INTERNATIONAL ISO/IEC
STANDARD 1539-3

First edition
1999-02-01

Corrected and reprinted
2000-12-15

Information technology — Programming
languages — Fortran —

Part 3:
Conditional compilatioh

Technologies de l'information — Langages de programmationl — Fortran —

Partie 3: Compilation conditionnelle

PN I E Reference number
C ISO/IEC 1539-3:1999(E)
1So|IEC

© ISO/IEC 1999

https://iecnorm.com/api/?name=5337adfdff2071e85ac2a022c473e691

ISO/IEC 1539-3:1999(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not
be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading

this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in
this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation
parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the
unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

© ISO/IEC 1999

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic
or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body
in the country of the requester.

ISO copyright office

Case postale 56 « CH-1211 Geneva 20

Tel. +412274901 11

Fax +4122 74909 47

E-mail copyright@iso.ch

Web www.iso.ch

Printed in Switzerland

https://iecnorm.com/api/?name=5337adfdff2071e85ac2a022c473e691

© ISO/IEC ISO/IEC 1539-3:1999(E)

Contents
IoGeNEral. ..o 1
1.1 S0P e 1
1.2 NOmMAtive REFErENCES ciueiiii i e e e 1
N O = o T2 TP T TR = e 2
2.1 Conditional comPpilationcooeviiiiiiiiiiiiiii e T 2
22 Clause numbers and syntax rulescooiiiiiiiiiiiiiiiii e N 2
2.3 Coco program conformancecoooiiviiiiiiiiiiiie e e 2
24 High level syntaxcccovviiiiiiiiiiiiiiie e 3
3 Constgnts, source form and text inclusioncocoooviiiiiiii N 3
3.1 COCO COMSLANLS viiiit it e b 3
32 Coco source formcocoiiiiiiiiiiiii e N b 4
3.2.1 CoCO COMMENATYoenvvniniinineininiinineinenenen oo e eeeeeeneneeneeeeeenes e, 5
3.2.2 Coco directive continuationcc.oeeee i 5
323 CoCo dIf€CHIVES ...eeuvnininiiiieiiieiiie e edon e e b 6
33 Source text inClusionocoveviiiiinii LS 7
4 Coco type declaration dir€Ctivesccoeeuvievii i S 8
5 Coco variables, expressions and assignment direCtiVe).oooivviniiiinieieninneniieeenesbeenn, 9
51 Cocovariables ... D 9
52 COCO EXPIESSIONS iiuiiiiiniitiie ettt ab 9
52,1 Coco PrIMATYvninee o it ei et b e 9
5.2.2 Level-1 eXpressions ...t .. iieiiiiiiee b 9
523 Level-2 eXPressions, . ov . . .ottt b 9
524 Level-3 eXPressions.)o.ouiiititiitiie e e ... 10
5.2.5 General form of\a/COCO @XPIESSION.uvuitii i, ... 10
53 Data type and valuetof @ COCO €XPIesSionoiviiniuiiniininiiiiiiiiiiieneen ... 10
54 Coco initializati@n)EXPresSiON c.oeeitiitiiniieieit it eeee 12
55 Coco assignment dir€CHIVEouuinieitiiiei e e 13
6 Coco ¢xecution centrol and conditional compilationoooviiiiiiiiii e 13
6.1 CoC0 BIOEKS. e 13
6.2 COEOTEF CONSIITCE ...vtenit i e e, e 13
62,1 Form of the coco IF CONStructcoovviviiniiiiiiiiiiiiiiiii e e 13
622—FExccutiomof ariFcomstrocct————— 14

https://iecnorm.com/api/?name=5337adfdff2071e85ac2a022c473e691

ISO/IEC 1539-3:1999(E)

7 Coco message and StOP dIFECHIVESoeiininit ittt e 15

8 Scope and definition of coco variables ... 16
8.1 Scope of coco variables ... 16
8.2 Events that cause coco variables to become definedc.co 16

O The coco SET fIle ..uiunitii ittt e et 17

Annex A BXAMPIESot 20

© ISO/IEC

https://iecnorm.com/api/?name=5337adfdff2071e85ac2a022c473e691

© ISO/IEC

ISO/IEC 1539-3:1999(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are members
of ISO or IEC participate in the development of International Standards through technical committees

establishe

and IEC

technical ¢
and non-g(

In the field
JTC 1. Dr
bodies for
bodies casf

Internation
Informatio

software in
ISO/IEC 1

Part 1
Part 2
Part 3

Annex A o

bv the respective organization to deal with particnlar fields of technical activity [SQ

ommittees collaborate in fields of mutual interest. Other international organizations, gov
vernmental, in liaison with ISO and IEC, also take part in the work.

| of information technology, ISO and IEC have established a joint technical-.committee
ft International Standards adopted by the joint technical committee aré’circulated tg
voting. Publication as an International Standard requires approval by at'least 75 % of th
ing a vote.

al Standard ISO/IEC 1539-3 was prepared by Joint Technical Committee ISO/IR
h technology, Subcommittee SC 22, Programming languages, their environments af
terfaces.

