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Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are
members of ISO or IEC participate in the development of International Standards through technical
committees established by the respective organization to deal with particular fields of technical
activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international
organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the

work.
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Introduction

Neural networks are widely used to perform complex tasks in various contexts, such as image or
natural language processing and predictive maintenance. Al system quality models comprise certain
characteristics, including robustness. For example, ISO/IEC 25059:2023,[11 which extends the SQuaRE
International Standards[2l to Al systems, considers in its quality model that robustness is a sub-
characteristic of reliability. Demonstrating the ability of a system to maintain its level of performance
under varying conditions can be done using statistical analysis, but proving it requires some form of
formal analysis. In that regard formal methods can be complementary to other methods in order to
increase trust in the robustness of the neural network.

Formfal methods are mathematical techniques for rigorous specification and verificatioy| of software
and hardware systems with the goal to prove their correctness. Formal methods\can be used to
formally reason about neural networks and prove whether they satisfy relevant robustnesf properties.
For ekample, consider a neural network classifier that takes as input an image andloutputd a label from

a fixdd set of classes (such as car or airplane). Such a classifier can be formalized as a

functiion that takes the pixel intensities of an image as input, computes'\the probabilit
possible class from the fixed set, and returns a label corresponding to the highest prok
formyl model can then be used to mathematically reason about the(neural network wh
image is modified. For example, suppose when given a concrete image for which the net
outpuits the label “car” the following question can be asked: “do€s the network output a d
if the[value of an arbitrary pixel in the image is modified?” ThisQuestion can be formulate
mathematical statement that is either true or false for a giveri\neural network and image.

A clapsical approach to using formal methods consists of three main steps that are desc
document. First, the system to be analyzed is formally defined in a model that precisely
possiple behaviours of the system. Then, a requirement is mathematically defined. Fing
methpd, such as solver, abstract interpretation or model checking, is used to assess whethd

meetp the given requirement, yielding eitheraproof, a counterexample or an inconclusive

This [document covers several available;formal method techniques. At each stage of tl
the document presents criteria that are applicable to assess the robustness of neural n
to establish how neural networks.dre verified by formal methods. Formal methods can
in tegms of scalability, however, they are still applicable to all types of neural networky
various tasks on several datatypes. While formal methods have long been used on traditio
systems, the use of formal methods on neural networks is fairly recent and is still an a
invesftigation.

This document is aimed at helping Al developers who use neural networks and who are
ing their robustness throughout the appropriate stages of the Al life cycle. ISO/IEQ
provides a moté-detailed overview of the techniques available to assess the robustne
netwprks, be{zond the formal methods described in this document.
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Artificial intelligence (AI) — Assessment of the robustness
of neural networks —

Par

t 2:

Methodology for the use of formal methods
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cope

Hocument provides methodology for the use of formal methods to assess robustness ]
1l networks. The document focuses on how to select, apply and manage foxmal meth
tness properties.

The
const
unda

[SO/I1
and t

1SO/I

3 1

For {
[SO/I1

[SOa
— 1
— 1

3.1
dom3
set of

EXAM

2 r]IQormative references

llowing documents are referred to in the text in such a way that some or all of {
itutes requirements of this document. For dated references, only the edition cited
Fed references, the latest edition of the referenced docuinent (including any amendme

EC 22989:2022, Information technology — Artificial intelligence — Artificial intellige
brminology

EC 23053:2022, Framework for Artificial Intelligence (Al) Systems Using Machine Learn

‘erms and definitions

he purposes of this document, the terms and definitions given in ISO/IEC
EC 23053:2022 and the following apply.

hd [EC maintain terminology databases for use in standardization at the following ad

50 Online browsing platform: available at https://www.iso.org/obp

EC Electropedia: available at https://www.electropedia.org/

hin
possible inputs to a neural network characterized by attributes of the environment

broperties of
ods to prove

heir content
applies. For
nts) applies.

nce concepts

ng (ML)

22989:2022,

dresses:

xts composed

PLE1  Aneural network performing a natural language processing task is manipulating te

of words. Even though the number of possible different texts is unbounded, the maximum Iength of each sentence
is always bounded. An attribute describing this domain can therefore be the maximum length allowed for each
sentence.

EXAMPLE 2 A face capture domain requirements can rely on attributes such as that the size
least 40 pixels by 40 pixels. That half-profile faces are detectable at a lower level of accuracy, provided most of
the facial features are still visible. Similarly, partial occlusions are handled to some extent. Detection typically
requires that more than 70 % of the face is visible. Views where the camera is the same height as the face perform
best and performance degrades as the view moves above 30 degrees or below 20 degrees from straight on.

of faces is at

Note 1 to entry: An attribute is used to describe a bounded object even though the domain can be unbounded.
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3.2

attribute

property or characteristic of an object that can be distinguished quantitatively or qualitatively by
human or automated means

[SOURCE: ISO/IEC/IEEE 15939:2017, 3.2, modified — "entity" replaced with "object".]

3.3
bounded domain
set containing a finite number of objects

EXAMPLE1 The domain of all valid 8-bit RGB images with n-pixels is bounded by its size which is at most
2563 %1,

EXAMPLE 2 | The number of all valid English sentences is infinite, therefore this domain is unbounded-
Note 1 to entiy: The number of objects in an unbounded domain is infinite.

3.4
bounded object
object repregented by a finite number of attributes

Note 1 to entfy: Contrary to a bounded object, an unbounded object is represented with an infinite numper of
attributes.

3.5
stability
extent to whlich the output of a neural network remains the sameé when its inputs are changed

Note 1 to entify: A more stable neural network is less likely to.change its output when input changes are nofse.

3.6
sensitivity
extent to whfich the output of a neural network varties when its inputs are changed

Note 1 to enffry: A more sensitive neural network is less likely to change its outputs when input changes are
informative.

