INTERNATIONAL ISO/IEC
STANDARD 13816

First edition
1997-05-01

I m—

Information technology — Programming

languages, their environments and|system
software interfaces — Programming
language ISLISP

Technologies de l'information — Langages de programmation| leurs
environnements et inteffacés systéme — Langage de prograrhmation
ISLISP

1so|1EC
Ref b
N L4 |SO/|E§ 32368n1cg ?ggn;(g;

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

ISO/IEC 13816:1997(E)

Contents
1 $cope, Conventions and Compliance
1.1 Scope . . . o O
1.2 Normative References LN
1.3 Notation and Conventions G\ ..
14 Lexemes o 0 e e Oy
1.4.1 Separators.
142 Comments. i i m
1.5 Textual Representation0"7
1.6 Reserved Identifiers AN
1.7 Definitions O
1.8 ErrorsG NT
1.8.1 Classes of error specification Q", ...,
1.8.2 Pervasive Error Types ~%
1.9 Compliance of ISLispP Processors and Text . Y.
2 Classes
2.1 Metaclasses @
2.2 Predefined Classes %N
2.3 Standard Classes 8%
2.3.1 SlotsS .
2.3.2 Creating Instances of Glasses
3 $cope and Extent
3.1 The Lexical Principlé .~ o .
3.2 Scope of Identifiers”,
3.3 Some Specific Secope Rules
4 Extent . . N e e e
4 Forms and.Evaluation
1.1 Forms< e
1.2 Function Application Forms
1.3, (Special Forms
14 < Defining Forms
5 Macro Forms« ..«
4.6 The Evaluation Model
4.7 Functions e e
4.8 Defining Operators
© ISO/IEC 1997

O L L O OO UL U = e

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any
means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

ISO/IEC Copyright Office ¢ Case postale 56 * CH-1211 Genéve 20 ° Switzerland

Printed in Switzerland

il

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

© ISO/TIEC ISO/IEC 13816:1997(E)
5 Predicates 26
5.1 Boolean Values, 26
5.2 Class Predicates, 26
5.3 Equality 26
5.4 Logical Connectives, 29

6 Control Structure 30
6.1 Constants L, 30
6.2 Variables 31
6.3 Dynamic Variables .. 35
6.4 Conditional Expressions"A .. 36
6.5 Sequencing Forms 00, .. 38
6.6 Tteration INT .. 39
6.7 Non-Local Exits20"... . .. 40
6.7.1 Establishing and Invoking Non-Local Exits O 40

6.7.2 Assuring Data Consistency during Non-Local Exits . . N~ 44

7 Objects 45
7.1 Defining Classes /~A\ 45
7.1.1 Determining the Class Precedence List . . . Ca7". 48

7.1.2 Accessing Slots LGN L .. 48

7.1.3 Inheritance of Slots and Slot Options ... %2 49

7.2 Generic Functions oS .. 49
7.2.1 Defining Generic Functions . . . <)Y 50

7.2.2 Defining Methods for Generic Functions 51

7.2.2.1 Agreement on Paramieter Specializers and Qualifiers 53

7.2.2.2 Congruent Lambda~Lists for all Methods of a Generic Function[. . 53

7.2.3 Inheritance of Methods \ ™~ b3

7.3 Calling Generic Functions ...z 53
7.3.1 Selecting the Applicable Methods b4

7.3.2 Sorting the Applicable Methods b4

7.3.3 Applying Méthods bb

7.3.3.1 _Simple Method Combination 55

7.3.3.2, “Standard Method Combination bb

7.3.4 Calling More General Methods 56

7.4 Object Creation and Initialization 57
7.4.1 (Inmitialize-Object 08

7.5 ClasssEnquiryo L .. 99

8 Malcros 60
9/ ‘Declarations and Coercions 61
T0 Symbol class 63
10.1 Symbol Names e 63
10.1.1 Notation for Symbols 64

10.1.2 Alphabetic Case in Symbol Names 64

10.1.3 niland (), 65

10.2 Symbol Properties 65
10.3 Unnamed Symbolso 66

11 Number class 67
11.1 Number class 67
11.2 Float class e 76
113 Integer class 78

iii

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

ISO/IEC 13816:1997(E) © ISO/EC
12 Character class 81
13 List class 83
13.1 Cons 83
13.2 Null class 85
13.3 List operations 86
14 Arrays 90
14.1 Array Classes« o o v i 90
14.2 General Arrays 91
14.3| Array Operations 91
15 Vectors 94
16 String class 95
17 Seql[l‘ence Functions 98
18 Stream class 101
18.1] Streams to Files AN 102
18.2] Other Streams CaT 104

19 Input and Output 105
19.1) Argument Conventions for Input Functions 105
19.2) Character I/O L L OV 106
19.3 Binary I/O NN 110

20 Filgs 111
21 Condition System 113
21.1 Conditions«@. ... 113
21.2 Signaling and Handling Conditions™ 114
21.2.1 Operations relating to Condition Signaling 114

21.2.2 Operations relating to,Condition Handling 115

21.3 Data associated with Conidition Classes 116
21.3.1 Arithmetic Errors™ 116

21.3.2 Domain Errers: 117

21.3.3 Parse Errors 117

21.3.4 Simple Errors L 117

21.3.5 Stream Errors.o 118

21.3.6 Uudefined Entity Errors 118

21.4 Error-Identification 118
22 Migcellaneous 120
Index 122

v

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

© ISO/IEC ISO/IEC 13816:1997(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International

Electrotechnical Commission) form the specialized system for worldwide standardizatiox].

National bodies that are members of ISO or IEC participate in the developmentiof Inter
Standards through technical committees established by the respective organjzation to de
particular fields of technical activity. ISO and IEC technical committees collaborate in fi
mutual interest. Other international organizations, governmental andnon-governmental
liaison with ISO and IEC, also take part in the work.

In the field of information technology, ISO and IEC have established a joint technical
committee, ISO/IEC JTC 1. Draft International Standards‘adopted by the joint technical

hational
h] with
elds of
in

committee are circulated to national bodies for voting. Publication as an International Standard

requires approval by at least 75 % of the national bodi¢€s casting a vote.

International Standard ISO/IEC 13816 was prepared by Joint Technical Committee
ISO/IEC JTC 1, Information technology, Subcommittee SC 22, Programming languages,
environments and system software interfages.

their

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

ISO/IEC 13816:1997(E) © ISO/IEC

Introduction

The programming language ISLISP is a member of the Lisp family. It is the result of
standaidization efforts by ISO/IEC JTC 1/SC 22/WG 16.