- Base language
- Varying length character strings

+ Conditional compilation

f this part of ISO/IEC 1539 is-fer information only.

ernmental

ISO/IEC
national
e national

KC JTC 1,
d system

39 consists of the following parts, under the. general title Information technplogy —
Programming languages — Fortran:

https://iecnorm.com/api/?name=5337adfdff2071e85ac2a022c473e691

ISO/IEC 1539-3:1999(E)

Introduction

Programmers often need to maintain several versions of code to allow for different systems and different
applications. Keeping several copies of the source code is error prone. It is far better to maintain a master code
from which any of the versions may be selected.

This conditiopal compilafion facility has deliberately been kept very simple. The additional lines inse
control the pfocess and all the lines that are not selected are omitted from the output or are cénye
comments. Those that are selected are copied to the output completely unchanged. Which version'is selected is

controlled by

Examples of the need for such a facility are:

directives in a file known as the SET file.

© ISO/IEC

rted to
'ted to

(1) Parameferized types do not solve all the problems associated with different(precisions. Parameferized

derived

(2) A versign of a code for complex arithmetic may differ little from the &ersion for real arithmetic.

(3) The rels
(4) Version

(5) Additio
helpful

(6) Version
(7) For OPI

types are not part of Fortran 95.

8 may be required for different message-passing librafies.

nal print statements may be inserted into a program when under development. It may bg

5 may be required with character constants.in different languages (internationalization).

EN statements, the file naming converntion varies between systems.

o have these readily available in case some unexpected results are found in production use.

tive efficiency of different algorithms or constructions may, vary from processor to procepsor.

very

Some of thes¢ cases may be addressed within the Fortran code itself by run-time tests, but this will resylt in a
large object cpode and some run-time overhead. Without conditional compilation, however, most of them can

only be solve

d by maintaining separate-versions of the code.

Vi

https://iecnorm.com/api/?name=5337adfdff2071e85ac2a022c473e691

INTERNATIONAL STANDARD ©ISO/IEC ISO/IEC 1539-3:1999(E)

Information technology — Programmmg languages —
Fortran —

Part 3: iti Hlation

1 General

1.1 Scope

This part gf ISO/IEC 1539 defines facilities for conditional compilation in Fortran. This part of ISO/[EC 1539
provides an auxiliary standard for the version of the Eortran language specified by ISO/IEC 1539-1 and
informally|known as Fortran 95.

1.2 Normative References

The following standard contains provisions Which, through reference in this text, constitute provisiops of this
part of ISQ/IEC 1539. At the time of publication, the edition indicated was valid. All standards are §ubject to
revision, and parties to agreements based on this part of ISO/IEC 1539 are encouraged to investigate the
possibility|of applying the most recent editions of the standard indicated below. Members of IEC|and ISO
maintain r¢gisters of currently-valid International Standards.

ISO/IEC 1539-1 : 1997, ‘Information technology — Programming languages — Fortran — Part| 1: Base
language.

https://iecnorm.com/api/?name=5337adfdff2071e85ac2a022c473e691

ISO/IEC 1539-3:1999(E) © ISO/IEC

2 Overview

2.1 Conditional compilation

Conditional compilation (coco) is described in this document as an independent process that yields a source
program for a Fortran processor. It is expected that implementations will usually integrate the two processes.

The coco process is controlled by directives that are either omitted from the coco output or are converted to
Fortran comments. Coco comments may be introduced to explain the actions and these _too_are either omitted
from the co¢o output or are converted to Fortran comments. Other lines (noncoco lines) are either|copied
unchanged tp the output, omitted, or converted to Fortran comments. There is no requirement that t:[e €OCo
output is a v4lid Fortran program. The lines of the coco output are in the same order as the corrésponding lines
of the coco grogram.

Coco executjon is a sequence of actions specified by the coco directives and performied-in the order that they
appear. The fombination of a computing system and the mechanism by which thése actions are perfofmed is
called a cocg processor in this part of this standard.

2.2 Claus¢ numbers and syntax rules

The notatior| used in this part of ISO/IEC 1539 is described in-ISO/IEC 1539-1, 1.6. However, item (4) in
ISO/IEC 1539-1, 1.6.2 is replaced with:

(4) Each syntax rule is given a unique identifying number of the form CCRsnn, where s is a one or two-digit
clause pumber and nn is a two-digit sequence nurmber within that clause. The syntax rules are distributed
as appropriate throughout the text, and are referénced by number as needed.