3.7
architecturp
fundamenta] concepts or properties of a system in its environment embodied in its elements,
relationship$, and in the principles of its design and evolution

3.8

relevance
ordered relative importance of an input's impact on the output of a neural network as compared|to all
other inputs

3.9
criterion
rule on which a judgment or decision can be based, or by which a product, service, result, or process can
be evaluated

[SOURCE: ISO/IEC/IEEE 15289:2019 3.1.6]

3.10
time series
sequence of values sampled at successive points in time

[SOURCE: ISO/IEC 19794-1:2011, 3.54]

2 © ISO/IEC 2023 - All rights reserved
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3.11

reachability

property describing whether a set of states is possible to be reached by an Al agent in a given
environment

3.12
piecewise linear neural network
neural network using piecewise linear activation functions

Note 1 to entry: Examples of linear activation functions are Rectify linear unit or MaxOut.

3.13
binarized neural network
neurgl network having parameters that are primarily binary

3.14
recufrent neural network
neural network maintaining an internal state which encodes what the neuralnetwork has learned after
procgssing a subsequence of the input data

3.15
trangformer neural network
trangformer

neural network using a self-attention mechanism to weight theeffect of different parts of the input data
during processing

3.16
modg¢l checking
formal expression of a theory

3.17
strugtural-based testing
glass-box testing
whitg-box testing
strucfural testing
dynamic testing in which the testsare derived from an examination of the structure of theltest item

Note ] to entry: Structure-based-testing is not restricted to use at component level and can be used at all levels,
e.g. menu item coverage as part of a system test.

Note 2 to entry: Techniques include branch testing, decision testing, and statement testing.
[SOURCE: ISO/IEGAEEE 29119-1:2022, 3.80]

3.18
closgd-boxtesting
specification-based testing
black-box testing

testing in which the principal test basis is the external inputs and outputs of the test item, commonly
based on a specification, rather than its implementation in source code or executable software

[SOURCE: ISO/IEC/IEEE 29119-1:2022, 3,75]
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4 Abbreviated terms

Al artificial intelligence

BNN binarized neural networks

GNN graph neural networks

MILP mixed-integer linear programming
MRI magnetic resonance imaging
PLNN ptecewise linear neural networks
ReLU rectified linear unit

RNN recurrent neural networks

SAR synthetic aperture radar

SMC satisfiability modulo convex

SMT satisfiability modulo theories

5 Robustness assessment

5.1 Generyal

In the contefkt of neural networks, robustness specifieations typically represent different condjtions
that can nafurally or adversarially change in the*domain (see 5.2) in which the neural network is
deployed.

EXAMPLE 1 | Consider a neural network that processes medical images, where inputs fed to the neural nefwork
are collected|with a medical device that scans;patients. Taking multiple images of the same patient natjurally
does not produce identical images. This is because the orientation of the patient can slightly change, the lighting
in the room cqin change, an object can be-réflected or random noise can be added by image post-processing|steps.

EXAMPLE 2 | Consider a neural network that processes the outputs of sensors and onboard camerap of a
self-driving vghicle. Due to the dynamic nature of the outside world, such as weather conditions, pollutign and
lighting conditions, the input to the neural network is expected to have wide variations of various attributgs.

Importantlyf these variations introduced by the environment are typically not expected to change
the neural network’stobustness. The robustness of the neural network can then be verified against
changes to §uch environmental conditions by using relevant proxy specifications within the reural
network’s dgmain of use.

Robustness propertiescambe tocator gtobatEeHtismore commomn to verify tocat robustness properties
than global robustness properties, as the former are easier to specify. Local robustness properties are
specified with respect to a sample input from the test dataset. For example, given an image correctly
classified as a car, the local robustness property can specify that all images generated by rotating the
original image within 5 degrees are also classified as a car. A drawback of verifying local robustness
propertiesis that the guarantees are local to the provided test sample and do not extend to other samples
in the dataset. In contrast, global robustness properties define guarantees that hold deterministically
over all possible inputs.[11] For domains where input features have semantic meaning, for example, air
traffic collision avoidance systems, the global properties can be specified by defining valid input values
for the input features expected in a real-world deployment. Defining meaningful input values is more
challenging in settings where the individual features have no semantic meaning. The set of robustness
properties described in this clause is not exhaustive and it is possible that new robustness properties
occur in the future.

4 © ISO/IEC 2023 - All rights reserved
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5.2 Notion of domain

Most Al systems, including neural networks, are intended to operate in a particular environment
where their performance characteristics can be defined and evaluated (typical metrics of evaluation
can be found in ISO/IEC TR 24029-1:2021, Table 1). Robustness, being one of the key performance
characteristics, is inseparable from the domain where a neural network is operating. The existence of
a bounded domain is implicit in many neural network applications (e.g. image classification expects
images of certain quality and in a certain format).

The agent paradigm shown in Figure 1 (reproduced from ISO/IEC 22989:2022, Figure 1) postulates that
an agent senses its environment and acts on this env1ronment towards ach1ev1ng certaln goals. The
disti 3 3 n of domain
captyres the 11m1tat10ns of current technology where a neural network, be1ng a partlcul ar type of Al
agend, is technically capable of achieving its goal only if it is operating on appropriate(inputs.

actions

@

e N
N A

sensing

Figure 1 — The agent paradigm

The doncept of domain rests on the following pillars:

— a domain shall be determined by a set of attributes which are clearly defined (i.e|the domain
dontains bounded objects);

— the specification of domainshould be sufficient for the Al system to conduct one or morg given tasks
ds intended;

— data used for training should be representative of data expected to be used for inferenice.

Estahlishing a demain involves specifying all data attributes essential for the neural ngtwork to be
capable of achiéving its goal.

Severjal pepular domains of application of neural networks cover applications in vifion, speech
procg¢ssing”’and robotics. To describe these domains, and more importantly their variability, the
attributes used are generally numerical. Examples include the shape of an object in ah image, the
intensity of some pixels or the amplitude of an audio signal.

However, other domains can be expressed through non-numerical attributes including natural language
processing, graph and Big Code (the use of automatically learning from existing code). In these cases,
the attributes can be non-numerical, for example, the words in a sentence or the edges in a graph.

