledCDSObjectID link="schedObj001">
epg001 W\
</scheduledCDSObjectID>

—» <cdsReference]c’stxk:"schedobj001">
N\

<l== (3\

-

The following DEZDL-Lite XML Document needs to be interpreted as a
simple strin therefore needs to be properly escaped

O
2@:’; ?xml version="1.0" encoding="UTF-8"?>

1t;DIDL-Lite
é xmlns:dc="http://purl.org/dc/elements/1.1/"
C) xmlns :upnp="urn: schemas-upnp-org:metadata-1-0/upnp/"
Q/ xmlns="urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/">
N glt:item id="epg00l" parentID="containexr007"

restricted="0">
<dc:title>Friends</dc:title>
<upnp:classé>
object.item.epgltem.videoProgram
< /upnp:classé>

</item>
< /DIDL-Lite>

<!-- End of DIDL-Lite XML Document -->

</cdsReferences>

http://www.w3.org/2001/XMLSchema-instance
https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) -171 -

</item>
</srs>

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

-172 - 29341-4-14 © ISO/IEC:2008(E)

The next example illustrates the possible content of two cdsReference property instances relating to the

taskCDSObjectID and recordedCDSObjectID property in the context of a recordTask object (expressed
in XML).

<?xml version="1.0" encoding="UTF-8"?>
<Srs
xmlns="urn:schemas-upnp-org:av:srs"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="

urn:schemas-upnp-org:av:srs
http://www.upnp.org/schemas/av/srs-v1-20060531.xsd">
<item id="Task001">

<class>OBJECT.RECORDTASK</class>

<tlitle>My Task</Title>

http://www.w3.org/2001/XMLSchema-instance
https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) -173 -

</iEem>
</srs>
d
S
b"\b‘ |
x
Qo)
P
O
O\\‘o
N
@)
&
<
&
$®®
©
O]
&
e
oo®
&
O
D

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

- 174 - 29341-4-14 © ISO/IEC:2008(E)

Annex C
(normative)

AV Working Committee Class Definitions

C.1 Class Hierarchy

la al)

Saoladialad u M 1 loa 1 localos ot 11 o, todloct 1o
IIIv ubu\.auuluul\bvvlulus OVIVIUUL UAPUD\/D d LVIdSS 111u1a1v11y WIIIVIT 1S5 USVU TU L)’Pb alr UUJU\/LD ulat vailr v
retrieved from it. Each class is named using a string of the form described in Annex D.3, “Class Name
Syntax” below.

For a particular class, some properties are REQUIRED, others are OPTIONAL and some are
PROHIBITED.

A class that is derived from another class MUST include all of the member properties of the parent
class. The definition of a derived class MAY make some optional properties of thecbase class
REQUIRED.

Each class definition includes a list of properties. Each property is expressed in XML as either an XML
Element or an XML Attribute. Some independent properties are multi-valuéd for a class, meaning that,
in an XML instance of the class, the property may occur more than oncey

This Annex defines the base class object from which all other classes“are derived. No object of this
abstract class can be instantiated. From the object class, two classes are derived; the
object.recordSchedule class and the object.recordTask class:

The abstract object.recordSchedule class and its two derived abstract classes
object.recordSchedule.direct and object.recordSchedirle.query make up the basic hierarchy from which
all other recordSchedule classes are derived. These three classes can not be instantiated (no object can
exist within the ScheduledRecording service thatthas its class property set to
“OBJECT.RECORDSCHEDULE”, “OBJEGCI.RECORDSCHEDULE.DIRECT” or
“OBJECT.RECORDSCHEDULE.QUERY)):

The object.recordTask class is used to type all recordTask objects in the ScheduledRecording service.
The object.recordTask class has no'derived classes defined yet.

In addition to these classes,.asniimber of classes are derived from the object.recordSchedule.direct and
object.recordSchedule.queryclasses. Figure 7 below shows the hierarchy of these classes.

object

|
v v

recordSchedule recordTas

|
v v

lirect query

' ' | ' ' $—‘—$

manual cdskEPG cdsNonEPG programCode contentName contentID

A

Vendor defined class extensions

Figure 7: Class hierarchy for the ScheduledRecording service.

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) - 175 -

Vendors MAY extend the functionality, provided by the standard record classes, by adding vendor-
defined properties. Any device that adds a property whose description matches one of the AV Working
Committee-defined property descriptions MUST use the AV Working Committee-defined property
name. In addition, any device that uses a property name from the ScheduledRecording service
specification MUST use it with the same semantics as the AV Working Committee-defined description
of that property. In order to accommodate vendor-defined properties, control points should gracefully
ignore any properties whose names and semantics they do not understand.

When adding properties, it is RECOMMENDED that vendors create a vendor-defined derived class
with a vendor-defined class name, rather than adding the properties to the existing standard class
without creating a vendor-defined class. This provides a simple mechanism for control points to
determine if a class has been extended by simply examining the c/ass property value. In all cases,

vendor-detined classes MUST remain tully compatible with the standard class trom which they were
derived. In other words, control points that do not understand the specifics of the vendor-defined
additions should still be able to interact with an instance of the vendor-defined derived class objeet.as if
it were an instance of that standard class.

Vendor-defined classes MUST always be derived from standard classes that can be instantiated (the
green-colored boxes in Figure 7). It is therefore PROHIBITED to derive vendor-defined classes
directly from classes, such as “OBJECT.RECORDSCHEDULE”,
“OBJECT.RECORDSCHEDULE.DIRECT”, and “OBJECT.RECORDSCHEDUIFQUERY”. It is
allowed to derive vendor-defined classes from class “OBJECT.RECORDTASK™.

All standard classes and vendor-defined derived classes supported by a patticular ScheduledRecording
service implementation MUST be individually listed in the allowedVatueList of the c/ass property.
(This list can be retrieved via the GetAllowedValues() action.) Implémentations are REQUIRED to
support all intermediate classes in a chain of derived classes. Foriexample, if an implementation
supports a vendor-defined class “OBJECT.RECORDSCHEDULE.DIRECT.CDSEPG.HDTV.LOCAL”,
then it MUST also support the “OBJECT.RECORDSCHEPULE.DIRECT.CDSEPG.HDTV” and
“OBJECT.RECORDSCHEDULE.DIRECT.CDSEPG” elass¢s.

As indicated in Annex D.3, “Class Name Syntax”, strict naming conventions MUST be followed when
naming derived vendor-defined classes. Vendor-defined class names MUST be based on one of the
instantiatable class names in this specification.{Therefore, a// vendor-defined class names MUST start
with one of the string values, defined in Table B-2, “allowedValueList for the class Property”.

Control points that need to examine c/gss property values, should be prepared to handle vendor-defined
class names. Therefore, control points should never use simple string matching to determine the actual
class of an object. Rather, they should parse the class name from left to right and determine if there is at
least a left substring match with-one of the string values defined in Table B-2, “allowedValueList for
the class Property”. If such\a match is found, the remaining characters in the class name can be
examined for potential aatches with vendor-defined class names of which the control point is aware. If
no such match is found;‘the control point can treat the object as if it were an instance of the most
specialized classfor-which a match was found.

CA11 Relationships between Classes and Properties

The following tables present a complete overview of all the defined properties and in which classes
these.properties are actually used (member properties).

REAQLIRLINY 1 ODPRTIONLAL

I s 1 1 et 4 d
T O a PartCurdrCrass; SUMC PTOPUITICS Al U O TIN5 Ot S AT U OT T TOTNZ YD Al SO arc

PROHIBITED. Every instance of a class MUST have a value for each supported REQUIRED or
OPTIONAL member property of that class (see Section 2.2, “Terms”).

The support level of a member property defines how the member property MUST be used in the
arguments of an action when that action is invoked. The support level of a member property can be
different for recordSchedule, recordScheduleParts, and recordTask usage.

The recordScheduleParts support level for the specified class indicates the use of a member property
when a control point requests to create a recordSchedule. If a member property is defined as
REQUIRED for recordScheduleParts usage, an argument of type A ARG TYPE RecordScheduleParts
MUST contain that member property and the ScheduledRecording service MUST support it. If it is
defined as OPTIONAL, the ScheduledRecording service MAY support the member property and a

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

- 176 - 29341-4-14 © ISO/IEC:2008(E)

control point may specify or omit the member property in a request message even if the member
property is supported by the ScheduledRecording service. PROHIBITED or unsupported OPTIONAL
member properties specified in an argument of type A ARG _TYPE RecordScheduleParts MUST be
gracefully ignored by the ScheduledRecording service. The set of properties that are supported for an
argument of type A_ARG_TYPE RecordScheduleParts can be retrieved by specifying

“A_ ARG _TYPE_ RecordScheduleParts” in the DataTypelD argument when invoking the
GetPropertyList() action. The support level for each of those supported member properties of each class
can be retrieved by invoking the GetAllowedValues() action.