2.3 Coco program conformance

A coco progfam is a standard-conforming coco program if it uses only those forms and relationships| herein
and if the program has an interpretation according to this part of this standard.

A coco procgssor conforms to this part of this standard if:

(1) It exedqutes any standard-conforming coco program and its SET file in a manner that fulfills the
interprgtations.herein, subject to any limits that the processor may impose on the size and compldxity of
the cocp pregram and its SET file.

(2) It contdins the capability to detect and report the use within the execnted part of a coco pragramland its
SET file of an additional form or relationship that is not permitted by the numbered syntax rules or their
associated constraints.

(3) It contains the capability to detect and report the use within the executed part of a coco program and its
SET file of source form not permitted by clause 3.

(4) It contains the capability to detect and report the reason for rejecting a submitted coco program and its
SET file.

If a coco program contains a STOP directive that is executed, there is no requirement for the processor to
report on any directives that follow the STOP directive.

https://iecnorm.com/api/?name=5337adfdff2071e85ac2a022c473e691

© ISO/IEC

2.4 High level syntax

ISO/IEC 1539-3:1999(E)

This subclause introduces the terms associated with the conditional compilation program.

CCR201 coco-program is
CCR202 pp-input-item is
or

pp-input-item [pp-input-item] ...

coco-construct
noncoco-line

The term noncoco-line refers to any line without the characters “??” in character positions 1 and 2.

CCR203 doco-construct 1S coco-type-declaration-directive
or coco-action-construct
CCR204 cpco-action-construct is coco-action-directive
or coco-if-construct
CCR205 cpco-action-directive is coco-assignment-directive
or coco-message-directive
or coco-stop-directive
Notg¢ 2.1

A cdco program is not required to contain any coco directives.

3 Constants, source form and text inclusion

3.1 Cocg constants
CCR301 cpco-constant is coco-literal-constant
or coco-named-constant
CCR302 cpco-literal-constant is coco-int-literal-constant
or coco-logical-literal-constant
CCR303 cpco-int-literal-constant is digit [digit] ...
CCR304 cbco-logical-literal-constant is TRUE
or .FALSE.
CCR305 coco-char-literal is ‘[rep-char]...’
or ”"[rep-char]..”
CCR306 coco-named-constant is name

Constraint: coco-named-constant shall have the PARAMETER attribute.

CCR307 name is

letter | alphanumeric-character] ...

Constraint: The maximum length of a name is 31 characters.

https://iecnorm.com/api/?name=5337adfdff2071e85ac2a022c473e691

ISO/IEC 1539-3:1999(E)

CCR308 alphanumeric-character

CCR309 underscore

Each digit is

is letter
or digit
or underscore

is

one of the digits
0123456789

and each coco-int-literal-constant is interpreted as a decimal value.

Each letter i

or one of the

Each rep-chd
underscore, t

In a coco dir
character lite

The delimitir

An apostrop
consecutive 3
character. Sif
represented b

3.2 Cocos

A coco prog
and noncoco
characters ”?
line is a line

A keyword i
LOGICAL,

A coco com

he blank, the currency symbol, and the characters

ource form

dMESSAGE.
memﬂmmmmm

one of the upper-case letters
ABCDEFGHIJKLMNOPQRSTUVWXYZ
lower-case letters
abcdefghijklmnopqrstuvwxyz

r is a character in the processor-dependent character set, which includesthe letters, the dig

=+-*/(),. "% & ;<>
ective, a lower-case letter is equivalent to the corresponding upper-case letter except in
ral.

g apostrophes or quotation marks are not part of thé value of a coco character literal.

ipostrophes (without intervening blanks); ifi-this case, the two apostrophes are counted
milarly, a quotation mark character within a character literal delimited by quotation m

am is a sequence of+one or more lines, organized as coco directives, coco comment lines
lines. A coco directive is a sequence of one or more coco lines. A coco line is a line W
P” in character,positions 1 and 2. These characters are not part of the coco directive. A nd
hat does not.begin in this way.

8 a worduthat is part of the syntax of a coco directive. Examples of keywords are IF, INT]

© ISO/IEC

its, the

d COCO

ne character within a coco character literal delimited by apostrophes is represented by two

as one
arks is

y two consecutive quotation marks (without intervening blanks) and the two quotation makks are
counted as one character.

3.2.1)
ith the
PNCOCO

EGER,

tary, a

coco directive consists of a sequence of coco lexical tokens. Each token is a keyword, a name, a literal
constant, an operator (see Table 2), a comma, a parenthesis, an equals sign, or the separator :: .

In coco sourc

e, each source line may contain from zero to 132 characters.

In coco source, blank characters shall not appear within coco lexical tokens other than in a coco character
literal. Blanks may be inserted freely between tokens to improve readability. A sequence of blank characters

outside of a ¢

oco character literal is equivalent to a single blank character.