The following factors influenced the establishment of design goals for ISLisp:

1. Al desire of the international LisP community to standardize on those features of LisP upon
which there is widespread agreement.

2. Tlhe existence of the incompatible dialects CommMoN-Lisp, EULISE, \LB-LisP, and SCHEME
(nentioned in alphabetical order).

3. Al desire to affirm LisP as an industrial language.

This lefl to the following design goals for ISLisp:

$LispP shall be compatible with existing Lisp{dialects where feasible.

—
—

I$Lisp shall have as a primary goal to provide basic functionality.

—

$L1sp shall be object-oriented.

—

$L1sP shall be designed with, exténsibility in mind.

—

bL1sP shall give priority tosndustrial needs over academic needs.

> oA w N

I$LisP shall promote-efficient implementations and applications.

ISO/IEC JTC 1/SC:22/WG 16 wishes to thank the many specialists who contributed to this
Interngtional Standard.

vi

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

INTERNATIONAL STANDARD © ISO/IEC ISO/IEC 13816:1997(E)

Information technology — Programming languages, their
environments and system software interfaces —
Programming language ISLISP

n
M

€ope

1. Positive Scope
This International Standard specifies syntax and semantics of the computer programming

language ISLisP by specifying requirements for a conforming ISLisg‘processor and a
conforming ISLISP text.

2. Negative Scope
This International Standard does not specify:
(a) the size or complexity of an ISLISP text that exceeds the capacity of any sp¢cific data

processing system or the capacity of a particilar processor, nor the actions fto be
taken when the corresponding limits are-éxceeded;

(b) the minimal requirements of a data pfocessing system that is capable of supporting an
implementation of a processor for ISLisP;

(c¢) the method of preparation of an ISLIsP text for execution and the method o¢f
activation of this ISLisp texty(prepared for execution;

(d) the typographical presentagion of an ISLisP text published for human readipg.

(e) extensions that might or might not be provided by the implementation.

1.2 Normative(References

The following §tandards contain provisions which, through reference in this text, consfitute
provisions of\this International Standard. At the time of publication, the editions indicated were
valid. Allistandards are subject to revision, and parties to agreements based on this
International Standard are encouraged to investigate the possibility of applying the mpst recent
editions of the standards indicated below. Members of IEC and ISO maintain registers of
durrently valid International Standards.

o ISO/IEC TR 10034: 1990, Guidelines for the preparation of conformity clauses in
programming language standards.

o IEEE standard 754-1985. IEEE standard for Binary floating point arithmetic. IEEE, New
York, 1985.
1.3 Notation and Conventions

For a clear definition of, and a distinction between, syntactic and semantic concepts, several
levels of description abstraction are used in the following.

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

ISO/IEC 13816:1997(E) © ISO/IEC

There is a correspondence from ISLISP textual units to their ISLisP data structure
representations. Throughout this International Standard the text and the corresponding ISLisp
objects (data structures) are addressed simultaneously. ISLIsP text can be seen as an external
specification of ISLisp data structures. To distinguish between the two representations different
concepts are used. When textual representation is discussed, textual elements (such as
identifiers, literals, and compound forms) are used; when ISLISP objects are discussed, objects

(such as symbols and lists) are used.

The constituents of ISLIsP text are called forms. A form can be an identifier, a literal, or a

compo d £ A omidform con ba o fomodoom ammlangdsom fompn o an g ome £op emonoal
p Un JUI nme. I’y l,uuv‘.lvurww Jvl LLLD =22 - T J T CUT O WP P CWUTOIU JUT Uy o v CT U J U vy & utl\zvvwn

form, or al defining form.

An identifier is represented by a symbol. A compound form is represented by a non-null list. A
literal repfesents neither a symbol nor a list, and so is neither an ¢dentifier nor a compound-form;
for examplie, a number is a literal.

An object|is prepared for execution; this might include transformation or corapilation,
including jmacro expansion. The method of preparation for execution and its,xesult are not
defined in|this International Standard (with exception of the violations to beydetected). After
successful| preparation for execution the result is ready for execution. The combination of
preparatign for execution and subsequent execution implements ISLisP%s evaluation model.
The term|“evaluation” is used because ISLISP is an expression language—each form has a value
which is ysed to compute the value of the containing form. The(résults obtained when an entity
is prepared for execution are designated throughout this International Standard by the
construction “prepared entity”; e.g., “prepared form,” “prepared special form.”

Example:[A “cond special form” becomes a “preparéd ‘cond” by preparation for execution.

In the exdgmples, the metasymbol “=" designates’the result of an actual evaluation. For example:
(+34) =7

The metasymbol “—” identifies.the class that results from the evaluation of a form having a
given patfern. For example;

(+ 4 13) — <uinteger>

Given a fprm pattern (usually defined by its constant parts, the function name or special
operator)|, < relates it to the class to which the result of the evaluation of all matching forms

belong,.
Form patterns or forms which are equivalent are related by =.

The following notational conventions for form patterns are used:

(f-name argument*) — result-class f kind

In this notation, words written in italics are non-terminal (pattern variables). f-name is always
terminal: Specific function names, special operators, defining form names, or generic function
names are always presented.

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

© ISO/IEC ISO/IEC 13816:1997(E)

An underlined term (like the name in a defining form) in this notation, indicates an expression
that is not evaluated. If a form might or might not be evaluated (like one of the then-form or
else-form in an if), this is indicated explicitly in the text.

Class names are uniformly denoted as follows: <class-name>. For example, <list> is the name
of a class; this is usually spoken aloud as “list class.”

Notes, appearing as Note: note-text, in this International Standard have no effect on the
language. They are for better understanding by the human reader.

Regarding the pattern variables and the extensions of above, the following conventions'afe also
adopted:

termt™ denotes one or more occurrences of term;
term* denotes zero or more occurrences of term;

[term] denotes at most one occurrence of term,.édmmonly one says that term
is optional;

{term; termy ...} denotes grouping of terms.

term; | termg | ... denotes grouping of alternative terms.

