INTERNATIONAL ISO/IEC
STANDARD 24707

First edition
2007-10-01

/N —

Information technology — €ommpn Logic
(CL): a framework for a family of logic-
based languages

Technologies de l'information —‘Logique commune (CL):\un cadre pour
une famille de langages basés.sur la logique

Reference number
ISO/IEC 24707:2007(E)

1SO|IEC
g g © ISO/IEC 2007

https://iecnorm.com/api/?name=2a2de7c6cc8000e40f79d1e704317b8a

ISO/IEC 24707:2007(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but
shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In
downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat
accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation
parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In
the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2007

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.

ISO copyright office

Case postale 56 « CH-1211 Geneva 20

Tel. +412274901 11

Fax + 4122749 09 47

E-mail copyright@iso.org

Web www.iso.org
Published in Switzerland

ii © ISO/IEC 2007 — All rights reserved

https://iecnorm.com/api/?name=2a2de7c6cc8000e40f79d1e704317b8a

ISO/IEC 24707:2007(E)

Contents

0T =3, o o N
1 o T W T o2 4 T o
1 £ oo o - PSSR
2 Normativereferences e
3 Terms and definitioNsoovi i sssr e e e e eafna Benn
4 Symbols and abbreviations........cccccoeicccceriiic e e
4.1 SYMDOIS ... e mnr e e e e s e nnmnn e e s eesennsnnms fe o Be e s e nannn s
4.2 AbDreviations e bas b e
5 Requirements and design OVerviewccccooocmmiiiniccccssrrree sl
5.1 L0 L] =Y 4 L= o o
5.2 A family of NOtatioNS ... e N e
6 Common Logic abstract syntax and semantics............c.. i,
6.1 Common Logic abstract syntax.ccccccminiimmin S s
6.2 Common LOGiC SEMANTICScceriiiiiiiicceerreir s ades e s s s snmnne e e e e s s s smnn e e e e s s snsssnnmnnnes
6.3 Importing and identification on a networkio e ——————
6.4 Satisfaction, validity and entailment................. .
6.5 Sequence markers, recursion and argumentlists: discussion.........ccccccevviecccecenennn.
6.6 Special cases and translations between dialectscccccccermriririccccsceenre e
7 CONTOIMANCE......coceecriere e b e e e e e e s e s s s snn e e e e e s sa s s s samnn e e e e e sas s snmnneeenssanssnsnnnnnn
71 Dialect CONfOrMANCEeuiiiiii it me e e s e e e e s s mmn e s
7.2 Application conformance............:. i
7.3 Network CONfOrMANCE ... e e
AnnextA (normative) Common Logic Interchange Format (CLIF)ccccovniimnniiiinean.
AA [0 o X 11 T2 4T) o T S P
A.2 Lo I | oY -) g RS
A.3 CLIF SEMANTICS ...ccociemiiiiiiiiiccciecerer s s s s sssssme s e s s s s s s s snnne e s s s s s s s smnne e e e e e ess s mnnneeenesnsnnssnnnns
A.4 (0 | Sl oo Y0 0] 4 3 0 F= 1 1o = PSRRI
Annex/B (normative) JConceptual Graph Interchange Format (CGIF).........cccccccerriceceernnnnee
B.1 101 o T [T o2 4T Y &
B.2 CG CoreiSyntax and SemantiCscccccerriiriiiisisscrirne s csssssere e e s s s s ssmnes e e s essssssnnmnnes
B.3 Extended CGIF SyNtaXcccccciiiiiiciisicrieriis s csscsse s s s s s ssssssssss s e s sssssssssssssessssssssssnnmsssnses
B.4 (02.€ 75 e o7 1 o] 4 4 - o o P
Annex| €</ (normative) eXtended Common Logic Markup Language (XCL)..........ccccuuuees
CA1 e T LU T 4 o
C.2 D0 R
C.3 D03 IR Y 4 = o 1 o

Cc4

Bibliography

XCL Conformance

© ISO/IEC 2007 — All rights reserved

Page

https://iecnorm.com/api/?name=2a2de7c6cc8000e40f79d1e704317b8a

ISO/IEC 24707:2007(E)

Figures Page
Figure 1 — Structure of a text and the taxonomy of the phrase category textcccoceiiiiiiiiiiiii i 10
Figure 2 — Abstract syntax of sentence and its SUD-CategOries...........cccuvviiiiiiiiiiiiiiieeee e 10
Figure 3 — Abstract Syntax of @ MOGQUIEc..uveeiiii i e e 10
Figure 4 — Abstract syntax of a quantified SENtENCEcooeeiiiiiiiiiiiie e 11
Figure 5 — Abstract syntax of @ boolean SENtENCEooiiiiiiiiii e 11
Figure 6 — Abptract syntax of @n atom..........c.ooiiiiiii e e e L 12
Figure 7 — Abptract syntax of a term and term sequencecocccceeivieiiiiie A S b 12
Figure B.1 — CG display form for John is going to Boston by bus...........cccoociiinic b b 33
Figure B.2 — CG display form for “If a cat is on a mat, then it is a happy pet”l oo 34
Figure B.3 — CL functions represented by actor nodes............cccccceeevvvieeeee Ll 35
Tables Page
Table 1 — Intgrpretations of Common Logic Expressions 15
Table A.1 — QLIF Semantics 30
Table A.2 — Mapping from additional CLIE forms to core CLIF forms 31
Table B.1 — Mapping from CL abstract.syntax to extended CGIF syntax 52

© ISO/IEC 2007 — All rights reserved

https://iecnorm.com/api/?name=2a2de7c6cc8000e40f79d1e704317b8a

ISO/IEC 24707:2007(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are members of
ISO or IEC participate in the development of International Standards through technical committees
established by the respective organization to deal with particular fields of technical activity. ISO and IEC
technical committees collaborate in fields of mutual interest. Other international organizations, governmental
and ntll-guvcllllllcllta:, imtatsormrwithSS—and :EC, atso—take pdi-t im—the—work—tn—the—ftetch of information

technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

Internagtional Standards are drafted in accordance with the rules given in the ISO/IEC Directives| Part 2.

The miain task of the joint technical committee is to prepare International Standards. Draft International
Standdrds adopted by the joint technical committee are circulated to national bodies for voting.| Publication as
an International Standard requires approval by at least 75 % of the national bodies casting a vole.

Attentipn is drawn to the possibility that some of the elements of this document may be the sybject of patent
rights. J]SO and IEC shall not be held responsible for identifying any.@r-all such patent rights.

ISO/IELC 24707 was prepared by Joint Technical Committee’ ISO/IEC JTC 1, Informatign technology,
Subcommittee SC 32, Data management and interchange.

© ISO/IEC 2007 — All rights reserved Vv

https://iecnorm.com/api/?name=2a2de7c6cc8000e40f79d1e704317b8a

ISO/IEC 24707:2007(E)

Introduction

Common Logic is a logic framework intended for information exchange and transmission. The framework
allows for a variety of different syntactic forms, called dialects, all expressible within a common XML-based
syntax and all sharing a single semantics.

Common Logic has some novel features, chief among them being a syntax which is signature-free and
permits 'higher-order' constructions such as quantification over classes or relations while preserving a first-
order model theory,anda—semantics-which—attowstheories-todescribe-intensionatentittes—suchas—ctagses or
properties. It dlso fixes the meanings of a few conventions in widespread use, such as numeralsto [denote
integers and quotation marks to denote character strings, and has provision for the use of datatypes pnd for
naming, imporjing and transmitting content on the World Wide Web using XML.

Vi © ISO/IEC 2007 — All rights reserved

https://iecnorm.com/api/?name=2a2de7c6cc8000e40f79d1e704317b8a

INTERNATIONAL STANDARD

ISO/IEC 24707:2007(E)

Information technology — Common Logic (CL): a framework for
a family of logic-based languages

1 Scope

This International Standard specifies a family of logic languages designed for use in the representation and

interch

The fol

The fol

The fol

This In

It defin

nge orimormation and dala armorng disparate COITIputler Sysiems.

owing features are essential to the design of this International Standard:

e Languages in the family have declarative semantics. It is possible to understand the meaning of

expressions in these languages without appeal to an interpreter for mani
expressions.

e Languages in the family are logically comprehensive — at its tost general, they
expression of arbitrary first-order logical sentences.

e Interchange of information among heterogeneous computer systems.

owing are within the scope of this International Standard:

e representation of information in ontologies, and -knowledge bases;

o specification of expressions that are the\input or output of inference engines;

o formal interpretations of the symbols in the language.

owing are outside the scope of this International Standard:

e the specification of prooftheory or inference rules;

e specification of translators between the notations of heterogeneous computer syste

e computer-based operational methods of providing relationships between symboils
“universe of discourse” and individuals in the “real world”.

fernational/Standard describes Common Logic’s syntax and semantics.

es.an abstract syntax and an associated model- theoretlc semantlcs for a specific ext

bulating those

brovide for the

ms;

in the logical

ension of first-

order |

¢ésented in this

Internatlonal Standard The purpose is to faC|I|tate mterchange of flrst—order Ioglc based mformatlon between
systems.

Issues relating to computability using this International Standard (efficiency, optimization, etc.) are not
addressed.

© ISO/IEC 2007 — All rights reserved

https://iecnorm.com/api/?name=2a2de7c6cc8000e40f79d1e704317b8a

ISO/IEC 24707:2007(E)

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

ISO/IEC 2382-15:1999, Information technology — Vocabulary — Part 15: Programming languages

ISO/IEC 10646:2003, Information technology — Universal Multiple-Octet Coded Character Set (UCS)

ISO/IEC 14977:1996, Information technology — Syntactic metalanguage — Extended BNF

3 Terms gnd definitions
For the purposes of this document, the following terms and definitions apply.

3.1
atom
sentence form|which has no subsentences as syntactic components

NOTE Can| be either an equation, or an atomic sentence consisting of a predicate @pplied to an argument sequence.

3.2
axiom
any sentence Which is assumed to be true, from which others are derived, or by which they are entailed

NOTE In ajcomputational setting, an axiom is a sentence which isshever posed as a goal to be proved, but ofly used
to prove other sg¢ntences.

3.3
Common Logjc Interchange Format
CLIF
KIF-based syntax that is used for illustration purposes in this International Standard

NOTE It is jone of the concrete syntaxes.as.described in Annex A. The name “KIF” is not used for this syntax|in order
to distinguish it| from the commonly used KIF dialects. No assumptions are made in this International Standard with
respect to KIF semantics; in particular, no equivalence between CLIF and KIF is intended.

3.4
conceptual gjaph
CG
graphical or tektual display of symbols arranged according to the style of conceptual graph theory

3.5

Conceptual Graph Interchange Format
CGIF
text version of conceptual graphs whose rules of formation conform to Annex B of this International Standard

NOTE Sometimes may refer to an example of a character string that conforms to Annex B. Intended to convey
exactly the same structure and semantics as an equivalent conceptual graph.

3.6

conceptual graph theory

form of first-order logic which represents existential quantification and conjunction via the assertion of logical
constructs called concepts and relations, which are arranged in an abstract or visually displayed graph

NOTE Conceptual graph theory was introduced by John Sowa [1].

2 © ISO/IEC 2007 — All rights reserved

https://iecnorm.com/api/?name=2a2de7c6cc8000e40f79d1e704317b8a

ISO/IEC 24707:2007(E)

3.7
denotation
relationship holding between a name or expression and the thing to which it refers

NOTE Also used, with “of,” to mean the entity being named, i.e. the referent of a name or expression.

3.8 dialect
concrete instance of Common Logic syntax that shares (at least some of) the uniform semantics of Common
Logic

NOTE A dialect may be textual or graphical or possibly some other form. A dialect by definition is also a conforming
language (see 7.1 for further details).

3.9
discoyrse name
name Wwhose interpretation is in the universe of discourse

NOTE There is no assumption that different names are interpreted as different individuals. A single|individual in the
universe of discourse may be denoted by two or more distinct names.

3.10
domaih of discourse
See urliverse of discourse.

3.1
eXtengible Common Logic Markup Language
XCL
XML-based syntax for Common Logic

3.12
indiviqual
one elégment of the universe of discourse

NOTE The universe of discourse is the set-of all individuals.
3.13

Internationalized Resource Identifier

IRI

string ¢f Unicode characterSiconforming to the syntax described in [2] and intended for use|as an Internet
network identifier syntax which can accommodate a wide variety of international character formg

NOTE Intended tovreplace Uniform Resource Identifier as an Internet standard for network identifiefs.

3.14

interpretation

formal [spegification of the meanings of the names in a vocabulary of a Common Logic dialeqt in terms of a
univerge ofreference.

NOTE 1 An interpretation in turn determines the semantic values of all complex expressions of the dialect, in particular
the truth values of its sentences.

NOTE 2 See 6.2 for a more precise description of how an interpretation is defined.

3.15

Knowledge Interchange Format

KIF

text-based first order formalism, using a LISP-like list notation

NOTE 1 KIF, introduced by Mike Genesereth [3], originated with the Knowledge Sharing Effort sponsored by the US
DARPA.

NOTE 2 KIF forms the basis for one of the three Common Logic dialects included in this International Standard.

© ISO/IEC 2007 — All rights reserved 3

https://iecnorm.com/api/?name=2a2de7c6cc8000e40f79d1e704317b8a

ISO/IEC 24707:2007(E)

3.16
operator
distinguished syntactic role played by a specified component within a functional term

NOTE The denotation of a functional term in an interpretation is determined by the functional extension of the
denotation of the operator together with the denotations of the remaining components.

3.17
predicate
(Common Logic) distinguished syntactic role played by exactly one component within an atomic sentence

NOTE The truth value of an atomic sentence in an interpretation is determined by the relational extension of the
denotation of the¢ predicate together with the denotations of the remaining components.

3.18
segregated drlect
dialect in whiclh some names are non-discourse names

NOTE In ap interpretation of a segregated dialect, the denotations of the non-discourse pames are in the uniyerse of
reference, but nt in the universe of discourse.

3.19
sentence

(Common Logic) unit of logical text which is true or false, i.e. which is assigned a truth-valug in an
interpretation

3.20
sort
any subset of the universe of discourse over which some quantifier is allowed to range

NOTE Relgdted to the definition of “type” (see 3.24). Geherally used to mean a proper subset of the individuals in the
universe of discpurse.

3.21
sorted logic
logic system (Whether first-order or not) which requires that all nonlogical symbols be assigned to a sort

3.22
term

(Common Lodic) expression. Which denotes an individual, consisting of either a name or, recursively, a
function term gpplied to a-sequence of arguments, which are themselves terms

3.23
traditional firgt-order logic
TFOL 1

traditional mathematical formulations of logic as introduced chiefly by Russell, Whitehead, Peano, Frege,
Peirce and Tarski dealing with n-ary predication, the Boolean operators (including negation) and
quantification, and in which every proposition is either determinately true or determinately false

NOTE Languages for traditional first-order logic specifically exclude predicate quantifiers and the use of the same
name in both predicate and argument position in atomic sentences, both of which are permitted (though not required) in
Common Logic. Languages for traditional first-order logic fall within the category of segregated dialects in CL (see 6.1.3).

4 © ISO/IEC 2007 — All rights reserved

https://iecnorm.com/api/?name=2a2de7c6cc8000e40f79d1e704317b8a

ISO/IEC 24707:2007(E)

3.24

type

logical framework in which expressions in the logic are classified into syntactic or lexical categories (types)
and restricted to apply only to arguments of a fixed type

NOTE 1 In practice, a type represents a class of individuals.“Type theory” usually refers to a particular class of such
logics in which relation symbols are separated into orders, with relations of order n applying only to those of lower orders.

NOTE 2 A type is more restricted than a sort in that a type imposes intensional or categorical constraints on which
individuals are members of the type category, whereas a sort refers only to any subset of individuals in the domain over
which some quantifier is presumed to operate.

3.25
universe of discourse

domaih of discourse

set of 3ll the individuals in an interpretation, i.e. the set over which the quantifiers range

NOTE Required to be a subset of the universe of reference, and may be identical to it

3.26
univerge of reference
set of 4ll the entities needed to define the meanings of logical expressjons'in an interpretation

NOTE 1 Required to be a superset of the universe of discourse, and may be identical to it.

NOTE 2 Segregated dialects are commonly described to have & universe of discourse, without mentioning the universe
of referpnce; and for non-segregated dialects the universes of‘discourse and of reference are identical. The distinction
makes [t possible to provide a single semantics which can coverboth styles of dialect. Non-segregated diglects which treat
the unijerses of discourse and of reference as identical may.simply refer to ‘the universe’ of an interpretatipn.

3.27
Uniform Resource Identifier
URI
sequerjce of ASCII characters conforming to the syntax forms defined in [4]

NOTE At the time of writing, the’Mnternet standard syntax for network identifiers. It is likely to lbe obsoleted by
Internationalized Resource Identifier.

4 Symbols and abbreviations

These [symbols and ‘abbreviations are generally for the main clauses of the standard. Some| annexes may
introduce their owh:symbols and abbreviations which will be grouped together within that annex

41 $ymbols

Some of these Qymhnlq represent terms which are defined in clause 3

fun; a mapping from UR; to functions from UD;* to UD;

1 an interpretation, in the model-theoretic sense

inty a mapping from names in a vocabulary V to UR;; informally, a means of associating names in V to
referents in UR;

rely a mapping from UR; to subsets of UD;*

seq; a mapping from sequence markers in V to UD;*

© ISO/IEC 2007 — All rights reserved 5

https://iecnorm.com/api/?name=2a2de7c6cc8000e40f79d1e704317b8a

ISO/IEC 24707:2007(E)

\% a vocabulary, which is a set of names and sequence markers

uDy the universe of discourse; a non-empty set of individuals that an interpretation 7 is “about” and over
which the quantifiers are understood to range

UR; the universe of reference, i.e. the set of all referents of names in an interpretation 7
X* the set of finite sequences of the elements of X, for any set X
4.2 Abbreviations

These abbreviations are used in this International Standard. See clause 3 for definitions or further elaboration
on these terms.

CG Corjceptual graph

CGIF Corjceptual Graph Interchange Format

CL Common Logic
CLIF Common Logic Interchange Format
DF Display form (used in Annex B)

EBNF Ext¢nded Backus-Naur Format, as in ISO/IEC 14977:1996.

FO First-order
IRI Intefnationalized Resource ldentifier
KIF Kndwledge Interchange Format

OWL Web Ontology Language

RDF Redource Definition Framework

RDFS Redource Definition Framework Schema
TFOL traditional first orderdogic

URI Uniform Resource ldentifier

XCL eXtensible-Common Logic Markup Language

XML eXtensible Markup Language

5 Requirements and design overview

This clause is informative. Its purpose is to briefly describe the purposes of Common Logic and the overall
guiding principles and constraints on its content.

5.1 Requirements
Common Logic has been designed and developed with several requirements in mind, all arising from its
intended role as a medium for transmitting logical content on an open communication network. The use of

“should” in the rest of clause 5 indicates a desired goal but is not required of either CL or its conforming dialect
(in accordance with Annex H of ISO/IEC Directives — Part 2).

6 © ISO/IEC 2007 — All rights reserved

https://iecnorm.com/api/?name=2a2de7c6cc8000e40f79d1e704317b8a

5.1.1

ISO/IEC 24707:2007(E)

Common Logic should include full first-order logic with equality.

Common Logic syntax and semantics shall provide for the full range of first-order syntactic forms, with their
usual meanings. Any conventional first-order syntax will be directly translatable into Common Logic without

loss of

information or alteration of meaning.

5.1.2 Common Logic should provide a general-purpose syntax for communicating logical

a.

expressions.

There should be a single XML syntax for communicating Common Logic content.

b. The language should be able to express various commonly used 'syntactic sugarings' for logical forms

or

C.
CO

d.
thg

5.1.3

a.
Sq

b.

commonly used patterns of logical sentences.

The syntax should relate to existing conventions; in particular, it should be capable of]
ntent expressible in RDF, RDFS, or OWL.

There should be at least one compact, human-readable syntax defined which can be u
b entire language.

Common Logic should be easy and natural for use on the Web

The XML syntax should be compatible with the published“specifications for XML, UR
hema, Unicode, and other conventions relevant to transmission of information on the We

URIs and URI references should be usable as names.in the language.

.|URIs should be usable to give names to expressions and sets of expressions, in order tq

erations such as retrieval, importation, and cross-reference.

Common Logic should support opennetworks

.|Transmission of content between Common Logic-aware agents should not require ne

htactic roles of symbols, or translations between syntactic roles.

.|Any piece of Common Legic text should have the same meaning, and support the san

erywhere on the network:"Every name should have the same logical meaning at eve
twork.

No agent should_be able to limit the ability of another agent to refer to any entity or to m
out any entity.

.|The language should support ways to refer to a local universe of discourse and be abl

other such universes.

e.

rendering any

sed to express

| syntax, XML
b.

facilitate Web

jotiation about

e entailments,
ry node of the

ake assertions

e to relate it to

shed Common

Users of Commaon -l oaic should bhe free to invent new names and use them in nubli
) g

Logic content.

5.1.5

Common Logic should not make arbitrary assumptions about semantics

a. Common Logic does not make gratuitous or arbitrary assumptions about logical relationships between
different expressions.

b. If possible, Common Logic agents should express these assumptions in Common Logic directly.

© ISO/IEC 2007 — All rights reserved

https://iecnorm.com/api/?name=2a2de7c6cc8000e40f79d1e704317b8a

ISO/IEC 24707:2007(E)

5.2 A family of notations

This (informative) section describes what is meant by a “family” of languages and gives some of the rationale
behind the development of Common Logic.