A blank shall be used to separate names, constants, or coco-char-literals from adjacent keywords, names,

constants, or ¢

oco-char-literals.

https://iecnorm.com/api/?name=5337adfdff2071e85ac2a022c473e691

© ISO/IEC ISO/IEC 1539-3:1999(E)

Blanks are optional between the following pairs of adjacent coco keywords:

ELSE IF
END IF

3.2.1 Coco commentary

” 'II

Within a coco directive, the character ”!” in any character position initiates a coco comment except when it
appears within a coco character literal. The coco comment extends to the end of the source line. If the first
nonblank character on a coco line after character positions 1 and 2 is an ”!”, the line is a coco comment line.
Coco lines[containing only blanks after character positions 1 and 2 or containing no characters after fharacter

positions 1

and 2 are also coco comment lines.

Notg 3.1

An gxample of the use of a coco comment in a coco IF construct (6.2) is:

?? [F (DEVELOPING) THEN

?? [The following output statement was used when

?? [developing the code

WRITE(UNIT=*,FMT=*) 'The value of A 4s', A

?? END IF
3.2.2 Cocp directive continuation
The characfer “&” is used to indicate that the current ¢coco directive is continued on the next line that is not a
coco commjent line. This line shall be a coco line. Coco comment lines shall not be continued; an “&” in a coco
comment has no effect during coco execution. Cémments may occur within a continued coco directiye. When
used for coptinuation, the “&” is not part of the coco directive. After character positions 1 and 2, no ¢oco line

shall conta
initiates a d

0cOo comment.

3.2.2.1 Continuation other than of a coco character literal

In a coco
nonblank ¢
that is not
coco-noncd

lirective, if an\’&” not in a coco comment is the last nonblank character on a line of
haracter before an ”!” that initiates a coco comment, the coco directive is continued on the
1 coco_comment line. If the first nonblank character after character positions 1 and 2 on
mment - line is an “&”, the coco directive continues at the next character following

otherwise,

n a single ”&” as the only nonblank character or as the only nonblank character before an

”1” that

the last
next line
the next
he "&";

t'continues with character position 3 of the next coco-noncomment line.

If a coco lexical token is split across the end of a line, the first nonblank character after character positions 1
and 2 on the first following coco-noncomment line shall be an “&” immediately followed by the successive
characters of the split token.

https://iecnorm.com/api/?name=5337adfdff2071e85ac2a022c473e691

ISO/IEC 1539-3:1999(E)

Note 3.2

An example of continuation in a coco type declaration directive (clause 4) is:

?? LOGICAL TOO_GOOD&

??&_TO_BE_&

?7? &TRUE = &

?? | These six lines contain one coco directive
?? ! and two coco comment lines.

?? FALSE

© ISO/IEC

3.2.2.2 Contiinuation of a coco character literal

If a coco chd
not be follow
and 2 on the
II&II.

Note 3

An ex;
is:

?? Ml
??

?7?

3.2.3 Coco

If a coco dirg
end of the co
number perm

Note 3L

In the
permit
array s

racter literal is to be continued, the “&” shall be the last nonblank character-on'the line ar
ed by coco commentary. An “&” shall be the first nonblank character afitér character pos
iext coco-noncomment line and the coco directive continues with the réxt character follow

3

imple of the continuation of a coco character literal in-adcoco message directive (clause 7

ESSAGE "DE&

&F&

&INE VALID 'SYSTEM' VALUE" ! 3 lines, 1 coco directix
directives

ctive has one or more continuation lines, every line from the start of the coco directive u

itted for free source form in ISO/IEC 1539-1.

4

following-extract from a coco program, all the coco lines are coco directives. This extract
a segment of code to be adapted according to whether the compiler is more efficient with
ection-syntax or with loop syntax.

d shall
tions 1
ing the

re

ntil the

Co directive shall be a cocoline. A coco directive shall not have more continuation lines than the

?? L

GICAL USE_SECTIONS

?? IF (USE_SECTIONS) THEN

A(1:10,1:10) B(1:10,1:10) + C(1:10,1:10)

?? ELSE
DO J =1, 10
DO I =1, 10
A(I,J) = B(I,J) + C(I1,J)
ENDDO
ENDDO
?? ENDIF

https://iecnorm.com/api/?name=5337adfdff2071e85ac2a022c473e691

© ISO/IEC ISO/IEC 1539-3:1999(E)

3.3 Source text inclusion

Additional text may be incorporated into the source text of a coco program during coco execution. This is
accomplished with the coco INCLUDE line, which has the form

7?7 INCLUDE coco-char-literal
with the characters “??” in character positions 1 and 2.

A coco INCLUDE line shall appear on a single source line; it shall be the only nonblank text on this line other
than an optional trailing comment.