The following naming conventions are used to denote forms whose values obey the respeqtive

class restrictions:

array, arrayy, ...array;, . .; <basic-array>
COMS, CONSy, ...CONS;, ™ .. <cons>
list, listy, ~Clisty, ... <list>
obj, obji) . ..obj;, ... <object>

sequence, SeqUENCEry " . . SEqUENCE;, . . . <basic-vector> or <list> (see §17)
stream,\stream;, ...stream;, ... <stream>
string, stringy, ...string;, ... <string>
char, chary, ... charj, ... <character>
Junction, functiony, ...function;, ... <function>
class, classy, ... class;, ... <class>
symbol, symboly, ... symbol;, ... <symbol>
T, T, ...Zj, ... <number>
2y 21y ey e <integer>

In this International Standard the conventions detailed below are used, except where noted:

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

ISO/IEC 13816:1997(E) © ISO/IEC

.y o A3 an ot re Ul A ~lanas Fram ads e o [-
-p Plcdu,a ca—buxul:buuco uaucu buulcau fuu\,uuua “uaua,uy uavc naiies tlldt Cll(.l 111 a -p

Usually every class <name> has a characteristic function, whose name is built as name-p if
name is hyphenated (generic~function-p), or namep if name is not hyphenated
(symbolp). Note that not all functions whose names end with “p” are predicates.

create~ Usually a built-in class <name> has a constructor function, which is called create-name.
def This is used as the prefix of the defining operators.

set— Within this International Standard, any functions named set-name are writers for a place,
fOr‘W‘lﬁtl‘l_&rETmSpuudius u:a\lcn. llcullCL‘l Tanme.

For any| kind of entity in the language, the phrase “entity-kind name” refers to the entity,of kind
entity-kind denoted by name. For example, the phrases “function name,” “constant nawe,” or

”» m tant 1 4 +
“class fame” respectively mean the function, constant, or class denot

1.4 Lexemes

An ISLIsP text is built up from lexemes. Lexemes are built up fromeat\least the following
characters (see §12):

ABCDEFGHIJKLMNOPQRSTUVWIXYZ
abcdefghijklmnopgrstuywwxyz
0123456789+ -<>/*x&=.2_18%:e[]1"~{} " #

Additignal characters are implementation defined.

The following characters are individual lexemes (see §13.1 and §8):

The following character tuples (where n is a sequence of digits) are individual lexemes (see §4.7,
§8, and|§14.1):

#P #(,Q(#B #b #0 #o #X #x #na #nA

The textual representations of symbols (see §10), numbers (see §11), characters (see §12), and

strings Ksee—§16)-arelexemes-

\ (single escape) and | (multiple escape) are special characters. They may occur in some
lexemes (identifiers and string literals).

Other lexemes are separated by delimiters. Delimiters are separators along with the following
characters:

The effect of delimiting is disestablished inside a string (see §16) or inside a corresponding pair
of multiple escape characters (see §10) or for the character immediately following #\.

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

© ISO/IEC

ISO/IEC 13816:1997(E)

1.4.1 Separators

Separators are as follows: blank, comments, newline, and an implementation-defined set of

characters, (e.g., tabs). Separators have no meaning and can be replaced by each other without
changing the meaning of the ISLisp text.

1.4.2 Comments

be nested.

Being a separator, a comment cannot occur inside a lexeme.

1.5 Textual Representation

The character semicolon (3) is the comment begin character. That is, the semicolon pnd all the
characters up to and including the end-of-line form a comment.

A character sequence beginning with #| and ending with |# is a comment.»Suth comrments may

The textual representation of an object is machine-itidependent. The following are sorhe of the
textual representations of the ISLisp objects. THis répresentation is readable by the read
function. Lexemes are described in §1.4

Null The object nil is the only object‘whose class is <null>. Upon input, it may be [written as
nil or (). It is implementation defined whether nil prints as nil or ().

List Proper lists are those lists terminated by nil. Usually they are denoted as (objy objo
...0bjn). A dotted list"(i’e., a list whose last tail is not nil) appears as (obj; objz ...obJ,
0bjn41).

Chlaracter An instance of the <character> class is represented by #\?, where “?” is the chjaracter in

Cons A cohs-is expressed as (car . cdr), where the car and cdr are objects.

question. There are two special standard characters that are not represented in this way,
namely Wewhne and space, whose representations are #\newline and #\space, r¢spectively.

Integer/An integer (radix 10) is represented as a sequence of digits optionally preceded by a + or -
sign. If the number is represented in binary radix (or in octal or hexadecimal) then the
textual representation is preceded by #b (or #o or #x, respectively).

1 n Al Vi e 1 . e . £ 41 L£.11 . L &
r10at A 1104y POIIL IMTUIIDCl 15 WIILLCIL IHULIC UL LT TOHUWILLE 10OLIats.

[s]dd ..
[s]dd ..
[s]dd ..
[sldd ..
[s]dd ..

d.dd...d
.d.dd...dE[s]dd...d
.d.dd...de[sldd...d
.dE[s]dd .. .d
.de[s]dd .. .d

where s is either “+” or “-=” and d is one of “0”-“9”. For example: 987.12 +12.5E-13,
-1.5E12, 1E32%.

1This number, although belonging to the set of natural numbers, usually is considered as only a floating point
number because of its representation.

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

ISO/IEC 13816:1997(E) © ISO/IEC

Vector

Array

String

Symbol

A vector of class <general-vector> is written as #(obj; ...obj,).

An array of class <general-array#*> or <general-vector> can be written on input as #na
(where n is an integer indicating the number of dimensions of the array) followed by a
nested structure of sequences denoting the contents of the array. This structure is defined
as follows. If n = 1 the structure is simply (obj; ... 0bj,). If n > 1 and the dimensions
are n; mg ..., the structure is (stry ... stry,), where the str; are the structures of the n;
subarrays, each of which has dimensions (ny ...). As an example, the representation of
(create-array ’(2 3 4) 5) is as follows:

#3a(((6 5 5 5) (5555) (6656556)) ((65655) (6555) (56565 85))).

On gutput (see format), arrays of class <general-vector> will be printed using #(. . .)
notation.

A string is represented by the sequence of its characters enclosed in a pair of "’s. Eor
exampple: "abc"”. Special characters are preceded with a backslash as an escape character.

A named symbol is represented by its print name. Vertical bars (1) might need*to enclose
the $ymbol if it contains certain special characters; see §10. The notation;, if-any, used for
unnpmed symbols is implementation defined.

There are{objects which do not have a textual representation, such as-a, class or an instance of
the <fundtion> class.

1.6

Reserved Identifiers

Symbols whose names contain a colon (:) or an ampersand (&) are reserved and may not be
used as identifiers. Symbols whose names start with colon (:) are called keywords.