The recordSchedule support level for the specified class indicates the use of a member property when a
control point retrieves a recordSchedule object. If a member property is defined as REQUIRED for
recordSchedule usage, an argument of type 4_ARG TYPE RecordSchedule MUST contain that

member property and the ScheduledRecording service MUST support it. OP TTONAL supported
member properties that are enumerated in the Filter argument MUST also be specified in the argument:
If the resulting XML is not a valid document, other OPTIONAL properties MUST be added to create
the smallest valid XML document. If the action does not have a Filter argument (like the
CreateRecordSchedule() action), the action MUST return all OPTIONAL supported membetproperties
(as if the Filter argument were set to “*:*”). If a control point does not specify a supportedOPTIONAL
member property in a request, the ScheduledRecording service MUST add it into the,response and
provide its default setting. The set of properties that are supported for an argumentfof'type

A_ARG_TYPE RecordSchedule can be retrieved by specifying “4_ARG TYPENRécordSchedule” in
the DataTypelD argument when invoking the GetPropertyList() action. The Support level for each of
those supported member properties of each class can be retrieved by invoking the GetAllowedValues()
action.

The recordTask support level for the specified class indicates the use-of a member property when a
control point retrieves a recordTask object. If a member property.is defined as REQUIRED for
recordTask usage, an argument of type A ARG _TYPE RecazdTask MUST contain that member
property and the ScheduledRecording service MUST support it. OPTIONAL supported member
properties that are enumerated in the Filter argument MUST also be specified in the argument. If the
resulting XML is not a valid document, other OPTIONAL properties MUST be added to create the
smallest valid XML document. The set of properties'that are supported for an argument of type
A_ARG_TYPE RecordTask can be retrieved by specifying “4_ARG TYPE RecordTask” in the
DataTypelD argument when invoking the G&tPropertvList() action. The support level for each of those
supported member properties of each classican be retrieved by invoking the GetAllowedValues() action.

Dependent properties are PROHIBITED if their associated independent property does not exist. They
can be REQUIRED or OPTIONAL ‘Wwhen the independent property does exist.

CA1.2 recordSchéduleParts Properties

The following table-indicates the support level (REQUIRED, OPTIONAL, _ or
i) of-a‘ptoperty when used in an argument of type 4 ARG TYPE RecordScheduleParts
for each class. Che ™V mark indicates that the property’s support level is inherited from the parent class.
The coloring still indicates the support level.

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) - 177 -

Table C-1: Class Properties Overview for recordScheduleParts usage

EREQUIRED
EOPTIONAL

PPROHIBITED

UNDEFINED
INHERITED

Property Name

Common-P ties.
T

Base Properties
(@id

title

>
=<
=<
=<
=
=
=
=<
=

>
<
<
=<
=
=
=
=
<
=

>
=<
=<
=<
=
=
=
=
=<
=

class
additionalStatusinfo
cdsReference

cdsRe

erence@link

Priority Properties

riority

riority@orderedValue

IS
<
<
<
=<
=
=<
<
=<

desiredPriority

desiredPriority@type

By
=
=0
=0
=
<.
3@ =
1=
=0
=

(Output Control Properties

recordDestination o V| V| v v V|V
recordDestination@mediaType oW/ V| V| V| ¥ V| A/
recordDestination(@targetURL o A R4 R4 A V| A/
recordDestination(@preference ol V| /Y| V| ¥ VvV
desiredRecordQuality ol v| Y| V| V| V| ¥ %

>
<
<
=<
=
=
=
=
<
=

desiredRecordQuality@type

Schedule Only Properties.

Content ID Related Properties

scheduled CDSQbestID

scheduled @DSObjectID@link

scheduledChannellD

sChéduledChannellID@type

scheduledStartDateTime

[~ (=]l |
= [1=]

scheduledDuration

=

scheduledProgramCode

=

scheduledProgramCode@type

Matching Content Criteria

matchingName
matchingName@type

matchingName@subStringMatch

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

EREQUIRED
EOPTIONAL

PPROHIBITED

UNDEFINED
INHERITED

Property Name

matchinglD

matchingID@type

Matching Qualifying Criteria

matchingChannellD

matchingChannellD@type

matchingStartDate TimeRange

matchingDurationRange

matchingRatingLimit

matchingRatingLimit@type

matchingEpisodeTvpe

Content Control Properties

- 178 -

29341-4-14 © ISO/IEC:2008(E)

totalDesiredRecordTasks

scheduledStartDateTimeAdjust

scheduledDurationAdjust

activePeriod

durationLimit

durationLimit@effect

channelMigration

timeMigration

allowDuplicates

Storage Related Properties

ersistedRecordings

ersistedRecordings@latest

ersistedRecordings@preAllocation

ersistedRecdrdings@storedLifetime

Schedule'State Properties

sclreduléState

ceheduleStateldeirent Errors

labnormalTasks Exist

Statistics Properties

currentRecordTaskCount

totalCreatedRecordTasks

total CompletedRecordTasks

Task Only Properties

General Properties

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) - 179 -

EREQUIRED
EOPTIONAL

PPROHIBITED

UNDEFINED
INHERITED

Property Name

recordSchedulelD

recordedCDSObjectID

recordedCDSObjectID@link

Content ID Related Properties

taskCDSObjectID

taskCDSObjectID@link

taskChannellD

taskChannellD@type

taskStartDateTime

taskDuration

taskProgramCode

taskProgramCode@type
recordQuality
recordQuality@type

Matched Content Criteria

matchedName
matchedName(@type
matchedID

matchedID@tvpe
[Matched Qualifying Criteria

matchedRating
matchedRating@type

matchedEpisodeType

[Content Control Propérties

taskStartDateLime Adjust

taskDurdtionAdjust

taskDuvationLimit

tasleDorationl jnitlpeticct
.2

taskChannelMigration

taskTimeMigration

Task State Properties

taskState

taskState(@phase

taskState@startDateTimeMet

taskState@endDateTimeMet

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

-180 - 29341-4-14 © ISO/IEC:2008(E)

EREQUIRED
EOPTIONAL

PPROHIBITED

UNDEFINED
INHERITED

Property Name

taskState@recording

taskState(@someBitsRecorded

taskState(@someBitsMissing

taskState@firstBitsRecorded

taskState@lastBitsRecorded

taskState@fatalError

taskState@currentErrors

taskState@errorHistory

taskState@pendingErrors

taskState@infoList

CA13 recordSchedule Properties

The next table indicates the support level (REQUIRED, OPTIONAL, _ or _)
of a property when used in an argument of type 4_ARG LYPE_RecordSchedule for each class. The \

mark indicates that the property’s support level is inherited from the parent class. The coloring still
indicates the support level.

Table C-2: Class Properties Overview for recordSchedule usage

EREQUIRED
EOPTIONAL

PROHIBITED

Undefined

Inherited

Property Name
N\

S
G
=5
|
|
|
!

I
|
|

=

= |k

=

= [
<

= |
= |
e]
=

e]
= |
=B

lclass
additionalStatusinfo
cdsReference
cdsReference@link

Priority Properties

=
=<
=<
=
=
<
=
=<
=

=
=
=
=
=N
=N
=
=

riority

IS
<
<
<
=<
<
=<
<
<

riority@orderedValue

IS
<
<
<
<
=<
<
=<
<
<

desiredPriority

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) -181 -

EREQUIRED
EOPTIONAL

PROHIBITED

Undefined

Inherited

Property Name

desiredPriori type

=Y
<
<
=<
<
=
=
=
=<
<

(Output Control Properties

recordDestination R| V| V| /| V|V V|V|Y
recordDestination@mediaType RV Y| V| Y| Y| |Y|Y|Y
recordDestination@targetURL ol V| V| V| /]| Y YAV
recordDestination@preference R| V| V| /|| V VY

desiredrecordQuality ol V| Y| Y| V| V| ¥ V| V|V
desiredrecordQuality(@type R| V| V| V| V| V|V V| Y|V

Schedule Only Properties

Content ID Related Properties

lscheduledCDSObjectID

lscheduled CDSObjectID@link

IscheduledChannellD

IscheduledChannellD@type

lscheduledStartDateTime

IscheduledDuration

lscheduledProgramCode

IscheduledProgramCode(@type

Matching Content Criteria

matchingName

matchingName@type (‘

—
matchingName@subString]\l\;{t'ch

N}
matchingID ()\
Vi

matchinglD:
Matching Q@mg Criteria

matchin nnellD

N
mgcg'&ChannelID@‘tzge

Mfun(‘mwnnro’ﬂ‘mol?nun

matchingDurationRange

matchingRatingLimit

matchingRatingLimit@type

matchingEpisodeTvpe

Content Control Properties

totalDesiredRecordTasks (0]

=<
=<
=
=
<
=
=<
=

scheduledStartDateTimeAdjust (0]

=<
=<
=
=
<
=
=<
=

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

-182 - 29341-4-14 © ISO/IEC:2008(E)