If we follow the convention whereby any language has a grammar, then Common Logic is a family of
languages rather than a single language. Different Common Logic languages, referred to in this International
Standard as dialects, may differ sharply in their surface syntax, but they have a single uniform semantics and
can all be transcribed into the common abstract syntax. Membership in the family is defined by being inter-
translatable with the other dialects while preserving meaning, rather than by having any particular syntactic
form. Several existing logical notations and languages, therefore, can be considered to be Common Logic

dialects.

A Common Lagic dialect called CLIF based on KIF (see Annex A) is used in giving examples through

International

separate langliage in its own right, and so a complete self-contained description is givef” which
understood without reference to the rest of the specification. Conceptual graphs [1] are alse‘a)well-knov
of first-order Iqgic for machine processing; the CGIF language is specified in Annex B. An*XML dialeg
CL semantics |s specified in Annex C.

6 Comm

This section dgscribes the normative aspects of Common Logic’s syntax and.semantics.

6.1 Common Logic abstract syntax.

We describe 1
dialect’s synta

6.1.1 Abstract syntax categories

Each of the fo
sub-categorieq
underlined for

6.1.1.1 A tex
Com
leave
appli
appli

condftions on texts,"these conditions shall be preserved by conforming applications. A text may be empf|

6.1.1.2 Aph

6.1.1.3 A col

tandard. CLIF can be considered an updated and simplified form of KIF 3.0 [3];yand h

n Logic abstract syntax and semantics

he syntax of Common Logic ‘abstractly’ here inorder to not be committed to any p3
Ctic conventions.

owing entries is called an abstract syhatax category. Additional terms in the entries may
, or may identify constituent parts of the category. Those terms being defined he
Clarity. Other terms may be found-in the definitions of clause 3.

t is a set, list, or bag of phrases. A piece of text shall optionally be identified by a name. 4
non Logic text may be a sequence, a set, or a bag of phrases; dialects may specify which is intend
this undefined. Re-ordetings and repetitions of phrases in a text are semantically irrelevant. Howe
ations which transmit or re-publish Common Logic text shall preserve the structure of texts, since

ations are allowed-to utilize the structure for other purposes, such as indexing. If a dialect imposes

Fase is.either a module, a sentence, an importation, or a text with an attached comment.

nment is a piece of data. Comments may be attached to other comments and to commented pH

put this
ence a
can be
n form
t using

rticular

dentify
re are

1
ed or
er,
bther

rases.

No partfcutar restrictions are piaced o the natare of COTTITIOoN Logic COTmmernts; T particatar, a Cormmen

be Common Logic text. Particular dialects may impose conditions on the form of comments.

t may

6.1.1.4 A module consists of a name, an optional set of names called the exclusion set, and a text called the
body text. The module name indicates the ‘ocal’ universe of discourse in which the text is understood; the
exclusion set indicates any names in the text which are explicitly excluded from this local universe. A module
name may also be used to identify the module.

6.1.1.5 An importation contains a name. The intention is that the name identifies a piece of Common Logic
content represented externally to the text, and the importation re-asserts that content in the text. The
notion of identification is discussed more fully in clause 6.3.1 below.

6.1.1.6 A sentence is either a quantified sentence or a Boolean sentence or an atom, or a sentence with an
attached comment, or an irregular sentence.

© ISO/IEC 2007 — Al rights

reserved

https://iecnorm.com/api/?name=2a2de7c6cc8000e40f79d1e704317b8a

6.1.1.7

6.1.1.8

ISO/IEC 24707:2007(E)

A gquantified sentence has (i) a type, called a quantifier, (ii) a finite, nonrepeating sequence of names
and sequence markers called the binding sequence, each element of which is called a binding of the
quantified sentence, and (iii) a sentence called the body of the quantified sentence. Every Common
Logic dialect shall distinguish the universal and the existential types of quantified sentence. A name
or sequence marker which occurs in the binding sequence is said to be bound in the body. Any
name or sequence marker which is not bound in the body is said to be free in the body.

A Boolean sentence has a type, called a connective, and a number of sentences called the
components of the Boolean sentence. The number depends on the particular type. Every Common
Logic dialect shall distinguish five types of Boolean sentences: conjunctions and disjunctions, which
have any number of components, implications and biconditionals, which have exactly two
components, and negations, which have exactly one component.

NOTE
in the 4
within {

6.1.1.9

NOTE
atomic

6.1.1.1(

6.1.1.11

6.1.1.13
NOTE

identifig
predica

6.1.1.13

6.1.1.14

This ¢
Comm
recogn

Senten
senten

The current specification does not recognize any particular irregular sentence forms. This catlgory is included

bstract syntax to accommodate syntactic extensions to Common Logic whose semantics. cannof] be fully defined

ommon Logic. Examples include modalities, non-monotonic connectives and imperative,constructipns.
An atom is either an equation containing two arguments, which are terms,\or is an atomic sentence,
which consists of a term, called the predicate, and a term sequence called the argumgnt sequence,
the elements of which are called arguments of the atom.
Dialects which use a name to identify equality may consider it to beya predicate, and treat an equation as an
bentence.
A term is either a name or a functional term, or a term with an attached comment.
A functional term consists of a term, called the operator, and a term sequence called the argument
sequence, the elements of which are called argurnments of the functional term.
A term sequence is a finite sequence of terins or sequence markers.
Term sequences may be empty, butla functional term with an empty argument sequence shall not be
d with its operator, and an atomic sentefce with an empty argument sequence shall not be identified with its
e.
A vocabulary is a set of names and sequence markers.
Names and sequence markers are disjoint syntax categories, and each is disjoint fronj all other
syntax categories,
ause completely_describes the abstract syntactic structure of Common Logic. Any fylly conformant

bn Logic dialect shall provide an unambiguous syntactic representation for each of the pbove types of
zed expressions, except for irregular sentences.

ce types are commonly indicated by the inclusion of explicit text strings, such as “forall” for universal
celand “and” for conjunction. However, no conditions are imposed on how the vafious syntactic

catego

ot or rancracaint H=Y arcfa faornmaa o ol La—rarbionlar AR i I t t
TS arc TopPTrocSCTCU— I a1 ouTTaC T TOTTITS UT- a ararC Tt paracorar,; CAPTCISIoTTS— i o lalect are no

required to consist of character strings.

6.1.2 Metamodel of the Common Logic Abstract Syntax

In order to better describe the structure of the abstract syntax, this section provides a metamodel showing
relationships among the syntactic categories, and describes some of the rationale for decisions. The abstract
syntax categories and their allowable structure is depicted using UML class diagram notation [5].

© ISO/IEC 2007 — All rights reserved 9

https://iecnorm.com/api/?name=2a2de7c6cc8000e40f79d1e704317b8a

ISO/IEC 24707:2007(E)

+narmedText +cormmented Text
WNameForText 0. Text 21
+hody 0.*
Name Hext
. - PhraseForText
name : String +phrase
A o -
o) ModuieBodi)
+excludediame cdulenody Phrase Cormmented Text
ExcludedNarme Z}
+exclusionZet +moduleF orBody +commentFarTex
0 o-l | | |
ExclusionSet ExcludedSet | Module Importation Sentence Comment
- .
L | U CREALLLLL |
+exclusionSet +madule)1 L
+module +context
ModuleName
+IocaID0ma|1n W armaFor mportation
Identifier
1
0.1 +assertedContent

+identifierForText

Figure 1 — Structure of a text and the taxonomy of the phrase'category text

Sentence

14

+sentence
CormmentFors entence
+comment
0.4
Atom BooleanSentence C tedSentence IrregularSentence QuantifiedSentence
comment: Stritig
Conjurfction Disjunction Negation Implication-| | Biconditional ExistentialQuantification | | UniversalGQuantification

Figure 2 — Abstract syntax of sentence and its sub-categories

+phrasze
Phrase |2~ FhraseForText
ModuleBodd The exclusion fist indicates
any names in the text which
+moduleForBod e are explicitly excluded from
0.x this local universe.
Hothrte— Scludogirar ExchrstonSet
o.x _ U-ﬂ_J
'Y Trmodule +exclusionSet o.*
+rmodule +exclusionSet
Moduieharme ExcludedName

HocalDomain
1

ldentifier

a.x

tocal' universe of discourse in
which the text is unde rstood.

The module name Indicates the

W

[Name

+excludedMame

Figure 3 — Abstract syntax of a module

10

© ISO/IEC 2007 — All rights reserved

https://iecnorm.com/api/?name=2a2de7c6cc8000e40f79d1e704317b8a

ISO/IEC 24707:2007(E)

Sentence

1
+hody

QuantificationForSentence

+yuantification {ordered}
0.1 +iuantifiedSentence +hinding
QuantifiedSentence |U--1 0..2| Binding

BindingSequenceFor QuantifiedSentenc

1 1
+hinding/ \+hinding

BoundName BoundSequencelarker
UniversalQuantification ExistentialQuantification
+h0und§aqn +houndS equencebdafher

‘ Name ‘ SequenceMarker

Figure 4 — Abstract syntax of a quantified sentence

Figure |4 depicts the abstract syntax of a quantified sentence. A universally quantified sentencelis a quantified

sentente whose quantifier is universal. An existentially quantified sehtence is a quantified sentence whose
quantifjer is existential.

BooleanSentence

‘ Conjunction ‘ Disjunction ‘ Negation Implication Biconditional
0.1 0.1 0.1 0.1 0.1 0.1 0.1
+conjunction +disjunction| +negation| +implicatian +implication +hiconditional +hiconditional
AntecedentForimpication LvalueForBiconditipnal
Canfunction Disjunctlon NegatedJentance ConsquentForimplication RyvalueForBiconditiond
+CU”JUDnCl +disjanct +sentence +antecedent ?consequent +value 41-rvalue

Sentence

are emnpty cases of Conjunction (true) and Disjunction (false). That is
why a Disjunction or Conjunction of zero sentences is allowed.

There are no explicit true' and false' elements in the metamodel. These j

Figure 5 — Abstract syntax of a boolean sentence

© ISO/IEC 2007 — All rights reserved 11

https://iecnorm.com/api/?name=2a2de7c6cc8000e40f79d1e704317b8a

ISO/IEC 24707:2007(E)

Sequence

Argument] Term
M. 1 1 1
+argument +predicate +hvalue +rvalue
{orderad} PredicateFoistomicSentence LyalueForEquation RvzlueForEquation
+atomicSentence +equatDiorl +equation
ArgumentSequence FordtoricSentence o ~ - 0.
Marker AtomicSentence Equation

.

+atomicSentence

y

Atom

Figure 6 — Abstract syntax of an atom

CommentedTerm Name

FunctionalTerm

comment : String

ArgurmentSequenceForFunctionalTerm

Argument

0.1
+commented Term

.
rHunctiona

CommentForTe

;

+Herrm
4

+1-operat0r

OperatorForFunctionalTerm

0. 0.
HunctionalTerm Farglrent
[Term {mpdered}

Term

SequenceMarker

6.1.3 Abstract syntactic structure of dialects

A dialect which
Common Logi
sequence mar
7.1 for a descr|

Dialects may i
order to be fu
categories, or
which are equi
Logic semanti

“syntactic sug

account of conformance.)

Figure 7 — Abstract syntax of a term and term sequence

provides only some types of the Common Logic expressions is said to be a syntactically
c dialect, or syntactically partially) conformant. In particular, a dialect that does not

kers, but is otherwise fully conformant, is known as a syntactically compact dialect. See
ption of some relationships:between syntactic and semantic conformance.

h addition provide for,other forms of sentence construction not described by this syntax
lly conformant, suehiconstructions shall either be new categories defined in terms o
be extensions of-these categories (e.g. new kinds of Boolean sentence, or kinds of qu
valent in meaningto a construction using just this syntax, interpreted according to the C
Cs; that is, they can be considered to be systematic abbreviations, or macros; also kn
r’. The CLIF dialect, described in Annex A, contains a number of syntactic sugared fo
quantified and| atomig=séntences. (Other types of compliance are also recognized: see clause 7 fo

partial
nclude
clause

L but in
f these
hntifier)
bmmon
bwn as
rms for
r a full

The only undefined terms In the absfract synfax clause are name and sequence marker. 1he only required
syntactic constraint on the basic lexical categories of name and sequence marker are that they shall be
exclusive. Dialects intended for transmission of content on a network should not impose arbitrary or
unnecessary restrictions on the form of names, and shall provide for certain names to be used as identifiers
of Common Logic texts; that is, character strings used as identifiers in a dialect shall be parseable as
Common Logic names in that dialect. Dialects intended for use on the Web should allow Universal Resource
Identifiers, International Resource Identifiers and URI references to be used as names [2] [4]. Common Logic
dialects should define names in terms of Unicode (ISO/IEC 10646:2003) conventions.

12

© ISO/IEC 2007 — All rights reserved

https://iecnorm.com/api/?name=2a2de7c6cc8000e40f79d1e704317b8a

ISO/IEC 24707:2007(E)

There is no notion of ‘bound variable’ in the CL abstract syntax. Names that can occur bound are not required
to be lexically distinguished from those that can (only) occur free, nor are names required to be partitioned into
distinct classes such as relation, function or individual names. There are no sortal restrictions on names.
Particular Common Logic dialects may make these or other distinctions between subclasses of names, and
impose extra restrictions on the occurrence of types of names or terms in expressions — for example, by
requiring that names that can occur bound (i.e., the variables of traditional first-order languages) be written
with a special prefix, as in KIF, or with a particular style, as in Prolog; or by requiring that operators be in a
distinguished category of relation names, as in traditional first-order syntax.

A dialect may impose particular semantic conditions on some categories of names, and apply syntactic
constraints to limit where such names occur in expressions. For example, the CLIF syntax treats numerals as
having a fixed denotation, and prohibits their use as identifiers.

A dialect may require some names to be non-discourse names, which are understood not te.dgnote entities in
the unilerse of discourse. This requirement may be imposed, for example, by partitioningthe vgcabulary or by
requiring names that occur in certain syntactic positions to be non-discourse. A dialect’ with|non-discourse
names|is called segregated. Names which are not non-discourse names are called, discourse ngmes.

A segregated dialect shall provide sufficient syntactic constraints to guarante€)that in any syntactically legal
text of fhe dialect:

¢ | Every name shall be classified as either discourse or as non-discourse.

¢ | No name shall be classified as both discourse and non-discourse.

¢ | No non-discourse name shall be an argument of an.atom or functional term.
¢ | No non-discourse name shall be bound in a quantified sentence.

As thg presence of non-discourse names affects’the semantics, special conditions apply [to segregated
dialects.

A dialgct which is not segregated is called non-segregated. All names in a non-segregated dialect are
discoufse names.

6.2 Common Logic semantics

The semantics of Common Logic is defined in terms of a satisfaction relation between Common| Logic text and
mathernatical structures called interpretations.

The vocabulary of a Common Logic text is the set of names and sequence markers which occur in the text. In
a segrpgated dialeet)'the names in vocabularies are partitioned into discourse names and|non-discourse
names

An intgrpretation I of a vocabulary V is a set UR; , the universe of reference, with a distinguighed nonempty
subset|UD;s the universe of discourse, and four mappings:

e rel; from UR; to subsets of UD;* = {<xy,....X,> | X1,...,X, € UDj} (i.e., the set of finite sequences of
elements of UDj). Note that the empty sequence is in UD*, for any UDy;

e fun; from UR; to total functions from UD;* into UDy, that is, to functions that map each sequence in
UD;* to a (unique) element of UDy;

e int;from names in V to UR;, such that int;(v) is in UDy if and only if v is a discourse name;

NOTE If the dialect recognizes irregular sentences, then they are treated as names of propositions, and int;
also includes a mapping from the irregular sentences of a text to the truth values { true, false }.

e seqsfrom sequence markers in V to UD;*.

© ISO/IEC 2007 — All rights reserved 13

https://iecnorm.com/api/?name=2a2de7c6cc8000e40f79d1e704317b8a

ISO/IEC 24707:2007(E)

Intuitively, UDy is the universe or domain of discourse containing all the individual things the interpretation is
‘about' and over which the quantifiers range. UR; is a potentially larger set of things that might also contain
entities which are not in the universe of discourse. In particular, UR; might contain relations not in UD; to serve
as the interpretations of the non-discourse names in a segregated dialect. All names are interpreted in the
same way, whether or not they are understood to denote something in the universe of discourse; that is why
there is only a single interpretation mapping that applies to all names, regardless of their syntactic role. In

particular, rel)(x) is in UD;* even when x is not in UD;. When considering only segregated dialects, the
elements of the universe of reference which are outside the universe of discourse may be identified with their
corresponding values of the rel; and fun; mappings, which are then re-interpreted to be the identity mapping.
The resulting construction maps predicates directly to relations and operators to functions, yielding a more
traditional interpretation structure for the segregated syntax of traditional first-order logic. On the other hand,

when conside
is unnecessar
uniform treatm

Irregular sente]
the CL interpr
Note also tha
sequences are

The assignme
sentences — rg

Let S be a sub
might differ wif
URJ = UR[, U
sequence mar

If E is a subse
same universg
and fung(v) is

D, = UDy, rely = rel;, funy = funy, int;(n)

Ng onty Non-Segregated diatects, the distinction between Universes of Teference and di3
, since they may be considered to be identical. The distinction is made here in order, to
ent of both segregated and non-segregated dialects.

hces are treated as though they were arbitrary propositional variables. Note,this*does no
btations of any CL sentences which occur as syntactic components of an irregular se
, although sequence markers are mapped into finite sequences in an,interpretation
not denoted by names, and so are not required to be in the universe ofreference.

nt of semantic values to complex expressions — notably, the{ assignment of truth va
quires some auxiliary definitions.

h int; and seq; on what they assign to the members-of S. More formally, J is an S-variar
int(r).for names n ¢ S and seq,(s) = seq

erss ¢ S.

of UDy, then the restriction of I to E is an‘interpretation K of the same vocabulary and o
and with intx = int; and seqg = seq;, but where UDg = E, relg(v) is the restriction of rely(
the restriction of funy(v) to E*->E, for all v in the vocabulary of I. If N is a set of nam

course
give a

t affect
htence.
these

ues to

set of V. An interpretation J of V is an S-variant of I if itdis exactly like I except that int; and seq;

t of I'if
/(s) for

ver the
)to E*
es, the

retraction of I from N, [I<N], is the restriction of :to the set (UD; — {int/{(v): vin N }).

>andt = <ty, ..., t,,> are finite sequences, then s;t is the concatenated sequence <sj, ..}, s;, ti,

cular, s;<> = s for any.sequence s.

If s =<sq, ..., 8
weey 1> In parti

The value of apy expression E(n,the interpretation 7 is given by following the rules in Table 1.

14 © ISO/IEC 2007 — All rights reserved

https://iecnorm.com/api/?name=2a2de7c6cc8000e40f79d1e704317b8a

ISO/IEC 24707:2007(E)

Table 1 — Interpretations of Common Logic Expressions

If E is an expression of the form Then I(E) =

E1 [name N int;(N)

E2 |sequence marker S seq/(S)

E3 |term sequence T ... T, with T a term <I(T1)>;[(<T; ... T, >)

E4 |term sequence T ... T, with Ty a sequence I(T1);[(<T, ... T, >)

ES |fterm with operator O and argument sequence S | fun,(1(0))(/(S))

E6 ||Atom which is an equation containing terms Ty, T, | true if /(T) = I(T,), otherwise false

E7 ||Atomic sentence with predicate P and argument |true if /(S) is in rel{(I(P)), otherwise false
sequence S

E8 |[boolean sentence of type negation true if I(C).= false, otherwise false
and component C

E9 |lboolean sentence of type conjunction truédf 1(Cy) = ... = I(C,) = true, otherpise false
and components C; ... C,

E10 |[boolean sentence of type disjunction false if (C1) = ... = I(C,) = false, oth¢rwise true
and components C; ... C,

E11 ||boolean sentence of type implication false if /(C;) = true and I(C;,) = false, otherwise
and components C;, C, true

E12 |[boolean sentence of type biconditional true if 1(C1) = I(C>), otherwise false.
and components C;, C»

E13 |lquantified sentence of . type universal true if for every N-variant J of [,| J(B) is true;
with bindings N and.body B otherwise false

E14 |lquantified sentence of type existential true if for some N-variant J of I,| J(B) is true;
with bindings'N and body B otherwise false

E15 |firregularsentence S inty(S)

E16 |[phrase which is a sentence S 1(S)

E17 |phrase which is an importation containing name N |true if /(text(I(N))) = true, otherwise false

E18 | module with name N, exclusion set L and body true if [/<L](B) = true and rel(/(N)) = UD/<r;",
text B otherwise false

E19 |text containing phrases S S. true if I(S1) = ... = I(S,) = true, otherwise false

E20 | a text T with a name N UR; contains a named text value t with text(t) =

T and name(t) =N

© ISO/IEC 2007 — All rights reserved

15

https://iecnorm.com/api/?name=2a2de7c6cc8000e40f79d1e704317b8a

ISO/IEC 24707:2007(E)

The meaning of the function text in clauses E17 for importation and E20, and the associated notion of a
named text value, are described in the next section.

These are the basic logical semantic conditions which all conforming dialects must satisfy. A dialect may
impose further semantic conditions in addition to these. A dialect with extra semantic conditions is a semantic
extension. In particular, semantic extensions may impose syntactic and semantic conditions on irregular
sentences, but shall not use irregular sentence forms to represent content that is expressible in Common
Logic text.