1.7

Definitions

For the purposes of this International Standard, the following definitions apply:

1.7.1
1.7.2

1.7.3
1.74

1.7.5

abdtract class: A _class that by definition has no direct instances.

actjvation: Cemputation of a function. Every activation has an activation point, an
activation périod, and an activation end. The activator, which is a function application
forth prepared for execution, starts the activation at the activation point.

acaessor: Association of a reader and a writer for a slot of an instance.

binding: Binding has both a syntactic and a semantic aspect.

Syntactically, “binding” describes the relation between an identifier and a binding ISLisp
form. The property of being bound can be checked textually by relating defining and
applied identifier occurrences.

Semantically, “binding” describes the relation between a variable, its denoting identifier,
and an object (or, the relation between a variable and a location). This relation might be
imagined to be materialized in some entity, the binding. Such a binding entity is
constructed at run time and destroyed later, or might have indefinite extent.

class: Object, that determines the structure and behavior of a set of other objects, called
its instances. The behavior is the set of operations that can be performed on an instance.

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

© ISO/IEC ISO/IEC 13816:1997(E)

1.7.6

1.7.7

1.7.8

1.7.9

condition: An object that represents a situation that has been (or might be) detected by
a running program.

definition point: An identifier represents an ISLISP object starting with its definition
point, which is a textual point of an ISLisp text.

direct instance: Every ISLIsP object is direct instance of exactly one class, which is called
“its class”. The set of all direct instances together with their behavior constitute a class.

dynamic: Having an effect that is determined only through program execution and that
cannot_in general he determined statically

1.7.10

711

7.12
7.13

[.7.14

|.7.15

|.7.16

1.7.17

1.7.18

1.7.19

dynamic variable: A variable whose associated binding is determined by the@nos
recently executed active block that established it, rather than statically by a.lexically
apparent block according to the lexical principle.

=

evaluation: Computation of a form prepared for execution which resulfs in a valuq and/or
a side effect.

execution: A sequence of (sometimes nested) activations.

extension: An implementation-defined modification to the tequirements of this
International Standard that does not invalidate any ISLisP text complying with thip
International Standard (except by prohibiting the usejof one or more particular spellings of
identifiers), does not alter the set of actions which/are required to signal errors, anq does

not alter the status of any feature designated/assimplementation dependent.

form: A single, syntactically valid unit of program text, capable of being prepared|for
execution.

function: An ISLIsP object that is called with arguments, performs a computation
(possibly having side-effects), and-returns a value.

generic function: Function whose application behavior is determined by the clasges of
the values of its arguments-and which consists — in general - of several methods.

identifier: A lexical)element (lexeme) which designates an ISLisp object. In the data
structure representation of ISLISP texts, identifiers are denoted by symbols.

immutablé binding: A binding is immutable if the relation between an identifier|and the
object represented by this identifier cannot be changed. It is a violation if there is pttempt
to change an immutable binding (error-id. immutable-binding).

immutable object: An object is immutable if it is not subject to change, either because
no operator is provided that is capable of effecting such change, or because some cgnstraint
exists which prohibits the use of an operator that might otherwise be capable of effecting
such a change. Except as explicitly indicated otherwise, a conforming processor is pot

1.7.20

1.7.21

1.7.22

required to detect attempts to modify immutable objects; the consequences are undefined
if an attempt is made to modify an immutable object.

implementation defined: A feature, possibly differing between different ISLisp
processors, but completely defined for every processor.

implementation dependent: A feature, possibly differing between different ISLisp
processors, but not necessarily defined for any particular processor.

Note: A conforming ISLISP text must not depend upon implementation-dependent features.
inheritance: Relation between a class and its superclass which maps structure and

behavior of the superclass onto the class. ISLISP supports a restricted form of multiple
inheritance; i.e., a class may have several superclasses at once.

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

ISO/IEC 13816:1997(E) © ISO/IEC

1.7.23

1.7.24
1.7.25
1.7.26

1.7.27

1.7.28

1.7.29

1.7.30

1.7.31

1.7.32
1.7.33

1.7.34

1.7.35

1.7.36

1.7.37

1.7.38

1.7.39
1.7.40

instance (of a class): Either a direct instance of a class or an instance of one of its
subclasses.

literal: An object whose representation occurs directly in a program as a constant value.
metaclass: A class whose instances are themselves classes.

method: Case of a generic function for a particular parameter profile, which defines the
class-specific behavior and operations of the generic function.

object: An object is anything that can be created, destroyed, manipulated, compared,
stpred, 1nput, or output by the ISLISP processor. In particular, functions are ISLISP objects.
Objects that can be passed as arguments to functions, can be returned as values, can be
bdund to variables, and can be part of structures, are called firsi-class objects.

operator: the first element of a compound form, which is either a reserved name that
identifies the form as a special form, or the name of a macro, or a lambda expression, or
else an identifier in the function namespace.

parameter profile: Parameter list of a method, where each formal parameter is
adcompanied by its class name. If a parameter is not accompanied by\ a class name, it
bglongs to the most general class.

place: Objects can be stored in places and retrieved later. Pldees are designated by forms
which are permitted as the first argument of setf. If used/this way an object is stored in
the place. If the form is not used as first argument of sétf the stored object is retrieved.
The cases are listed in the description of setf.

ppsition:

(p) argument position: Occurrence of a text uhit as an element in a form excluding the
first one.

~~

b) operator position: Occurrence of atéxt unit as the first element in a form.
process: The execution of an ISLISP“text prepared for execution.

Processor: A system or mechanism, that accepts an ISLIsP text (or an equivalent data
structure) as input, prepares.it for execution, and executes the result to produce values and
sifle effects.

program: An aggregation of expressions to be evaluated, the specific nature of which
d¢pends on context:” Within this International Standard, the term “program” is used only
in} an abstragt) way; there is no specific syntactic construct that delineates a program.

s¢ope: The-scope of an identifier is that textual part of a program where the meaning of
tHat identifier is defined; i.e., there exists an ISLisp object designated by this identifier.

sloti¥A named component of an instance which can be accessed using the slot accessors.

The structure of an instance is defined by the set of its slots.

text: A text that complies with the requirements of this International Standard (z.e., with
the syntax and static semantics of ISL1sP). An ISLISP text consists of a sequence of toplevel
forms.

toplevel form: Any form that either is not nested in any other form or is nested only in
progn forms.

toplevel scope: The scope in which a complete ISLISP text unit is processed.

writer: A method associated with a slot of a class, whose task is to bind a value with a
slot of an instance of that class.