EREQUIRED
EOPTIONAL

PROHIBITED

Undefined

Inherited

Property Name

scheduledDurationAdjust
activePeriod o| Y|V
durationLimit o| V| v
durationLimit@effect R Y|V
channelMigration o| V| v
timeMigration o| V| v
allowDuplicates o| V| v
Storage Related Properties
ersistedRecordings V| /| v
ersistedRecordings@latest V| V|V
ersistedRecordings@preAllocation V| | A
ersistedRecordings(@storedLifetime VW
Schedule State Properties 2 Ny
scheduleState \) Y| VY
scheduleState@currentErrors V| V|V
abnormalTasksExist V| V|V
Statistics Properties
currentRecordTaskCount V| Y|V
totalCreatedRecordTasks YV Y
total CompletedRecordTasks f\b\ VA V| V| V|V
Task Only Properties }\V
General Properties \' .v
recordSchedulelD AOS‘
recordedCDSOb[%t,zD)
recordedCE)\ ct}D@link
Content&-ﬁe‘lated Properties
. \Ob'ectlD
_gh'\%DQf)hiepﬂD@Iinl(

taskChannellD

taskChannellD@type

taskStartDateTime

taskDuration

taskProgramCode

taskProgramCode@type

recordQuality

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) -183 -

EREQUIRED
EOPTIONAL

PROHIBITED

Undefined

Inherited

Property Name
recordQuality@type

Matched Content Criteria

matchedName

imatchedName(@type

matchedID

matchedID@type
Matched Qualifying Criteria

matchedRating

matchedRatingt@type

matchedEpisodeType

IContent Control Properties

m

taskStartDateTimeAdjust

taskDurationAdjust

taskDurationLimit

taskDurationLimit@effect

taskChannelMigration

taskTimeMigration

Task State Properties

taskState

taskStat has
askState@phase ’\'\)b
taskState(@startDateTimeMet (‘\\

taskState@endDateT imeMe&\’ o

N}
taskState@recording N\
askState@recordin ’.O
taskState@someB‘jQMorded

taskState@s itsMissin
PN

taskSta‘e@stBi tsRecorded

N
ta. é &é@ lastBitsRecorded

M
1 U Asoaa

taskState@currentErrors

taskState@errorHistory

taskState@pendingErrors

taskState@infoList

HEEENIIEEEEEEEENEEEEEE .

C14 recordTask Properties

The next table indicates the support level (REQUIRED, OPTIONAL, _ or _)
of a property when used in an argument of type A ARG _TYPE_RecordTask. The N mark indicates that

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

- 184 - 29341-4-14 © ISO/IEC:2008(E)

the property’s support level is inherited from the parent class. The coloring still indicates the support
level.

Table C-3: Class Properties Overview for recordTask usage

REQUIRED

OPTIONAL
PROHIBITED
Undefined

Inherited

Property Name

[Common Properties

Base Properties
@id

title

I
N

I
N

I
N

class

additionalStatusinfo
cdsReference
cdsReference@link

Priority Properties

(e}

IS

=

=

lpriority

IS

riority@orderedValue

1<

desiredPriority
desiredPriority(@type R

(Output Control Properties

b

recordDestination

recordDestination@mediaType

=

IS

recordDestination@targetURL

=

recordDestination(@preference

desiredrecordQuality

desiredrecordQuality(@ffype

IS
1<

=]
b

Schedule Only Properties

Content ID Related Properties

scheduledCPSObjectID

scheduledCDSObjectID@link

eoheduledChannellD

scheduledChannellD@type

scheduledStartDateTime

scheduledDuration

scheduledProgramCode

scheduledProgramCode(@type

Matching Content Criteria

matchingName
matchingName@type

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E)

REQUIRED

OPTIONAL
PROHIBITED
Undefined

Inherited

Property Name

imatchingName@subStringMatch

matchinglD

- 185 -

matchingID@type
Matching Qualifying Criteria

matchingChannellD

matchingChannellD@type

matchingStartDateTimeRange

matchingDurationRange

matchingRatingLimit

matchingRatingLimit@type

matchingEpisodeType

[Content Control Properties

totalDesiredRecordTasks

scheduledStartDateTimeAdjust

scheduledDurationAdjust

activePeriod

durationLimit

durationLimit@effect

channelMigration

timeMigration

allowDuplicates

Storage Related Properties

persistedRecordings

ersistedRecordings@latest

ersistedRecordingst@preAllocation

ersistedRécoredings@storedLifetime

Schedule, State Properties

lschedileState

scheduleState@currentErrors

labnormalTasks Exist

Statistics Properties

currentRecordTaskCount

totalCreatedRecordTasks

total CompletedRecordTasks

Task Only Properties

General Properties

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

REQUIRED

OPTIONAL
PROHIBITED
Undefined

Inherited

Property Name

recordSchedulelD

recordedCDSObjectID

- 186 -

29341-4-14 © ISO/IEC:2008(E)

recordedCDSObjectID@link

Content ID Related Properties

taskCDSObjectID

taskCDSObjectID@link

taskChannellD

taskChannellD@type

taskStartDateTime

taskDuration

taskProgramCode

taskProgramCode@type

recordQuality

recordQuality@type

Matched Content Criteria

matchedName

matchedName(@type

matchedlD

matchedID@type

Matched Qualifying Criteria

matchedRating

matchedRatingt@type

matchedEpisodeType

[Content Control Properties

taskStartDate TitneXtjust

taskDurationqdjust

taskDurationLimit

tadkDurationLimit@effect

taskChannelMigration

taskTimeMigration

Task State Properties

taskState

taskState@phase

taskState@startDateTimeMet

taskState@endDateTimeMet

taskState@recording

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) - 187 -

REQUIRED

OPTIONAL
PROHIBITED
Undefined

Inherited

Property Name

taskState(@someBitsRecorded

taskState@someBitsMissing

taskState(@firstBitsRecorded

taskState@lastBitsRecorded

taskState@fatalError

taskState@currentErrors

taskState@errorHistory

taskState@pendingErrors

taskState@infoList

C.2 Class Definitions

The following sections define the standard record classes. The suppeort level of the available properties
for each class is also indicated. Vendors MAY add vendor-depéndent properties to any of the defined
classes. An instance of a normative class MUST NOT addproperties, other than the properties already
listed for each class definition below. In other words, a given instance of a record class can only have:

e The properties listed for that class (as per.each definiton below).
e The properties that are defined members’of the parent class.
e Vendor-defined properties that aredising other XML namespace(s).

e ContentDirectory service properties imported with a normative namespace prefix (see Annex
B.17, “ContentDirectory S¢ryice Imported Properties™).

C.3 object Base Class

This is the abstract base.class for the entire ScheduledRecording service class hierarchy. No object of
this abstract class can\b¢ instantiated. The object class defines properties that are common to all
ScheduledRecording service objects. The table below lists all standard defined properties (see Annex B
for the definition of each property) and indicates the support level (_, OPTIONAL,
REQUIRED,-and _) in this class for each property.

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

Table C-4:

Property Name

- 188 -

object Base Class Properties

29341-4-14 © ISO/IEC:2008(E)

Property Name

Base Properties scheduleState

— scheduleState@currentErrors
@id 4 abnormalTasksExist
title R
class R Statistics Properties
additionalStatusInfo currentRecordTaskCount
cdsReference totalCreatedRecordTasks
cdsReference@link totalCompletedRecordTasks
Priority Properties Task General Properties
priority recordSchedulelD
priority@orderedValue recordedCDSObjectID
desiredPriority (0] recordedCDSObjectID@link
desiredPriority@type R Task Content ID Properties
Output Control Properties 1askCDSObjectlD
recordDestination taskCDSObjectID@link
recordDestination@medialype taskChannellD
recordDestination@targetURL taskChannellD@type
recordDestination(@preference taskStartDateTime
desiredRecordQuality [0} taskDuration
desiredRecordQuality@type R taskProgramCode

Content ID Related Properties

scheduledCDSObjectID

scheduledCDSObjectID@link

scheduledChannellD

taskProgramCode@iype

recordQualipy

recordQuealitvd@type

Matched'Content Criteria

scheduledChannellD@type matthédName
scheduledStartDateTime datchedName@type
scheduledDuration matchedlD

scheduledProgramCode

scheduledProgramCode@type

Matching Content Criteria

matchingName

matchingName@type

matchingName@subStringMatch

matchingID

matchingID@type

Matching Qualifying Criteria

matchingChannellD

matchingChannellD@type

matchingStartDate TimeRdage

matchingDurationRange,

matchingRatingLimit

matchingRatinghimit@type

matchingEpisddedype

Content Control Properties

totalBesikedRecordTasks

schediledStartDateTimeAdjust

SeheduledDurationAdjust

e e
TClIYerertot

matchedID@type

Matched Qualifying Criteria

matchedRating

matchedRating@type

matchedEpisodeType

Content Control Properties

taskStartDateTimeAdjust

taskDurationAdjust

taskDurationLimit

taskDurationLimit@effect

taskChannelMigration

taskTimeMigration

Task State Properties

taskState

taskState@phase

taskState@startDateTimeMet

taskState@endDateTimeMet

taskState@recording

taskState(@someBitsRecorded

taskState@someBitsMissing

L. i Do L "
terstSterteterfirstBrtsRecorher

durationLimit

durationLimit@effect

channelMigration

timeMigration

allowDuplicates

Storage Related Properties

persistedRecordings

persistedRecordings@latest

taskState@lastBitsRecorded

taskState(@fatalError

taskState@currentErrors

taskState(@errorHistory

taskState@pendingErrors

taskState(@infoList

persistedRecordings@preAllocation
persistedRecordings@storedLifetime

Schedule State Properties

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) -189 -

C.3.1 object.recordSchedule Class

This is the abstract base class for the ScheduledRecording service record schedules class hierarchy. No
object of this abstract class can be instantiated. The object.recordSchedule class defines properties that
are common to all object.recordSchedule list entries. The table below lists all recordSchedule-related
standard defined properties (recordTask-only properties are omitted from the table — see Annex B for
the definition of each property) and indicates the support level (_, OPTIONAL,
REQUIRED, and i) in this class for recordScheduleParts (RSP) and recordSchedule (RS)
usage for each property.