A semantic extension which fixes the meanings of certain special names (such as datatypes), or specifies
relationships between Common Logic and other naming conventions, such as network identification
conventions, is called external. External semantic constraints may refer to conventions or structures which are
defined outsid €ory self. For example, the 1alect refers 10 numbers. htics of
importations, described in the next section, is external and normative.

€ mode

Table 1 specifies no interpretation for comments. Phrases with a comment and an empty,'text n
considered to pe vacuously true; expressions with attached comments shall have identical truth-condit|
the same expressions with the comments not attached. Thus, adding or deleting commeénts does not ¢ghange
the truth-condftions of any Common Logic text. Nevertheless, comments are part of the formal synﬂax and
applications ould preserve them when transmitting, editing or re-publishing.Common Logic fext. In
particular, a name used to identify a phrase in Common Logic is understood to be\a globally rigid identifier of
that text as wijitten (see next section), so that the same name shall not be (sed to refer to a different text,
even if the texts have the same meaning.

hay be
ons as

ing and identification on a network

This section a

applies. (This freatment of naming and identifying is partly based-on that in [6].)

6.3.1 Import
The meaning
Common Logi
virtual ‘copying
can be unde
communicatiof
Common Logi
protocols assd
definitions in t
nodes which u
A network is p
dialects. XCL
network which

Names used t

bplies only to dialects which support importations ‘and/or named texts. It is normative

ations and named phrases
of an importation phrase is that thechame it contains shall be understood to identify

’ of some Common Logic contentfrom one ‘place’ to another. This idea of ‘place’ and ‘c
stood only in the context of-deploying logical content on a communication netw

network, or simply a network, is a system of agents which can store, publish or g
C text, and can transmit €ommon Logic text to one another by means of information 1
ciated with the network: The most widely used network is the World Wide Web [7],
his section apply to~any such system of communicating agents. In particular, a subset
5es special conventions for communication may be considered to be a Common Logic n
esumed to support communication and publication of Common Logic content in some sU
is intended.io be a general-purpose dialect for distributing Common Logic content
supports XML.

b mame texts on a network are understood to be rigid and to be global in scope, so

when it

some

C text, and the importation is true just when that text is true. Thus, an importation amounts to a

ppying’
ork. A
rocess
ransfer
but the
bf Web
etwork.
bset of
bn any

hat the

name can be

used to identify the thing named — in this case, the Common Logic text — across the

entire

communication network. (See [8] for more full discussion.) A name which is globally attached to its denotation
in this way is an identifier, and is typically associated with a system of conventions and protocols which govern
the use of such names to identify, locate and transmit pieces of information across the network on which the
dialect is used. While the details of such conventions are beyond the scope of this International Standard, we
can summarize their effect by saying that the act of publishing a named Common Logic text is intended to
establish the name as a rigid identifier of the text, and Common Logic acknowledges this by requiring that all
interpretations shall conform to such conventions when they apply to the network situation in which the
publication takes place.

Named texts are not required to be in 1:1 correspondence to documents, files or other units of data storage.
Dialects or implementations may provide for texts to be distributed across storage units, or for multiple named
texts to be stored in one unit. The naming conventions for text may be related to the addressing conventions
in use for data units, but this is not required. Texts may also be identified by external naming conventions, for

16 © ISO/IEC 2007 — All rights reserved

https://iecnorm.com/api/?name=2a2de7c6cc8000e40f79d1e704317b8a

ISO/IEC 24707:2007(E)

example by encoding the text in documents or files which have network identifiers; the Common Logic
semantics described in this section shall be applicable to all names used as network identifiers on a network
on which Common Logic texts are published or transmitted.

The act of naming a text is distinct from that of asserting the truth of the text itself. Publishing a named text
does not, in itself, necessarily make any claim about the truth of the text; but it does make a claim about the
denotation of the name of the text.

In order to state semantic conditions on identifiers we need to assume appropriate values to exist in the
universe of discourse. The semantic entity corresponding to a named text is called a named text value. The
exact nature of a named text value is unimportant, but the semantics considers them to be pairs consisting of
a name and a Common Logic text: £ = <name(t), text(t)>. The rigid identifier convention is an external
semanfic condition which all interpretaiions of texis published on the communicaiion network hre required to
satisfy| The global rigidity of the naming is captured by the universality of this requirement.(Notg¢ that this is an
external semantic condition since it refers to a structure defined by the network protocagls. It may be
considered to be a semantic condition on the network.

if £ is|a text value in UR; and name(t) is in V, then int(name(t)) = t.

The pyblication of a text with a name on a communication network7is considered to be an assertion of the
existerjce of an appropriate named text value, with global scopej.i.e. one that all interpretations of any text
availahle on the network are required to acknowledge. This fequirement is included in Tablg 1, entry E20,
which ¢an be understood to mean:

bublication on the network of: | requires that.for any interpretation 7 of a text on theg network:

E20 | ja text T with a name N UR; contains a named text value t with text(t) = T and name(t) = N

Since {he notion of importation amounts-to a virtual copying of one piece of text into another|(in fact, it is a
virtual copying of the importation closure, since one has to consider the case where the imported text itself
contairjs an importation of another.text), this makes an implicit assumption that the texts can|be interpreted
togethgr, and the truth-conditions given above reflect this by applying the interpretation off the importing
phrase| directly to the imported text. This means, in effect, that any use of this notion of textual importing shall
be basged on the assumption that the texts are mutually interpretable. For example, importing implies that the
quantiffers in the imported text shall be interpreted to range over the same domain as those in the importing
text. All texts which.aré published and identified on a network shall be mutually interpretable with all other
texts op the netwark which can import them, over the same universe of reference and domaih of discourse,
and with their vocabularies merged. This condition applies to all texts which might possibly imgort other texts,

Real n MO heina imnlemen on a hie Al a a alda ala\VVia ne iaid n an

plementations—are-subject toerrors—or breakdowns e-rigid—naming conventions
described in the section are understood to apply even under such failure conditions. Thus for example if a URI
is used on the Web to be a rigid identifier of some text, then it remains an identifier even when an attempt to
use it in an HTTP get protocol produces a 404 error. Applications shall not treat communication errors or
failures as an indication that a name does not denote or is a non-discourse name.

6.3.2 Mixed networks

Text may be published in more than one dialect on a single network. This International Standard refers to
such a situation as a mixed network. Information exchange and publication on a mixed network should be
conducted in such a way that all agents can represent content written in any text in use on the network. One
way to achieve this is to use the most permissive dialect for information transmission, and to require agents to
express their content in this dialect.

© ISO/IEC 2007 — All rights reserved 17

https://iecnorm.com/api/?name=2a2de7c6cc8000e40f79d1e704317b8a

ISO/IEC 24707:2007(E)

In order to maintain mutual interpretability, any text in a segregated dialect which is published on a mixed
network shall be published in such a way that any importing of that text into another text written in an non-
segregated dialect can express the content of the imported text in a way that allows mutual interpretability.
This means in particular that a name shall be provided for the domain of discourse of text in any segregated
text, and that any non-discourse names occurring in such text can be recognized efficiently by applications
which process non-segregated text. The recommended practice in such cases is that the segregated text be
replaced by non-segregated text in which all quantifiers are restricted or guarded by the segregated domain
name, and all non-discourse names are asserted to be outside that domain. Modules provide a general-
purpose technique for such publication; the segregated text can be published as the body text of a module,
with the non-discourse names which occur in the text included in the exclusion list of the module. The module
name may be used to identify a common universe of discourse associated with the dialect, or a local universe
of discourse special to the text in the module.

Networks supporting segregated dialects which have lexical conventions for distinguishing domain~fro
discourse names may require agents to recognize such lexical distinctions even when using segregat

m non-
pd text,

and apply sui
cannot suppor

6.4 Satisfa

A Common Lo
in T. A text i

ble translations where needed, as part of the transfer protocol. However, such/conv

ction, validity and entailment.

D

satisfiable if there is an interpretation which satisfies it, dtherwise it is unsatisfig

contradictory. |f every interpretation which satisfies S also satisfies T, then S éntails T.

Common logid
recognizes irre
semantics of t
“common-logid
Common Logi
support the en
language was
(Necessary P)

Several of the
qualified to ap
interpretation 1
class of interpt

When describ
entailment

6.5 Sequer

Sequence ma
argument seq

interpretations treat irregular sentences as opaquedsentence variables. In a dialect
gular sentences, the above definitions are used todrefer to interpretations determined
he dialect; however, when qualified by the prefixing, adjective or adverb “common-logic
entails”, they shall be understood to refer to-interpretations which conform exactly
semantic conditions. For example, a dialect might support modal sentences, and its se
tailment (Necessary P) entails P; but this would not be a common-logic entailment, eve
conformant as a Common Logic extension. However, the entailment (Necessary P)
is a common-logic entailment.

later discussions consider restricted classes of interpretations. All the above definitions
ply only to interpretations in alcertain restricted class. Thus, S foo-entails T just when
in the class foo, if I satisfies\S'then I satisfies T. Entailment (or unsatisfiability) with resp
etations implies entailment{or unsatisfiability) with respect to any subset of that class.

ng entailment of 7~from S, S is referred to as the antecedent, and T the conclusion,

ce markers, recursion and argument lists: discussion

kers-take Common Logic beyond first-order expressivity. A sequence marker occurrin
Llence-stands for an arbitrary finite sequence of arguments. A universal sentence bir

information exchange outside that network, so are not considered to be fully(Conformant.

entions

gic set of sentences, or text, T is satisfied by an interpretation 7 just'when /(S)=true for g¢very S

ble, or

which
by the
', as in
to the
hantics
n if the
entails

may be
for any
bct to a

of the

j in an
ding a

ker has the same semantic import as the infinife conjunction of all the expressions obta

sequence mar
replacing the s

equence marker by a finite sequence of names, all bound by universal quantification.

ned by

This ability to represent infinite sets of sentences in a finite form means that Common Logic with sequence
markers is not compact, and therefore not first-order; for clearly the infinite set of sentences corresponding in
meaning to a single sentence quantifying a sequence marker is logically equivalent to that sentence and so
entails it, but no finite subset of the infinite set does. However, the intended use of sentences containing
sequence markers is to act as axiom schemata, rather than being posed as conclusions, and when they are
restricted to this use the resulting logic is compact. This amounts to allowing sequence markers to be bound
only by universal quantifiers at the the top phrase level of a text, and restricting these sentences to be used
only as axioms, never posed as conclusions. This restriction is often appropriate for texts which are
considered to be ‘ontologies’, i.e. authoritative information sources representing a conceptualization of some
domain of application, intended to be applied to other data.

18 © ISO/IEC 2007 — All rights reserved

https://iecnorm.com/api/?name=2a2de7c6cc8000e40f79d1e704317b8a

ISO/IEC 24707:2007(E)

A compact dialect which does not support sequence markers can imitate much of the functionality provided by
sequence markers, by the use of explicit argument lists, represented in Common Logic by terms built up from
a list-constructing function. A sequence marker translates into the name of a list, and quantification over list
names replaces quantification over sequence markers. The finiteness condition on sequences then
corresponds to an implicit fixed-point assumption made on all ‘standard’ models of the list axioms. Such
conventions are widely used in logic programming applications and in RDF and OWL. The costs of this
technique are a considerable reduction in syntactic clarity and readability, the need to allow lists as entities in
the domain of discourse, and possibly the reliance on external software to manipulate the lists. The advantage
is the ability of rendering arbitrary argument sequences using only a small number of primitives, and the use
of a compact base logic. Implementations based on argument-list constructions are often limited to
conventional first-order expressivity, and fail to support all inferences involving quantification over lists. This
may be considered either as an advantage or as a disadvantage.

9q

N

6.6 $pecial cases and translations between dialects

A seqgr non-discourse

names

pgated dialect in which all operators and predicates are non-discourse names” and all
are operators or predicates is called a classical dialect.

An inte
- UDy),
discou
The g¢g
by a si

For no
a flat i

obtaing
elemer

For cla
is an ¢
may b
vocaby
classic]
any trd
names

6.6.1

A trang
text in
there ig
the tex
E in th

rpretation 7 is flat when UD; = UR; . It is extensional when rel; and fun; are the identity fy

so that the entities in the universe of reference outside the domain“are the extensio|
se names. These are appropriate for, respectively, a non-segregated dialect, and a cl
neral form of interpretation described above allows both kinds-of-dialects, and others, to
hgle construction.

N-segregated dialects, only flat interpretations need be-considered: for given any interpre
hterpretation J which satisfies the same expressions.of any text of the dialect as 7 d

d by simply declaring UR; to be UDy; for a nen-segregated dialect, all names den
ts outside UDy are irrelevant to the truth-conditions.

ssical dialects, only extensional interpretations need be considered: for given any interp,
xtensional interpretation J which satisfies the same expressions of any text of the dialg

lary, and removing them from the domain if they are present. Since all operator and
bl dialect influence the truth-cénditions only through their associated extensions, this d

th-values. Formally, UD_=UD; — {/(v): v an operator or predicate in V }, inty(x)=int;(x
intj(x)=reli(int;(x)) for predicates x and int;(x)=fun(int;(x)) for operators x.

Translating between dialects

lation is a mapping from expressions in a text in some dialect A, the source dialect, to e

nction on (UR;

hs of the non-
assical dialect.
be interpreted

ation 7 there is
bes. J may be

ote in UD; so

retation I there
ct as 7/ does. J

obtained by replacing I(x) by fun;((x)) for every operator x and by rel/(I(x)) for every pre¢dicate x in the

bredicates in a
oes not affect

for discourse

pressions in a
bf the text in A

some dialect B, the target dialect, such that for every interpretation 7 of the vocabulary

[in B'there is an interpretation 7 of the vocabulary of the text in A, with I(E)=J(tr(E)) for
me t

an intetpretation J of the vocabulary of the text in B, and for every interpretation J of thg
any expression

vocabulary of

uth-conditions,

transla gated and non-

segregated dialects.

Translation from a segregated dialect A into an non-segregated dialect B requires the translation to indicate
which terms are non-discourse in A. Since all names in the non-segregated dialect denote entities in the
domain, it is necessary for the translation to introduce a discourse name whose extension in B is the domain
of an interpretation of A, and the for the translation to restrict all quantifiers in the text to range over this
domain, and assert that non-discourse names of the segregated dialect denote entities outside this domain.
No other translation is required. The module construction provides a general-purpose technique for such
translations: text in A has the same meaning as a module in B named with the domain name and with the non-
discourse names of the text listed in the exclusion list of the module.

© ISO/IEC 2007 — All rights reserved 19

https://iecnorm.com/api/?name=2a2de7c6cc8000e40f79d1e704317b8a

ISO/IEC 24707:2007(E)

Translation from an non-segregated dialect B into a segregated dialect A requires that names are used so as
to respect the restrictions of the dialect. This may require adding axioms to the translations in order to ensure
that the domain of an interpretation of the segregated translation of any text corresponds to the universe of
reference of an interpretation of the non-segregated text. There is a general technique called the holds-app
translation for translating any Common Logic dialect into a similar classical dialect. We assume that we have
available a predicate holds and an operator app which do not occur in any vocabulary. Specifically (for non-
segregated dialects), an atomic sentence with predicate P and argument sequence S; ... S, translates into an

atomic sentence with predicate holds and argument sequence P S; ... S,. A term with operator O and

argument sequence S; ... S, translates into a term with operator app and argument sequence O S ... S, .
The introduced predicate and operator require no other axioms: their only role is to allow the operators and
predicates of the B dialect to denote entities in the domain of the A dialect translation. (The holds-app

translation for

Some dialects] impose notational restrictions of various kinds, such as requiring bound names:{o have a
particular lexidal form, or requiring operator and predicates to be used with a particular length ,6f argument
sequence (conpventionally called the arity of the operator or predicate). Translation into a-dialect with such
restrictions cah usually be done by re-writing names to conform to the restrictions and” by ‘de-plnning’
occurrences of a name which are required to be made distinct in the target dialect, for‘example by [adding
suffixes to indicate the arity. In these cases also it may be necessary to introduce distinct holds-n and app-n
predicates and operators for each arity. Applications which are required to faithfully translate multiple texts
shall maintain ponsistency between such name re-writings.

7 Conformance

There are threp kinds of conformance that can be specified for Conimoen Logic. There can be conditions on a
dialect (i.e., thg specification of a language), conditions on an apglication (that conforms to the standafd) and
conditions on @ network.

7.1 Dialect|conformance

These are really conditions on a specification of a lapguage or notation, in order for it to count as a CL ialect.
Conformance |is specified in two ways: syntagtic and semantic. A dialect's syntactic and sg@mantic
conformance dan be specified separately, although not all combinations may be useful or meaningful.

7.1.1 Syntax

A dialect is defined over some set of.inscriptions, which shall be specified. Commonly this should be Unicode
character strings (as specified~in ISO/IEC 10646:2003), but other inscriptions e.g. diagrammatical
representationg such as directéd-graphs or structured images are possible. A method shall be specified for
the dialect which will unambiguously parse any inscription in the set, or reject it as syntactically illegal. For
Unicode charater string insecriptions, a grammar in EBNF is a sufficiently precise specification. A parsing is an
assignment of| each part)of a legal inscription into its corresponding CL abstract syntax category in|clause
6.1.1, and the parsed:inscription is an expression.

A dialect is syntactically fully conformant if its parsings recognize expressions for every category of the
abstract syntax in clause 6.1.1. For Common Logic conformity, dialects or sub-dialects whose parsings
include other categories of sentences shall either (a) categorize them as irregular sentences or (b) specify
how these categories to be mapped into the abstract syntax categories defined in 6.1.1. If a dialect conforms
as in (a), such a dialect or sub-dialect shall be referred to as semantic extensions (see section 7.1.2 below). It
is conformant as a syntactic sub-dialect if it recognizes at least one of the CL categories; but any dialect
shall recognize some form of sentence category. One particular case of syntactic sub-dialect is identified,
called a compact sub-dialect which is a dialect that recognizes all categories except sequence markers.

A dialect is syntactically segregated if the parsing requires a distinction to be made between lexical
categories of CL names in order to check legality of an expression in that dialect. Segregated dialects shall
specify criteria which are sufficient to enable an application to detect the category of a name in the dialect
without performing operations on any structure other than the name itself.

20 © ISO/IEC 2007 — All rights reserved

https://iecnorm.com/api/?name=2a2de7c6cc8000e40f79d1e704317b8a

ISO/IEC 24707:2007(E)

7.1.2 Semantics

Any CL dialect shall have a model-theoretic semantics, defined on a set of interpretations, called dialect
interpretations, which assigns one of the two truth-values true or false to every sentence, phrase (except
comment) or text in that dialect.

A dialect is exactly semantically conformant when, for any syntactically legal sentence, phrase (except
comment) or text T in that dialect, the following two (separate) conformance conditions are true:

e For every dialect interpretation J of T, there exists a Common Logic interpretation 7 of T with /(T) =J (T)

e For any Common Logic interpretation 7 of T, there exists a dialect interpretation J of T with I(T) = J (T)

It foll
interp

to the dialect

({NS that the notions of satisfiability, contradiction and entailment corresponding
r lect.

tations, and to Common Logic interpretations, are identical for an exactly conforming dig
Syntactically segregated dialects may be required to satisfy additional conditions, see_below.
as the model-

ormulating the
vided only that

The sianIest way to achieve exact semantic conformance is to adopt the-CL"model theory
theorelic semantics for the dialect, but the definition is phrased so as to allow other ways of
semantic meta-theory to be used if they are preferred for mathematical\or‘other reasons, pro
satisfigbility, contradiction and entailment are preserved.

the semantic
pretations are

A sen
conditi
equiva

antic sub-dialect is a syntactic sub-dialect (see clause 7.1.1 above) and meets
bns; that is, it recognizes only some parts of the full Common Logic and its inte
ent to the restrictions of a Common Logic interpretation’to those parts.

A semantic extension is a dialect which satisfies thefirst condition, but does not satisfy the se¢ond condition.

In other words, a semantic extension dialect has seme part(s) whose interpretation is more cg
they wpuld be by a CL interpretation. Any dialect.which imposes non-trivial semantic conditio
sentenges is a semantic extension in this sense.

This al
the CL
it impo

ows a semantic extension to apply “external” semantic conditions to irregular sentences
semantic conditions. CLIF is an<example of a semantic extension, by virtue of the sema
5es on numbers and quoted strings.

Semar
rather
confor
respectively contradiction and entailment with respect to the dialect semantics, but not vi
satisfagtion with respect to the dialect semantics implies satisfaction with respect to O
semantics, but nét-vice versa. This means that inference engines which perform Common Lgd

tic extensions shall be referred to as "conforming semantic extension" or "conform
than as exactly conformant or simply as "conformant". For sentences, phrases 4

nstrained than
ns on irregular

, in addition to
ntic conditions

ng extension",
nd texts of a

ing extension, contradiction and entailment with respect to the Common Logic semantics implies

ce versa; and
ommon Logic
gic inferences

will be [correct; but may be less complete, for the dialect.

e categories to

A segregated dialect is a syntactically segregated dialect which requires names in one or mor|
not de ities | ich | ifi iti irst=arder logic syntax
may be interpreted in a way which requires that relation names not denote individuals. In order to be
conformant, segregated dialects shall, in addition to being semantically conformant, (a) provide syntactic
criteria which are sufficient to enable an application to detect that a dialect name is non-discourse in this
sense, and classify it syntactically as a non-discourse name, and (b) as part of the publication of any
published sentences, phrases or texts of the dialect, provide a name which can be used by other dialects to
refer to the universe of discourse of the published sentences, phrases or texts. That is, the dialect shall
specify, as a semantic condition in all dialect interpretations, that the relational extension of this name, when
used as a predicate, shall be true of precisely the entities in the domain of the interpretation. The module
construct in the abstract syntax is intended to facilitate this conformance requirement.