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

© ISO/IEC ISO/IEC 13816:1997(E)
1.8 Errors

An error is a situation anqmg dunng execution in which the Processor i

u
correct execution according to the semantics defined in this International Standard. The act of
detecting and reporting such an error is called signaling the error.

unable to ontirﬂ e

7

A violation is a situation arising during preparation for execution in which the textual
requirements of this International Standard are not met. A violation shall be detected during

ion for avaents
1011 10T €Xecuiion.

1.8.1 Classes of error specification

The wording of error specification in this International Standard is as follows:

(a) “an error shall be signaled”

An implementation shall detect an error of this kind no-later than the completion|of
execution of the form having the error, but might detéct“them sooner (e.g., when phe code
is being prepared for execution).

Evaluation of the current expression shall stop~It is implementation defined whether the

nti 1tg deb + d it
CIivire 1u11111115 process exiis, a acougger is enverea U

within the process.

iq afarnad alaaehans
ID L1IAlIDITLICU CTIDTWILICIC

(b) “the consequences are undefined”

This means that the consequences_are unpredictable. The consequences may range¢ from
harmless to fatal. No conforming'ISLisp text may depend on the results or effects| A

conforming ISLIsP text must-treat the consequences as unpredictable. In places where

“must,” “must not,” or ‘thay not” are used, then this is equivalent to stating that| “the
consequences are undefined” if the stated requirement is not met and no specific
consequence is explicitly stated. An implementation is permitted to signal an errof in this
case.

For indexing and Cross-referencing convenience, errors in this International Standard haye an
associated .error identification label, notated by text such as “(error-id. sample).” The text of
these labels has no formal significance to ISLISP texts or processors; the actual class of gny
object‘which might be used by the implementation to represent the error and the text df any
error message that might be displayed is implementation dependent.

1.8.2 Pervasive Error Types

Most errors are described in detail in the contect in which they occur. Some error types are so
pervasive that their detailed descriptions are consolidated here rather than repeated in full detail
upon each occurrence.

1. Domain error: an error shall be signaled if the object given as argument of a standard
function for which a class restriction is in effect is not an instance of the class which is
required in the definition of the function (error-id. domain-error).

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

ISO/IEC 13816:1997(E) © ISO/IEC

2.

Arity error: an error shall be signaled if a function is activated with a number of
arguments which is different than the number of parameters as required in the function
definition (error-id. arity-error).

. Undefined entity error: an error shall be signaled if the entity denoted by an identifier does

not exist when a reference to that entity is made (error-id. undefined-entity). Two
commonly occuring examples of this type of error are undefined-function and
unbound-variable.

This list does not exhaust the space of error types. For a more complete list, see §21.4.

1.9

Compliance of ISLisP Processors and Text

An ISLigp processor complying with the requirements of this International Stapdard shall

(a) aqcept and implement all features of ISLisP specified in this International Standard.

(b) reject any text that contains any textual usage which this International Standard explicitly

ddfines to be a violation (see §1.8).

(c) b¢ accompanied by a document that provides the defiditions of all implementation-defined

feptures.

(d) b¢ accompanied by a document that separatelycdescribes any features accepted by the

processor that are not specified in this International Standard; these extensions shall be
dé¢scribed as being “extensions to ISLisp asspecified by ISO/IEC 13816:1997(E).”

A complying ISLisp text shall not rely ohlimplementation-dependent features. However, a
complying ISLisP text may rely on implementation-defined features required by this
Internagional Standard.

A complying ISLisp text shall\not attempt to create a lexical variable binding for any named
constant defined in this International Standard. It is a violation if any such attempt is made.

2

(lasses

In ISLigpdata types are covered by the class system. A class is an object that determines the
structure and behavior of a set of other objects, which are called its instances. Every ISLisp
object is an instance of a class. The behavior is the set of operations that can be performed on
an instance.

A class can inherit structure and behavior from other classes. A class whose definition refers to
other classes for the purpose of inheriting from them is said to be a subclass of each of those

classes. The classes that are designated for purposes of inheritance are said to be superclasses
of the inheriting class.

A class can be named by an identifier. For example, this identifier can be used as a parameter
specializer in method definitions. The class special form can be used to refer to access the class
object corresponding to its name.

10

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

© ISO/IEC ISO/IEC 13816:1997(E)

A class (' is a di

A class C; is a di
its definition, or if C; is defined by this International Standard to be a direct superclass of C5
(for example, by indenting C; under Cj in Figure 1). In this case C is a direct subclass of C;.
A class C, is a superclass of a class C; if there exists a series of classes Cs,...,Cp—1 such that
Cit1 is a direct superclass of C; for 1 < i < n. In this case, C; is a subclass of C,,. A class is
considered neither a superclass nor a subclass of itself. That is, if C; is a superclass of Cs, then
C1 # C3. The set of classes consisting of some given class C' along with all of its superclasses is
called “C and its superclasses.”

rect superclass of a class C; if C5 explicitly designates C; as a superclass in

1L 1.0 J o] Va RIS RPN 4] yal 441] il LLtC d
T @ USTI-UCIIIICU CIasSS T IIHOICITUS TIUTIT O WO LTAaSSUS,UT AU O, CIICTOIITy S U pPTTITTASSTS ™ 01T 1 an

Cs may have in common are <standard-object> or <object>. This allows a restricted form of

Every ISLISP object is a direct instance of exactly one class which is called “its” class.

An instance of a class is either a direct instance of that class or an instance of one of itjs
subclasses.

Classes are organized into a directed acyclic graph defined (by‘the subclass relation.|The
nodes are classes and there is an edge from C; to Cj iff Cy.is”direct subclass of C2. This graph is
called the inheritance graph. It has as root the class <object>, the only class with no superclass.
Therefore it is the superclass of every class except its¢lf. The class named <standard-gbject> is
an instance of the class <standard-class> and is & superclass of every class that is an|instance
of <standard-class> except itself.

Each class has a class precedence list, which is a total ordering on the set of the given class
and its superclasses. The total ordering is'e€xpressed as a list ordered from most specifif to least
specific. The class precedence list is uged in several ways. In general, more specific classes can
shadow, or override, features that Would otherwise be inherited from less specific classes. The
method selection and combination*process uses the class precedence list to order meth¢ds from
most specific to least specific.

2.1 Metaclasseés

Classes are réppesented by objects that are themselves instances of classes. The class of the class
of an objeetis termed the metaclass of that object. The term metaclass is used to refer to a
class that has instances that are themselves classes.

The'metaclass determines the form of inheritance used by the classes that are its instapces and
the representation of the instances of those classes.