Table C-5: object.recordSchedule Base Class Properties

o

Property Name Q9 Property Name
Base Properties Matching Qualifying Criteria

wid V|V imatchingChannellD
ltitle l/ l/ imatchingChannellD@type
class l/ l/ imatchingStartDateTimeRange
additionalStatusinfo (0] matchingDurationRange
cdsReference matchingRatingLimit
cdsReference@link matchingRatingLimitt@type
Priority Properties matching EpisodeéLe

riority R Content Control Properties

riority@orderedValue o totalDesiredRecordTasks 0|0
desiredPriority V|V schedulédStartDateTimeAdjust 0|0
EiesiredPriority@type V|V scheduledDurationAdjust 0|0
(Output Control Properties avitvePeriod

—— durationLimit
recordDestination OIR - —
—— - durationLimit@effect
recordDestination@medialype O|R 7 Miarat
- “hannelMigration
recordDestination@targetURL 0|0 ; < ML' pr <
recordDestination(@preference O|R 17[“ lz),qm['mn
desiredRecordQuality V|V giowDupiicates
desiredRecordQuality@type l/ Storage Related Properties
Content ID Related Properties I~ ersistedRecordings 010
scheduledCDSObjectID ei‘szsy‘iejﬁc’c’rn:;illrzas‘?\/jlmejil i (6) g
scheduledCDSObjectID@link €V5{-StedRcL()id{ngsgpt/a dzc;z ;40,1 5 5
ersistedRecordings(@store otime

scheduledChannellD Crsisted Recoraing AL yeline —T—
scheduledChannellD@type Schedule State Properties
scheduledStartDateTime scheduleState
scheduledDuration scheduleState@currentErrors
scheduledProgramCodé labnormalTasks Exist
scheduledProgramCedd@type Statistics Properties
Matching Content Criteria currentRecordTaskCount
natchingNamé totalCreatedRecordTasks
natchiugName@type totalCompletedRecordTasks
matchingName@subStringMatch
st hinglD

Ly, ’l1ilﬂ(7’f)@f\‘nr)

C.3.11 object.recordSchedule.direct Class

The object.recordSchedule.direct abstract class is derived from the object.recordSchedule class. No
object of this abstract class can be instantiated.

The main characteristic of the object.recordSchedule.direct class is that all the information that is
needed to create associated recordTask instances is contained within the properties of the
recordSchedule. The properties contain sufficient information to allow the ScheduledRecording service

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

-190 - 29341-4-14 © ISO/IEC:2008(E)

to translate this information into a deterministic set of recordTask properties. For example, if a
ScheduledRecording service implementation supports the object.recordSchedule.direct.programCode
class, the ScheduledRecording service is able to interpret the scheduledProgramCode property and
derive the appropriate taskStartDate, taskStartTime, taskDuration, and taskChannellD recordTask
properties from it. The table below lists all standard defined properties (see Annex B for the definition
of each property) and indicates the support level (_, OPTIONAL, REQUIRED, and

) in this class for recordScheduleParts (RSP) and recordSchedule (RS) usage for each

property.

Table C-6: object.recordSchedule.direct Class Properties

Property Name | Property Name % 0
Base Properties Matching Qualifying Criteria . “
(@id V|V matchingChannellD
ltitle l/ l/ imatchingChannellD@type
class V|V imatchingStartDateTimeRange
additionalStatusinfo Y matchingDurationRange
cdsReference 7 matchingRatingLimit
cdsReference@link matchingRatingLimit@type
Priority Prop;er ties matchingEpisodeType

— (Content Control Properties

riority Y

riority@orderedValue T/ totalDesiredRecorddasks V|V
desiredPriority v :/ scheduledStartDateimeAdjust V|V
EiesiredPriority@type ;/ ;/ scheduledDuyationAdjust V|V

. activePeribd

(Output Control Properties ratiobLonT
recordDestination V[JurationLimit@effect
recordDestination(@mediaType V[chdhnelMigra tion
recordDestination(@targetURL VY|V tiheMigration
recordDestination(@preference :\é %j lallowDuplicates
desiredRecordQuality .
desiredRecordQuality@type V]| v Storage Related Propertics

) A 1 ersistedRecordings Y|V
(Content ID Related Properties ersistedRecordings@latest Y|V
scheduled CDSObjectlD ersistedRecordings@preAllocation M
scheduledCDSObjectID@link ersistedRecordings@storedLifetime V|V
scheduledChannellD B
scheduledChannellD@type Schedule State Properties
scheduledStartDateTime scheduleState
scheduledDuration scheduleState@currentErrors
scheduledProgramCode abnormalTasksExist
scheduledProgramCode(@type Statistics Properties
Matching Content Criteria currentRecordTaskCount
natchingName totalCreatedRecordTasks
natchingName@pe total CompletedRecordTasks
matchingName@swbStringMatch
imatchingID
matchinglB@type
c31.14 bi ISchedule.di ICl

The object.recordSchedule.direct.manual class is used to create recordSchedule instances for manual
scheduling of recordings. The content to be recorded is uniquely identified by the scheduledChannellD,
scheduledStartDateTime, and scheduledDuration properties.

The table below lists all standard defined properties (see Annex B for the definition of each property)
and indicates the support level (_, OPTIONAL, REQUIRED, and _) in this
class for recordScheduleParts (RSP) and recordSchedule (RS) usage for each property.

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E)

-191 -

Table C-7: object.recordSchedule.direct.manual Class Properties

Property Name

Base Properties

additionalStatusInfo

cdsReference

cdsReference@link

Priority Properties

Property Name

Matching Qualifying Criteria

imatchingChannellD
matchingChannellD@type

matchingStartDateTimeRange

matchingDurationRange

matchingRatingLimit
imatchingRatingLimit@type

matchingEpisodeTvpe

riority

riority@orderedValue

desiredPriority

desiredPriority(@type

(Output Control Properties

recordDestination

recordDestination(@mediaType

recordDestination(@targetURL

recordDestination(@preference

desiredRecordQuality

desiredRecordQuality@type

Content ID Related Properties

scheduledCDSObjectID

scheduledCDSObjectID@link

scheduledChannellD

scheduledChannellID@type

scheduledStartDateTime

scheduledDuration

scheduledProgramCode

scheduledProgramCode@type

Matching Content Criteria

matchingName

matchingName@type

imatchingName@subStringMatch

imatchingID

imatchingID@type

(Content Control Properties

=

totalDesiredRecordTasks
scheduledStartDateTimeAdjust
scheduledDurationAdjust
activePeriod

() T(%C <
Q<

durationLimit

EiumtionLimi t@effect
channelMigration
timeMigration
allowDuplicates

Storage Related Propenties
persistedRecordinng$
ersistedRecdrdings@latest

ersistedReevydings@preAllocation
ersistédRecordings@storedLifetime

< [=f=]=
= ===

Schedule State Properties

schéduleState
scheduleState(@currentErrors

lubnormalTasksExist

Statistics Properties

currentRecordTaskCount
totalCreatedRecordTasks
totalCompletedRecordTasks

C.3.1.1.2 object.recordSchedule.direct.cdsEPG Class

The object.recordS¢hedule.direct.cdsEPG class is used to create recordSchedule instances for
scheduling of fecordings, based on local EPG information. The content to be recorded is uniquely
identified bypthe scheduled CDSObjectID property that MUST reference an EPG item
(object.itemepgltem class) in an associated ContentDirectory service. Most EPG item types currently
defined-identify only a single recording event. In the future, new EPG item types may be defined that
identify multiple recording events.

REALIIRE

La ni § AmY g 1 e L - VR - - n (alig) 1.1 1R 1. - -
THU NCAJUIIND LD d35ULIAUUIT ULTWULUIT a _/UllLClll.JJllel.Uly SUIVILUU dIlu a O\/llCULllCUl\CL/UlUllls SUIVIUU IS
established by having both services reside within the same UPnP MediaServer device. See also Annex
E and Annex F for further details.