The effect|of the execution of a coco INCLUDE line is as if the coco INCLUDE line were replac¢d by the
coco comment of the form

7 INCLUDE coco-char-literal
followed by the referenced source text, followed by the coco comment of the form
771 BND INCLUDE coco-char-literal

during cocp processing. The inserted comments shall be identical to the cocd INCLUDE line apart|from the
insertion of the two characters ! ” or the six characters ”! END ” starting in character position 3.

text, including additional coco INCLUDE lines; such nested coco INCLUDE lines are similarly replaced with
comments [and the specified source text. The maximum depth ofdiesting of any nested coco INCLUDE lines is
processor dependent. Inclusion of the source text referenced by coco INCLUDE line shall not, at any level of
nesting, repult in inclusion of the same source text.

A coco INCLUDE line in a coco FALSE block (6.2.2) is not expanded. Inicluded text may contain I source
1

When a cdco INCLUDE line is resolved, the first included line shall not be a coco continuation ling and the
last included line shall not be a coco line that is continued. Each coco directive that is a coco-else-if-firective,
coco-else-flirective, or coco-end-if-directive .shall appear in the same source text as the matching
coco-if-then-directive.

The interpretation of coco-char-literal is'processor dependent. An example of a possible valid interpretation is
that coco-ghar-literal is the name of-afile that contains the source text to be included.

Note 3.5

The| following example shows the use of a coco construct to allow for different naming
conyentions for-¢oco INCLUDE files on different systems:

?? [IF (SY¥STEM == DOS) THEN

?7? INCLUDE "C:\mydir\myfile.txt"
?? [EBLSEIF (SYSTEM == UNIX) THEN

?7? INCEFPE—Frydrr7my f e t=xt™
?? ENDIF

and might yield the following output:
!1?? IF (SYSTEM == DOS) THEN

1221 INCLUDE "C:\mydir\myfile.txt"
OPEN (UNIT=10,FILE="C:\mydir\myfile.dat")
!1??! END INCLUDE "C:\mydir\myfile.txt"
!'?? ELSEIF (SYSTEM == UNIX) THEN

12? INCLUDE "/mydir/myfile.txt"

!'?? ENDIF

https://iecnorm.com/api/?name=5337adfdff2071e85ac2a022c473e691

ISO/IEC 1539-3:1999(E)

Note 3.6

© ISO/IEC

The fact that coco processing affects which coco INCLUDE lines are resolved means that it may
be unreasonably difficult to check the coco syntax of a program without actually executing it.
This is the reason for all coco directives being treated as executable.

4 Coccl) type declaration directives

co data object is a constant or is a variable. An object with the PARAMETER attribute is a

A named cd
constant and
is undefined

Every coco d
is specified Y
unless it is g

CCR401 cod
CCR402 cod

CCR403 cod
CCR404 cod

Constraint: A
as any
declarg
coco-by
its coc(

Constraint:

appearing in any other gxecuted coco directive.

CCR405 cod

Constraint: |
coCo-1)

has a value that does not change. An object without the PARAMETER attribute’is a varia
or has a value; during execution of a coco program, the value of a variablé-may change.

ata object has a type. The type of a named data object, and possibly the PARAMETER at]

ven an initial value by coco-initialization.

0-object-name is name

L coco-object-name declared in an executed coco-type-declaration-directive shall not be th
other coco-object-name in its coco-type-declaration-directive or any other executed coc
tion-directive, except thatv" a coco-object-name declared in an e>

p-set-file.
roco-object-name shall be declared in an executed coco-type-declaration-directive
is

o-initializgtion = coco-initialization-expr

h an exeeuted coco-type-declaration-directive, the types of the coco-initialization-expr
pe-spec shall either both be integer or both be logical.

ble and

fribute,

y the execution of a type declaration directive. The initial value of a‘coco variable is unglefined

o-type-declaration-directive is coco-type-spec [, PARAMETER] :: coco-entity-decl-list
o-type-spec is INTEGER

or LOGICAL
0-entity-decl is coco-object*name [coco-initialization |

€ same

p-type-
ecuted

pe-declaration-directive in:alcoco-program may be the same as a coco-object-name declared in

before

ind the

Constraint:

o avacutad ooog seng Jdool el g, 7 a af tha DADANETER atthuta 1o cpnan

T2

fied, a

ooty
T AT COCO y e Ot TG T OO GIT T e v E— 1 U IR SV T HICT Attt TooiU—TIo— Spov

coco-initialization shall appear for every coco-object-name.