No dialect may restrict the range of quantification of a different dialect. Other dialects may treat all names as
discourse names, even those which are declared in a segregated dialect to be non-discourse.

© ISO/IEC 2007 — All rights reserved 21

https://iecnorm.com/api/?name=2a2de7c6cc8000e40f79d1e704317b8a

ISO/IEC 24707:2007(E)

7.2 Application conformance

“Application” means any piece of computational machinery (software or hardware, or a network) which
performs any operations on CL text (even very trivial operations like storing it for later re-transmission.)

Conformance of applications is defined relative to a collection of dialects, called the conformance set.
Applications which are conformant for the XCL dialect may be referred to as ‘conformant’ without qualification.

All conformant applications shall be capable of processing all legal inscriptions of the dialects in the
conformance set. Applications which input, output or transmit CL text, even if embedded inside text processed
using other textual conventions, shall be capable of round-tripping any CL text; that is, they shall output or
transmit the exact inscription that was input to them, without textual alteration.

Applications w|
for any texts T
then S commo
application is
entails T then
dialects in the

Completeness
common-logic
dialect if, for
detects the en

7.3 Networ

Conformance
set. A network
distortion from
the semantic

which are indiq

l

hich detect entailment relationships between CL texts in the conformance set are cofrec
and S in dialects in the conformance set, if the application detects the entailment.of T
h-logic entails T (that is, for any Common Logic interpretation 7, if /(S) =true thefy I(T)=tru
complete when, for any texts T and S in dialects in the conformance sety if’S commg
he application can detect the entailment of T from S. (Note this requires_ completeness °
conformance set.)

does not require that the application can detect entailment in a setantic extension whic
entailment. If a dialect is a semantic extension, then an application is dialect complete
ny dialect interpretation I of that dialect, I(T)=true whenever/I/(S)=true, then the app|
ilment of T by S. Dialect completeness for D implies completeness for {D}, but not vice

k conformance

bf communication networks is defined relative to a‘collection of dialects, called the confo
is conformant when it transmits all expressions of all dialects in the conformance set
any node in the network to any other node; and provides for network identifiers which
conditions E17, E20 and as described.in clause 6.2. Network transmission errors or
ated as error conditions do not count @s distortion for purposes of conformance of a netw

when,
from S
e). The
n-logic
Across’

h is not
for that
ication
ersa.

mance
without
satisfy
failures
ork.

22

© ISO/IEC 2007 — Al rights

reserved

https://iecnorm.com/api/?name=2a2de7c6cc8000e40f79d1e704317b8a

ISO/IEC 24707:2007(E)

Annex A
(normative)

Common Logic Interchange Format (CLIF)

A.1 Introduction

Hlstorlcally, the Common Log|c project arose from an effort to update and rat|onaI|ze the design of KIF [3]

becom
notabl

a de facto standard notation in many appllcat|ons of logic. Several features of Comm
its use of sequence markers, are explicitly borrowed from KIF. However, the_design

information interchange over a network, as far as possible without requiring any translation tg
when |t shall be done, Common Logic provides a single common semantic framework,
syntaclically defined interlingua.

Secondl, largely as a consequence of this, KIF was seen as a “full*language, containing repres
for a wide variety of forms of expressions, including for example-quantifier sorting, various de
and with a fully expressive meta-language. The goal was/te\provide a single language intg
variety
’'small’,
subset
expres

This makes it easier to state a precise semantics and to place exact bounds on the exp
5 of the language, and allows extended languages to be defined as encodings of axig
sed in Common Logic.

Third,

ideas

variabl
use of
is not
Logic i
design

KIF was based explicitly on LISP. KIE-syntax was defined to be LISP S-expressions; a
vere incorporated into the semantics of KIF, for example in the way that the semantig
bs were defined. Although the CLIF surface syntax retains a superficially LISP-like ap
a nested unlabelled parentheses; and could be readily parsed as LISP S-expressions,
| ISP-based and makes no.basic assumptions of any LISP structures. The recomme
hterchange notation is based on XML, a standard which was not available when KIF
2d.

Finally
new w

many of the “new’Afeatures of Common Logic have been motivated directly by the ide
brk on languages-for the semantic web [9].

The ng
is prim
various

me chosenfor Common Logic’s KIF-like syntax is the Common Logic Interchange Form
brily tosidentify it as the version being prescribed in this International Standard, and to dis
other dialects of KIF that may or may not be exactly compatible.

plified form, has
bn Logic, most
philosophy of

which a variety
to be used for
be done; and
rather than a

bntative syntax
finition formats
which a wide

of other languages could be directly mapped. Comamon Logic, in contrast, has been dgliberately kept

ressiveness of
matic theories

nd LISP-based
s of sequence
bearance in its
Common Logic
nded Common
was originally

bs arising from

at (CLIF). This
tinguish it from

KIF and CLIF are similar in several ways. Both languages contain as sub-dialecis a syniax for classical first-
order (FO) logic. Both languages have notation for sequence variables (called sequence markers in this
International Standard). Both languages use exclusively a prefix notational convention, and S-expression style
syntax conventions. Both use parentheses as lexical delimiters. Both indicate quantifier restrictions similarly.

Some known differences between KIF and CLIF are as follows:
1. KIF requires ASCII encoding; CLIF uses Unicode encoding.
2. KIF has explicit notations for defining functions and relations, which CLIF does not.

3. KIF does not use the enclosed-name notation which CLIF has.

© ISO/IEC 2007 — All rights reserved

23

https://iecnorm.com/api/?name=2a2de7c6cc8000e40f79d1e704317b8a

ISO/IEC 24707:2007(E)

4. KIF uses the ‘@ symbol as a sequence variable prefix; CLIF uses the three-dot sequence for
sequence markers.

5. KIF handles comments differently than CLIF and does not have the ‘enclosing’ construction.
6. KIF does not have the role-pair construction which CLIF has.
7. KIF does not have the notions of importation, texts, phrases, and modules which CLIF has.

8. KIF distinguishes variables from names, and requires quantifiers to bind only variables: CLIF does not
make the distinction.

9. Free variables in KIF are treated as universally quantified. Free names in CLIF are simply namgs, and
no qugntification is implied.

10. KIF regtricts operators and predicates to be names; CLIF allows general terms, and also’allow$ these
nameg to be bound by quantifiers.

11. KIF ddes not support the guarded quantifier construction.

A.2 CLIF Syntax

The following syntax is written using Extended Backus-Naur ¢orm (EBNF), as specified by
ISO/IEC 14977:1996. Literal chararacters are 'quoted', sequences of (items are separated by commas, |
indicates a separation between alternatives, { } indicates a sequence of zero or more expressions in the
enclosed category, - indicates an exception, [] indicates an optional item, and parentheses () are used as
grouping characters. Productions are terminated with;.

The syntax is Written to apply to ASCII encodings. It also applies to full Unicode character encodings, with the
change noted pelow to the category nonascii.

The syntax is presented here in two parts. The first.deals with parsing character streams into lexical items: the
second is the logical syntax of CLIF, written assuming that lexical items have been isolated from one another
by a lexical anfalyser. This way of presenting the syntax allows the expression syntax to ignore complications
arising from wiitespace handling.

A.2.1 Characters

Any CLIF expression is encoded-as a sequence of Unicode characters as defined in ISO/IEC 10646:2003.
Any character| encoding which”supports the repertoire of ISO/IEC 10646:2003 may be used, but|UTF-8
(ISO/IEC 10646:2003, Annex'D) is preferred. Only characters in the US-ASCII subset are reserved for special
use in CLIF itdelf, so that the language can be encoded as an ASCII text string if required. This International
Standard useg ASCH-characters. Unicode characters outside the ASCII range are represented in CLIF ASCII
text by a chargcter'coding sequence of the form \unnnn or \Unnnnnn where n is a hexadecimal digit character.
When transforming’an ASCII text string to a full-repertoire character encoding, or when printing or ot%lerwise
rendering the text for maximum accessibility for human readers, such a sequence may be replaced by the
corresponding direct encoding of the character, or an appropriate glyph. Moreover, these coding sequences
are understood as denoting the corresponding Unicode character when they occur in quoted strings (see
below).

The syntax is defined in terms of disjoint blocks of characters called lexical tokens (in the sense used in
ISO/IEC 2382-15:1999, clause 15.01 on lexical tokens). A character stream can be converted into a stream of
lexical tokens by a simple process of lexicalisation which checks for a small number of delimiter characters,
which indicate the termination of one lexical token and possibly the beginning of the next lexical token. Any
consecutive sequence of whitespace characters acts as a separator between lexical tokens (except within
quoted strings and names, see below). Certain characters are reserved for special use as the first character in
a lexical item. The double-quote(U+0022) character is used to start end names which contain delimiter
characters, the single-quote (apostrophe U+002C) character is used to start and end quoted strings, which

24 © ISO/IEC 2007 — All rights reserved

https://iecnorm.com/api/?name=2a2de7c6cc8000e40f79d1e704317b8a

ISO/IEC 24707:2007(E)

are also lexical items which may contain delimiter characters, and the equality sign shall be a single lexical
item when it is the first character of an item.

The backslash \ (reverse solidus U+005C) character is reserved for special use. Followed by the letter u or U
and a four- or six-digit hexadecimal code respectively, it is used to transcribe non-ASCIl Unicode characters in
an ASCII character stream, as explained above. Any string of this form in an ASCII string rendering plays the
same Common Logic syntactic role as a single ordinary character. The combination \' (U+005C, U+002C) is
used to encode a single quote inside a Common Logic quoted string, and similarly the combination \"
(U+005C, U+0022) indicates a double quote inside a double-quoted enclosed name string. In both cases, a
backslash is indicated by two backslashes \\ (U+005C, U+005C). Any other occurrence of the backslash
character is an error. These inner-quote conventions apply in both ASCII and full Unicode renderings.

A.2.2| Lexical syntax

We mgke a distinction between lexical and syntactic constructs for convenience in dividifng-up th

into t

parts. This sub-clause may help implementers in identifying logical tokens'\that mak

expresgions, as shown in the next sub-clause A.2.3. Implementations are not/required to

e presentation
e up syntactic
adhere to this

distinction.
A.2.2.1 White space
whitechar = space U+0020 | tab U+0009 | line U+000A |Cpage U+000C | return [U+000D
white = whitechar |
'/*¥'" , {char - '*¥' | '*' char - '/' Ji'open | close | namequote | stringquote |
backslash | whitechar }, ['*'] I VARN

I//l

(page | line | return)

’

{char | open | close | namequote | stringquote | backslash | space | tab },

This al
after

The qu
string
should

Tempo
Since {

A.2.2,

Single
which

ows temporary comments to be inserted into CLIF text, following C++/Java conventions
/', and entire text blocks surrounded'by '/* ... */' are treated as whitespace by an

oting sequences '//', '/*'and '*/' ftrigger this production only when they occur ou
pr enclosed name. Names\in” CLIF text which contain the character sequences '//',
therefore be written as enclosed names.

rary comments are distinct from CL comments, which are a permanent part of the CL
hey are counted.as whitespace, temporary comments act as lexical break characters.

P2 Delimiters

quote ,(apostrophe) is used to delimit quoted strings, and double quote to delimit en

Text on a line
y CLIF parser.

tside a quoted

I/*l Or I*/l

F parsed text.

closed names,

which

Jbey speC|aI IeX|caI|zat|on rules. Quoted strlngs and enclosed names are the only CLI

lexical items

#ting; they are

conS|dered to be IeX|caI tokens in thelr own right. Parentheses are the pnmary grouplng device in CLIF syntax.

open =

close

stringquote

namequote

backslash

|(|

’

v)v

’

vy

© ISO/IEC 2007 — All rights reserved

25

https://iecnorm.com/api/?name=2a2de7c6cc8000e40f79d1e704317b8a

ISO/IEC 24707:2007(E)

A.2.2.3 Characters

char is all the remaining ASCII non-control characters, which can all be used to form lexical tokens (with some
restrictions based on the first character of the lexical token). This includes all the alphanumeric characters.

char= lglt I T I l!l I l#l I l$l I l%l I TA I l&l I T %! I l_l I l+| I l{l | l}l I
||| I l:l I l<l I l>l I l?l I A\l A\l | L I l=l | l[l I l]l I l,.ll l,l I A\l A\l |
V/V I VAV I VBV I VCV I IDI I IEI I IFI | IGI I IHI I lIl I IJI I lKl | lLl I lMl
I INI I lol I VPV I IQV I VRV I lsl I VTV I IUI I IVI | IWI I lxl I IYI I lzl I
VaV I VbV I VcV I VdV I lel I lfl I lgl | lhl I lil I ljl I lkl I lll | lml I lnl
I VOV I VpV I VqV I VrV I lsl I ltl I lul l lvl | lwl | lxl | lyl | lzl ;
digit: OV I V1V I V2V I 131 I 141 I 15' l 161 | 171 | 18' | 191 ;
hexa=dlglt I IAI I IBI I lcl I IDI I IEI I IFI I lal I lbl I lcl I ldl I lel I lfl ,.
A.2.2.4 Quating within strings
Certain charagter sequences are used to indicate the presence of a single character. nonascii is thg set of
characters or gharacter sequences which indicate a Unicode character outside the!lASCII range.
NOTE For finput using a full Unicode character encoding, this production should-b€ ignored and nonascii should be
understood instIad to be the set of all non-control characters of Unicode outside the ASCII range which are suppgrted by
the character eficoding. The use of the \uxxxx and \Uxxxxxx sequences in text'encoded using a full Unicode character
repertoire is deprecated.
innerstringquole is used to indicate the presence of a single-quoté.character inside a quoted string. A [quoted
string can contain any character, including whitespace; however, a single-quote character can occur inside a

quoted string
The occurreng
quoted string |
strings, doublg
double-quote g

quotes are treated exactly similarly’/nnernamequote is used to indicate the presen
haracter inside an enclosed name.

bnly as part of an innerstringquote, i.e. when.immediately preceded by a backslash character.
e of a single-quote character in the character stream of a quoted string marks the end
bxical token unless it is immediately preceded by a backslash character. Inside enclosed name

of the

ce of a

nonascii|= '\u' , hexa, hexa, hexa, hexa | '\U' , hexa, hexa, hexa, hexa,
innerstringquote = '\'' ;

innernamgquote = '\"'

innerbackslash = ‘\\“

numeral F digit\y’/{ digit } ;

hexa, hexa ;

Sequence ma

a bare

kerssare a distinctive syntactic form with a special meaning in Common Logic. Note that

ellipsis withoutanytext(i-e., - . . JIs I1Sell @ sequence marker.

v

segqmark = '... , { char } ;

Single quotes are delimiters for quoted strings; double quotes for enclosed names.

An enclosed name is simply a name which may contain characters which would break the lexicalization, such
as “Mrs Norah Jones” or “Girl(interrupted)”; like any other name, it may denote anything. The surrounding

double-quote marks are not considered part of the discourse name, which is defined to be the characte
obtained by removing the enclosing double-quote marks and replacing any internal occurrences
innernamequote by a single double-quote character. It is recommended to use the enclosed-name

r string
of an
syntax

when writing URIs, URI references and IRIs as names, since these Web identifiers may contain characters

26 © ISO/IEC 2007 — All rights

reserved

https://iecnorm.com/api/?name=2a2de7c6cc8000e40f79d1e704317b8a

ISO/IEC 24707:2007(E)

which would otherwise break CLIF lexicalization: in particular, Xpath-compliant URI references will often end
in a closing parenthesis.

A quoted string, in contrast, is an expression with a fixed semantic meaning: it denotes a text string similarly

related

to the string inside the quotes.

A.2.2.5 Quoted strings

Quoted strings and enclosed names require a different lexicalization algorithm than other parts of CLIF text,
since parentheses and whitespace do not break a quoted text stream into lexical tokens.

When CLIF text is enclosed inside a text or document which uses character escaping conventions, the

Comm
indicat
elemer

bn Logic quoted string conventions here described are understood to apply to the tex
bd by the conventions in use, which should be applied first. Thus for example the_€onts
t: <cl-text>'a\'b<c&apos</cl-text> is the CLIF syntax\quote

t described or
ent of the XML
i string 'a\'b<c'

which | denotes the five-character text string a'b<c Considered as bare\ 'CLIF text, however,
&apos|;a\'b<c&apos would simply be a rather long name.
quotedstring = stringquote, { white | open | close | char |” nonascii | |namequote |
innerstringquote | innerbackslash }, stringquote ;
entlosedname = namequote, { white | open | close |-~ char | nonascii | sfringquote |
innernamequote }, namequote ;
A.2.2.6 Reserved tokens

reservgdelement consists of the lexical tokens which are.used to indicate the syntactic structu

re of Common

Logic gxpressions. These may not be used as names+ih/CLIF text.
reservedelement ='=' | 'and' | 'or' | '##£f' | 'if' | 'forall' | 'exists' | 'not' 'roleset:' |
‘cl:text‘ | 'cl:imports' | 'cl:excludes' | 'cl:module' | 'cl:comment’;
A.2.2.f Name character sequence
A namecharsequence is a lexical:token which does not start with any of the special characters. Note that
namecharsequences may not cohtain whitespace or parentheses, and may not start with (a quote mark
although they may contain them. Numerals and sequence markers are not namecharsequences.
namecharsequence =" (char , { char | stringquote | namequote | backslgsh }) - (
reservedélement | numeral | segmark) ;
A.2.2.8 Lexical categories
The tagk<Of a’lexical analyser is to parse the character stream into consecutive, non-overlapping lexbreak and
nonlexhreak eringq and to deliver the lexical tokens it finds as a stream of tokens to thel next stage of

syntactic processing. Lexical tokens are divided into eight mutually disjoint categories: the open and closing
parentheses, numerals, quoted strings (which begin and end with '*'), sequence markers (which begin with
'..."), enclosed names (which begin and end with '*") , and namesequences and reserved elements.

lexbreak = open | close | white , { white } ;
nonlexbreak = numeral | quotedstring | segmark | reservedelement | namecharsequence |
enclosedname ;
lexicaltoken = open | close | nonlexbreak ;
charstream = { white } , { lexicaltoken, lexbreak } ;
© ISO/IEC 2007 — All rights reserved 27

https://iecnorm.com/api/?name=2a2de7c6cc8000e40f79d1e704317b8a

ISO/IEC 24707:2007(E)

A.2.3 Expression syntax

This part of the syntax is written so as to apply to a sequence of Common Logic lexical tokens rather than a
character stream.

A.2.3.1 Term sequence

Both terms and atomic sentences use the notion of a sequence of terms representing a vector of arguments to
a function or relation. Sequence markers are used to indicate a subsequence of a term sequence; terms
indicate single elements.

termseq = { term | segmark } ;

A.2.3.2 Name

A name is any lexical token which is understood to denote. We distinguish the names which)have fa fixed
meaning from those which are given a meaning by an interpretation.

interpretedname = numeral | quotedstring ;
interpretablename = namecharsequence | enclosedname ;

name = interpretedname | interpretablename ;

A.2.3.3 Term

Names count |[as terms, and a complex (application) term consists)of an operator, which is itself @ term,
together with g vector of arguments. Terms may also have an associated comment, represented as a [quoted
string (in ordel to allow text which would otherwise break the lexicalization). Comment wrappers syntdctically
enclose the tefm they comment upon.

term = bme | (open, operator, termseq, close) | (open, 'cl:comment', quotedstring

n
, teérm, close) ;

operator |= term ;

A.2.3.4 Equption

Equations are distinguished as a special category because of their special semantic role, and special handling
by many appli¢ations. The equality‘sign is not a name.

equation |= open, '='y, term, term, close ;

A.2.3.5 Sentence

Like terms, sgntences may have enclosing comments. Note that comments may be applied to sentences
which are subefxpressions of larger sentences.

sentence = atomsent | boolsent | quantsent | commentsent ;

A.2.3.6 Atomic sentence

Atomic sentences are similar in structure to terms, but in addition the arguments to an atomic sentence may be
represented using role-pairs consisting of a role-name and a term. Equations are considered to be atomic
sentences, and an atomic sentence may be represented using role-pairs consisting of a role-name and a term.

atomsent = equation | atom ;

atom = (open, predicate , termseq, close) | (open, term, open, 'roleset:' , { open,
name, term, close }, close, close) ;

predicate = term ;

28 © ISO/IEC 2007 — All rights reserved

https://iecnorm.com/api/?name=2a2de7c6cc8000e40f79d1e704317b8a

ISO/IEC 24707:2007(E)

A.2.3.7 Boolean sentence

Boolean sentences require implication and biconditional to be binary, but allow conjunction and disjunction to
have any number of arguments, including zero; the sentences (and) and (or) can be used as the truth-values
true and false respectively.

boolsent = (open, ('and' | 'or') , { sentence }, close) | (open, ('if' | 'iff') ,
sentence , sentence, close) | (open, 'not' , sentence, close ;

A.2.3.8 Quantified sentence

Quantifiers may bind any number of variables and may be qguarded: and bound variables may be restricted to
a category indicated by a term.

quantsent = open, ('forall' | 'exists') , [interpretablename ,] boundlist,
sentence, close ;

botindlist = open, { interpretablename | segqmark | (open, (interpre¢tablename |
segmark), term, close)} , close ;

A.2.3.9 Commented sentence

A comment may be applied to any sentence; so comments may be attached to sentenges which are
subexgressions of larger sentences.

copmentsent = open, 'cl:comment', quotedstring , sentence , close ;

A.2.3.ll0 Module

Modulegs are named text segments which represent a text intended to be understood in a ‘local’ icontext, where
the naine indicates the domain of the quantifiers in the text. The module name shall not be a numeral or a
quoted| string. A module may optionally havean exclusion list of names whose denotations arg considered to
be excluded from the domain. Note thattext and module are mutually recursive categories, s¢ that modules
may bg nested.

module = open, 'cl:module' , interpretablename |, [open, 'cl:excludes' |, {name} ,
close] , cltext,.close;

A module without an exclusion list is not identical to a named text.