The table below lists all standard defined properties (see Annex B for the definition of each property)
and indicates the support level (_, OPTIONAL, _, and _) in this
class for recordScheduleParts (RSP) and recordSchedule (RS) usage for each property.

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

-192 - 29341-4-14 © ISO/IEC:2008(E)

Table C-8: object.recordSchedule.direct.cdsEPG Class Properties

Property Name

Base Properties

additionalStatusInfo

cdsReference

cdsReference@link

Priority Properties

Property Name

Matching Qualifying Criteria

imatchingChannellD

matchingChannellD@type

matchingStartDateTimeRange

matchingDurationRange

matchingRatingLimit

imatchingRatingLimit@type

matchingEpisodeTvpe

riority

riority@orderedValue

desiredPriority

desiredPriority(@type

(Output Control Properties

recordDestination

recordDestination(@mediaType

recordDestination(@targetURL

recordDestination(@preference

desiredRecordQuality

desiredRecordQuality@type

Content ID Related Properties

scheduledCDSObjectID

scheduledCDSObjectID

scheduledChannellD

scheduledChannellID@type

scheduledStartDateTime

scheduledDuration

scheduledProgramCode

scheduledProgramCode@type

Matching Content Criteria

matchingName

matchingName@type

imatchingName@subStringMatch

imatchingID

matchingID@type

(Content Control Properties

totalDesiredRecordTasks

scheduledStartDateTimeAdjust

scheduledDurationAdjust

activePeriod

durationLimit

ElurationLimi t@effect

channelMigration

timeMigration

Sloloofo <.
NN SNRE=N

allowDuplicates

Storage Related Propenties

persistedRecordinng$

ersistedRecdrdings@latest

ersistedReevydings@preAllocation

ersistédRecordings@storedLifetime

< [=f=]=
= ===

Schedule State Properties

schéduleState

scheduleState(@currentErrors

lubnormalTasksExist

Statistics Properties

currentRecordTaskCount

totalCreatedRecordTasks

totalCompletedRecordTasks

C.3.1.13 object.recordSchedule.direct.cdsNonEPG Class

The object.recordSchedule.direct.cdsNonEPG class is used to create recordSchedule instances for

scheduling of recondings, for which (only) channel information is available in a local ContentDirectory

database. The content to be recorded is uniquely identified by the scheduledStartDateTime, and

scheduledDuxation properties, supplemented with the scheduledCDSObjectID property that MUST
reference aContentDirectory service object whose class is not “object.item.epgltem’ or derived from
that class._ Additionally, the referenced ContentDirectory service object MUST identify content that will
be available for recording at the time the recording is scheduled to start.

ExXamples of applicable ContentDirectory service objects are:

e A User Channel object that contains specific channel information.

e An object that represents an analog A/V input connection to the device.

e An object that represents an IP network program feed.

e An object that represents an already existing file.

e Ftc.

The REQUIRED association between a ContentDirectory service and a ScheduledRecording service is
established by having both services reside within the same UPnP MediaServer device. See also Annex

E and Annex F for further details.

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E)

-193 -

The table below lists all standard defined properties (see Annex B for the definition of each property)
) in this

and indicates the support level (

BROEISINES. OPTIONAL, REQUIRED. and I NENNNNEN

class for recordScheduleParts (RSP) and recordSchedule (RS) usage for each property.

Table C-9: object.recordSchedule.direct.cdsNonEPG Class Properties

Property Name

Base Properties

Property Name

Matching Qualifying Criteria

Priority Properties

scheduledStartDateTime

scheduledDuration

scheduledProgramCode

scheduledProgramCode@type

Matching Content Criteria

matchingName

matchingName@type

imatchingName@subStringMatch

imatchingID

imatchingID@type

@id matchingChannellD

ltitle matchingChannellD@type
lclass matchingStartDateTimeRange
g,],]‘f‘ 1St atac Loty talad. IAY £, R
cdsReference matchingRatingLimit
cdsReference@link matchingRatingLimit@type

matchingEpisodeTvpe

riority [Content Control Properties
riority@orderedValue totalDesiredRecordTasks l/ l/
desiredPriority scheduledStartDateTimeAdjust l/ l/
desiredPriority(@type scheduledDurationAdjust l/ l/
Output Control Properties activePeriod 0|0
— durationLimit
7recordDeSn-nan-0n - - EiumtionLimit@efféct
recordDestmatlon@medla Type channelMigration
recordDestination@targetURL limeMigration
recordDestination(@preference L llowDuplicdies
desiredRecordQuality X
desiredRecordOuality@ivpe Storage Related Properties
Content ID Related Properties mRecordz'ngs — YV
erSistedRecordings@latest l/ l/
scheduled CDSObjectID _ [persistedRecordings@preAllocation Y|V
scheduled CDSObjectD@link ersistedRecordings@storedLifetime l/ l/
scheduledChannellD
scheduledChannellID@type Schedule State Properties

scheduleState

scheduleState(@currentErrors

labnormalTasksExist

Statistics Properties

currentRecordTaskCount

totalCreatedRecordTasks

totalCompletedRecordTasks

C.3.1.14 object.recordSchedule.direct.programCode Class

The objeet/recordSchedule.direct.programCode class is used to create recordSchedule instances for
scheduling of recordings, based on program code information. The content to be recorded is uniquely
identified by the scheduledprogramCode property that contains a unique code that can be translated by
t}lC Sb}lCdUICdRCbUL dills SUIT VibC illtU a Pl CbiDC btcut datc, ataﬁ tilllc, C‘lul aﬁuu aud \/11(11111511 fUl tllU
recording event(s). However, most program code types currently defined identify only a single
recording event. In the future, new program code types may be defined that identify multiple recording
events.

The table below lists all standard defined properties (see Annex B for the definition of each property)

and indicates the support level (_, OPTIONAL, _, and _) in this

class for recordScheduleParts (RSP) and recordSchedule (RS) usage for each property.

Table C-10: object.recordSchedule.direct.programCode Class Properties

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

~194 -

29341-4-14 © ISO/IEC:2008(E)

Property Name z @ Property Name
Base Properties Matching Qualifying Criteria
(@id V| v matchingChannellD
ltitle V| v matchingChannellD@type
class V| v matchingStartDateTimeRange
additionalStatusinfo v matchingDurationRange
cdsReference matchingRatingLimit
cdsReference@link matchingRatingLimit@type
Priority Properties matchingEpisodeType
riority Y/ [Content Control Properties
riority@orderedValue v totalDesiredRecordTasks Y|V
desiredPriority V]|V scheduledStartDatelimeAdjust Y
EiesiredPriority@type Y|V scheduledDurationAdjust Y|k
Output Control Properties activePeriod
— durationLimit
pecordDestination — Vi EiumtionLimir@eﬁ"@ct
recordDestination @med[aType v l/ channelMigration
recordDestination@targetURL VY|V imeMigration
recordDestination(@preference V| llowDuplicates
desiredRecordQuality V|V X
desiredRecordQualitv@ivpe SV Storage Related Properties
Content ID Related Properties ersz‘stedRecordz'ngs = YV
ersistedRecordings@latest V|V
scheduled CDSObjectiD _ ersistedRecordingg(@preAllocation V|V
scheduled CDSObjectD@link ersistedRecordings@storedLifetime V|V
scheduledChannellD B 1
scheduledChannelID@type Schedule State Properties
scheduledStartDateTime lscheduléState
scheduledDuration scheduteState(@currentErrors
scheduledProgramCode RI|R Ghnormal TasksExist
scheduledProgramCode@type RI|R

Matching Content Criteria

matchingName

matchingName@type

imatchingName@subStringMatch

imatchingID

matchingID@type

C.3.1.2

Statistics Properties

currentRecordTaskCount

totalCreatedRecordTasks

totalCompletedRecordTasks

object.récordSchedule.query Class

The object.recordSchedule.query abstract class is derived from the recordSchedule base class. No

object of this abstract,class can be instantiated.

The main characteristic of the object.recordSchedule.query class is that the properties of the

recordSchediife are used as matching criteria to select items from external sources (like EPG databases,
side-band-ictadata streams in digital broadcasts, etc.). After appropriate searching and matching, the
metadata from these external items is used to populate recordTask instances. This process ensures that
the feqordTask properties match the rules set forth in the recordSchedule’s properties (matching

cfiteria).

The table below lists all standard defined properties (see Annex B for the definition of each property)

and indicates the support level (_, OPTIONAL, REQUIRED, and

class for recordScheduleParts (RSP) and recordSchedule (RS) usage for each property.