Note 4.1

Examples of coco type declaration directives are:

?? INTEGER, PARAMETER F77 =1, F90 = 2
?? INTEGER, PARAMETER F95 = 3, F2000 = 4
?7? INTEGER FORTRAN_LEVEL = F95

?? LOGICAL DEBUG_PROCEDURE_ENTRY_EXIT

https://iecnorm.com/api/?name=5337adfdff2071e85ac2a022c473e691

© ISO/IEC ISO/IEC 1539-3:1999(E)

Note 4.2

Although a coco-object-name must be declared in an executed coco-type-declaration-directive
before appearing in any other executed coco directive, there is no requirement that all coco type
declaration directives appear before other directives.

5 C(Lco variables, expressions and assignment directive

5.1 Coc¢o variables
CCR501 |coco-variable is coco-variable-name
CCR502 [coco-variable-name is name

Constraint: coco-variable-name shall not have the PARAMETER attribufe,

5.2 Co¢o expressions

5.2.1 Coco primary

CCR503 |coco-primary is coco-corstant
or cocosvariable
or (coco-expr)

Constrainjt: A coco-variable shall be defined.(8.2) before appearing as a coco-primary.

5.2.2 Lgvel-1 expressions

CCR504 |coco-add-operand is [coco-add-operand mult-op] coco-primary
CCR505 |coco-level-1-expr is [[coco-level-1-expr] add-op | coco-add-operand
CCRS506 |mult-op is *

or /
CCR507 |add-op is +

or —

5.2.3 Level:2 expressions

CCRS508 coco-level-2-expr is [coco-level-1-expr rel-op] coco-level-1-expr
CCR509 rel-op is .EQ.

or NE.

or .LT.

or .LE.

or .GT.

or .GE.

or ==

or /=

https://iecnorm.com/api/?name=5337adfdff2071e85ac2a022c473e691

ISO/IEC 1539-3:1999(E)

5.2.4 Leve

1-3 expressions

CCR510 coco-and-operand

CCRS511 coco-or-operand

or
or
or
or

is

is

<

[not-op 1 coco-level-2-expr

[coco-or-operand and-op | coco-and-operand

CCR512 copo-equiv-operand

CCR513 co

ro-level-3-expr

CCR514 nog-op

is
is

is

[coco-equiv-operand or-op] coco-or-operand
[coco-level-3-expr equiv-op) coco-equiv-operand

NOT.

CCRS515 and-op is .AND.

CCR516 ortop is .OR.

CCR517 eqpiv-op is .EQV.
or .NEQV.

5.2.5 General form of a coco expression

CCR518 co

Note

An eX

?? I

5.3 Data

The data type of a coco expression is either integer or logical. The data type of the operands of an
pecified in Table 1 and the type of the result is as specified in Table 1.

shall be as s

ro-expr

5.1

is

F (VERSION*100+RELEASE(> 402)

coco-level-3-expr

ample of the use of a coco expressionGis:

THEN

ype and value of a'coco expression

Table 1 — Types of operands and results

ﬂperatnr Ty:_\e of |§;pe of
operands result
+ - %/ Integer Integer
EQ., NE,, LT, LE, .GT, .GE. Integer Logical
==, /=, <, <=, >, >=
NOT., .AND,, .OR., . EQV., NEQV. Logical Logical

CCR519 coco-logical-expr is

Constraint: coco-logical-expr shall be of type logical.

10

coco-expr

© ISO/IEC

perator

https://iecnorm.com/api/?name=5337adfdff2071e85ac2a022c473e691

ISO/IEC 1539-3:1999(E)

© ISO/IEC
Table 2 — Categories of operations and relative precedences
Category of Operators Precedence Term
Operation
Numeric *or/ Highest mult-op
Numeric unary + or — add-op
Numeric binary + or — add-op
Relational -EQ- -NE. LT, LE. .GT, GE. rel-op
==, /5, £ <=, >, >=
Logical .NOT. not-op
Logical .AND. and-op
Logical .OR. . or-op
Logical .EQV. or NEQV. Lowest equiv-op
Note 5.2

There is a precedence among the operations implied by the generalform in 5.2, which determines
the order |n which the operands are combined, unless the .Order is changed by the use of

parenthese$. This precedence order is summarized in Table 2,

The value ¢f a coco expression shall be determined by interpreting each operation as specified in
Tables 3, 4] and 5. The result of a division is the integer closest to the mathematical quotient and

between zero and the mathematical quotient in¢lusively.