The attributes allow the Al developer to generate another instance in the domain from an existing
instance. The attributes should be bounded in the robustness specification.

© ISO/IEC 2023 - All rights reserved 5
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5.3 Stability

5.3.1 Stability property

A stability property expresses the extent to which a neural network output remains the same when
its inputs vary over a specific domain. Checking the stability over a domain where the behaviour is
supposed to hold allows for checking whether or not the performance can hold too. A stability property
can be expressed either in a closed-end form (e.g. “is the variation under this threshold?”) or an open-
ended form (e.g. “what is the largest stable domain?”).

In order to prove that a neural network remains performant in the presence of noisy inputs, a stability

property sh
of expected
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behaviour, present some regularity properties. A stability property should not bejus
tem as it is not relevant. However, even when the regularity of the domain isshot eg
haotic system), the stability property can be used to compare neural networks.

ility criterion

c set of examples or for a subset of the domain such as training ot validation datas
erion can be checked using formal methods described in 6.2.

iterion shall define at least the domain value space and output value space on which
ed and the stability property expected.

iterion may be used as one of the criteria to compare models.
rison to be accurate, the following requirements shall be met:
al networks perform the same task;

lity criterion is used on the same domain;

lity criterion proves the same objective.

, for a neural network doing-classification, a stability criterion assesses whether @
decision holds for every input in the domain. For a neural network doing regress
erion assesses whether ot not the regression remains stable on the domain.

hble, a stability criterion relies on pre-existing information of the expected output
brk. This information can be known by the Al developer or can be determined by an
g simulation.0r solver systems). It is well-suited to assess the robustness over a dd
pected answer is known to be similar. For this reason, a stability criterion is recomme
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5.4.1 Sensitivity property

A sensitivity property on a neural network expresses the extent to which the output of a neural network
varies when its inputs are changed. In order to assess the robustness on a domain, it is sometimes
necessary to check the variability of a system. A sensitivity analysis can be carried out to determine
how much the system varies and the inputs which can influence that variance. This analysis is then
compared to a pre-existing understanding of the expected performance of the system.

When a sensitivity analysis is used to determine whether a neural network stays bounded, the
sensitivity analysis shall be used over a domain. As is the case for the stability property, sensitivity
analysis is more suited for domains of use which present some regularity properties.
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5.4.2 Sensitivity criterion

As a sensitivity criterion expresses a property over a domain (and not a specific set of examples) it can
be checked using formal methods described in 6.2.

A sensitivity criterion shall define at least the domain on which it has been measured and what are the
sensitivity thresholds to be checked.

A sensitivity criterion may be used to compare different neural network architectures or trained
models. For a comparison to be accurate, the following requirements shall be met:

— the neural networks shall perform the same task;

t

he sensitivity criterion shall be used on the same domain;

t

he sensitivity criterion shall prove the same objective.

A sensitivity criterion is especially well-suited for neural networks performing intefpolation or

regregssion tasks. For these kinds of tasks, it often allows a direct proof against'a ground tfuth that can
hold pver a domain.

A sersitivity criterion is usually expressed in a closed-form as a thfeshold of variation over a specific
domdin of variation of the inputs.

5.5 [Relevance

5.5.1 Relevance property

A relgvance property on a neural network expresses an ordering of the impact of the ipputs on the
outpuyits. For each output, a relevance can be caleulated. It expresses the individual impact pf each input

on the result obtained for this output. For each output the individual impact of each input g
in an| ordered fashion. A relevance property checks if the ordering obtained satisfies a

an be sorted
requirement

order expressed by the Al developer. A telévance property can be checked using a variety of methods to

evaluate the impact of each input. Contrary to stability and sensitivity properties, a releva

hce property

can l¢ad to a debate between the experts in charge of its evaluation. Indeed, two neural networks can

have very different relevance property results, both of which are still considered acceptab
for rgsolving conflicting results'should be included in the comparison protocol. For examp
can ufse a voting system in order to resolve the situation.

A relpvance property'should be used in cases where the neural network performs a t
be dqne by a human:-For these cases, the justification of the output of the neural netwo
understood and+erified. A relevance property asserts if the performance of the system ca
for the correctteasons. If that is the case, then the robustness of the system can be justified
asserjted. Thisverification can be done manually by a human operator or automatically usir
that have'been checked before.

le. A method
e, a protocol

hsk that can
rk should be
h be assured
and not just
g references

5.5.2 Relevance criterion

A relevance criterion expresses a relevance property over a domain which requires demonstration of
a link between each input and the outputs. For that, it requires a method able to separate the influence
of each input. Formal methods relying on symbolic calculus, logical calculus or computational methods
can be used to achieve such a goal. Examples of formal methods available to check a relevance criterion
are provided in 6.2.

A relevance criterion should present the domain on which it has been measured and the expected
results. If the expected results cannot be defined a priori, the relevance criterion should present at least
the methodology to evaluate the results.

© ISO/IEC 2023 - All rights reserved
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A relevance criterion may be used to compare different neural network architectures or training

outputs. For

a comparison to be accurate, the following requirements shall be met:

— the neural networks shall perform the same task;

the relevance criterion shall be used on the same domain;

— the relevance criterion shall prove the same objective.

EXAMPLE

For a neural network performing a classification task, a relevance criterion can be used to

check

if the most relevant pixels are located on a specific part of the object to be identified (e.g. the wheels in order to

identify a vehicle)
be used to chee

to be faulty et

A relevance

Al developet
or regressiol
assessment
the decision

5.6 Reacl

5.6.1 Rea

A reachabili
conjunction
agent parad
a set of statg

lgine can be triggered by an over-heating alarm).

Criterion can be expressed on a variety of tasks, as long as the result can be analyzed
. A relevance criterion can be used for example, on classification, detection, initerpo
1 tasks. Checking a relevance criterion can be automated or the checkingcati rely on h
o see if the result obtained is acceptable. When the checking relies on‘hifman assess
can be transferred as a new requirement to automate tests to the dégree possible.