Table C-11: object.recordSchedule.query Class Properties

o
Property Name 8 @
Base Properties
(@id Vv
itle Vv
class V| v

Property Name
additionalStatusinfo

) in this

cdsReference

cdsReference@link

Priority Properties

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E)

Property Name

- 195 -

Property Name

RSP
RS

scheduledChannellD
scheduledChannelID@type
scheduledStartDateTime
scheduledDuration
scheduledProgramCode
scheduledProgramCode@type

Matching Content Criteria

matchingName
imatchingName@type
imatchingName@subStringMatch
matchinglD

imatchingID@type

Property Name

Matching Qualifying Criteria

imatchingChannellD
imatchingChannellD@type

riority matchingStartDateTimeRange

riority@orderedValue matchingDurationRange

desiredPriority l/ 1/ matchingRatingLimit

EiesiredPriority@type l/ l/ matchingRatingLimit@type

(Output Control Properties matchingEpisodeType

recordDestination V[Content Control Properties

recordDestination(@mediaType V[totalDesiredRecordTasks Y|V

recordDestination(@targetURL V|V scheduledStartDateTimeAdjust V|V

recordDestination(@preference v l/ scheduledDurationAdjust V|V

desiredRecordQuality V|V activePeriod olo

lesiredRecord Qualitv@ivpe l/ l/ EurationLimit 0l0

Content ID Related Properties durationLimit@effect (0] E—‘
channelMigration ol

?cheduledCDS()biect]D7 timeMigration 0D

scheduledCDSObjectID@link wllowDuplicates o

Storage Related Properties

ersistedRecordings
ersistedRecordings@latest

ersistedRecordings@preAllécalion
ersistedRecordings@storedifetime

Schedule State Propgrties

< [=f=]=
= ===

scheduleState
scheduleStatef@ehrientErrors

labnormal TasksExist

Statisties Properties

curremtRecordTaskCount
foialCreatedRecordTasks
tdtalCompletedRecordTasks

C.3.1.21 object.recordSchedule.query.contentName Class

The object.recordSchedule.query.cantentName class is used to create recordSchedule instances for
scheduling of recordings, based-ofr program or series name information. The content to be recorded is
determined by matching thevalue, specified in the matchingName property to the names of content
items made available to the ScheduledRecording service by REQUIRED external resources like access
to EPG databases, aceess to Service Information side-band data in digital broadcasts, etc. The matching
process can be furthen restricted by providing a combination of Matching Qualifying Criteria properties.
Any external content item MUST match those additional criteria to be considered a potential candidate
for recording:

The tabl€ below lists all standard defined properties (see Annex B for the definition of each property)
and jddicates the support level (| , OPTIONAL, REQUIRED, and _) in this
class-for recordScheduleParts (RSP) and recordSchedule (RS) usage for each property.

Table C-12: object.recordSchedule.query.contentName Class Properties

o

Property Name Q9 Property Name
Base Properties priority

— rioritv@orderedValue

i L
%LtlL lé %; desiredPriority Y|V
ﬁs 1/ 1/ esiredPriority(@type V| v
ladditionalStatusinfo v Output Control Properties
cdsReference recordDestination M
cdsReference@link recordDestination@medialype l/ l/
Priority Properties recordDestination(@targetURL VY|V

recordDestination(@preference l/ l/

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

- 196 - 29341-4-14 © ISO/IEC:2008(E)

o o
Property Name 8 @ Property Name 8 @
desiredRecordQuality vV (Content Control Properties
desiredRecordQuality@type V|
8 L =T totalDesiredRecordTasks VY|V
Content ID Related Properties scheduledStartDateTimeAdjust VY|V
scheduledCDSObjectID scheduledDurationAdjust V|V
scheduledCDSObjectID@link activePeriod V|V
scheduledChannellD durationLimit V|V
scheduledChannellD@type durationLimit@effect V[
scheduledStartDatetime channelMigration V|V
scheduledDuration timeMigration V|V
scheduledProgramCode allowDuplicates V|V
scheduledProgramCode@ivpe StorrgeRetrted-Broperties
Matching Content Criteria ersistedRecordings V| A
matchingName RI|R ersistedRecordings@latest l/ 1/
matchingName@type RI|R ersistedRecordings@preAllocation l/ 1/
imatchingName@subStringMatch o|lo ersistedRecordings@storedLifetime l/ 1/
man’h{MID — Schedule State Properties
imatchingID@type
scheduleState
scheduleState(@currentErrors
o labnormalTasks Exist
Property Name 8 @
Statistics Properties
Matching Qualifying Criteria currentRecordTasKGount
matchingChannellD _ totalCreatedRecortil asks
maichingChannellD@type totalCompletédRecordTasks

matchingStartDate TimeRange
matchingDurationRange
matchingRatingLimit
matchingRatingLimit@type
matchingEpisodeTyvpe

(o) =" (oY (oY (o] =/ @)
IQ =D |1 (IS [IFS]IS

C.3.1.2.2 object.recordSchedule.query.contentID Class

The object.recordSchedule.query.contentID ¢lass1s used to create recordSchedule instances for
scheduling of recordings, based on program.or series ID information. The content to be recorded is
determined by matching the value, specifiéd in the matchingID property to the IDs of content items
made available to the ScheduledRecording service by REQUIRED external resources like access to
EPG databases, access Service Information side-band data in digital broadcasts, etc. The matching
process can be further restricted-by providing a combination of Matching Qualifying Criteria properties.
Any external content item MUST match those additional criteria to be considered a potential candidate
for recording.

The table below lists-all*'standard defined properties (see Annex B for the definition of each property)
and indicates the/support level (_, OPTIONAL, REQUIRED, and _) in this
class for both impuif and output for each property.

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E)

- 197 -

Table C-13: object.recordSchedule.query.contentiD Class Properties

Property Name

Base Properties

additionalStatusInfo

cdsReference

cdsReference@link

Priority Properties

riority

riority@orderedValue

desiredPriority

desiredPriority(@type

(Output Control Properties

lrsP
MRS

recordDestination

recordDestination(@mediaType

recordDestination(@targetURL

recordDestination(@preference

desiredRecordQuality

desiredRecordQuality@type

Content ID Related Properties

scheduledCDSObjectID

scheduledCDSObjectID@link

scheduledChannellD

scheduledChannellID@type

scheduledStartDateTime

scheduledDuration

scheduledProgramCode

scheduledProgramCode@type

Matching Content Criteria

imatchingName

matchingName@type

matchingName@subStringMatch

imatchingID

imatchingID@type

Property Name

Matching Qualifying Criteria

imatchingChannellD
imatchingChannellD@type
matchingStartDateTimeRange
matchingDurationRange
matchingRatingLimit
matchingRatingLimit@type
matchingEpisodeTyvpe

QD[S
Q]SS

IS
IS}

iIContenrt-Controt-Properties
totalDesiredRecordTasks
scheduledStartDateTimeAdjust
scheduledDurationAdjust
activePeriod

<

=]
< < KIK < <11

durationLimit
durationLimit@effect
channelMigration
timeMigration
allowDuplicates

Storage Related Propenties

persistedRecording$,
ersistedRecdrdings@latest

< [<_[<_[<_|<_]

ersistedReeordings@preAllocation
ersistédReecordings@storedLifetime

1< [=f=]=
= ===

Schedule State Properties

scheduleState
scheduleState(@currentErrors

labnormalTasksExist

Statistics Properties

currentRecordTaskCount
totalCreatedRecordTasks
totalCompletedRecordTasks

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

-198 - 29341-4-14 © ISO/IEC:2008(E)

C.3.2 object.recordTask Class

This is the base class for the ScheduledRecording service record task class hierarchy. Currently, this is
the only class defined in this hierarchy. All recordTask objects in the ScheduledRecording service are
members of this class. The object.recordTask class defines properties that are common to all
recordTask list entries.

A recordTask object represents an actual recording occurrence. More sophisticated
ScheduledRecording service implementations MAY implement OPTIONAL actions that allow a
control point to manipulate individual recordTask instances. For example, the OPTIONAL
DisableRecordTask() action can be used to selectively disable (that is: recording task suspended and

any actnal recording MUIST NOT occur) one or more recordTusk instances spawned from the same
recordSchedule if not all recordings are desired.

A recordTask SHOULD be created by the ScheduledRecording service as soon as all necessary
information (like EPG data) becomes available. It SHOULD be maintained at least until the recordTask
has finished. It is RECOMMENDED to maintain all completed recordTask instances for a reasonable
time or until space is needed so that control points can retrieve recordTask state information after the
recording has finished.

One or more recordTask instances can be created per recordSchedule. Some recéndSchedule instances
may not have a recordTask because they have not scheduled any recordings yet.

The list of the recordTask instances can be obtained using the BrowseRecordTasks() action. A
recordTask can be disabled using the DisableRecordTask() action.

Note that a recordTask is not created by a control point directly; thetefore, the input support level
below indicates _ for all properties.

The table below lists all recordTask-related standard definedproperties (recordSchedule-only
properties are omitted from the table — see Annex B for{he'definition of each property) and indicates
the support level (ROEMBIIED, OPTIONAL, and REQUIRED) in this class for recordTask (RT)

usage for each property.