A.2.3.11 Phrase

CLIF text is a‘sequence of phrases, each of which is either a sentence, a module, an importation or a plain
text with an attached comment. The commented text may be empty, or may be a single sentgnce. Text may
be assjghed a name in the same way as a module, but in this case the name serves only to ifentify the text
and d f f f - i ext. Any name
assigned to a named text or a module, and any name occurring inside an importation, shall be a network
identifier. For Web applications at the time of writing, it should be an IRl [2]. Particular applications may
impose additional conditions on names used as identifiers. The only nonterminal character for this grammar is
<code>cltext</code>.

phrase = sentence | module | (open, 'cl:imports' , interpretablename , close) | (open,
'cl:comment', quotedstring, cltext, close);

cltext = { phrase } ;
namedtext = open, 'cl:text' interpretablename, text, close ;

cltext = module | namedtext | text ;

© ISO/IEC 2007 — All rights reserved 29

https://iecnorm.com/api/?name=2a2de7c6cc8000e40f79d1e704317b8a

ISO/IEC 24707:2007(E)

A.3 CLIF semantics

We will use both some notions and some notation that are defined in section 6.2, in particular the notation

<.><.>.

Let IN be the set of all CLIF interpreted names, i.e. all decimal numerals and quoted strings, and let N be the
set of all the natural numbers and all finite strings of Unicode characters. A CLIF vocabulary V=VN U VS s a
disjoint union of a set VN of interpretable names and VS of sequence markers.

A CLIF interpretation | of a vocabulary V is a structure consisting of a set U,, called the universe, which is a
superset of N, and two mappings rel, from U, to subsets of U;* and fun, from U, to functions from U,* to U;; and

a mapping int;, on V from VN to U. and from VS to U.
is an S-variantre - v

The interpretafion of any expression of CLIF is then determined by the entries in Table AZ1The notat

.. T,> indicates a term sequence when referring to the syntax, and a sequence, i.e. an 'element of U],

referring to thel semantics.

The first colum

n indicates links to rows in the CL semantics Table 1 in clause 6.2:

Table A.1 — CLIF Semantics

As in 6 2, for any subset S of V an mterpretatlon JofV

bers of

on <T4
when

If E is an expression of the form Then I(E)=
E1 A deg¢imal numeral The ‘matural number denoted by the dgcimal
numeral.
E1 A quopted string ‘s’ The Unicode character string formgd by
removing the outer single quotes and replacing
escaped inner substrings by their Uhicode
equivalents.
E1, E2 |An interpretable name int,(E)
E3 A termn sequence <T, ... T,> starting with a term | <|(T'|)>;I(<T> ... T,>)
T

E4 A tefm sequence T~ T, starting with a|l(T); I(<T, ... T,>)
sequence marker T

ES Aterm (0T ../ T)) fun(I(0))(I(<Ty ... T,>)
A term (cl:comment ‘string’ T') I(T)

E6 An equation (= T T») true if I('T';) = I(T,), otherwise false

E7 An atomic sentence (P T ... T,) true if I(<T; ... T,>) is in rel(I(P)), otherwise
false

ES8 A boolean sentence (not P) true if I(P)=false, otherwise false

E9 A boolean sentence (and P; ... P) true if I(P1) =...1(P,)= true, otherwise false

E10 A boolean sentence (or Py ... P,) false if I(P;) = ...I(P,) = false, otherwise true

E11 A boolean sentence (if P Q) false if I(P) = true and 1(Q) = false, otherwise true

E12 A boolean sentence (iff P Q) true if I(P) = 1(Q), otherwise false

A sentence (cl:comment “string” P) I(P)
30 © ISO/IEC 2007 — All rights reserved

https://iecnorm.com/api/?name=2a2de7c6cc8000e40f79d1e704317b8a

ISO/IEC 24707:2007(E)

E13 A quantified sentence (forall (N ... N,,) B)

the sentence

where N = {Nj, ..., N,;} is the set of bindings for

true if for every N-variant J of [, J(B) = true,
otherwise false.

E14 A quantified sentence (exists (N ... N,,) B)

the sentence

where N = {Nj, ..., N,;} is the set of bindings for

true if for some N-variant J of /, J(B) = true,
otherwise false.

A phrase (cl:comment “string”)

true

E17 A phrase (cl:imports N)

true if I(text(I(N))) = true, otherwise false

E19 A phrase (cl:itext T ... T,)

true if I(T)= ... = I('T,) = true, othenwise false

E20 (cl:text N'Ty ...T),)

true if there is a named text-valde t in U with
text(t) = (clitext T1 ...”T;) , name(t)=N, and
I(N)=t ; otherwise false

Not every CLIF syntactic form is covered by this table. The interpretation 6f the remaining syrjtactic cases is
defined by mapping them to other CLIF expressions whose interpretation is defined by the above table. The

translation is defined by Table A.2, which defines the translation T[E}-of the expression E.

Table A.2 — Mapping from additional CLIF forms to core CLIF forms

IfEis

Then)E“translates to T[E] =

An atdmic sentence of the form
(T (rqleset: (N| T) ...(N,, T,)))

The sentence (exists (X)(and (Ty X)(N; X T1)...(N, X
T»)))

where X is a new name which does not occur in the
atomic sentence or any containing sentenge.

A qugntified sentence
(forall (N T¢) ...) B)

The quantified sentence
(forall (N}) [(forall (...) (if (T N;) B)]

A quantified sentence
(existd (N; 'T¢) ...) B)

The quantified sentence
(exists (N) T[(exists (...) (and (T N1) B) |

A quantified sentence
(forall G (...) B)

The quantified sentence
T[(forall (...)(If (G X; ...X,) B)]

where X; ... X,, are all the names which ogcur free in B

A quantified sentence
(existy G{<..) B)

The quantified sentence
T[(exists (...)(and (G X; ...X,,) B)]

where X1 ... Xn are all the names which occur free in B

A module
(cl:module N (cl:excludes N N,) T)

The text
(not (NN)) ... (not (NN,,)) [T])

Where T’ is the text T in which every name or sequence
marker X in the boundlist of a quantifier is replaced with
(X N)

The forms on the left side of Table A.2 can be considered to be ‘syntactic sugar’ for their translations on the
right, which are correspondingly referred to as their sour syntactic equivalents, and the subdialect of CLIF

without these expression forms as sour CLIF.

© ISO/IEC 2007 — All rights reserved

31

https://iecnorm.com/api/?name=2a2de7c6cc8000e40f79d1e704317b8a

ISO/IEC 24707:2007(E)

A.4 CLIF conformance

The conformance of CLIF to Common Logic is demonstrated for two aspects of conformance — syntactic
conformity and semantic conformity. This not only specifies CLIF’s conformance itself, it also provides a guide
to specifiers of other dialects so that they may see how conformance is demonstrated.

A.4.1 Syntactic conformity

The correspondence of CLIF syntax to the CL abstract syntax is indicated by the entries in the left column of
the first table, which refer to the entries in Table 1, and from which the full syntactic conformance of sour CLIF
can be determined by inspection. Note that both interpretednames and interpretablenames are

considered to

be ClL names. The Qynfnr\fir* r\nnfnrmify of CLIE then follows h\ll virtue of the the m

apping

defined by the
in meaning to
uncommented

CLIF is syntac
in expressions

second table. Note that the CLIF comments syntax treats a commented expression as\id
he expression without the comment, so the comment can be considered to be ‘attached
expression.

ically segregated, by virtue of the restrictions it imposes on where interpreted names ma
but it is not a segregated dialect in the sense of section 7.1

A.4.2 Semantic conformity

CLIFisaCLs

emantic extension. To show that CLIF is a CL semantic extension it is necessary to shoy

| is a CLIF inferpretation, then a CL interpretation J must exist which gives the same truth value tg

sentence. This
when describir]

J has the sa
interpretablena
interpretedna
interpretedna
the integer der
when xisa C
sentence s. If
true just when
equivalent to t
table above,

4

q

1

will be demonstrated by constructing J from I. using the notation and conventions from
g |, and from section 6.2 when describing J.

me vocabulary as I, UD;, = UR; = U, rel; =rel, and fun; = fun,. The interpretg
mes is defined in the obvious way: int)(x) =\int(x) for any interpretablename x. Sin
es of a CLIF vocabulary are classified as.€/names, we must also define int;(x) when
e, and clearly this is done to follow the first'two entries in the CLIF semantic table, i.e. i
oted by x when x is a decimal numeral;“and int;(x) = the Unicode character string denot
LIF quoted string. It is then easy to.see by a comparison of cases that J(s) = I(s) for an
5 is @ module named N with an exglusion list L and a body B, then we need to show tha
[J<L](B) = true and rel(J(N))7_UR<y" (since UD, = UR)). It is easy to see that this is
ne truth in | of sentences in-the sour translation of the module body text defined by the
s described in section 6.2." (A formal proof would proceed by a structural induction

sentences of t

It is not the ¢
which gives t
assign them a
ruled out by th
predetermined
expressions.

classified as e

e body text.) Hence, for any CLIF text t, J(t) = I(t).

se that if | is any €L interpretation of a CLIF text t, that there must be a CLIF interpref
he same value; for since CLIF interpretednames are treated simply as names in CL,
value which“does not conform to their fixed interpretation in CLIF, e.g. J(‘a string’) = §
commemegic semantics rules. This is a general phenomenon with any dialect which in
exterpally defined, meanings on some category of names, such as numerals or da

entical
' to the

y occur

v that if
every
above

tion of
ce the
X is an
nty(x) =
bd by x
y CLIF

[J(s) =

exactly
second
on the

ation J
J may
is not

nposes
atyped

uch'dialects may support inferences which cannot be expressed as CL axioms, and must be

ternal CL semantic extensions. The subdialect of CLIF which does not use numerals or

quoted

32

© ISO/IEC 2007 — Al rights

m .

reserved

https://iecnorm.com/api/?name=2a2de7c6cc8000e40f79d1e704317b8a

ISO/IEC 24707:2007(E)

Annex B
(normative)

Conceptual Graph Interchange Format (CGIF)

B.1 Introduction

This sub-clause summarizes conceptual graphs and then describes a set of transformation (rewrite) rules that
W|” be DUUI ill i.i Ic Ibbl Ulr .lilib AIIIIU)\ i.U prbify ‘L;IU dcbuipiiun Uf i.i Ic bylli.dbi.ib luiUb IrUI CG;F

B.1.1| Conceptual Graphs

A congeptual graph (CG) is a representation for logic as a bipartite graph with,two kinds off nodes, called
concepts and conceptual relations. The Conceptual Graph Interchange Format\(CGIF) is a fully conformant
dialect|of Common Logic (CL) that serves as a serialized representation for conceptual graphs. This annex
specifigs the CGIF syntax and its mapping to the CL semantics. A nonnormative graphical notation, called the
CG display form, is used in this International Standard only in examples\that illustrate the CG s$tructures. The
first example, Figure B.1, shows the display form that represents the séntence John is going to Boston by bus.

- Gty Boaton

Figure B.1 — CG display form for John is going to Boston by bus

In the|display form, rectangles_or boxes represent concepts, and circles or ovals represg¢nt conceptual
relations. An arc with an arrowhead pointing toward a circle marks the first argument of the r¢lation, and an
arc poihting away from a eircle marks the last argument. If a relation has only one argument, thg arrowhead is
omitted. If a relation has-mere than two arguments, the arrowheads are replaced by integers 1,.}.,n.

The CG in Figure/B:1*has four concepts, each with a type label that represents the type of entity to which the
concept refers:(Person, Go, Boston, and Bus. Two of the concepts have constants that identjfy individuals:
John and Beston. Each of the three conceptual relations has a type label that represents the type of
relation: Agn't for the agent of going, Inst for the instrument, and Dest for the destination| The CG as a
whole |ndicates that the person John is the agent of an instance of going with Boston as the degtination and a
bus as the instrument. Following is the CGIF representation of Figure B.1:

[Go: *x] [Person: John] [City: Boston] [Bus: *y]
(Agnt ?x John) (Dest 7?x Boston) (Inst ?x ?vy)

In CGIF, the concepts are represented by square brackets, and the conceptual relations are represented by
parentheses. A character string prefixed with an asterisk, such as *x, is a defining label, which may be
referenced by the bound label ?x, which is prefixed with a question mark. These strings, which are called
coreference labels in CGIF correspond to variables in Common Logic Interchange Format (CLIF). Unless
prefixed with the symbol cevery, a defining label is translated to an existential quantifier. Following is the
equivalent CLIF representation of Figure B.1:

© ISO/IEC 2007 — All rights reserved 33

https://iecnorm.com/api/?name=2a2de7c6cc8000e40f79d1e704317b8a

ISO/IEC 24707:2007(E)

(exists
(and

((x Go) (y Bus))
(Person John) (city Boston)
(Agnt x John) (Dest x Boston) (Inst x vy)))

As this example illustrates, the differences between CGIF and CLIF result from the graph structure: the nodes
of the graph have no implicit ordering, and the coreference labels such as *x or ?x represent connections of
nodes rather than variables. Note that CGIF uses the prefixes * and ? to distinguish coreference labels from

constants, but

CLIF does not use any syntactic convention for distinguishing variables and constants.

Figure B.1 and its representation in CGIF illustrate the extended syntax of CGIF, which adds type labels on
concepts and several other syntactic extensions to the core syntax. To convert the extensions of Figure B.1 to
the core CGIF, the type labels in the concept nodes are replaced by relations linked to the nodes. The concept

[Go:*x], for
[Person: Jd
(Person JoH

[*x] [*Y
(Go ?x)
(Agnt ?%

(exists
(and

To illustrate cd
mat, then it ig
rectangles cor
this example,
implies the pr
called a pet, h

hn] becomes [:John] (Person John), which may be simplified to just _the
n) . Following is the core CGIF and the corresponding CLIF:

]

(Person John) (City Boston) (Bus ?y)

John) (Dest ?x Boston) (Inst ?x ?vy)

(x y)

(Go x) (Person John) (City Boston) (Bus vy)

(Agnt x John) (Dest x Boston) (Inst x vy)))

ntexts and logical operators, Figure B.2 shows the display form for the sentence If a cat
a happy pet. As in Figure B.1, the rectangles represent concept nodes, but the twi

the type labels If and Then indicate that the’proposition stated by the CG in the if-

s an attribute, which is an instance of happiness.

If:

o]

Pet Happy

Figure B.2)— CG display form for “If a cat is on a mat, then it is a happy pet”

The dotted lin

b connecting the concepts [Cat] and [Pet] is a coreference link, which indicates th

pbxample, becomes an untyped concept [*x] and a conceptual relation (Go ?x). The dqoncept

relation

isona
b large

tain nested conceptual graphs. Any concept that\contains a nested CG is called a conftext; in

context

position stated by the CG in the then-contéxt. The Attr relation indicates that the cat, also

at they

both refer to the same entity. In CGIF, the connection is shown by the defining label *x in the concept [Cat:
*x] and the bound label ?x in the concept [Pet: ?x]:

[If: [Cat: *x] [Mat: *y] (On ?x ?vy)
[Then: [Pet: ?x] [Happy: *z] (Attr ?x ?2z) 1]

In core CGIF, the type labels I1f and Then are replaced by a negation symbol ~ in front of the opening
bracket, and the type labels are replaced by monadic relations:

~[[*x]

N[[*

34

[*y] (Cat ?x) (Mat ?y) (On ?x ?vy)
z] (Pet ?x) (Happy ?z) (Attr ?x ?2z) 1]

© ISO/IEC 2007 — Al rights

reserved

https://iecnorm.com/api/?name=2a2de7c6cc8000e40f79d1e704317b8a

ISO/IEC 24707:2007(E)

CLIF:

(not (exists (x y) (and (Cat x) (Mat y) (On x vy)
(not (exists (z) (and (Pet x) (Happy z) (Attr x z)))))))

In core CGIF, the only quantifier is the existential. In extended CGIF, universal quantifiers may be used to
represent the logically equivalent sentence For every cat and every mat, if the cat is on the mat, then it is a
happy pet. In extended CGIF, the universal quantifier is represented as Qevery:

[Cat: @every *x] [Mat: Qevery *y]
[ITf: (On ?x ?y) [Then: [Pet: ?x] [Happy: *z] (Attr ?x ?z)]]

CLIF:

(fprall ((x Cat) (y Mat))
(if (On x y) (and (Pet x) (exists ((z Happy)) (Attr x z))OV)

In CGyg, functions are represented by conceptual relations called actors. Figure B3 is the CG display form for
the follbwing equation written in ordinary algebraic notation:

vy F (x + 7)/sqrt(7)

The thfee functions in this equation would be represented by three actors, which are drawn ir| Figure B.3 as
diamond-shaped nodes with the type labels Add, Sqrt, and/Divide. The boxes represent goncept nodes,
which ¢ontain the input and output values of the actors. The two empty concepts contain the optput values of

Add arld sgrt.
@ 1

<>
4

<

Figure B.3 — CL functions represented by actor nodes

,

In CGIF, actors are tepresented as relations with two kinds of arcs: a sequence of input arcs apd a sequence
of outplut arcs, which are separated by a vertical bar:

[Number): *x] [Number: *y] [Number: 7]
(Apd2x 7 | [*ul]) (Sgrt 7 | [*v]) (Divide 2u ?v | ?vy)

In the display form, the input arcs of Add and Divide are numbered 1 and 2 to indicate the order in which the
arcs are written in CGIF. Following is the corresponding CLIF:

(exists ((x Number) (y Number))
(and (Number 7) (= y (Divide (Add x 7) (Sgrt 7)))))

No CLIF variables are needed to represent the coreference labels *u and *v since the functional notation
used in CLIF shows the connections directly.

© ISO/IEC 2007 — All rights reserved 35

https://iecnorm.com/api/?name=2a2de7c6cc8000e40f79d1e704317b8a

ISO/IEC 24707:2007(E)

All semantic features of CL, including the ability to quantify over relations and functions, are supported by
CGIF. As an example, someone might say "Bob and Sue are related," but not say exactly how they are
related. The following sentences in CGIF and CLIF state that there exists some familial relation r that relates
Bob and Sue:

[Relation: *r] (Familial ?r) (#?r Bob Sue)

(exists ((r Relation)) (and (Familial r) (r Bob Sue)))

The concept [Relation: *r] states that there exists a relation r. The next two relations state that r is
familial and r relates Bob and Sue. In CGIF, the prefix # indicates a bound coreference label used as a type
label.

B.1.2 EBNF Syntax Rules for CGIF (informative)
In order to describe the syntax of CGIF, the EBNF notation is used, as referenced in ISQ/AEC 14977:1996.
The specificatipns in Annex B use only the following subset of the features specified by ISONEC 14977:1996.
This section ig intended as informative only, as ISO/IEC 14977:1996 should be considered the nofmative
reference.

Terminal sympol. Any string enclosed in either single quotes or double quotes:sExamples:

"This i9 a quoted string." 'and so is this'

Nonterminal gymbol. A name of a category in a syntax rule. For example, the following syntax rule cpntains
two nontermingl symbols, one terminal symbol '"; "', a defining¢ssymbol "=", a concatenation symbpl ", ",
and a terminatpr symbol " ; .

syntaxRyle = expression, ";";

Option. An gxpression enclosed in square bracKeéts. It specifies zero or one occurrence of any string
specified by the enclosed expression. Example:

["This |string may or may not,.gecur."]

Iteration. An|expression enclosed in Curly braces. It specifies zero or more occurrences of any string
specified by the enclosed expressien.~Example:

{ "This |string may, occur many times." }

Concatenatioh. Two orhore terms separated by commas.

"TWO kirds Of quotes: ll, lllll, " and "’ l"l’ "."

Exception. Two terms separated by a minus sign -, which specifies any string specified by the first term, but
not the second. The following example specifies a sequence of zero or more digits that does not contain "6":

{digit} - 6

Group. An expression enclosed in parentheses and treated as a single term. The following group encloses
an exception that specifies a sequence of one or more digits by excluding the empty term:

({digit} -)
Alternatives. Two or more concatenations separated by vertical bars. Example:

"cat", "dog" | "cow", "horse", "sheep" | wildAnimal

36 © ISO/IEC 2007 — All rights reserved

https://iecnorm.com/api/?name=2a2de7c6cc8000e40f79d1e704317b8a

ISO/IEC 24707:2007(E)

Special sequence. Any string enclosed by question marks. These sequences shall not affect the syntax
specified by the syntax rules, but they may be used to copy strings analyzed by a syntax rule for later use by

the rewrite rules specified in Section B.5.2. Example:

?sgn?
Syntax rule. A nonterminal symbol followed by "=" followed by an expression and ending with ";". The
following syntax rules define the syntax of the syntax rules used in Annex B.
syntaxRule expression, ";";
expression = alternative, {"|" alternative} | term, "-", term;
alternative = term [variable], {"," term [variable]};
tefrm = terminal | nonterminal | "[", expression, "]"
| "{", expression, "}" | "(", expression, ")" | empty
tefrminal = "'" ({character - '""'} - empty), "'"
| '"'", ({character - "'"} - empty), '"';
nopterminal = identifier;
vafriable = "?" identifier, "2";
identifier = letter, {letter | digit | " "};
empty = 7
These [rules specify a subset of the syntax rules specified in Section\8/1 of ISO/IEC 14977:1p96. The rules
imply that ", " has higher precedence than " | ", which has higher, preeedence than "=". Parentheses may be
used tg override the precedence or to make the grouping more obvious.