Jability

chability property

y property on a neural network expresses the multi-step performance of the netwg
with its operating environment. This type of property applies to systems operating
gm as shown in Figure 1. A reachability property checks whether an Al agent can

property ca

the Al agent/shall reach.

Expressing

Alagent’s acfion on its next state. The environment can evolve either deterministically or stochast
For a deternpinistic environment, the reachability property expresses whether or not it is possib

the Al agent

5.6.2 Rea

A reachability criterion expresses a reachability property over a given set of initial states.

specify either a set of failure states that the Al agent shall avoid or a set of goal state

is type of property requires definiiig an environment model that describes the effect

to reach a particular set of States.

Chability criterion

. For a neural network performing predictive analysis of a time series, a relevance criterion can
predictedeventmatchesaconseqtentiaHogicaceeptable-for-the-Aldevetopertesg—4 soon

by an
ation
iman
ment,

rk in
n the
reach

bs when using the neural network to contrélitself in a given environment. A reachapility

5 that

of an
cally.
le for

For a

deterministic environment,“it can be checked using methods described in 6.2.4. For a stochastic
environment, the criterion expresses a probability of reaching a set of states. This probability chn be
determined pising méthods in 6.2.5.

A reachabili

y criterion should be satisfied for a given set of initial states. The set of initial statg

S can

be specified

aspart of the criterion. Alternatively, formal methods can be used to determine the

set of

initial states for which the neural network satisfies the criterion. An advantage of using a reachability
criterion to evaluate a neural network is that it provides a metric on the performance of the network
in a closed-loop environment. Therefore, it can be used to express high-level safety properties that go
beyond input-output properties.

For example, in the case of an aircraft collision avoidance neural network, the reachability criterion can
express a requirement to avoid reaching a set of collision states given a particular environment model.
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6 Applicability of formal methods on neural networks

6.1

6.1.1

6.1.1.

Types of neural network concerned
Architectures of neural networks

1 General

Neural networks can be designed and built using different kinds of architectures. Formal verification
techniques for neural networks depend on their architecture. Subclause 6.1.1 describes formal

tech

binar
note
covell

iques that have been developed for the folloWIng architectures: piecewise linear neu
ized neural networks, recurrent neural networks and transformer networks. Whi
khaustive, and new architectures and relevant formal verification techniques ean)¢m
s a large number of current neural network architectures and the technigues that]

al networks,
e this list is
brge, this list
apply. More

details about the techniques mentioned are available in 6.2.

6.1.112 Piecewise linear neural networks

PLNNs!12l do not use non-linear functions such as sigmoid or tanh. PLNNs'can use linear traijsformations
such ps fully connected or convolutional layers, pooling units such.as MaxPooling, and opgrations such
as batch-normalization or dropout that preserve piecewise linearity. The majority of current neural
netwprks are PLNNs.

Formial verification methods have been proposed that first transform a PLNN into a mathematically

equiy

alent set of linear classifiers, and then interpret eaeh linear classifier by the features t

at dominate

lem and use
brification of
TR 24029-1.
analysis[17],

ediction.[13] Other verification methods view-.thé PLNN as a global optimization prot
hod like satisfiability modulo theories (SMT).solver. Some even have posed formal v
tness as a mixed integer linear program.[&4] Other methods are presented in ISO/IEC
ional verification methods include Fast*Lin - Fast-Lip,[12] CROWNI16] and formal safety

its p
a met
robus
Addit

6.1.1|3 Binarized neural networks

In biparized neural networks (BNN) all activations are binary, making these netwo
efficient and computationally efficient, enabling the use of specialized algorithms for fast b
multiplication. Various embedded applications ranging from image classification to obje

have peen built using such an architecturel18l,

rks memory
fnary matrix
ct detection

Formjal verification ef\suich BNNs has been achieved by creating an exact representation of the BNN
as a Boolean formula-such that all valid pairs of inputs and outputs of a given network arg solutions of
the Boolean formula.[l9] Verification is then achieved by using methods like Boolean satigfiability and

integpr linear programming18l,

6.1.1]4<, Recurrent neural networks

Recurrent neural networks (RNN) allow accurate and efficient processing of sequential data in many
domains including speech, finance and text. At each timestep, a RNN updates its internal state based
on the input at that step and the internal state from previous steps. The final output is obtained after
processing the whole input in sequence.

A recurrent neural network, used as a finite classifier, can be viewed as an infinite-state machine.[20]
For such an infinite state system, a finite-state automaton can be trained using automated learning
techniques such as a shadow model approximating the system at hand. The shadow model can then be
used to check whether the RNN meets its specification, for example, using model checking techniques.
Besides model checking, abstract interpretation can be applied for proving local robustness of RNNs
used in image, audio and motion sensor data classification[21],
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6.1.1.5 Transformer networks

Transformer networks can be deep learning networks with an encoder-decoder architecture.[22] The
transformer starts by generating representations or embeddings for each distinct part of the input
through the encoder. While doing this, it uses self-attention to aggregate information from all of the
other parts of the input to generate a new internal representation for the input. This step is then
repeated multiple times in parallel for all parts of the input, successively generating new internal
representations. The decoder operates similarly and generates one part of the output at a time. While
doing this, the decoder attends to the other previously generated parts of the output and also factors
in the internal representations generated by the encoder. Transformers, thus, have complex self-
attention layers that pose many challenges for verification, 1nclud1ng Cross- nonlmearlty and Cross-
position dep| pf the
robustness ftransformers

In Reference|[23], a method is proposed to formally verify the robustness of transformers. A transfqrmer
layer is decomposed into a number of sub-layers, such that in each sub-layer, some operations are
performed on the neurons in that sub-layer. The operations that are performed fall breadly into three
categories:

— linear trnansformations;
— unary ngnlinear functions;
— operatidns in self-attention.

Each sub-layer is viewed as containing n positions in the seq@ience with each position contairling a
group of neyrons. For each of these positions, the bounds are'¢computed from the first sub-layer to the
last sub-layer.