Table 3 — Interpretation of the numeric operators

Operator Representing Use of Interpretation
operator

/ Division x,/x, Divide x, by x,
. Multiplication ~ x; *x, Multiply x, by x,
- Subtraction x,—x, Subtract x, from x,
- Negation -X, Negate x,
-+ Addition X5 Addxand—x
+ Identity +x, Same as x,

11

https://iecnorm.com/api/?name=5337adfdff2071e85ac2a022c473e691

ISO/IEC 1539-3:1999(E)

Table 4 — Interpretation of relational operators

Operator Representing Use of Interpretation
operator

LT. Less than x; LT.x, x, less than x,

< Less than X, <X, x, less than x,
.LE. Less than or equal to x, .LE.x, x, less than or equal to x,
<= Less than or equal to X, <X, x, less than or equal to x,
.GT. Greater than x, .GT.x, x, greater than x,

> Greater than X;>Xx, x, greater than x,
.GE. Greater than orequal to x, .GE.x, x, greater than or equalto x,
>= Greater than or equal to X, 2x, x, greater than orequal to x,
EQ. Equal to x, EQ.x, x, equal to x,

== Equal to X, ==x, %, equal to x,
NE. Not equal to x; .NE.x, X not equal to x,

/= Not equal to x,/=x, x, not equal to x,

Table 5 — Result values of‘logical operators

X, NOT.x, x,.AND.x, “x,.OR.x, x,.EQV.x, x, NEQV.x,
true true false true true true false
true false true false true false true
false true false false true false true
false false true false false true false

5.4 Coco initialization.expression

Execution of
coco-initializ
object with t

[a coco difective containing coco-initialization causes the evaluation of the expressioI
ation-exp¥ and, unless already defined by the SET file (clause 9), the definition of the coc
he resulting value.

CCRS520 coco-initialization-expr IS coco-expr

Constraint: Every primary of a coco-initialization-expr in the coco-initialization for an executed
coco-type-declaration-directive that specifies the PARAMETER attribute shall be a coco-constant
or a coco-initialization-expr enclosed in parentheses.

Note 5.3

Note that coco variables with defined values are permitted in a coco-initialization-expr for a coco
variable.

12

© ISO/IEC

https://iecnorm.com/api/?name=5337adfdff2071e85ac2a022c473e691

© ISO/IEC ISO/IEC 1539-3:1999(E)

5.5 Coco assignment directive
A coco variable may be defined or redefined by execution of a coco assignment directive.
CCRS521 coco-assignment-directive is coco-variable = coco-expr

In a coco assignment directive, the types of coco-variable and coco-expr shall either both be integer or both be
logical. Execution of a coco assignment causes the evaluation of the expression coco-expr and the definition of
coco-variable with the resulting value. The execution of the coco assignment shall have the same effect as if
the evaluation of all operations in coco-expr occurred before coco-variable is defined by the coco assignment.

NJte 54

Expmples of coco assignment directives are:

??| DEBUG_LEVEL = DEBUG_LEVEL + 1

??| IS_COMPANY_ X MACHINE = (SYSTEM == SYS_E) .OR. &
?7? & (SYSTEM == SYS_F)
?7? PROJECT_LEVEL = VERSION + LATEST_RELEASE

6 Coco execution control and conditional compilation

The exechition sequence and conditional compilation are controlled by coco IF constructs.

6.1 Coc¢o blocks

A coco block is a sequence of coco directives, ¢oco comment lines, coco INCLUDE lines, and norcoco lines
that are tfeated as a unit.

CCR601 [coco-block is [pp-input-item] ...

Coco IF donstructs may be used to €ontrol which noncoco lines of a coco program are copied unchanged to the
coco output.

6.2 Coc¢o IF construct

The coco[IF construct. marks at most one of its constituent coco blocks as its coco TRUE block. Any [remaining
coco blocks are€0¢o FALSE blocks. Each noncoco line is copied unchanged to the coco output unle}s it lies in
a coco FALSE block at any level of nesting.

6.2.1 Form of the coco IF construct

CCR602 coco-if-construct is coco-if-then-directive
coco-block
[coco-else-if-directive
coco-block] ...
[coco-else-directive
coco-block]
coco-end-if-directive

CCR603 coco-if-then-directive is IF (coco-logical-expr) THEN

13

https://iecnorm.com/api/?name=5337adfdff2071e85ac2a022c473e691

ISO/IEC 1539-3:1999(E)

CCR604 coco-else-if-directive

is ELSE IF (coco-logical-expr) THEN

CCR605 coco-else-directive is ELSE
CCR606 coco-end-if-directive is ENDIF
Note 6.1
An example of two coco IF constructs, one nested within the other, is:
?? IF (IS_COMPANY_X MACHINE) THEN
?? [IF (FORTRAN_LEVEL == F95) THEN
PURE FUNCTION GET RABBIT WEIGHT (A_RABBIT) RESULT(WEIGHT)
TYPE (RABBIT), INTENT (IN) A_RABRIT
?? [ELSEIF (FORTRAN_LEVEL == F90) THEN)
FUNCTION GET_RABBIT WEIGHT (A_RABBIT) RESULT (WEIGHTY
TYPE (RABBIT) A_RABBIT
?? [ELSE
?? MESSAGE "Company X does not have a FORTRAN .%7 product"
?27? STOP
?? [ENDIF
?? ELSE
FUNCTION GET_RABBIT WEIGHT () RESULT(WEIGHT)
?? ENDIF
6.2.2 Execution of an IF construct
At most one| of the coco blocks in the coco IF construct'is selected as a coco TRUE block. If there is