B.1.3| Notation for Rewrite Rules

The syntax of both core (clause B.2 and extended CGIF (clause B.3) is defined by rules in Ext

ended Backus-

Naur Horm (EBNF) rules as specified by ISO/IEC 44977:1996. To specify the translation fromp core CGIF to

Comm
Englisk
rules in
lexical
lexical
white gpace may occur in the input text.

B.1.3.1 Transformation Rules

bn Logic, Section B.2 uses a combination*of EBNF rules and mathematical notation sup
. To specify the translation from extended CGIF to core CGIF, clause B.3 uses a combipation of EBNF
this section and the rewrite rules defined in clause B.1.3.2. The syntax rules in Annex B
analysis stage that has subdivided the text into tokens as in ISO/IEC 2382-15:1999 (c
tokens); therefore at any point where a comma occurs in an EBNF rule, zero or mor¢ characters of

blemented with

presuppose a
ause 15.01 on

Each transformation ruje ‘'shall define a function that analyzes an input string and returns a sequence of one or
more dutput strings. A transformation rule shall have three parts: a header, a syntax rule as d¢fined in B.1.2,

and zefo or more rewrite rules. The first string in a header shall specify the name of the functi
the name. of the nonterminal symbol defined by the syntax rule. The header shall
whose.value shall be the input string to be analyzed by the syntax rule, and it

bn, which shall
also specify a
shall specify a

sequerjce, Of one or more output variables. If the syntax rule successfully analyzes the input string from
beginnjngde end, the rewrite rules, if any, are executed. Following are the syntax rules that deTine the syntax

of the ; ute 15 the startsymbot.

transRule = header, syntaxRule, {rewriteRule}, "end", ";";

header = nonterminal, " (", variable, ")", "->",
variable, {"," variable};

rewriteRule = assignment | conditional;

assignment = wvariable, "=", rewriteExpr, ";";

conditional = "if", condition, ({rewrite rule} - empty),
{"elif", condition, ({rewrite rule} - empty)},
["else", ({rewrite rule} - empty)], "end;"

condition = "(", test, {"&", test}, ")";

test = rewriteTerm, ["~"], "=", rewriteTerm;

test = rewriteTerm, ["~"], "=", rewriteTerm;

rewriteExpr = rewriteTerm {"," rewriteTerm};

© ISO/IEC 2007 — All rights reserved

37

https://iecnorm.com/api/?name=2a2de7c6cc8000e40f79d1e704317b8a

ISO/IEC 24707:2007(E)

| funTerm;
[funTerm, {"," funTerm},

variable

" (H,

terminal |
identifier,

rewriteTerm
funTerm

") "o,
’

The following nonterminal symbols from ISO/IEC 24977 shall be defined as in B.1.2: syntaxRule, terminal,
nonterminal, variable, identifier, empty.

The function defined by a transformation rule shall translate the input string to the sequence of values of the
output variables by copying substrings from the input and executing rewrite rules to transform those strings.
The execution shall be determined by the following procedure:

Any parsing algorithm may be used to the analyze the input string according to the specifications of the syntax
rule. At the beginning of the analysis, all variables that occur in the transformation rule shall be initialized to

the empty strin
the semantics
parsing has fin

Any variable x
comma or othg

that was matched to the pattern specified by t. If the alternative in which t occurs was.not’taken or if t m

the empty strin

After parsing H
more rewrite ru

When an assig
of the rule sha
as the value of

A condition thg

values of two ferms. An empty term, which is written as alank, has the empty string as value. Therefq

condition (?x7?

When a cond
sequentially. (]
rules following
for that rule is
marker for that

When the end
function name

g. Although some parsing algorithms may assign values to variables during the parsing
shall not require those values to be accessible for executing any rewrite rules uftil*g
ished.

in the syntax rule shall occur immediately after some term t in that rulg;\there shall
r symbol separating t and x. The value assigned to x shall be the substring:s of the inpy

g, the value of x shall be empty.

as finished, the rewrite rules following the syntax rule are executed sequentially, unless
les in the options of a conditional are skipped.

nment is executed, the values of the terminals, variabl€s, and functional terms on the rig
| be concatenated in the order in which they are wriften. The resulting string shall be ag
the variable on the left side of the rule.

t occurs in a conditional is a conjunction of one or more tests for the equality or inequalit

& 2y?~=) shall be true if and only if,?x? is empty and 2vy? is not empty.

tional is executed, the conditions for the if, elif, and else options shall be ev
he condition for else shall always be true.) When the first true condition is found, the
that condition shall be executed sequentially until the next occurrence of elif, else,
found. Then execution shall' continue with the rewrite rule, if any, which occurs after t

conditional.

marker for the-transformation rule is reached, execution shall stop. Then the value
i in the header shall be a sequence of the values of all the output variables. Any output V

that had not b
same identifie
assignment sh

According to t
example, defi

identity (?s?)
identity

end;

en assigneda value shall have the value of the empty string. Any output variable that
as some-variable in the syntax rule shall have the value assigned to it from the input str]
Il change“the value of any variable after a value has been assigned to it.

phase,
fter all

be no
t string
atched

one or

ht side
signed

y of the
re, the

pluated
rewrite
or end
he end

of the
ariable
nas the
ng. No

isspecification, some transformation rules may have no rewrite rules. The following r|

-> ?t?;
{character} ?2t?;

ule, for

The input string s is parsed by the syntax rule as a string of zero or more characters. That string is assigned to
t, which becomes the output of the function.

The value assigned to a variable as a result of the parse is always some substring from the input. Except for
the identity function, the output values generated by the rewrite rules for any syntactic category are often very
different from any substring of the input. As an example, the transformation rule named negation translates
a negation from extended CGIF to core CGIF:

38 © ISO/IEC 2007 — All rights reserved

https://iecnorm.com/api/?name=2a2de7c6cc8000e40f79d1e704317b8a

ISO/IEC 24707:2007(E)

negation (?b?) -> ?ng?;

negation = "~[", [comment] ?cm?, CG ?x7?, [endComment] Z2ecm?, "1";
?ng? = "~[", ?cm?, CG(?x?), 2ecm?, "1";

end;

The strings for the opening comment cm and the ending comment ecm are copied unchanged from input to
output. But the nested CG, whose input string x is in extended CGIF, is very different from the core CGIF
output of CG(x). The transformation rules for the syntactic categories of extended CGIF behave like compilers

that translate input strings for extended CGIF categories to output strings in core CGIF.

B.1.3.2 Functions Used in Rewrite Rules

Any fu
the sa
followi

e transformation rule that defines it. In addition to the functions defined by transform
g seven functions shall be available for use in processing strings or sequences in-any re

first(s) shall return the first or only element of a sequence s. If length(s)="0!}.first(s) sha

gensym() shall return a string that represents a CGname that shall \be different f
CGname in the current text. Each time gensym() is invoked, the string itfeturns shall a
from any string it had previously returned.

length(s) shall return the length of the sequence s as a siting of one or more ¢
represent the decimal digits of the length. If s is empty, length(s) shall be "0". If s is a §
length(s) shall be "1".

map(f,s) shall apply a function f to each element of a,séquence s in order to return th
values of f(x) for each x in s.

empty.
substitute(s,t,x) shall return the result of substituting the string s for every occurrence ¢
the string x. If t does not occur in x, substitute(s,f,x) shall be x.

¢ | third(s) shall return the third element of\a sequence s. If length(s)<"3", third(s) shall be

The English phrase “CG name” shall refer to any syntactic token of the category “CGname”.

B.2 (G Core Syntax and Semantics

The C5 abstract syntax is a notation-independent specification of the expressions and com
conceptual graph core, which is the minimal CG subset capable of expressing the full CL
semantics of any expression x in the CG core syntax is specified by the function cg2cl(x), whi
logically equivalent expression in the CL abstract syntax. The function cg2cl is recursive, sin
compohents may bé:nested inside other components.

Sections 2.1 through 2.11 define the abstract CG syntax, the mapping of the abstract CG

second(s) shall return the second element of a/sequence s. If length(s)<"2", secgnd

tion rules, the
write rule.

}jchon defined by a transformation rule may be used in a rewrite rule. It may even be usefl recursively in

Il be empty.
rom any other
so be different

haracters that
single element,

e sequence of
(s) shall be

f the string t in

empty.

bonents of the

demantics. The

th maps x to a
ce a CG or its

syntax to the
udes a formal

kplanation and

ifled by ISO/IEC

14977: 1996 and summarlzed in B 1.2. For each CGIF syntax rule the IeX|caI categorles of Section A.2.2 shall
be assumed. In Section A.2.3.2, the category name includes a category enclosedname of strings enclosed in
quotes and a category namesequence of strings that are not enclosed. To avoid possible ambiguities, the
category CGname requires that all CLIF nhame sequences except those in the CGIF category identifier shall
be enclosed in quotes:

CGname = identifier | '""', (namesequence - identifier), '"'
| numeral | enclosedname | quotedstring;
identifier = letter, {letter | digit | " _"};

When CGIF is translated to CL, any CGname shall be translated to a CLIF name by removing any quotes
around a name sequence. CLIF does not make a syntactic distinction between constants and variables, but in
CGIF any CGname that is not used as a defining label or a bound label shall be called a constant.

© ISO/IEC 2007 — All rights reserved 39

https://iecnorm.com/api/?name=2a2de7c6cc8000e40f79d1e704317b8a

ISO/IEC 24707:2007(E)

The start symbol for CGIF syntax shall be the category text, if the input is a complete text, or the category
CG, if the input is a string that represents a conceptual graph.

B.2.1 actor

Definition: A conceptual relation ac=(r,s), in which r shall be a reference called the type label of ac and the
arc sequence s=s4,Sp shall consist of an arc sequence s, called the input arcs, and a single arc s, called the

output arc.

CL: cg2cl(ac) shall be an equation eq: the first term of eq shall be the name cg2cl(s,), and the second term
of eq shall be the functional term with operator cg2c/(r) and term sequence cg2c/(s4) with an optional
sequence mar

er sqn.

CGIF:

actor

n(n n#n,

ll) ll;

"|"/

[comment], [
[endComment],

"?"], CGname, arcSequence, arxc,

Like other con
coreference la

Comment: A
restricts an ag
examples of a

the end, but n¢
have any num

B.2.2 arc
Definition: A

CL: cg2cl(ar)

Ceptual relations, an actor node is enclosed in parentheses. The symbol # shall mark a
bel that is used as a type label.

though an actor is defined as a special case of a conceptlial-relation, the CG core
tor to exactly one output arc so that it may be mapped to & CL function. See Figure
ctors and their mapping to CGIF and CLIF. The input arcs’may include a sequence ma
sequence marker shall be used for the output arc. Thé&lextended CGIF syntax allows a
per of output arcs.

reference ar that occurs in an arc sequence of some conceptual relation.

shall be the name n without the marker of the reference ar.

bound

syntax
B.3 for
rker at
ctors to

CGIF:
arc = [comment], reference;
Comment: The function cg2c/ maps an arc to the name of the reference and omits any marker that

distinguishes 3

B.2.3 arcSequence

Definition: A
sequence mar

bound label.

pair as=(s,sqn) consisting of a sequence s of zero or more arcs followed by an ¢
er.sgn.

ptional

CL: cgZ2cl(as)

, , R , o .
strat-beatermsequencefs=cy2ci(s)and-the sequence mmarker sgrrif presentimas.— T

e term

sequence ts shall be map(cg2cl,s), where map is a function that applies cg2c/ to each arc of the sequence s to
extract the name that becomes the corresponding element of the sequence fs.

CGIF:

arcSequence

{arc}, [[comment], segmark];

nwon
- 4

Any sequence marker in an arc sequence as shall be identical to the sequence marker in some existential
concept that is directly contained in a context that contains the actor or conceptual relation that has the arc
sequence as.

Comment: The option of having a sequence marker in an arc sequence implies that a conceptual relation
may have a variable number of arcs.

40 © ISO/IEC 2007 — All rights reserved

https://iecnorm.com/api/?name=2a2de7c6cc8000e40f79d1e704317b8a

B.2.4

ISO/IEC 24707:2007(E)

comment

Definition: A string cm, which shall have no effect on the semantics of any CGIF expression x in which s
occurs.

CL: cgZ2cl(cm) shall be the substring s of cm that does not include the delimiters "/*" and "*/" of a
comment or the opening "; " of an end comment. The string s shall be included in a CL representation for a
comment and shall be associated with the CL syntactic expression to which the CGIF expression x is
translated. The syntax rules for comment and end comment are identical for core CGIF and extended CGIF.

"*/";

CGIF:
comment = "/*" { (character-"*") | ["*", (character-"/")1}, ["*"]
endComment = ";", {character - ("]" | ")")};

The stfing enclosed by the delimiters "/*" and "*/" shall not contain a substring =+ A". The 3

comme

Com
the op
concey]
the clo
actor.
comme

B.2.5

Definifion: A pair c=(R,g) where R shall be either a defining label or a set of zero or more ref

shall b
CL: c¢
Conte;
Existe

existen
conjun

nt may contain any number of ";", but it shall not contain "]" or ")".

nt: A comment may occur immediately after the opening bracket of any concept, im
ning parenthesis of any actor or conceptual relation, immediately before any arc, or inte
ts and conceptual relations of any conceptual graph. An end comiment may occur imm
5ing bracket of any concept or immediately before the closing(parenthesis of any concep
Since the syntax of comments is identical in core and extended CGIF, no additional
nts shall be included in Section B.3.

concept

b a conceptual graph that is said to be directly’contained in c.

12cl(c) shall be the sentence s determined by one of the first three options below:

kt. If R is empty, then s=cg2cl(g).(In this case, c shall be called a context.

htial. If g is blank and R js.a-defining label, then the sentence s shall be a quantified se

tial with a set of names/{cg2c/(R)} and with a body consisting of a Boolean ser
Ction and zero components. In this case, ¢ shall be called an existential concept.

tring of an end

mediately after
mixed with the
ediately before
tual relation or
sytax rules for

brences, and g

ntence of type
tence of type

Corefdrence. If g is blapK and R is a set of one or more references, then let r be any refergnce in R. The

senten

Cce s shall be &.Boolean sentence of type conjunction whose components are the set of

first te
corefe

Syntagtically invalid. The case in which g is nonblank and R is not empty is not permitted in g

no tra

m cg2cl(r)_and second term cgZ2ci(t) for every reference t in R—{r}. In this case, ¢ sh
ence concept.

equations with
all be called a

ore CGIF, and

CGIF:

CO

CO

ex

CO

lation to CL is defined.

ncept = context | existentialConcept | coreferenceConcept;

ntext = "[", [comment], CG, [endComment], "]";

istentialConcept = "[", [comment], "*", (CGname | segmark),
[endComment], "]1";

referenceConcept = "[", [comment], ":", {reference}-,

[endComment], "1";

© ISO/IEC 2007 — All rights reserved

41

https://iecnorm.com/api/?name=2a2de7c6cc8000e40f79d1e704317b8a

ISO/IEC 24707:2007(E)

A context shall be a concept that contains a CG; if the CG is blank, the context is said to be empty, even if it
contains one or more comments. Any comment that occurs immediately after the opening bracket shall be
part of the concept; any other comments shall be part of the nested CG. A coreference concept shall contain
one or more constants or bound coreference labels; in EBNF, an iteration followed by a minus sign with
nothing after it indicates at least one iteration.

Comment: A context is represented by a pair of brackets, which serve to limit the scope of quantifiers of the
nested CG; an empty context [] is translated to CLIF as (and), which is true by definition. An existential
concept is represented by a concept such as [*x], which is translated to CLIF as (exists (x) (and));
this sentence asserts that there exists some x. A coreference concept is represented by a concept that

contains a set of constants or bound coreference labels, such as [: ?x Cicero Tully 2?abcd], which is
translated to a conjunction of equations in CLIF:

(and (= |x Cicero) (= x Tully) (= x abcd))
A coreference|concept with just one reference, such as [:?x], would become an empty cofjunction |(and).

Since it has nq semantic effect, such a concept may be deleted.

B.2.6 congeptual graph (CG)

Definition: Aftriple g=(C,R,A), where C is a set of concepts, R is a set of congeptual relations, and A is the

set of arcs thd
relation in R. If

CL: Let E be f
and negations

Let B be a Boglean sentence of type conjunction with companents consisting of all the sentences cg2¢

every x in X.
If E is empty,

If E is nonemp
the CGname o

CGIF:
CG

{

A conceptual
Formally, a n¢
CGIF.

Comment: A
or to a Boolea
could be simp

then cg2cl(g) is B.

t shall consist of all and only those arcs that occur in the arc,sequence of some con
C and R are both empty, then A is also empty, and g is calledva blank conceptual graph.

he subset of C of existential concepts; and let X be the set of all concepts, conceptual re
of g except for those in E.

ty, then cg2cl(g) is a quantified sentence of type existential with the set of names consi
f the defining coreference label of.every e in E and with the body B.

concept | conceptuad¥Relation | negation | comment};

jraph consists an(unordered set of concepts, conceptual relations, negations, and com
gation is a pair‘consisting of a concept and a conceptual relation that are never separ

cording.to’this specification, every CG maps to either a quantified sentence of type exi
h sentence of type conjunction. If the conjunction has only one component, then the se
|f|ed 10 an equallty, an atomlc sentence, or a Boolean sentence of type negatlon If g i

the correspond

ceptual

ations,

I(x) for

5ting of

ments.
ated in

stential
ntence
blank,

of the

nodes of a CG, some software that processes CGIF may run more eff|C|entIy |f the defmlng coreference labels
occur before the corresponding bound labels; the simplest way to ensure that condition is to move the
existential concepts to the front of any context.

B.2.7 conceptual relation

Definition: A pair cr=(r,s), in which r shall be a reference called the type label of cr and s shall be an arc

sequence.

CL: cgZcl(ac) shall be an atomic sentence whose predicate is cg2cl/(r) and whose term sequence is cg2c/(s).

CGIF:

conceptualRelation

42

ordinaryRelation | actor;

© ISO/IEC 2007 — Al rights

reserved

https://iecnorm.com/api/?name=2a2de7c6cc8000e40f79d1e704317b8a

ISO/IEC 24707:2007(E)

ordinaryRelation = " (", [comment], ["#", "?"], CGname, arcSequence,

[endComment], ™)";

An ordinary conceptual relation has just one sequence of arcs. An actor partitions the sequence of arcs in two
subsequences. A bound coreference label that is used as a type label shall begin with the string "#?" or “#7?”.

Comment: By allowing the type label of a conceptual relation to be a bound label, CGIF supports the CL
ability to quantify over relations and functions. As an example, see the CGIF at the end of section B.1.1 that

represents the sentence "Bob and Sue are related.”

B.2.81_n_egation
Definifion: A pair ng=(c,cr), in which ¢ shall be a concept and cr shall be a conceptual-relati
label r ghall be a constant with CGname Neg. The pair (c,cr) shall be treated as a single‘unit.

CL: cgZ2ci/(ng) shall be a Boolean sentence of type negation with the component cg2cl(g).

CGIF:

negation = "~", context;

A negation shall begin with the symbol ~. Although a negation is.fermally defined as a pair
contexi and a conceptual relation, the two elements of the pair shall not be expressed as sep
CGIF.

Comment: A negation negates the proposition stated by.the nested conceptual graph g. For

the CQIF for Figure B.2. The negation of the blank CG,written ~[1, is always false; the corre
is (not (and)).

B.2.9| reference

Definifion: A pair r=(m,n) where n is a_ CG name and m is a marker that shall designate 3
bound Jabel.

2cl(r) shall be the name/n.~\The marker m shall be ? for a bound label and the empty

refference = [2?"], CGname;

bn whose type

consisting of a
arate nodes in

examples, see
sponding CLIF

constant or a

string "" for a

s5ts of a quoted
CG names are

Comment:) Yy
references are included in Section B.3.

B.2.10 scope

ntax rules for

Definition: A set of contexts S associated with a concept x that has a defining label with CG name n.

The following terms are used in defining the constraints on defining labels in both core and extended CGIF:

e constant, a CG name without any prefix.
e bound coreference label, a CG name with the prefix "?".
e bound sequence label, a sequence marker with the prefix "2".

© ISO/IEC 2007 — All rights reserved

43

https://iecnorm.com/api/?name=2a2de7c6cc8000e40f79d1e704317b8a

ISO/IEC 24707:2007(E)

bound

According to this definition, a defining sequence label shall begin with the string “*
label shall begin with the string “?...”.

label, a bound coreference label or a bound sequence label.

defining coreference label, a CG name with the prefix "*".
defining sequence label, a sequence marker with the prefix "*".
defining label, either a defining coreference label or a defining sequence label.

.” and a bound sequence

Constraints: The verb contains shall be defined as the transitive closure of the relation directly contains, and
it shall satisfy the following constraints in both core and extended CGIF:

B.2.10.1 If a gentextecdirecthyr-contains-a-conceptualgraph-g-then-c-directly-ceontairseverrnrede-efgnand
every component of those nodes, except for those that are contained in some context of .g.