6.1.2 Neufal networks input data type

Neural netwprks can be tasked to process.a@ariety of input data types to produce several output fypes
possible (seg¢ 6.1.1). Applications of neural networks deal with data types such as image, times series,
i lerge,

ently

esigned
to process some input vectors at a tlme However, provmg mathematlcally a property over a whole
domain (i.e. for every input vector) is intrinsically more difficult than computing the result on some
points inside the domain.

The second limitation is derived from the nature of the domain represented by the inputs and the ability
to model a formal proof on the domain. This limitation is dependent on the notion of attributes that are
used to describe the domain (see 5.2). In some cases, the attributes are numerical, such that it can be
easy to model some meaningful variation of the attributes.
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6.1.2.2 Image data

Image processing capabilities is one of the reasons for the recent success of neural networks. Their
ability to process several types of images (e.g. camera, MR], radar, sonar and SAR) of various resolutions,
or even video streams, has fostered wide adoption.

From a formal method point of the view, the input space to cover is defined by the dimension of the array
times the number of dimensions of each pixel. In the case of large images, this can prove challenging for
the many formal methods that tie a symbol to each dimension of each input.

Several attributes can be defined for images in order to express variations in the input space. For

exa

ple, the lighting of the image can be expressed as a variation of intensity of the

ixels. While

envirn
exprd
an an
of the

6.1.2

Recent advances in predictive technologies illustrate the applicability(of neural network t

data
that |
time
the i
insta

To be
mani
arbit

6.1.2

Natu
has b
by la
procg

Some
recor
sente
diale

onmental changes can be more challenging, when an analytical definition is possi

alytical definition is not feasible, then the variation can be expressed followirfg an ap
model applied onto the image (e.g. using a mask on the image).

3 Time series data

n order to make predictions or classifications. Each time serieslis composed of seve
ecord information that is (usually) of the same data type.Formal methods can be ¢
Geries as long as it is possible to analyze the type of data stored at each instance. The

put is then the product of the length of each times series multiplied by the dimension|
hce.

applied to time series data, formal methods require that the information at each ins
pulated. Handling the number of inputs can bea challenge, because the number of i
rary large if each instance is considered indépendently.

4 Natural language data

ral language data types based on: text and speech can be processed by neural nef
een demonstrated, for example,/ by the very large-scale deployment of smart audio
hguage models’ ability to generate easily understood text. Natural language data a1
ssed before being passed'to the neural network.

ding. Other variatipns can be much more difficult, for example, removing or adding
nce without changing its semantics, or considering different semantic in a sentence,
Cts of the same language. The formal methods applied in this setting reason ab

ble it can be

ssed directly on the values of the pixels, thus allowing formal methods to be applied directly. When

proximation

D time series
ral instances
pplicable on
Himension of
of each data

tance can be
hputs can be

works. This
devices and
'e often pre-

variations of the_ihput data can be easy to express formally, for example, adding noise to a

a word in a
for different
ut both the

prepfocessing pipeline and the neural network[21l,

6.1.2{5 , (Graph data

LONINIY L
(OININ ) 1IavT

Grap retratnetworks beenrw idc}_y apphcd imrmotecutar biulusy, fratrd-deteetion and social
sciences to process graph data for a variety of tasks such as node classification, link prediction and
graph classification. Several robustness properties of GNNs have been defined based on perturbing node
features as well as perturbing structural information such as adding or removing edges. While feature-
based perturbations are continuous and can be handled formally in a similar manner to pixel intensity
variations in images, structural perturbations are discrete and therefore require the development of

specialized formal techniques.

6.1.2.6 Tabular data

Many application domains such as finance, health care and logistics rely heavily on tabular data
which allows these applications to combine data of various types (e.g. numerical, symbolic, textual,
categorical) and express relations between the elements. Tabular data can present both a very large
number of rows and sometimes a variance within each row that can be hard to anticipate.
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Applying formal methods on tabular data with heterogenous data types such as the ones described in

6.1.2.2 to 6.1.2.5 can cause limitations described previously.

6.2 Types of formal methods applicable

6.2.1 General

6.2.1.1 Co

nsideration on the types of formal methods applicable

Subclause 6.2 describes existing formal methods applicable to the assessment of the robustness of

neural netw
they can
they can

they can

1 Tl 4l pa | 1 1 sfs 11 pa | 4l £.11 H ik H
PI NS, TIICTSUT ITIITUIIUUS UAIl DT UIdSJ3ITITU UAdSTU UIl UIIT TUIIUVY 1115 CIILCl Id.
be complete or incomplete;
be deterministic or non-deterministic;

use glass-box or closed-box testing techniques;

based o real or computer arithmetic.

6.2.1.2 Complete vs incomplete verifiers

Complete ve

rifiers can provide exact answers. They either prove the robustness property or proy

counterexanpple demonstrating a concrete violation of the property A limitation of complete ver

is that they

hre not effective at verifying the robustness of nefiral networks achieving high acc

for challenging datasets. By contrast, incomplete verifiers use abstraction techniques that scale tqg

accuracy ney
actually holg

6.2.1.3 D¢

When a detg
within the

variational g
image gener
networks, fa
distribution

iral networks. However, incomplete verifiers-gan fail to prove that a robustness pro
S.

terministic vs non-deterministic verifiers

rministic verifier proves a robustnéss property, then the property holds on every
pecified input region. Howeyer, certain models such as mixture density networ
utoencoders, applied in divers€ domains such as stock prediction, speech recognitio
ation, do not produce a_detérministic output but rather produce a distribution. For
rmal methods can be uséd to either deterministically compute parameters of the o
that hold for all inputs (e.g. as mean or standard deviation) or to provide formal guara

on their robyistness with high-probability.