The ISLisp Object System provides the following predefined metaclasses:

e The class <standard-class> is the default class of classes defined by defclass.

e The class <built-in-class> is the class whose instances are classes that have special
implementations or restricted capabilities. For example, 1t is not possible to define
subclasses of a built-in class.

11

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

ISO/IEC 13816:1997(E)

<object>
<basic-array>
<basic-array*>
<general-array*>

© ISO/IEC

<basic-vector>
<general-vector>
<string>
<bujlt-in-class>
<character>
<function>
<generic-function>
<standard-generic-function>
<ligt>
<cons>
<null> ;; Note: <null> also inherits from <symbol>
<number>
<float>
<integer>
<serious-condition>
<error>
<arithmetic-error>
<division-by-zero>
<floating-point-overflow>
<floating-point-underflow>
<control-error>
<parse—error>
<program-error>
<domain-error>
<undefinedsentity>
<unbound-variable>
<undefined-function>
<simpleserror>
<stream-error>
<end-of-stream>
<storage-exhausted>

<sthpndard-class>
<st nAg-.-A_Aij.-f-\

<stream>
<symbol>
<null> ;; Note: <null> also inherits from <list>

Subclasses appear indented under superclasses.

Figure 1. Class Inheritance

12

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

© ISO/IEC

2.2 Predefined Classes

ISO/IEC 13816:1997(E)

The following classes are primitive classes in the class system (i.e., predefined classes that are

not metaclasses):

<arithmetic-error>
<basic-array>

<floating-point-underflow>
<function>

<simple-error>
<standard-generic-function>

— <basic-arrayk> <general-arrayk>
<basic-vector> <general-vector>
<character> <generic-function>
<cons> <integer>
<control-error> <list>
<division-by-zero> <null>
<domain-error> <number>
<end-of-stream> <object>

<error>
<float>
<floating-point-overflow>

The classes <standard-class> and <built-in-class® are predefined metaclasses.

A user-defined class, defined by defclass, mustibhe implemented as an instance of
<standard-class>. A predefined class can béimplemented either as an instance of

<parse-error>
<program-error>
<serious-condition>

(qfnnﬂnrﬂ—nhj ect>
<storage-exhausted>
<stream>
<stream-error>
<string>
<symbol>
<unbound-variable>
<undefined-entity>
<undefined-functjon>

<standard-class> (as if defined by defcl&ss) or as an instance of <built-in-class>for as an

instance of <built-in-class>.

Figure 1 shows the required inheritance relationships among the classes defined by ISLigp. For

each pair of classes C; and Cs imythis figure, if Cy is linked directly by an arrow to Cs,

1 1s a

direct superclass of Cy (and\C>'is a direct subclass of C7). Additional relationships might exist,
subject to the following constraints:

1. It is implementation defined whether <standard-generic-function> is a subclass of the

class <standard-object>.

2. Exceptias described in Figure 1 and the above constraint on
<standard-generic-function>, no other subclass relationships exist among the
defined in this International Standard. However, additional implementation-specific
subclass relationships may exist between implementation-specific classes and classes

defined in this International Standard.

rlasses

3. The class precedence list for <null> observes the partial order <null>, <symbol>, <1list>,

<object>.

4. Users may define additional classes using defclass.

A built-in class is one whose instances have restricted capabilities or special representations. The
defclass defining form must not be used to define subclasses of a built-in class. An error shall
be signaled if create is called to create an instance of a built-in class.

A standard class is an instance of <standard-class>, and a built-in class is an instance of

<built-in-class>.

13

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

ISO/IEC 13816:1997(E) © ISO/IEC

A standard class defined with no direct superclasses is guaranteed to be disjoint from all of the
classes in the figure, except for the classes named <standard-object> and <object>.

The class <function> is the class of all functions. The class <standard-generic-function> is
the default class of all generic functions.

2.8 Standard Classes

2.3.1 $lots

An objedt that has <standard-class> as its metaclass has zero or more named slots. The slots
of an object are determined by the class of the object. Each slot can hold one object ashits’value.
The nanfe of a slot is an identifier.

When a klot does not have a value, the slot is said to be unbound. The consequences are
undefinefl if an attempt is made to retrieve the value of an unbound slot.

Storing 4nd retrieving the value of a slot is done by generic functions defined by the defclass
defining [form.

All slots|are local; i.¢., there are no shared slots accessible by several instances.

A class is said to define a slot with a given name when the’defclass defining form for that
class cortains a slot specifier with that name. Defining asslot does not immediately create a slot;
it causeq a slot to be created each time an instance-ofithe class is created.

A slot id said to be accessible in an instance, of @ class if the slot is defined by the class of the
instance|or is inherited from a superclass of that class. At most one slot of a given name can be
accessible in an instance. A detailed explahation of the inheritance of slots is given in the section

§7.1.3.

2.3.2 [Creating Instances ‘of Classes

The genkric function cxeate creates and returns a new instance of a class. ISLIsP provides
several mechanismsfor specifying how a new instance is to be initialized. For example, it is
possible|to specify the initial values for slots in newly created instances by providing default
initial vilues, Further initialization activities can be performed by methods written for generic
functionls that/are part of the initialization protocol.

3 Scope and Extent

In describing ISLisp, the notions of scope and extent are useful. The first is a syntactic concept,
the latter is a semantic concept. Although syntactic constructs, especially identifiers, are used to
refer to runtime entities (i.e., objects arising during execution), a single entity cannot have both
scope and extent. Scope is a feature of an identifier, referring to that textual part of an ISLisp
text (see §1.3) within which this identifier occurs with unique meaning. Eztent refers to the
interval of execution time during which a certain object exists.

14

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

© ISO/IEC ISO/IEC 13816:1997(E)

A namespace is a mapping from identifiers to meanings. In ISLisP there are six namespaces:
variable, dynamic variable, function, class, block, and tagbody tag. It is therefore possible for a
single identifier to have any or all of these six meanings, depending on the context. For example,
an identifier’s meaning is determined by the function namespace when the identifier appears in
the operator position of a function application form, whereas the same identifier’s meaning is
determined by the variable namespace if it appears in an argument position in the same form.

3.1 The Lexical Principle

ISLisp is designed following the principle of lexical visibility. This principle states that an

ISLisP text must be structured in properly nested lexical blocks of visibility. Within a hlock, all
defined identifiers of that block and of all enclosing outer blocks are visible. Each 1dentifier in a
namespace has the meaning determined by the innermost block that defines 1t.