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E)

-199 -

Table C-14: object.recordTask Base Class Properties

Property Name E

Base Properties

title

class

additionalStatusInfo

cdsReference

cdsReference@link

15O [===

Priority Properties

Matched Content Criteria

Property Name E

matchedName

matchedName@type

matchedID

matchedID@type

=1 [

Matched Qualifying Criteria

matchedRating

matchedRating@type

priority

priority@orderedValue

desiredPriority

desiredPriority@type

=< Q[

Output Control Properties

recordDestination

recordDestination@mediaType

recordDestination@targetURL

recordDestination@preference

desiredRecordQuality

desiredRecordQuality@type

=< |I=]O [I=]i=

General Properties

recordSchedulelD

recordedCDSObjectID

recordedCDSObjectID@link

Q| [I=S

Content ID Related Properties

taskCDSObjectID

taskCDSObjectID@link

taskChannellD

taskChannelID@type

taskStartDateTime

taskDuration

taskProgramCode

taskProgramCode@type

recordQuality

recordQuality@type

BEENEEEENS

‘maichedEpisodeType

=]

Content Control Properties

taskStartDateTimeAdjust

taskDurationAdjust

taskDurationLimit

taskDurationLimit@effect

taskChannelMigration

taskTimeMigration

1[I [IF]IQ (IS

Task State Properties

taskState

taskState(@phase,

taskState@startBate TimeMet

taskState@éndDateTimeMet

taskStatet@rkcording

taskState(@someBitsRecorded

taskStdte@someBitsMissing

ldskState(@firstBitsRecorded

taskState@lastBitsRecorded

taskState@fatalError

taskState@currentErrors

taskState@errorHistory

taskState@pendingErrors

taskState@infoList

1= 1= 1= 1= 1= [[1= 1= 1= || 1D [1= 1=

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

—200 - 29341-4-14 © ISO/IEC:2008(E)

Annex D
(normative)

EBNF Syntax Definitions

The following sections define the syntax used for some of the properties and classes described in the
previous sections. The syntax is formally defined using EBNF as described in Section 1.2.3, “Extended
Backus-Naur Form”.

D.1 Priority Syntax

Note: Due to possible future extensions, unknown value inputs MUST be gracefully ignored. In.this
case, the semantics of the “DEFAULT” value MUST be applied.

priority-value ::= standard-value|
extended-value (* extended-valuexis only
applicable if priority@orderedValue is
supported ¥*)

standard-value ::= level|'DEFAULT'

level ::= ('L' number)

number ::= (* integer (n>0) *)

extended-value ::= 'HIGHEST'|'LOWEST{()level-hi|level-
low|object-id

level-hi ::= level ' HI'

level-low i:= level ' LOW

object-id = (* @id@lue *)

D.2 Date&time Syntax

sched-start = date-time |
day-of-yr-time |
named-day-time |
T-labeled-time |

'"NOW'
start-rafnge ::= (date-time|'NOW') '/' (date-time|'INFINITY')
date-timé-range ::= date-time '/' date-time
duration ::= 'P' [n 'D'] time
diration-long ::= duration|'INFINITY'
duration-any ::= duration|'INFINITY'|'ANY'
duration-adj ::= ('+'|'-') duration
duration-range ::= duration '/' duration-long
date-time = yyyy '-' mm '-' dd T-labeled-time
day-of-yr-time ::= mm '-' dd T-labeled-time
named-day-time ::= named-day T-labeled-time
T-labeled-time ::= 'T' time [zone]
time ::= HH ':'" MM ':' SS
zone si= 'ZV|(('+'|'-') HH ':' MM)
month-day ::= mm '-' dd
named-day ::= 'MON'|'TUE'|'WED'|'THU'|'FRI'|'SAT'|'SUN'|
'MON-FRI' | 'MON-SAT'
n ::= 1*DIGIT (* non-negative integer *)

YYYY ::= A4DIGIT (* 0001-9999 *)

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

29341-4-14 © ISO/IEC:2008(E) - 201 -

mm ::= 2DIGIT (* 01-12 *)

dd ::= 2DIGIT (* 01-28, 01-29, 01-30, 01-31
based on month/year *)

HH ::= 2DIGIT (* 00-23 *)

MM ::= 2DIGIT (* 00-59 *)

SS ::= 2DIGIT (* 00-59 *)

D.3 Class Name Syntax

className ::= 'OBJECT.' (sName|tName)

sName ::= 'RECORDSCHEDULE.' (dName |gName)

tName ::= 'RECORDTASK' ('.' shortName) *

dName ::= 'DIRECT.' directName ('.' shortName) *

gName ::= 'QUERY.' queryName ('.' shortName) *

directName HEES 'MANUAL'|'CDSEPG'|'CDSNONEPG'|'PROGRAMCODE'

queryName HEES 'CONTENTNAME'|'CONTENTID'

shortName ::= (* valid XML 1.0 name, excluding the
characters

', " (UTF-8 code 0x2E)
and
':!' (UTF-8 code 0x3A)~*)

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

-202 - 29341-4-14 © ISO/IEC:2008(E)

Annex E
(informative)

ScheduledRecording Service Relationship to
ContentDirectory Service

As noted in the specification, the only formal relationship between a ScheduledRecording service and a

i ice-is through the ahjectrecardSchedule direct.cdsEPG and
object.recordSchedule.direct.cdsNonEPG classes. The reason for keeping the ScheduledRecording
service and ContentDirectory service as separate services is because they serve different purposes(The
ScheduledRecording service is a service for creating a schedule of recording operations whereas' the
ContentDirectory service is a service for exposing content and its metadata. Therefore, the onlyformal
dependency on a ContentDirectory service is to accommodate the case where a control point identifies
recordable content on a ContentDirectory service and then instructs a sibling ScheduledRecording
service to record that content.

Although a ScheduledRecording service and a ContentDirectory service are generally separated at the
protocol layer, the two services can often interact in an out-of-band manner to realize some additional
usages.

Showing Recorded Content in a ContentDirectory service: Vendors who are interested in making
recorded content discoverable and network-consumable can expose.the recorded content through the
associated ContentDirectory service. The exact location where the'recorded content will be exposed is
determined by the implementation and is vendor-dependent:

Sending recorded bits to a ContentDirectory servicet Onie methodology for sending recorded
content to a ContentDirectory service (that is completely separate from the ScheduledRecording
service) is to do the following: Start the process byhaving the control point invoke the
ContentDirectory:.:CreateObject() action and obtain a res@importUri where binary data can be
deposited via HTTP-POST. As a second step, the control point uses the CreateRecordSchedule() action
with the appropriate destination type (recerdDestination = “MyNAS”, recordDestination@mediaType =
“HDD”, recordDestination@targetURL= res@importUri) to accommodate a URI that accepts HTTP-
POST transmissions. When the SchéduledRecording service begins to record (or finishes recording) the
ScheduledRecording service implementation can transmit the recorded bits using an HTTP-POST
transaction. When the transmission is complete, the ContentDirectory service updates its metadata to
allow rendering endpoints to_play the content.

Scheduled recordingfrom an external location: Vendors who want to use an external location as a
source of recordable content can achieve this use case in the following manner. The control point
obtains a URI thatrepresents content that can be recorded. The control point creates a manual
recordSchediife, with the appropriate scheduling information and the URI as the input source in the
scheduledChannellD property. At the instructed time, the ScheduledRecording service will download
or streani-the content data bytes from the URI to complete the recording.

https://iecnorm.com/api/?name=077e51aa095eaebb588ef4b47a49373a

	CONTENTS
	FOREWORD
	ORIGINAL UPNP DOCUMENTS (informative)
	1 Overview and Scope
	1.1 Introduction
	1.2 Notation
	1.3 Derived Data Types
	1.4 Management of XML Namespaces in Standardized DCPs
	1.5 Vendor-defined Extensions
	1.6 References

	2 Service Modeling Definitions
	2.1 ServiceType
	2.2 Terms and Abbreviations
	2.3 ScheduledRecording Service Architecture
	2.4 State Variables
	2.5 Eventing and Moderation
	2.6 Actions
	2.7 State Diagram of recordTask
	2.8 ScheduledRecording Service Priority Model
	2.9 Theory of Operation

	3 XML Service Description
	4 Test
	Annex A (normative) srs XML Document
	A.1 A_ARG_TYPE_RecordSchedule AVDT XML Document
	A.2 A_ARG_TYPE_RecordTask AVDT XML Document
	A.3 A_ARG_TYPE_RecordScheduleParts AVDT XML Document

	Annex B (normative) AV Working Committee Extended Properties
	B.1 Base Properties
	B.2 Priority Properties
	B.3 Output Control Properties
	B.4 Content Identification Related Properties
	B.5 Matching Content Criteria Properties
	B.6 Matching Qualifying Criteria Properties
	B.7 Content Control Properties
	B.8 Storage Related Properties
	B.9 Schedule State Properties
	B.10 Statistics Properties
	B.11 Task General Properties
	B.12 Task Content Identification Properties
	B.13 Task Matched Content Criteria Properties
	B.14 Task Matched Qualifying Criteria Properties
	B.15 Task Matched Content Control Properties
	B.16 Task State Properties
	B.17 ContentDirectory Service Imported Properties

	Annex C (normative) AV Working Committee Class Definitions
	C.1 Class Hierarchy
	C.2 Class Definitions
	C.3 object Base Class

	Annex D (normative) EBNF Syntax Definitions
	D.1 Priority Syntax
	D.2 Date&time Syntax
	D.3 Class Name Syntax

	Annex E (informative) ScheduledRecording Service Relationship to ContentDirectory Service
	Annex F (informative) ScheduledRecording Service Relationship to EPG
	Annex G (informative) AVDT Examples
	G.1 A_ARG_TYPE_RecordSchedule AVDT Example
	G.2 A_ARG_TYPE_RecordTask AVDT Example
	G.3 A_ARG_TYPE_RecordScheduleParts AVDT Example

	Figures
	Figure 1: Creating a new recordSchedule
	Figure 2: Capability check.
	Figure 3: Browse recordSchedule.
	Figure 4: Delete a recordSchedule
	Figure 5: A Full-Featured State Diagram
	Figure 6: A Minimal-Implementation State Diagram
	Figure 7: Class hierarchy for the ScheduledRecording service.