6.2.1.4 Ve
(model una

Verifiers us
network), in

ware)

ng glass-box testing require access to the model (i.e. internal representation d
cluding architecture and learned parameters. They do not, however, require access f

training dat

ortha alaonrithyy vend 0 vt thin nanral matvzawly Thn dosaaince vahora tha doanlagnd o

rifiers using glass-box testing (model aware) vs verifiers using closed-box testing

ride a
ifiers
iracy
high
perty

input
ks or
h and
such
tput
tees

f the
o the
odel
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is not accessible (e.g. it is encrypted), verifiers using glass-box testing are not applicable. In such cases,
verifiers using closed-box testing can be employed. Verifiers using closed-box testing only require the
ability to run the model on selected inputs. This can make verifiers using closed-box testing less precise
than verifiers using glass-box testing.

6.2.1.5 Real vs computer arithmetic verifiers

Most verifiers assume that the neural network computations are performed with ideal real arithmetic
(i.e. with no rounding errors). Thus, the verifiers’ robustness guarantees do not hold for the actual
computations performed with floating-point arithmetic or for other non-standard computer arithmetic.
In contrast, sound verifiers (with respect to the underlying arithmetic) consider the computer
arithmetic semantics and guarantee that their output captures the neural network output possible
under those semantics. In some case, verifiers can also take into account changes in the ordering of
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the computations (e.g. when only IEEE 754:2019[24] correctly rounded operators are used). When IEEE
754:2019 correctly rounded operators are not used, then a verifier can approximate the rounding done
on each operator.

6.2.2 Solver

Mixed-integer linear programming (MILP) solvers[23] and satisfiability modulo theories (SMT)
solvers[11l[26] are deterministic, glass-box and typically complete verification methods. They encode all
computations of a given neural network as a collection of constraints and then use these constraints to
prove robustness properties.

In ca >

Certdin non-linear activations (such as hyperbolic functions including sigmoid and f3
compllex to be encoded precisely. Therefore, solvers approximate them with sound abstra
non-linear activations (such as ReLU) can be precisely encoded.

incomplete.
nh) are too
ctions. Other

b encoded as
unds on the
verification

To prove a given robustness property, the neural network and constraints on'the input ar
a MILLP problem, which can then be used to optimize the robustness constraint. If the bq
robugtness constraint satisfy the constraints, the property is proven. SMT solvers pose thg

problem as a constraint satisfiability question that either holds or not.

iral network
d constraint

Somgtechniques include symbolic linear relaxation that computestighter bounds on the neg
outpuits by keeping track of relaxed dependencies across inputs and then uses directe
refingment (refining the output relaxation by splitting the’set of initial or intermediate| neurons) to
safety properties.[2Z] Other techniques proposesa satisfiability modulo convex [SMC)-based
algorjthm combined with SMC-based pre-processing td compute finite abstractions of neufral network-
contrjolled autonomous systemsl28l,

6.2.3| Abstractinterpretation

Abstifact interpretation is a general framework for analysing large and complex determiﬂx

probabilistic[3% systems in a scalable fashion. In the context of neural networks, it is used
incomplete, deterministic and glass-box testing method that can verify the robustness of
netwprks. The verification process‘is-as follows:

— first, the provided test, input and a robustness specification collectively define a
ntains all possible perturbed inputs that can be obtained by modifying the input I
rpbustness specification. This region can be represented exactly or approximately
eometric shapes{ such as boxes, zonotopes and polyhedra, or as custom abstract
eural networks[31l;

— this regionfis-then propagated through the neural network, such that every layer is
plied to_the input region. The input region is transformed into an output region c
utputswreachable from the input region. Depending on the layer, this can introduce apq

isticl22] and
o provide an
large neural

region that
based on the
sing certain
domains for

sequentially
bntaining all
roximations

(putpitts that are unreachable from the input region);

— finally, an output region captures all possible outputs of the network for input perturbations that
are formed according to the robustness specifications.

There is an inherent trade-off between precision and scalability in abstract interpretation. For example,
simple abstract domains such as boxes can verify neural networks with millions of neurons within
seconds but are often too imprecise to verify the desired robustness properties. On the other hand,
semidefinite relaxations are more precise but do not scale to large networks. Balancing this trade-off is
therefore key to achieving effective verification.

6.2.4 Reachability analysis in deterministic environments

Reachability-based neural network verification techniques combine the outputs of the solvers
described in 6.2.2 with techniques in reachability analysis to provide guarantees on the closed-loop
performance of neural networks operating in a given environment. The first step in this analysis is to
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divide the input space into many smaller regions called cells. For each cell, the solvers from 6.2.2 can
be used to determine the possible control outputs of the network in the region it defines. Using this
information along with the environment model, it is possible to determine an overapproximation of the
range of possible next states from any given cell. By repeating this for all cells in the initial state region
over multiple time steps, an overapproximation of the set of reachable states can be determined.[32]
Another approach to this problem is to encode an overapproximation of the environment dynamics as
constraints in a mixed-integer program and use the mixed-integer verification technique from 6.2.2 to
solve for an overapproximation of the output reachable setl33],

6.2.5 Reachability analysis in non-deterministic environments

When the ¢

nvironment 1s stochastic, the solvers 1n 6.2.2 can be combined with techniqules in

probabilistid
technique dsg
a solver to g
the probabil
[34] By adapt
probability d

6.2.6 Mod

Model checK
interpretat
predicates t(
either be ex
are treated
model is che

For model ¢
networks to

EXAMPLE 1
belonging to
sentence ‘one

EXAMPLE 2

inputs for a 11
description o
letter. It is po
can be checks

model checking to determine the probability of reaching a set of states. Similar+4
scribed in 6.2.4, the input space is divided into a set of cells and each cell is passed thi

o the
ough

etermine the possible neural network outputs. Probabilistic model checkifig-determines

ty of reaching a certain set of states from a given initial state using dynaniic’program
ing this framework to work with cells rather than single input states, amoverapproxin
freaching a set of states when using a neural network can be obtained{3>l.

el checking

ing is a method to prove that a formal expression of actheory is valid under a cg

6]. A theory is expressed by a vocabulary of symbols éomprising constants, function

build sentences that state assertions about the inteinded semantics of an idea. A theor
bressed by sentences of a predicate logic or expressed by data patterns. Neural nety
hs algorithms designed for discovery and useof data pattern models. The data p3
cked against the input.

hecking to be valid, all models shall be-checked. Model checking can be used on n
prove relationships among different;sorts of sets which obey some relationship.