ISLisp also supports a form of dynamic binding. Dynamic bindings. are established and
accessed by a separate mechanism (.., defdynamic, dynamic-let,and dynamic). Theldynamic
value associated with such an identifier is the one that was established by the most recently

executed active block that established it, where an active bloek/is one that has been egtablished
and not yet disestablished. Because a separate mechanism is\used, the lexical meaning gf and the

dynamic value associated with an identifier are simultaneously accessible wherever both| are
defined.

3.2 Scope of Identifiers

The scope of an identifier is that partof an ISLISP text where the meaning of the identifier is
defined. It starts textually with thedefinition point—a point that is specified individuaflly for
each form that establishes an identifier. Only identifiers can have a scope.

For each namespace, if an identifier has scope s, and an identical identifier (in the same
namespace) has nested(Scope sy, then the scope sp of the inner identifier and every scoge
contained in it are not part of the scope s,. It is said that the inner scope shadows thg outer
scope.

Each complete-JSLisp text unit is processed in a scope called the toplevel scope.

In each-tfamespace, nested binding forms shadow outer binding forms and defining forms.

3’3 Some Specific Scope Rules

The toplevel scope is the scope of identifiers of required built-in functions, required built-in
macros, and constants.

Reserved identifiers are not subject to the lexical principle, because they are not identifiers.
They cannot be defined or bound. See §1.6.

15

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

ISO/IEC 13816:1997(E) © ISO/IEC

(let ((al f-al)

(x £-x)

(z1 £-z1))
; now al...x...z1are applicable, their scope begins here
(let ((a2 f-a2) ; al...x...z1 might be defined newly, but:
... ; the outer al...x...z1 are still usable
(x £-x2) ; the inner a2...x...22 are not yet usable
(z2 £-2z2)) ; the scope of the outer x becomes shadowed
; the scope for the inner a2...x...z2 starts
; now outer al, z1 and inner a2...x...z2 are applicable
) ; scopes of a2...x...z2end here
; scope of outer x becomes unshadowed
) ; scopes of al...x...z1 end here
Figure 2. Scope Example
3.4 Bxtent
Complementary to scope which is a syntactic concepts, extefat i$ a semantic concept: It

describes|

Objects
object er
to it is n
object is

In other
of such ¢
activatio)

During ¢
activatio|

b
f
f
1

t
the lifetime of entities.

hre created at some time during execution. In‘anost cases, it is undetermined when an
ds its existence: its lifetime begins when the'object is created and ends when reference
b longer possible (and the object is subject to garbage collection). In this case the
said to have indefinite extent.

cases the processor creates entities that are associated with prepared text. The lifetime
bjects begins at the activation’point of a defining construct and ends at the end of
h; in this case the object is said to have dynamic extent.

kecution, defining formis and the following binding forms create bindings at their
h points:

Lock Yet* with-open-output-file
et tagbody with-standard-input

DT with-error-output with-standard-output
hbels with-open-input-file

let with-open-io-file

The bindings established by defining forms may have indefinite extent. Even in local binding
constructs, bindings might not vanish upon activation end of the prepared block—if one or more

function

objects are created during execution of the prepared block that contain references to

those bindings, the bindings will have a lifetime equal to the longest lifetime of those function

objects.

Example

(defun copy-cell (x) (coms (car x) (cdr x)))

16

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

© ISO/IEC ISO/IEC 13816:1997(E)

identifier x is the body alo

he ne—i.c., {(cons (car x) (cdr x)). The
meaning of x is defined for the entire body. x, as identifier, cannot have an extent.
The defun form for copy-cell is prepared for execution and thereby copy-cell
becomes a prepared function. During execution the prepared function copy-cell
might be activated. Activation in this case results in the creation of a binding
between the variable denoted by x and the object which is used as argument. The
binding of x is an entity whose extent lasts from the activation point to the activation
end of the function. (In general the extent of a binding can last beyond the activation

end, but this does not occur in this simple case.) We say that the binding of x is

established upon activation of the function and is disestablished at activation dnd.

S

4.1 Forms

Execution presupposes successful preparation for execution of-an ISLisp text subject to fthe
evaluation model. Execution is an activation of a prepared;text form that results in a value and
perhaps in some side effects.

An ISLisP text is a sequence of forms.
Throughout this International Standard theyyalue a form returns is described, but in geperal a
form might not return if one of its subforms executes a non-local exit (see §6.7.1). Thergfore, it
should be understood that all such deseriptions implicitly include the provision that if #he form

returns, a particular value is returried-

The following are valid forms 1n-TSLIsP:

e Compound forms

Speciakforms

Defining forms

Function application forms

Macro forms

o Identifiers

F 1
@ LILClIdIS

A form, when evaluated, returns an object as its value, though some forms may not return (e.g.,
return-from).

A compound form is written as (operator argument*). The operator must be a special operator,
or an identifier, or a lambda expression. The identifier names a function, or a generic function.
It is a violation if operator is a literal.

A toplevel form is a form that is either not lexically nested within another form or is lexically

nested only within one or more progn forms. Special forms and function application forms at
toplevel are called set-up forms. It is a violation if a defining form is not a toplevel form.

17

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

ISO/IEC 13816:1997(E) © ISO/IEC

4.2 Function Application Forms

A function application form is a compound form whose operator is an identifier (naming a
function) or whose operator is a lambda expression. All of the arguments are evaluated, from left
to right, and the function is called with (or “applied to”) arguments that are, in the same order,
the objects resulting from these evaluations. This International Standard describes a function
application form in the following format:

(functiof-name argument*) — result-class function

This desfribes an ordinary function.

(generid-function-name argument®) — result-class generic function

This describes a generic function.

(local-fnction-name argument*) — result-class local function

This dedcribes an ordinary function that is available only.in a specified lexical scope.

4.3

i a)

ppecial Forms

A special form is a form whose argumehts are treated in a special way; for example, arguments
are not pvaluated or are evaluated in @;special order. It is implementation defined whether any
special form is implemented as a mmacro (see §4.5 and §8). Special forms are recognized because
they haye a special operator in their operator position. The following are special operators:

gnd dynamic-let or while

gdssure flet progn with-error-output

Block for quote with-handler

¢ase function return-from with-open-input-file
¢asefusing go setf with-open-io-file
atch if setq with-open-output-file
Iass Tabels tagbody with—standard—input
cond lambda the with-standard-output
convert let throw

dynamic let* unwind-protect

There might be additional, implementation-defined special operators.