B.2.10.2 If a[context ¢ directly contains a context d, then c indirectly contains everything that d ¢contairs.

B.2.10.3 Thg phrase "c contains x" is synonymous with "c directly or indirectly contains x",

B.2.10.4 If ajconcept x with a defining label with name n is directly contained in some context c, then ¢ shall
not contain any concept other than x with a defining label with the same-CG name n, and c¢ shall be
in the scope S associated with the concept x.

B.2.10.5 If a[context c is in the scope S associated with a concept x, then-any context d directly contajned in
¢ shall also be in the scope S, unless d directly contains a coneept y with a defining label with the
sanme CG name as the defining label of x.

B.2.10.6 Every bound label with CG name n shall be in the scope’associated with some concept with p
defining label with CG name n.

B.2.10.7 No fonstant with CG name n shall be in the scope associated with some concept with a defining
labgl with CG name n.

NOTE Thepe constraints ensure that for every CGIF sentence s, the translation cg2ci/(s) shall obey |the CL

constraints on spope of quantifiers. Since the constraints,on scope are identical in core and extended CGIF, no adlditional

constraints shall|be included in Section B.3.

B.2.11 text

Definition: A context ¢ that is not contained directly or indirectly in any context.

CL: cgZ2cl(c) ghall be text cansisting of the sentence cg2cl(g), where g is the conceptual graph irectly

contained in c] If a CG namew occurs immediately before g in the CGIF specification of the context c,|then n

shall be the ngme of the €l-text.

CGIF:

text = i [comment] "Propa ition®™ .U [CGnamel CG,

ll]ll;

[endComment],

Since a text is not contained in any context, it shall also be called the outermost context.

Comment: This syntax rule uses the syntax of extended CGIF, which allows a context to have a type label
and a CG name. Since core CGIF syntax is a subset of extended CGIF syntax, text in core CGIF can be used
by any processor that accepts extended CGIF. Context brackets may be used to group the concepts and
relations of a text into units that correspond to CLIF sentences. That grouping is a convenience that has no
effect on the semantics.

44 © ISO/IEC 2007 — All rights reserved

https://iecnorm.com/api/?name=2a2de7c6cc8000e40f79d1e704317b8a

ISO/IEC 24707:2007(E)

B.3 Extended CGIF Syntax

Extended CGIF is a superset of core CGIF, and every syntactically correct sentence of core CGIF is also
syntactically correct extended CGIF. Its most prominent feature is the option of a type label or a type
expression on the left side of any concept. In addition to types, extended CGIF adds the following features to
core CGIF:

These
target
them,
extend
CL.

This s
core

extended CGIF to a semantically equivalent sentence CG(s) of ,core” CGIF. The comb
cg2cl(CG(s)) translate s to a logically equivalent sentence in the CL abstract syntax.

The fupction CG and other functions for the other CGIF categori€s are defined by fransformati

notatio

core and extended CGIF; for any comment cm in extended ‘CGIF, comment(cm)=cm; and for

in exte
proper

Since
abstrag
below
Theref

B.3.1

Definifion: A string ac that shall contain a comment cm, a reference r called the type label, ar
bd the input arcs, ansarc sequence so called the output arcs, and an optional end comment ecm. The

$4 call
output

Translption: A.conceptual graph g.

more options in concepts, including universal quantifiers;
Boolean contexts for representing the operators or, if, and iff;

the option of allowing concept nodes to be placed in the arc sequence of conceptual relations;

the ability to import text into a text.

extensions are designed to make sentences more concise, more readable, and more
anguage for translations from natural languages and from other CL dialects, including

suitable as a
CLIF. None of

however, extend the expressive power of CGIF beyond the CG core, since the semantics of every

bd feature is defined by its translation to core CGIF, whose semantics is defined by it

ction defines the concrete syntax of extended CGIF and the translation”of each exter
IF. This translation has the effect of specifying a function CG, whjch translates any

5 translation to

ded feature to
sentence s of
ned functions

bn rules whose

is specified in clause B.1.3.1. Two categories, comnént and reference, have ideltical syntax in

nded CGIF, reference(r)=r. For any other category x of core CGIF, the strings of caf
subset of the extended CGIF strings of the sarme category.

he definitions in Section B.2 specified the:conceptual graph abstract syntax and its n
t syntax of Common Logic, they used-hotation-independent constructs, such as sets.

specify the mapping from the concreté’syntax of extended CGIF to the concrete syntax
pre, they are defined in terms of strings and functions that transform strings.

actor

arcs sy shall not contain a sequence marker.

ny reference r
egory X are a

napping to the
The definitions
of core CGIF.

arc sequence

acftor(?ac?) -> 2g°?;
ae¢gor = "(", [comment] ?cm?, (["#", "?"], CGname) ?r?,
FreSeguenree—ts— 1 —taret—2s2—tendCommentt—eem™— ") "
?2z17? = first (arcSequence(?sl?));
2227 = first (arcSequence(?s2?));
?sgqn? = third(arcsequence (?sl?));
if (length(?s2?)="0")
?cr? = "(", ?cm?, ?r?, ?z1?, ?sqn?, 2ecm?, ";O-output actor", ")";
elif (length(?s2?)="1")
?cr? = "(", ?cm?, ?r?, ?z1?, ?sqgn?, "|", ?z2?, ?ecm?, ")";
else ?cr? = "(", 2cm?, ?r?, ?2z1?, ?sqgn?, "/*|*/", 2z2?, 2ecm?, ")";
end;
?g? = second(arcSequence(?sl?)), second(arcSequence(?s2?)), ?2cr?;
end;

© ISO/IEC 2007 — All rights reserved

45

https://iecnorm.com/api/?name=2a2de7c6cc8000e40f79d1e704317b8a

ISO/IEC 24707:2007(E)

If s2 has no output arcs, cr shall be an ordinary conceptual relation, as defined in Section B.3.7; but to show
that cr was derived from an actor, an end comment "0-output actor” is inserted. If s2 has one output arc, cr
shall be an actor, but cr differs from ac because the arcs are translated to core CGIF. If s2 has two or more
output arcs, cr shall be an ordinary conceptual relation, but the comment "/* | */" is inserted to distinguish
the input arcs from the output arcs. The final rewrite rule puts cr after any conceptual graphs derived from the
arc sequences.

Comment: As an example, the combined effect of the transformation rules for actors, arcs, arc sequences,

and concepts would translate the following actor node

(IntegerDivide

[Integer: *x] [Integer: 7] | *u *v)

to a six-node ¢

[*x] (In
(Integern

The comment

back to extengled CGIF to distinguish the input arcs from the output arcs. If the distinction is impor]

some applicati
example, the
the following ¢

(exists

(iff

This sentence
of the third an

onceptual graph consisting of three concepts and three conceptual relations:

teger ?x) (Integer 7) [*u]
Divide ?x 7 /*|*/ 2u ?v)

[*v]

/* | */ has no semantic effect in core CGIF or CL, but if preserved, it would enable a

pn, axioms may be used to state the functional dependencies of the’outputs on the inpd
CL relation that results from the translation of an actor of type FntegerDivide would
bnstraint stated in CLIF:

(Quotient Remainder) (forall
(IntegerDivide x1 x2 x3 x4)
(and (= x3 (Quotient x1 x2))

(x1 x2 x3 x4)

(= x4

(Remadinder x1 x2))))))

asserts that there exist functions Quotient and Remainder that determine the values

apping
ant for
ts. For
satisfy

of the

i fourth arguments of the relation IntegexBivide. The translation rules would not g¢nerate

that axiom aujomatically, but it could be stated by a CGIF sentence that would be translated to thg CLIF
sentence:
[*Quotidgnt] [*Remainder]
[[@every*x1l] [@every*x2] [Qevery*x3] [@every*x4]
[Equiv: |[[Iff: (IntegerDivide2xl ?x2 | ?x3 ?x4)]
[Iff: (#?Quotient Rx1 ?x2 | ?x3) (#?Remainder ?x1 ?x2 | ?x4)]11]
To show that [the existential quantifiers for [*Quotient] and [*Remainder] take precedence oyer the

universal quan
with universal

B.3.2 arc

Definition: A

tifiers for the folr @rguments, a pair of context brackets is used to enclose the conceptf
uantifiers.

nodes

string ar that shall contain an optional comment cm and either a reference r, a definin

g label

with CG name

0. r B i o
1T, U a COTTCCPTCT

Translation: A pair (x,g) consisting of a an arc x and a conceptual graph g.

arc(?ar?) -> ?x?, ?9g°?;
arc = [comment] ?cm?, (reference ?r? | "*", CGname ?n? | concept ?c?);
if (?r?2~=) ?x? = Rar; ?2g? = ;
elif (?n?~=) ?x? ?cm?, "?", ?n?; 2g? = "[*", ?n?, "]";
else ?x? = ?2cm?, first(concept(?c?));
?g? = third(concept (?c?));
end; end;

46

© ISO/IEC 2007 — Al rights

reserved

https://iecnorm.com/api/?name=2a2de7c6cc8000e40f79d1e704317b8a

ISO/IEC 24707:2007(E)

If ar is a reference, x shall be ar unchanged, and g shall be blank. If ar contains a defining label, x shall be the
result of replacing the marker * in ar with 2, and g shall be the concept [*n]. If ar contains a concept ¢, x
shall be the result of replacing the concept ¢ in ar with a reference r, and g shall be third(concept(c)).

Comment: As an example, if the arc ar is [Integer], the value of concept([Integer]) would be a CG

name, such as g00023, and arc([Integer]) would be the pair consisting of the reference 2g00023 and the
conceptual graph [*g00023] (Integer 2g00023).

B.3.3 arcSequence

Definition: A string as that shall contain a sequence s of zero or more arcs followed by an optional sequence
marker-se#s-

Translation: A ftriple (rs,g,sqn) consisting of a sequence of references rs, a conceptual-graph g, and the
sequerjce marker sqn.

arkSequence (?as?) -> ?rs?, ?g?, ?sgn?;

argSequence = {arc} ?s?, [[comment], "?", segmark] ?sqn?;

?rp? = map(first,map (arc, ?s?));

?g[? = map (second,map (arc, ?s?));

enfd;

Comment: The function map (arc, ?s?) applies arc to each ‘arc of s to generate a seqiience of pairs
consisfing of a reference and a concept. Then map (first, map (arc, ?s?)) extracts the sequence of

referen

of con

sequer

variabl
have a

B.3.4

Definifion: A string b that shall contain.a context bc, which shall not directly contain a referend

ces from the first element of each pair. Finally, map (s&tond, map (arc, ?s?)) extracts
Cepts from the second element of each pair. The option of having a sequence ma
ce implies that a conceptual relation may havera variable number of arcs. An acto
b number of input arcs, but the number of output-arcs shall be fixed; therefore, the outpu
sequence marker.

boolean

the sequence
rker in an arc
r may have a
t arcs shall not

e or a defining

label. The context bc shall have either a prefix "~" and no type label or no prefix and one gf the following
constapts as type label: Either;, NEquiv, Equivalence, If, Iff, Then.
Translption: A negation ng.that shall be negation(b), eitherOr(b), ifThen(b), or equiv(b).

boplean ,=¥ negation | eitherOr | ifThen | equiv;

negation (?b?) -> ?ng?;

nepagion = "~[" [comment] ?cm?, CG ?x?, [endComment] ?ecm?, "]";

g ————— e R em {2 ——eeme—

end;

ifThen (?b?) -> ?ng?;

ifThen = "[", [comment] ?cml?, "If", [":"], CG ?ante?,

"[", [comment] ?cm2?, "Then", [":"], CG ?conse?,
[endComment] ?ecml?, "]", [endComment] ?2ecm2?, "]1";
?ng? = "~[", ?2cml?, CG(?ante?),
"~[", ?cm2?, CG(?conse?), ?2ecml?, "]", ?2ecm2?, "1";

end;

equiv (?b?) -> ?ng?;

equiv = "[", [comment] ?cml?, ("Equiv" | "Equivalence"), [":"],

"[", [comment] ?cm2?, "Iff", [":"], CG 2gl?,

© ISO/IEC 2007 — All rights reserved

47

https://iecnorm.com/api/?name=2a2de7c6cc8000e40f79d1e704317b8a

ISO/IEC 24707:2007(E)

[endComment] ?ecm2? "]",
" [comment] ?cm3?, "Iff", [":"], CG ?g2°?,
[endComment] ?ecm3? "]", [endComment] ?ecml? "]";
?ng? = "[", ?cml?, "~[", ?cm2?, CG(2gl?),
"~ CG(?g2?), ", ?ecm2?l ",
?cm2?, "~[", ?2cm3?, CG(?g27?),
"~[", CG(?gl?), "I", 2ecm3?, "]", ?ecml?, "1";
end;
eitherOr (?b?) -> ?ng?;
eitherOr = "[", [comment] ?cm?, "Either", [":"],
{ [comment], nestedOrs} ?ors?, [endComment] ?ecm?, "]";
?ng? = —l—emt—restedors{leorsi— e
end;
nestedO4s (?ors?) -> ?2g7?;
nestedOys = ("[", [comment] ?cm?, "Or" ?first?, [":"], CG ?ng?,
[endComment] ?ecm?, "]", nestedOrs ?more?
|)7
if (?fidst?=) ?g? = ;
else ?2g4 = "~[", ?cm?, CG(?ng?), ?ecm?, "]", nestedOrs (?mére?) ;
end; end;

The rule for n
contains zero

is defined to b¢ false.

Comment: Th
translations to
Then within its
Equiv, neithe

B.3.5 congept

Definition: A
cm, a type fielg

The referent figld of ¢ may contain.a\defining sequence label with sequence marker sqn. If so, the type

¢ shall be em

references or gany conceptual graph in the referent field of c.

If no sqgn, the t
called a type I
label with CG

pstedOrs recursively processes a sequence of zero or more“boolean contexts of type
nested Ors, eitherOr (b) shall be ~[1, which is false; the corresponding CLIF sentern

e scope of quantifiers in any of the Boolean contexts shall be determined by the nesting
core CGIF. Any defining label in a context of.type 1f shall have the nested context
scope. For any two contexts directly contained in a context of type Either, Equivale
one shall have the other within its scope.

string ¢ consisting of four substrings, any or all of which may be omitted: an opening co
, a referent field, and an end~comment ecm.

bty, the defining sequence label may be preceded by "@every", and there shall not

ype field of.c-shall contain either a type expression tx and a colon ":" or an optional refer
hbel and'\an optional colon ":". If no sqn, the referent field of ¢ shall contain an optional g
hame-df (which may be preceded by "@every"), a sequence of zero or more references

a conceptual
" [] H.

grraph g, which may be blank. If all the options are omitted, the concept ¢ shall be thd

Dr. If b
ce (or)

of their
of type
hce, Or

mment

field of
be any

ence ty
efining
rf, and
p string

Translation: A triple (r,q,g) consisting of a reference or a bound sequence label r, a quantifier g, which shall
be "@every" or the empty string, and a conceptual graph g, which shall contain at least one concept.

concept = "[", [comment] ?cm?,
((typeExpression ?2tx?, ":"
[[["#" "?"], CGname] 2ty?, [":"]),
[["@every"] ?g?, "*", CGname ?2df?], {reference} ?rf?, CG ?x?
| ["@every"] 2g?, "*", sedgmark ?sqgn?
), [endComment] ?2ecm?, "]1";
if (?sqn?~=) ?2r? = "?", ?sgn?; ?gl? = "[", ?cm?, "*", ?sgn?, ecm?];
elif (2df?~=) ?2r2 = "?", ?2df?; ?gl? = "[", 2cm?, "*", 2df?, 2ecm?];
if (?rf?~=) ?2g2?2 = "[", ":", ?r?, 2rf?, "1"; end;
48 © ISO/IEC 2007 - All rights

reserved

https://iecnorm.com/api/?name=2a2de7c6cc8000e40f79d1e704317b8a

ISO/IEC 24707:2007(E)

elif (?rf?~=) ?2r? = first(?rf?);
?2g2? = "[", ?cm?, ":", ?rf?, ?ecm?, "1";
else ?df? = gensym(); ?r? = "?2", 2df?;
?gl? = "[", ?2cm?, "*", ?2df?, ?ecm?, "]";
end;
if (?tx?~=) ?b? = first(typeExpression(?tx?));
?gx? = second (typeExpression (?tx?));
?g3?7 = substitute(?r?,?b?,?2gx?);
elif (?ty?~=) 2g3? = "(", ?ty?, ?r?, ")"; end;
if (?x?~=) ?2g4? = "[", CG(?x?), "1";
end;
?g? = ?gl?, ?2g2?, 2937, 2g947?;
engk
Four options are permitted in the type field: a type expression tx, a bound coreferencélabg

"#"’ a

constant, or the empty string; a colon is required after tx, but optional after the,other thr

rules move features from the concept ¢ to four strings, which are concatenated to, form the co

g. gt

definin
concey]
contex
which 4

is an existential concept with the defining label from ¢ or with a label generated by
j label or reference occurs in ¢; g2 is a coreference concept if any references occur in g
tual relation with a type label ty or a conceptual graph generated from a type expression
containing any nonblank CG x. Any comments cm and ecm areplaced in the first non
hall be either g7 or g2.

Commlent: To illustrate the translation, the sentence A pet cat«Yojo is on a mat could be

extend

(O

To get
referer
the res

[:
[

*

The C{
by gen
cg2cl v

e

(

A core
senten

ed CGIF with two concept nodes in the arc sequence of-a eonceptual relation:

h [@*x (Pet ?x) (Cat ?x): Yojo] [Mat])

erate the equivalent core CGIF, the concepts are removed from the arc sequence.
ces are left to link them to the concepts, which are expanded by the above rewrite rule
Llting core CGIF:

Yojol
700238]

(Pet Yojo) (Cat Yoje)
(Mat ?g00238) (Qr)Yojo 2g00238)

5 name Yoo is the reference for the first concept, and the CG name g00238 for the m
sym(). See Section B.3.9for a discussion of the type expression and its translation. The

ould translate the core.CGIF to the abstract syntax, which would be expressed by the fo
kists (g00238) (and (= Yojo Yojo) (Pet Yojo) (Cat Yojo)

(Mat \2g00238) (On Yojo 2g00238)))
erence concept with only one reference, such as [: Yojo], has no effect on the truth

| prefixed with
pe. The rewrite
nceptual graph
hensym() if no
; g3 is either a
tx;and g4 is a
blank concept,

represented in

In their place,
s. Following is

bt is generated
translation by
lowing CLIF:

or falsity of the

ce. It could be deleted by an optimizing compiler, unless it is needed as a container for comments.

B.3.6

Definition:

conceptual graph (CG)

conceptual relations, booleans, and comments.

Translation: A conceptual graph g.

CG(?cg?) —-> 2g7?;
CG = {concept | conceptualRelation | boolean | comment};
if (first(sortCG(?cg?)~=)
?2g? = "~", "[", first(sortCG(?cg?)),
"~w, "[", second(sortCG(?cg?), "I1", "I1";
else 7?g? = second(sortCG(?cg?));
end; end;

© ISO/IEC 2007 — All rights reserved

A string cg consisting of an unordered sequence of substrings that represent concepts,

49

https://iecnorm.com/api/?name=2a2de7c6cc8000e40f79d1e704317b8a

ISO/IEC 24707:2007(E)

sortCG(cg) shall be the pair (g7,92), where g1 is the conceptual graph derived from all the universally
quantified concepts in cg and g2 is the conceptual graph derived from all other concepts, conceptual relations,
and comments in cg.

sortCG(?cg?)

-> ?2gl?,?2g2?;

sortCG = ((concept ?c? | conceptualRelation ?x?
| boolean ?x? | comment ?x?), sortCG ?rem?
[)7
if (?c?=) 2cg2? = CG(?x?));
elif (second(concept(?c?)) = "@every")
?2cgl? = third(concept(?c?));
else ?cg2? = third(concept (?c?));
end;
?7gl? = Ycgl?, first(sortCG(?rem?)); ?2g2? = ?cg2, second(sortCG(?rem?))s
end;
Comment: If fthere are no concepts containing universal quantifiers in the input string, the'result shall be a
single string in core CGIF that concatenates the results of translating each node independently of anly other
node. But if the input string contains any universal concepts, the output string shall be a nest of two negations.
The outer context shall contain the translations of all the universal concepts, and)the inner context shall
contain the trapslations of all other nodes in the input.
B.3.7 congeptual relation
Definition: A ptring cr that represents an ordinary conceptual relationor an actor.
Translation: A conceptual graph g, which shall be either ordinaryRelation(cr) or actor (cr).
conceptyalRelation = ordinaryRelation | agtor;
ordinaryRelation (?cr?) -> 2g?;
ordirlaryRelation = " (", [commedt] 2cm?, (["#", "?"], CGname) ?r?,
arcSequencet ?s?, [endComment] ?ecm?, ")";
?g? |= second(arcSequence (?582)),
"(", ?cm?, ?r?, first(arcSequence(?s?)),
third (arcSequenge(\?s?)), ?2ecm?, ")";
end;
The first line of the rewrite rule extracts a conceptual graph from the arc sequence s. The second line agds the
opening commnent, type label,(and arc sequence of a conceptual relation. The third line adds the sequence
marker, if any,|the end comment, and the closing parenthesis of the conceptual relation.
Comment: A3 an example, the conceptual relation (On [Cat: Yojo] [Mat]) would be translated by the
rules for conceptual-relations, arcs, arc sequences, and concepts to generate a conceptual graph exgressed
in core CGIF, such as the following:
[: Yojo] (Cat Yojo) [*g00719] (Mat ?g00719) (On Yojo 2g00719)
B.3.8 text

Definition: A context c that is not contained directly or indirectly in any context.