The ‘theory of family’[3Z] obeys the interpretation that implements the membership of pg
h family. Thus, two arbitrary persons are proven to be members of the family or not. Thé
person is parent of the other pérson’ is checked for all available pairs of persons.

Model checking has been‘used in Reference [38] in order to prove the existence of adver
eural network. The theory is the language constituted by the letters and the weights and
f the neural network:The interpretation is constituted by the label attached to the image
sible to computé¢ a,distance between every possible pair of letters in the alphabet. Then, the
d in order to énsure the predicate that every distance is greater than a specific threshold fi3

ming.
hated

rtain

i;)n. More detailed descriptions can be found in ISO/IEC/IEEE 24765:2017 and in
Reference [36

s and
y can
vorks
ttern

eural

rsons
n the

sarial
biases
of the
model
ed by

the Al developer. Al developer predefined predicates are checked by means of a neural network against a theory.

6.3 Summnpary

b into

The applicah

ility of formal methods to assess the robustness of neural networks requires takin

account several aspects. On the one hand, neural network architecture has an impact since each formal
method has its own strengths and weakness to process each mathematical function used in the neural
network. On the other hand, the type of data used as input to the neural network can have an impact,
since input variability, numerical or categorical nature and size have direct consequences in the cost of
computation and ease of formal analysis. To tackle these aspects, several formal methods are available:
approaches using a solver, abstract interpretation, state reachability analysis or model checking.

Currently most common architectures and data types processed by neural networks can be analysed
by at least one formal method. Each method has advantages and limitations (e.g. scalability) and can
address one or more criteria described in Clause 5.
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7 Robustness during the life cycle

7.1 General

The life cycle of an Al system, drawn from ISO/IEC 22989:2022, is described in Figure 2 and is composed
of 7 stages.
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Figure 2 — Example of Al system lifeZcycle model stages and high-level procefsses

ISO/IEC 22989:2022, 5.19 defines a set @f,Al stakeholder roles and sub-roles including Alf provider, Al
prodticer, Al developer, Al customer, eté. This clause references those roles. This clause d¢tails how to
assess robustness of neural network’during the design and development, verification and validation,
depldyment and operation monitoring.

7.2 |During design and development

7.2.1] General

Even|at an early stage of development, checking the robustness of a neural network can help its design.
By leprning. €arly on the potential flaws in terms of robustness an Al developer can then take the
necegsary-steps to mitigate them and in return avoid insufficient robustness later on (mitlgating flaws
ugtness is not covered in this document). During this step, it is assumed that the trainfing data and
i i ificati to measure
robustness but also highlight sources of loss of robustness in order to give the Al developer some
important feedback. For example, formal methods can highlight features learned by a neural network
for computer vision or time series processing. Formal methods can also highlight classes prone to be
confused with one another by the neural network.

7.2.2 Identifying the recognized features

Identifying the features recognized by the neural network allows the Al developer to better understand
and explain or interpret the behaviour of the neural network. Therefore, it is possible to better
understand what the robustness of the neural network will be. Knowing which features are more easily
identified allows the Al developer to understand to what extent the neural network will be able to
complete its task when presented with production data.

© ISO/IEC 2023 - All rights reserved 15


https://iecnorm.com/api/?name=c27373544b8262c41b90414dd47305fc

ISO/IEC 24029-2:2023(E)

A neural network relies on some features which it can extract from the data presented to it, whether
its training has been supervised, unsupervised or through reinforcement. These features are generally
not directly available to the Al developer and they are not materialized in a readable fashion in its
structure. Instead, they are embedded within the mathematical model created by the training. This
means that the features cannot be expressed directly in a human readable fashion. The features are
mathematical artefacts expressed in a very high dimensional space.

Formal methods can use symbolic or relational approaches to establish over a domain a link through
the model from the inputs to the outputs of the neural network (see 6.2 for more detail). This link
allows the Al developer to know how much each input impacts each output. The learned features within
the model are responsible for the strength or weakness of each individual link between an input and an

output. By otmgﬁwmmﬁmm; and
therefore haye a better understanding of their impact on neural network robustness.

dentify some of the learned features, the Al designer should use a relevance criterion.
the result of a relevance criterion can either be done manually (through a direct
nst a

In order to
Confirming
confirmatio) or be done automatically (through an evaluation of the correspondence agai
relevance tafget).

hse of a manual confirmation, an expert directly evaluates the results of the criter
fion of this expert can also be added to the evaluation report in‘grder to better under
rt’s evaluation.

on. A
stand

In the c
justifical
the expéd

In case ¢f an automatic confirmation, the evaluation should rely on a clear relevance target dn the
data. An|explicit method should be defined in order to measuyre the level of correspondence betjween
the releyance measured on any data and the relevance tapget. A threshold should be set in ordler to
check if the level of correspondence is high enough. The<{elevance target should be provided.

an be
geted

NOTE In
identified for

the confirmation process, the identity and levelhof competency of the person responsible
traceability or diagnostic purposes. In case af;automatic confirmation, the source of the tar

relevance can

7.2.3 Che

Checking se
neural netw

classificatiop model generalizes betWweén (and beyond) the data points it was trained on. For a clas

the more thg
such a mode

When desig

also be used for traceability or diagnostic purposes.