	Tables
	Table ‎1-1: EBNF Operators
	Table ‎1-2: CSV Examples
	Table ‎1-3: Namespace Definitions
	Table ‎1-4: Schema-related Information
	Table ‎1-5: Default Namespaces for the AV Specifications
	Table ‎2-1: Abbreviations
	Table ‎2-1: Properties in XML
	Table ‎2-2: State Variables
	Table ‎2 3: allowedValueList for the DataTypeID argument
	Table ‎2 4: Allowed Elements in <StateEvent> Element
	Table ‎2-5: Eventing and Moderation
	Table ‎2 6: Actions
	Table ‎2 7: Arguments for GetSortCapabilities()
	Table ‎2 8: Error Codes for GetSortCapabilities()
	Table ‎2 9: Arguments for GetPropertyList()
	Table ‎2 10: Error Codes for GetPropertyList()
	Table ‎2 11: Arguments for GetAllowedValues()
	Table ‎2 12: Error Codes for GetAllowedValues()
	Table ‎2 13: Arguments for GetStateUpdateID()
	Table ‎2 14: Error Codes for GetStateUpdateID()
	Table ‎2 15: Arguments for BrowseRecordSchedules()
	Table ‎2 16: Error Codes for BrowseRecordSchedules()
	Table ‎2 17: Arguments for BrowseRecordTasks()
	Table ‎2 18: Error Codes for BrowseRecordTasks()
	Table ‎2 19: Arguments for CreateRecordSchedule()
	Table ‎2 20: Error Codes for CreateRecordSchedule()
	Table ‎2 21: Arguments for DeleteRecordSchedule()
	Table ‎2 22: Error Codes for DeleteRecordSchedule()
	Table ‎2 23: Arguments for GetRecordSchedule()
	Table ‎2 24: Error Codes for GetRecordSchedule()
	Table ‎2 25: Arguments for EnableRecordSchedule()
	Table ‎2 26: Error Codes for EnableRecordSchedule()
	Table ‎2 27: Arguments for DisableRecordSchedule()
	Table ‎2 28: Error Codes for DisableRecordSchedule()
	Table ‎2 29: Arguments for DeleteRecordTask()
	Table ‎2 30: Error Codes for DeleteRecordTask()
	Table ‎2 31: Arguments for GetRecordTask()
	Table ‎2 32: Error Codes for GetRecordTask()
	Table ‎2 33: Arguments for EnableRecordTask()
	Table ‎2 34: Error Codes for EnableRecordTask()
	Table ‎2 35: Arguments for DisableRecordTask()
	Table ‎2 36: Error Codes for DisableRecordTask()
	Table ‎2 37: Arguments for ResetRecordTask()
	Table ‎2 38: Error Codes for ResetRecordTask()
	Table 2 39: Arguments for GetRecordScheduleConflicts()
	Table 2 40: Error Codes for GetRecordScheduleConflicts()
	Table 2 41: Arguments for GetRecordTaskConflicts()
	Table 2 42: Error Codes for GetRecordTaskConflicts()
	Table ‎2 43: Common Error Codes
	Table ‎2 44: recordTask State Timeline
	Table ‎2-45: Example 1: Fewer recordSchedule instances than the Number of Supported Priority Levels.
	Table ‎2-46: Example 2: More recordSchedule instances than the Number of Supported Priority Levels.
	Table ‎2-47: Existing recordSchedule Priorities
	Table ‎2-48: desiredPriority Property Set to “RS-C”
	Table ‎2-49: desiredPriority Property Set to “HIGHEST”, “L1_HI”, or “RS-A”
	Table ‎2-50: desiredPriority Property Set to “LOWEST”, “L3_LOW”, or “RS-B”
	Table ‎2-51: desiredPriority Property Set to “RS-C”
	Table ‎B-1: Base Properties Overview
	Table ‎B-2: allowedValueList for the class Property
	Table ‎B-3: Priority Properties
	Table ‎B-4: allowedValueList for the priority Property
	Table ‎B-5: Primary allowedValueList for the desiredPriority Property
	Table ‎B-6: Additional allowedValueList for the desiredPriority Property
	Table ‎B-7: allowedValueList for the desiredPriority@type Property
	Table ‎B-8: Output Control Properties
	Table ‎B-9: desiredRecordQuality Example
	Table ‎B-10: allowedValueList for the desiredRecordQuality Property
	Table ‎B-11: allowedValueList for the desiredRecordQuality@type Property
	Table ‎B-12: Content Identification Related Properties
	Table ‎B-13: allowedValueList for the scheduledChannelID@type Property
	Table ‎B-14: Matching Content Criteria Properties
	Table ‎B-15: allowedValueList for the matchingName@type Property
	Table ‎B-16: allowedValueList for the matchingID@type Property
	Table ‎B-17: Matching Qualifying Criteria Properties
	Table ‎B-18: allowedValueList for the matchingRatingLimit Property Using the MPAA Rating System (matchingRatingLimit@type = “MPAA.ORG”)
	Table ‎B-19: allowedValueList for the matchingRatingLimit Property Using the RIAA Rating System (matchingRatingLimit@type = “RIAA.ORG”)
	Table ‎B-20: allowedValueList for the matchingRatingLimit Property Using the ESRB Rating System (matchingRatingLimit@type = “ESRB.ORG”)
	Table ‎B-21: allowedValueList for the matchingRatingLimit Property Using the TVGUIDELINES Rating System (matchingRatingLimit@type = “TVGUIDELINES.ORG”)
	Table ‎B-22: allowedValueList for the matchingRatingLimit@type Property
	Table ‎B-23: allowedValueList for the matchingEpisodeType Property
	Table ‎B-24: Content Control Properties
	Table ‎B-25: allowedValueList for the durationLimit@effect Property
	Table ‎B-26: Storage Related Properties
	Table ‎B-27: Schedule State Properties
	Table ‎B-28: allowedValueList for the scheduleState Property
	Table ‎B-29: allowedValueList for the scheduleState@currentErrors Property
	Table ‎B-30: Statistics Properties
	Table ‎B-31: Task General Properties
	Table ‎B-32: Task Content Identification Properties
	Table ‎B-33: recordQuality Example
	Table ‎B-34: allowedValueList for the recordQuality Property
	Table ‎B-35: Task Matched Content Criteria Properties
	Table ‎B-36: Task Matched Qualifying Criteria Properties
	Table ‎B-37: Task Matched Content Control Properties
	Table ‎B-38: State Related Properties
	Table ‎B-39: allowedValueList for the taskState Property
	Table ‎B-40: allowedValueList for the taskState Property
	Table ‎B-41: allowedValueList for the taskState@phase Property
	Table ‎B-42: allowedValueList for the taskState@xxx Properties
	Table ‎C-1: Class Properties Overview for recordScheduleParts usage
	Table ‎C-2: Class Properties Overview for recordSchedule usage
	Table ‎C-3: Class Properties Overview for recordTask usage
	Table ‎C-4: object Base Class Properties
	Table ‎C-5: object.recordSchedule Base Class Properties
	Table ‎C-6: object.recordSchedule.direct Class Properties
	Table ‎C-7: object.recordSchedule.direct.manual Class Properties
	Table ‎C-8: object.recordSchedule.direct.cdsEPG Class Properties
	Table ‎C-9: object.recordSchedule.direct.cdsNonEPG Class Properties
	Table ‎C-10: object.recordSchedule.direct.programCode Class Properties
	Table ‎C-11: object.recordSchedule.query Class Properties
	Table ‎C-12: object.recordSchedule.query.contentName Class Properties
	Table ‎C-13: object.recordSchedule.query.contentID Class Properties
	 Table ‎C-14: object.recordTask Base Class Properties