Translation: A context cx.

text (?2c?
text = "
C
?cx? ="
end;

50

) —> ?cx?;

[", [comment] ?cm?, "Proposition", ":", [CGname] ?n?,

G ?g?, [endComment] ?ecm?, "1";

[", ?cm?, "Proposition", ":", ?n?, CG(?g?), 2ecm?, "]1";

© ISO/IEC 2007 — All rights reserved

https://iecnorm.com/api/?name=2a2de7c6cc8000e40f79d1e704317b8a

ISO/IEC 24707:2007(E)

Comment: CGIF does not provide an explicit syntax for modules. Instead, any CL module shall first be
translated to a text in core CLIF according to the specification in Table A.2 of section 0. Then the result of that
translation shall be translated to a text in extended CGIF according to the function c/2cg, which is defined in

section B.4.

B.3.9 type expression
Definition: A string tx containing a CG name n and a conceptual graph g.

Translation: A pair (b,g), consisting of a bound label b and a conceptual graph g.

typeExpression (?tx?) -> ?b?,?g?;
typeExpression = "@", "*", CGname ?n?, CG ?g?;
b = "?", ?n?;
enfd;
If a cpncept ¢ contains a type expression, the rewrite rules that specify concept(c) us

substlitute (?r?, ?b?, 2g?) to substitute some reference r for every occurrenceé of b in g.

Commeent: A type expression corresponds to a lambda expression in which the CG name
formal |parameter, and the conceptual graph g is the body of the expression. If a concept ¢ ¢
exprespgion, the transformation rules that process c shall substitute~a’ reference derived frg
occurrgnce of the bound label 2n that occurs in g.

B.4 CGIF conformance

This annex has specified the syntax of three CL dialects:an abstract syntax for conceptual grag
syntax|for core CGIF, and a concrete syntax for_extended CGIF. All three of these langy
conforfnant CL dialects in the sense that every CL“sentence can be translated to a semantig
sentenpe in each of them, and every sentence in any of these three dialects can be t
semantically equivalent sentence in CL. Thessemantic equivalence is established by definition:
of evelly sentence in extended CGIF is defined by a translation to a sentence in core CGIF, th
every $entence in core CGIF is defined)by a translation to a sentence in the abstract CG s
semantics of every abstract CG sentence is defined by its translation to the abstract syntax of C

To demonstrate full conformance, this clause specifies the function c/2cg, which shall translate
in CL fo a sentence cl2cg(s) in extended CGIF, which shall have the same truth value as
interpretation for CL. For<most CL expressions, the mapping to some expression in extg
straighfforward. The transtation of functional terms from CL to CGIF, however, requires more
Any Cl function application can be translated to an actor that represents the function plus a refe
concept whose referent is the value of that function. In order to translate a sequence of CL t
sequerjce in extended CGIF, the actor node shall be enclosed inside the concept node.

As an gxample, let (F X1 X2) be a CLIF term with an operator F applied to arguments X1 and

b the function

h specifies the
ontains a type
m c for every

hs, a concrete
ages are fully
ally equivalent
ranslated to a
the semantics
e semantics of
yntax, and the
L.

hny sentence s
s under every
nded CGIF is
than one step.
rence to some
erms to an arc

X2, where the

names| XIvand X2 are bound by quantifiers, but F is not. When that term is translated by c/2cg

, the gensym()

function shall be used to generate a CG name, such as g00592. When prefixed with "?", that name becomes
a bound coreference label, which shall be used as the output arc of an actor that represents the function F.
The result of translating the original CLIF term by c/2cg shall be (F ?X1 ?X2 | ?7g00592). The defining label
*g00592 shall be placed in a concept, such as [*g00592], and the actor shall be placed inside that concept as
a nested conceptual graph: [*g00592 (F X1 X2 | ?g00592)]. This concept shall be the result of c/2cg when
applied to the functional term. It may appear as an arc in an arc sequence of some actor or conceptual
relation.

Since the predicate of a CL relation or the operator of a CL function may be a functional term, the same
transformation shall be used to translate the predicate or the operator to a concept. As an example, let ((F X1
X2) Y1 Y2) be a CLIF atomic sentence whose predicate is the same functional term that appeared in the
previous example. Therefore, the bound label "?g00592", which represents the value of the function, shall be
the type label of the corresponding conceptual relation. If both Y1 and Y2 are bound by quantifiers in CL, the
conceptual relation shall be (#7g00592 ?Y1 ?Y2). In order to generate a single syntactic unit as the value of

© ISO/IEC 2007 — All rights reserved 51

https://iecnorm.com/api/?name=2a2de7c6cc8000e40f79d1e704317b8a

ISO/IEC 24707:2007(E)

cl2cg, this conceptual relation shall be placed inside the concept that represents the functional term,
immediately before "]": [*g00592 (F X1 X2 | ?g00592) (#7900592 ?Y1 ?Y2)]. This concept shall be the result
of cl2cg when applied to the original atomic sentence. It may appear as a node of a conceptual graph that
results from the translation of a larger CL sentence that contains the original atomic sentence.

For every CL expression E, Table B.1 specifies the extended CGIF expression that defines c/2cg(E). In order
to ensure that the CL constraints on quantifier scope are preserved in the translations by cl2cg, context
brackets, "[" and "]", are used to enclose the translations for expressions of type E13 and E14. In some cases,

these brackets are unnecessary, and they may be ignored.

The first column of Table B.1 indicates links to rows in the CL semantics in Section 6. The second column
uses the metalanguage and conventions used to define the CL abstract syntax. The third column mixes that
metalanguagewi i i i et i

cg2cl, which tfanslates any sentence s of core CGIF to a logically

Logic.

Table B.1 — Mapping from CL abstract syntax to extended CGIF syntax

32 unction
equivalent sentence cg2cl(x) of €opmmon

IfEis

a CL expression of the form

Then cl2cg(E) =

E1

A num

eral 'n'

The numeral 'n’

E1

A quoted string ‘s’

The quoted string:'s

E1

A intefpretable name 'n'

The name,'n_shall be enclosed in quotes|if it is
not a CG.identifier. If it occurs in the quanfifier of
some LClvsentence, it shall be prefixed with "*". If

it issbound by a quantifier, it shall be prefixgd with
ll?ll-

E2

Seque

nce marker S

S

E3

A tern
T1

sequence <T1 ... Tn> starting with;a-term

An arc sequence: ¢l2¢cg(T1) ... cl2¢cg(Tn)

E4

A terln sequence T1

seque

Tn starting with a
hce marker T1

An arc sequence:
cl2cg(T1)

cl2cg(T2), ..., cl2¢g(Tn),

E5

A ternm

(OT1...Tn)

A concept with a generated name 'n' that cgntains
a nested actor: "[", ™", 'n', "(", cl2¢cg(O), clZcg(T1,
. Tn), ll)ll, IIIII’ ll?ll’ Inl’ ll)ll’ ll]ll

A term

(cl:comment ‘string’ T)

An arc with a comment: "/*", 'string’, "*/", cgRcl(T)

E6

An eq

Jatidn (= T1 T2)

A CG consisting of one, two, or three concepts.

If both T1 and T1 are names, one concept: "[:",
cl2cg(T1), cl2cg(T2), "T"

If both T1 and T2 are functional terms, three
concepts: cg2cl(T1), cg2c(T2), "[", "?", 'n1', "?",
'n2', "" where 'n1' is the name generated for T1
and 'n2' is the name generated for T2.

If Ti is a functional term (where i=1 or i=2) and the
other term Tj is a name, two concepts: c/2cg(Ti),
"I, "?", 'ni', cl2cg(Tj), "I" where 'ni' is the name
generated for Ti.

52

© ISO/IEC 2007 — All rights reserved

https://iecnorm.com/api/?name=2a2de7c6cc8000e40f79d1e704317b8a

ISO/IEC 24707:2007(E)

E7 An atomic sentence (P T1 ... Tn) A CG consisting of either a conceptual relation or
a concept.
If P is a name, a conceptual relation: "(", c/2cg(P),
cl2cg(T1 ...Tn), ")"
If P is a functional term, a concept: c/2cg(P) as
modified by inserting the following conceptual
relation immediately before the closing "1": "(", 'n',
cl2cg(T1 ... Tn), ")" where 'n' is the name
generated for c/2cg(P).
ES8 A boolean sentence (not P) Anegation: "~", [, cl2cg(P), 'T'
E9 A boolean sentence (and P1 ... Pn) A CG: cl2cg(P1), ..., cl2cg(Pny)
E10 ||A boolean sentence (or P1 ... Pn) A CG: "[", "Either", "["A"@r", cl2cg(FP1), "T", ..., "[",
Cl2Cg(Pn), ll]ll, ll]ll
E11 || A boolean sentence (if P Q) A CG: "[", "If",«cl2¢g(P), "[", "Then"| cl2cg(Q), "",
ll]"
E12 || A boolean sentence (iff P Q) A CG "I7"Equiv, ™", "[", "Iff", c/2cg(P), "1", "[",
“Iff”, Cl2Cg(Q), II]II, II]II
A sentence (cl:comment ’string’ P) A.comment and a CG: "/*", 'string', "I'/", cl2cg(P)
E13 || A quantified sentence (forall (N1 ... Nn) B) A CG:"[","[", "@every", ™", cl2cg(N1), "T", ..., "[",
ll@every"’ ll*ll’ CIZCg(Nn)’ ll]"’ CIZCg(E)’ "]ll
where N1 through Nn are names or sequence
markers
E14 || A quantified sentence (exists (N4... Nn) B) A CG: """, "I, ™", cl2cg(ND), ", ..., "', ™",
where N1 through Nn are~names or sequence |¢/2¢9(Nn),"T", cl2cg(B), "T"
markers
A phrase (cl:comment.“string”) A comment: "/*", 'string', "*/"
E17 || A phrase (cl:imports'N) A concept: "[", "cg_Imports", cl2cg(N), ""
E18 || A module with' name N, exclusion list N1 ... Nn,|If M is the translation to core CL specified in
and text-J Table A.2 of Section A.3, then| a text: "[",
"Proposition”, ":", cl2cg(M), "I"
E19 ||Afphrase (cl:itextT1...Tn) A text: "[", "Proposition”, ¢/2cg(T1 ..]Tn), ""
E20 |(clitextNT1...Tn) A text: "[", "Proposition”, ™", cl2cg(N), cg2c/(T1 ...

Tn), "T"

To specify the translation from extended CGIF to core CGIF, Section B.3 uses a combination of EBNF syntax
rules plus the rewrite rules specified in clause B.1.3.2 to define a function ex2cor, which translates any
sentence s of extended CGIF to a logically equivalent sentence CG(s) of core CGIF.

This completes the description of CGIF semantics for the purposes of this annex and conformance.

© ISO/IEC 2007 — All rights reserved

53

https://iecnorm.com/api/?name=2a2de7c6cc8000e40f79d1e704317b8a

ISO/IEC 24707:2007(E)

Annex C
(normative)

eXtended Common Logic Markup Language (XCL)

C.1 Introduction

XCL is an XNIL notation for Common Logic. It is the intended interchange language for communIicating
Common Logi¢ across a network. It is a straightforward mapping of the CL abstract syntax and semantjcs into
an XML form.

C.2 XCL Syyntax

Since XCL'’s Igxical syntax is the same as XML itself, the syntax of XCL is described by a Document Type
Definition (DTD), which is usually accessed in electronic form. For completeness and standardization
purposes, the PTD is provided here in its entirety.

R P T Y -=>
<!-— XML Common Logic 1.0 DTD ..ttt iiiininnneeenenennnea/eeiiiininnnnnen, -—>
<!-- file: xXcll.dtd

<!-— XML Common Logic 1.0 DTD

This is XCL, a formulation of Common Logic as an"XML application.
Copyright 2005 ISO/IEC All Rights Reserved.

Permisgion to use, copy, modify and distribute the XCL DTD and its
accompanying documentation for any.purpose and without fee is hereby
granted|in perpetuity, provided that:the ‘above copyright notice and this
paragraph appear in all copies. The copyright holders make no
representation about the suitability of the DTD for any purpose.

It is proyided "as is" withoeut-expressed or implied warranty.

Authors: _~Murray M. Altheim <m.altheim@open.ac.uk>
Pat Hayes <phayes@ihmc.us>

Status: Draft

Revision: $ld: xcl1c.dtd,v 1.8 2005/12/05 23:11:15 altheim
Exp$

This DTD has the following formal public identifiers:
"ISO/IEC 24707:2006//DTD XML Common Logic (XCL) 1.0//EN"
"-//purl.org/xcl//DTD XML Common Logic (XCL) 1.0//EN"
The DTD may be invoked by one of the following declarations:

<!DOCTYPE text PUBLIC
"ISO/IEC 24707:2006//DTD XCL Markup Language//EN">
"xcll.dtd">

<!DOCTYPE text PUBLIC
"-//purl.org/xcl//DTD XML Common Logic (XCL) 1.0//EN"

54 © ISO/IEC 2007 — All rights reserved

https://iecnorm.com/api/?name=2a2de7c6cc8000e40f79d1e704317b8a

"xcll.dtd">

where the system identifier ("xcl1.dtd") may be customized as
necessary to specify the location of the DTD.

If there is any perceived difference between the prose of the ISO

standard and the XCL DTD, the former should be considered
authoritive.

<!-- Comments in the DTD

The comments in this DTD which use the pylnrpeeinnc "must” "shall" ar

ISO/IEC 24707:2007(E)

'shall not" are normative requirements of this International Standard.
Comments which use the expression "should" or "should not" are
Fecommendations of this International Standard. Comments which use
the verbs "recommend" or "deprecate" are recommendations and

Heprecations of this International Standard.
-——>

<!'-- g Uniform Resource Identifier, see clause 3.27 of this International Standard and [8]

-—>
<!ENT]JTY % URI.datatype "CDATA" >

<!-- XML namespace support A e

<!-- The XML Namespace URI for XCL 1.0 is

"http://purl.org/xcl/1.0/"
-—>

<!ENTJTY XCL1l.xmlns "http://purl.org/xcl/ls0/" >

<t-—1.General Syntax c.@i . e

<t--—11ContentModels 0 -—>

<!ENTJTY % Quantified.class
"{ quantified | foralll |)exists)"
>

<!ENTJTY % Boolean.class
"{ boolean | and)| or | implies | iff | not)"

>

<!ENTJTY % Atomic.class

"{ atomi& | relation | equal)"
>
< ENT M¥——Sentes +ars

"(%Quantified.class; | %Boolean.class; | $%Atomic.class;)"
>

<!ENTITY % Comment.class
"comment"
>

<!l-— 1.2 Attributes -—>
<!-- 1.2.1 Common Attributes

The following attributes are declared on all XCL element types (though
are not included in the descriptive text within the notes).

© ISO/IEC 2007 — All rights reserved

55

https://iecnorm.com/api/?name=2a2de7c6cc8000e40f79d1e704317b8a

ISO/IEC 24707:2007(E)

xmlns (optional) All XCL elements have a declared, optional 'xm1ns'
attribute whose fixed, default value matches the XML
Namespace for XCL 1.0. XML processors may imply this
attribute when not explicitly present in the document instance.

id (optional) All XCL elements have a declared, optional 'id'
attribute whose value must match XML Name (production 5 of
[XML]). When present, the ID value serves as the means of
uniquely identifying a specific element within an XCL
document. Note that this operates at the XML syntax level and
has no semantic significance within CL. Each 'id' value must
be unique within an XCL document.

-—>

<!ENTITY % XCL.xmlns.attrib
"xmlns SURI.datatype; #FIXED '&XCL1l.xmlns;'"
>

<!ENTITY % ild.attrib
"id ID #IMPLIED"
>

<!ENTITY % Common.attrib
"$XCL.xmlns.attrib;
$id.attrib;"

>

<!-- 1.2.2 CL Dialect Attribute -=>

<!-- Name: dialect
URI: http://purl.org/xcl/1.0/#dialect
Declarep: http://purl.org/xcl/1.0/#dialect-xcl

http://purl.org/xcl/1.0/#8ialect-clif
http://purl.org/xcl/1.0¢fdialect-cgif

Label: CL Dialect
Description: an identifier for the CL.dialect of the
element's content; see clauses 3.8 and 7.1 of this International
Standard
-—>
<!-- Notes:

The 'diglect' attribute iS used to indicate the dialect of its element's
content] 'dialect'is alinking attribute whose value (a URI reference)
containg a reference-to one of the fixed set of CL dialect identifiers:

htjtp: //puerl.org/xcl/1.0/#dialect-xcl
htjtps A/purl.org/xcl/1.0/#dialect-clif
htjte¥//purl.org/xcl/1.0/#dialect-cgif

For other concrete syntax representations, a suitable URI indicating the
dialect should be used. In all XCL elements for which the 'dialect'
attribute is declared, its absence indicates the default: the XCL dialect
defined by this DTD.

Note that the presence of a 'dialect' attribute overrides any 'dialect'
attributes on parent elements; however, such parent-child dialect
clashes are deprecated.

This attribute is declared on the <text>, <module>, <import>, and
<phrase> elements.

56 © ISO/IEC 2007 — All rights reserved

https://iecnorm.com/api/?name=2a2de7c6cc8000e40f79d1e704317b8a

Example:

<text dialect="http://purl.org/xcl/1.0/#dialect-clif">
(forall ex:romanceNovel ((x man)) (exists ((y woman))
(and (loves x y) (not (loves y x)))))
</text>
-——>

<!ENTITY XCL.dialect "http://purl.org/xcl/1.0/#dialect-xcl™ >
<!ENTITY CLIF.dialect "http://purl.org/xcl/1.0/#dialect-clif" >
<!ENTITY CGIF.dialect "http://purl.org/xcl/1.0/#dialect-cgif" >

<!ENTITY % dialect.attrib

ISO/IEC 24707:2007(E)

"diglect $URT .datatype: '§XCTl..dialect:'"
>
<t-—f13Comments -—>
<!-- Name: comment
URI: http://purl.org/xcl/1.0/#comment
| abel: Comments
Pescription: Inserts a comment. <comment> elements can
be included within any XCL element and are
considered as comments on their immediate
parent element; see clause 6.1.1.3 of this-International
Standdrd
-—>
<!-- Notes:

When well-formed XML processing is acceptable (see the section on
XCL conformance), <comment> elements can‘comprise any text, can be
mixed content, and can have any user-defined attributes; they are
gnored by logical processors, but conforming XCL applications are
Fequired to preserve them and their-position relative to other elements.
Comments inside other comments_ are considered to be comments on
the comment. In most cases, XCL content models include comments as
the last children of the parentelement.

Note that XCL markup.inside a comment is not considered to be part of
the XCL containing-element, and must also be suitably escaped.

For situations where rich comment markup is desired but valid XCL is
required, comments may contain a link to an external documentation
source using the 'href' attribute:

<tomment href="http://www.acme.com/docs/sec7.html"/>

t both element content and the 'href attribute are present, the latter is
considered optional, i.e., traversing the link is not considered essential
to ascertain the contents of the comment.

With appropriate XML Namespace declarations, the $Comment.class;
parameter entity can be redeclared to contain alternative XML content,
e.g., XHTML or DocBook.

<!ENTITY % Comment.class
"(xhtml:div | comment)"
>

© ISO/IEC 2007 — All rights reserved

57

https://iecnorm.com/api/?name=2a2de7c6cc8000e40f79d1e704317b8a

ISO/IEC 24707:2007(E)

<!ENTITY % Comment.content

"(#PCDATA | %Comment.class;)*"
>
<!ELEMENT comment $%Comment.content;
<!ATTLIST comment

$Common.attrib;

>

href $URI.datatype; #IMPLIED

>
<t-- 2. TopLevel Elements @ @ i, -—>
<!-- 21 XCL DocumentElement
<!-- Name: text

URI: http://purl.org/xcl/1.0/#text

Label: XCL document element

Description: Used to surround any piece of XCL content, as the

Standard.

-—>

<!-- Notes:
Attributes:

xml :pbase (optional) Indicates the document base URL.

dialpct (optional) see description in 1.2.2 of this'section. When not
explicitly specified, this attribute defaults to the value indicating

the XCL 1.0 (XML) syntax.

href|(optional) Used to assign an "importing name" to a text. This is a
URI reference or IRI, and ften it will be the same as xmins
the URL of the containing

default namespace and/or
document. However, this coincidence of naming
required. No logical\relationship is assumed between names
based on their \URI or XML namespace structure, so it is
acceptable to use a URI reference containing a fragment ID to

delimiters of an XCL (i.e., XML) document. Text inside

this element must be valid XCL. It need not be a module

(ontology) See the XCL Conformance section for details

on well-formedness constraints. See clause 6.1.1.1 of thisdhternational

name a text;
Children:
ZerO LAYl A~] HMIOUULES~, PIILAdSCE ,GIIdIIUI C:CIIIUIItO ;II
any order.
Example:

<text dialect="http://purl.org/xcl/1.0/#dialect-xcl">

<phrase>
</phrase>
</text>
-—>

<!ENTITY % Text.content

" (module | phrase | %Comment.class;)*"

>

58

© ISO/IEC 2007 — All rights reserved

https://iecnorm.com/api/?name=2a2de7c6cc8000e40f79d1e704317b8a