'king separability

pbarability is a technique usable on neural networks performing classification. For
orks, the role of the modél'is to predict a class based on the input data. To do f{

model is able to separate the classes, the more effective its outcome is. The robustn
therefore dependson its ability to effectively separate the classes.

ing a classifier;-a sensitivity criterion can be used in order to identify which classg

these
his a
sifier,
bss of

S are

more separdted or lessySeparated than others. To do so, the sensitivity analysis shall utilize domains
built around data peints in the test data. The spread of values of the attributes should be incr¢ased
gradually in|ordersto.measure what classes are starting to overlap with each other. Starting to oyerlap
is understood as'\thie case where the output of a neural network on one class starts to exceed the output
of another classvThe process stops when all classes’ outputs overlap with all other class outputs. r

Separability analysis results are based on the order in which classes start to overlap and the size of
the domain on which these overlaps start to occur. Based on the results of the sensitivity analysis is it
possible to take action either on the training data or on the neural network architecture. The goal is to
improve the separability of each class by measuring comparatively each sensitivity analysis.

7.3 During verification and validation

7.3.1 General

During the verification and validation stage, the neural network is tested in order to check if it meets
its requirements and objectives. Using formal methods at this stage does not replace other means of
verification and validation (such as statistical testing or field trials). However, formal methods can
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bring new information on the neural network robustness within a specific domain. The main advantage
that formal methods bring at this stage is to allow a more general proof of the robustness, as it is done
over a domain.

7.3.2 Covering parts of the input domain

The input domain on which a neural network is intended to operate can be expressed with varying
degrees of difficulty. Some are very easy to define, for example, for a neural network performing a
regression task over a specific set of data all contained in certain bounds. In other cases, the definition
can be more complex. For example, on image processing tasks, the input domain can be characterized
by some attributes (see 5.2) but the general definition of the domain cannot be an easily defined
mathematical object. When applied, formal methods are used on some form of boundary,cpmputations
of the output, therefore the way the input domain is defined has a significant impact on thg method.

tion of those
partitions of

domains are defined by attributes that define the space to be validated, with'Varia
utes that shall be explicitly bounded. Then, formal methods are used on dontains or
ins using robustness criterions described in Clause 5. It can be necessary to define p part of the
in for which validation is meaningful and brings useful informationfor the evaluator. Any such
Fioning of the input domain should be justified. In particular, the justification shoyild highlight
he selected criterion is able to assess the robustness on this particular partitioning of the input
in.
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useful information for the evaluator.
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concept can be best explained using two different examples. One with an easily defined domain,

ne with a difficult to define domaing
behaviour of

For the first example, consider a neural network that has been trained to interpolate the

a mat
of the
betw
the b

hematical function taking two inputs and returning one output. The bounds defining
e inputs are known, and_the’function the neural network is designed to mimic is aly
ben these bounds. For this example, it is easy to define a partition of the input by jus
bunds of the inputs.tOn this part it is then possible to use formal methods to check t

r the domain
vays defined
t restricting
he bounds of

network has
everal parts
e domain.

the o
suffig
that ¢

itput. As the function is well-defined over this part, it is easy to check if the neural
ient robustnes§ (ISing a sensitivity criterion). The whole space can then be split into s
an be checked.separately in order to broaden the assessment of the robustness on th

For t
in or

he second)example, consider a neural network that has been trained to classify medical images
ler tosclassify whether one specific organ is healthy or unhealthy. The size of the ifnages is 100
by 1(40,Aimages are taken at the same distance, the angle of the organ is always centred ¢n the image
and thenimages all come from the same machine. The input domain is not easily defined, ag the size and
shape of the organ can vary from one person to another. Also, the part of the image around the organ
can vary. In this scenario it is not easy to know in advance the expected behaviour on part of the input
domain. Formal methods can be used to consider some parts of the domain related to a variation of a
parameter understandable by the validator - for example, the volume of the organ or the brightness of
the background on the image.

7.3.3 Measuring perturbation impact

By relying on the description of the domain planned for the use of a neural network, it is possible to
identify types of perturbation that the neural network input can be subjected to. Each perturbation can
have a different impact on the level of performance of the neural network. Their combination can also
have various impacts on the robustness of the neural network. During the verification and validation
phase, it is possible to assess the robustness of the system on instances of these perturbations
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(combined or not). Using formal methods, it is possible to assess the robustness of the system in a more
general way against these perturbations.

Perturbations can be beneficial or detrimental. They can be also intentional (e.g. in case of adversarial
attack) or unintentional (e.g. in case of sensor defects or environmental changes). Perturbations can be
either mathematically describable or only exemplifiable.

EXAMPLE A blur perturbation on an image can be mathematically described as a convolution of a specific
kernel producing the blur applied to each pixel. However, the presence of droplets on a lens causing some image
defect can only be exemplified by proposing one or several masks that artificially add droplets to an image. In
the first case the equivalence is straightforward since the perturbation is a mathematical function. In the second
case, the application of the function is more context dependent and can correspond to the fusion of two data into

one (like mix
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7.4 During deployment

their
bf the

As neural ng
inputs. Thes
neural netw

ptworks are non-linear systems, thi€y are susceptible to small changes of values in
e changes can come from numerical accuracy issues that occur during the execution
brk. Sources of numerical accuracy issues can be caused by:

compilefs rearranging or replacirig-operations (e.g. using fused multiply-add[32]);
underlying hardware rearranging operations (e.g. to benefit from pipelining operations);

optimiz
operatig

htion done to reduee the numerical precision (e.g. quantization, using smaller floating-
ns or fixed-point arithmetic);

point

change in the rounding process;

change 19[24]

complia

n the implementation of low-level numerical operators (e.g. use of non-IEEE 754:20
ht @perator, an operator with incorrect rounding or with different interpolation).

These issues should be considered when integrating a neural network on a system on which one or
more of these sources of numerical issues can occur. In particular, formal methods should be used to
check their impact. To do so, formal methods can be used to measure bounds of the maximum rounding
error that are caused by rearranging operations or changing the underlying arithmetic. In practice, the
chosen formal methods are evaluated against every criterion previously used to check if they still hold.

To address these issues the Al developer can follow these series of steps.

— First, the Al developer should verify the impact of the chosen underlying arithmetic. To do this, it
is necessary to first identify for each basic operation whether its rounding errors can be statically
bounded over the domain of use or not.

— When it is possible to statically bound the rounding error of an operator, formal verifiers
should take them into account in the semantics used to verify the neural network. For example,
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