ELSE directive in the construct, exactly one of.the ‘coco blocks in the construct will be selected as

TRUE blocK
a true value
coco ELSE

TRUE block is executed, and this completes the execution of the construct. All other blocks of the c¢

are coco FA]
construct arg
the executio
coco TRUE

Any coco IH

Execution of

. The coco logical expressions are evaluated in the order of their appearance in the constry
is found or a coco ELSE directive or coco END IF directive is encountered. If a true va
directive is found, the coca block immediately following is selected as a coco TRUE blgq

LSE blocks. The cocological expressions in any remaining coco ELSE IF directives of the
not evaluated. If fone of the evaluated expressions are true and there is no coco ELSE di
block.

constructs' nested within a coco TRUE block are treated similarly.

acoco END IF directive has no effect.

© ISO/IEC

a coco
a coco
ct until
ue or a
ck, the
nstruct
coco IF
rective,

h of the construct-is completed without the selection of any coco block within the constrjict as a

Note 6.2

An example of declaring a coco variable and referencing a module inside a coco IF construct is:

?? IF (MACHINE==BIG) THEN

?? INTEGER CHIPS = 3
USE MODULE_FOR_BIG

?? ELSE

?7? INTEGER CHIPS =1
USE MODULE_FOR_SMALL

?? ENDIF

14

https://iecnorm.com/api/?name=5337adfdff2071e85ac2a022c473e691

© ISO/IEC ISO/IEC 1539-3:1999(E)

6.2.2.1 Processing a coco TRUE block

Source lines contained in a coco TRUE block are processed by the coco processor.

6.2.2.2 Processing a coco FALSE block

Coco directives in a coco FALSE block are not executed. Source lines contained in a coco FALSE block are
omitted from the coco output or are converted to Fortran comments and are not otherwise processed by the
coco processor. Coco directives in FALSE blocks shall be in accord with the syntax rules, but have no effect
and need not satisfy the constraints.

Note 6.3

Codo directives in a FALSE block are required to be in accord with the syntax fules in order that
the pnd of the block is recognizable when the block has coco IF constructs riested within it.

7 Coco message and stop directives
CCR701 g¢oco-message-directive is MESSAGE [\coco-output-item-list |

CCR702 g¢oco-output-item is coco-expr
or coco-char-literal

Execution| of a coco MESSAGE directive,“makes the coco-output-item-list, if any, available in a
processor{dependent manner.

Note 7.1

Herg is an example ©fthe use of a coco message directive:

?? |IF (SYSTEM == DOS) THEN

OPEN(10, "C:\mydir\myfile.txt")
?7? |ELSETF (SYSTEM == UNIX) THEN

OPEN (10, "/mydir/myfile.txt")

?? ELSE
?? MESSAGE "system = ", SYSTEM
?? ENDIF

CCR703 coco-stop-directive is STOP

Execution of a coco STOP directive halts coco execution. At the time of execution of a coco STOP directive,
the fact that coco execution was halted by the execution of a coco STOP directive is available in a
processor-dependent manner.

15

https://iecnorm.com/api/?name=5337adfdff2071e85ac2a022c473e691

ISO/IEC 1539-3:1999(E)

Note 7.2

© ISO/IEC

An example of using the coco MESSAGE directive and the coco STOP directive for error
reporting is:

?? I

??

?? E
?7?

F (MACHINE==BIG) THEN
INTEGER :: CHIPS = 3
USE MODULE_FOR_BIG
LSEIF (MACHINE==SMALL) THEN
INTEGER :: CHIPS =1

?? E
?7?
??
??
?7?
?? E

USE MODULE_FOR_SMALL

LSE
MESSAGE "SET MACHINE TO EITHER BIG OR SMALL"
MESSAGE "MACHINE = ", MACHINE

MESSAGE "PREPROCESSING ERROR. HALTING! "
STOP ! FATAL ERROR. HALT COCO EXECUTION
NDIF

8 Scope and definition of coco variables

8.1 Scope

Coco variab

of coco variables

es have the scope of the coco programyin which they are declared.

8.2 Events that cause coco variablesto become defined

Coco variab

es become defined as follows:

(1) Execu

defined.

(2) Execufiion of a coco-initialization for a coco variable in a coco type declaration directive cay
to become defined, unless already defined by the SET file (clause 9).

variab

16

ion of a coco assignment directive causes the coco variable that precedes the equals to |

pecome

ses the

https://iecnorm.com/api/?name=5337adfdff2071e85ac2a022c473e691