This International Standard describes the evaluation of special forms in the following format:

(special-operator argument*) — result-class special operator

18

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

© ISO/IEC ISO/IEC 13816:1997(E)

A A MNa nn‘ .E,‘nv-mc

b T 4 ucu.u. 15 A VUL1I11O

A defining form is a toplevel special form (see §4.3) that establishes a binding between name
nd an object which is the result of handling the arguments according to the semantics implied

by defining-form-name; it is a violation if a defining form is not a toplevel form. For each
namespace, defining forms can occur at most once for the same name and, in case of method
definitions for the same parameter profile. A defining form is a compound form whose operator
is a defining operator. These are the defining operators:

defclass defdynamic defglobal defmethod
defconstant defgeneric defmacro defun

This International Standard describes defining forms in the following format:

(defining-form-name name argument*) — <symbol> defining pperator

4.5 Macro Forms

Macro forms are expanded during preparationfor execution. It is implementation defined
whether any operator described by this International Standard as a macro is implemented as a
special operator (see §4.3).

For information on how macros are(processed, see §8.

4.6 The Evaluation Model

This section provides an operational model of the process of evaluation.

The process &f evaluation has two steps: A valid ISLISP text is first prepared for execufion, and
then the preépared text is executed. Both the process of preparing the text for executiop and the
properties-of a prepared text are implementation dependent, except that all macros haye been
expanded in the prepared text (see §8). The process of execution which follows is desciibed in
terms of fully macroexpanded forms.

LA prepared form is executed as follows:

1. If the form is a literal, the result is the form itself.

2. If the form is an identifier, the result is the object denoted by the identifier in the variable
namespace of the current lexical environment. An error shall be signaled if no binding has

been established for the identifier in the variable namespace of current lexical environment
(see §1.8.2) (error-id. unbound-variable).

3. If the form is a compound form, then one of the following cases must apply:

(a) If the operator is a special operator, then the form is a special form and its arguments
are evaluated according to the definition of the special operator. For example, if first

19

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

ISO/IEC 13816:1997(E) © ISO/IEC

evaluates its condition expression and, depending on the result obtained, it then
evaluates the “then” form or the “else” form.

(b) If the operator names a defining form, then the first argument is an identifier. The

remaining arguments are handled according to the specification of the defining form
and the resulting object is used to establish a binding between the identifier and that
object in the appropriate namespace.

(c) If the operator is a lambda-expression, then the arguments are evaluated. The order

(d

of evaluation of the arguments is sequentially from left to right. Then the function

denoted D ne ampda-expre On DVOKed D ne e aled

parameters. The result is the value returned by the function, if it returns.
Example:

((lambda (x) (+ x x)) 4) = 8

Otherwise, the compound form is a function application form. The operator position
of the form is an identifier; it will be evaluated in the function nantespace to produce
a function to be called. An error shall be signaled if no binding has been established
for the identifier in the function namespace of the current lexicalenvironment (see
§1.8.2) (error-id. undefined-function). The arguments are evaltated in order from left
to right, yielding objects (sometimes called “actual argunients”) to which the function
will be applied. Then the function is invoked with the évaluated arguments as actual
parameters. The result is the value returned by théfunction, if it returns.

4. Otherwise, an error shall be signaled (error-id. undefined-function).

See §1.8.

cases.

P for descriptions of error situations thatvmight occur during execution of the above

4.7 Functions
A functipn can receive some.objects as arguments upon activation. If a function returns, it
returns|an object as its value. A function binding can be established in one of the following
ways:
o by|using funiction defining forms; i.e., the defun, defgeneric, and defclass defining forms
e by|using labels and flet special forms
(functionp o0bj) — boolean function

Returns t if 0bj is a (normal or generic) function; otherwise, returns nil. obj may be any ISLisp

object.

Example

20

(functionp (function car)) =t

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

© ISO/IEC ISO/IEC 13816:1997(E)

Function bindings are entities established during execution of a prepared labels or flet forms
or by a function-defining form. A function binding is an association between an identifier,
function-name, and a function object that is denoted by function-name—if in operator
position—or by (function function-name) elsewhere.

(function function-name) — <function> special operator
#’ function-name — <function> syntax

"This special torm denotes a reterence to the tunction named by the i1dentifier function-npme.
This special form is used to refer to identifiers defined by function-defining forms, l@abels, or
flet which are not in operator position.

(function function-name) can be written as #° function-name.
It returns the function object named by function-name.

An error shall be signaled if no binding has been established for thé-identifier in the funiction
namespace of current lexical environment (see §1.8.2) (error-id\ undefined-function). The

consequences are undefined if the function-name names a macro or special form.

Example:

(funcall (function -) 3) = -3
(apply #’- ’(4 3)) =1
(lambda lambda-list form*) <$Xfunction> special gperator

Where:

lambda-list ::& ;(identifier* [&rest identifier]) |
(identifier* [:rest identifier])

andswhere no identifier may appear more than once in lambda-list.

Execution of the 1ambda special form creates a function object.

The scope of the identifiers of the lambda-list is the sequence of forms form*, collectively referred
to as the body.

When the prepared function is activated later (even if transported as object to some other
activation) with some arguments, the body of the function is evaluated as if it was at the same
textual position where the lambda special form is located, but in a context where the lambda
variables are bound in the variable namespace with the values of the corresponding arguments.
A &rest or :rest variable, if any, is bound to the list of the values of the remaining arguments.
An error shall be signaled if the number of arguments received is incompatible with the specified
lambda-list (error-id. arity-error).

21

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

ISO/IEC 13816:1997(E) © ISO/IEC

Once the lambda variables have been bound, the body is executed. If the body is empty, nil is
returned otherwise the result of the evaluation of the last form of body is returned if the body
was not left by a non-local exit (see §6.7.1).

If the function receives a &rest or :rest parameter R, the list L; to which that parameter is
bound has indefinite extent. L; is newly allocated unless the function was called with apply and
R corresponds to the final argument, Ly, to that call to apply (or some subtail of L), in which
case it is implementation defined whether L; shares structure with Ly.

Example -

((lambda (x y) (+ (* x x) (x y y))) 3 4)
= 25

((lambda (x y &rest z) z) 3 4 5 6)
= (5 6)

((lambda (x y :rest z) z) 3 4 5 6)
= (5 6)

(funcall (lambda (x y) (- y (* x¥))) 7 3)
= -18

(1abels| ((function-name lambda-list form*)*) body-forms¥) — <object> special operator
(flet ([(function-name lambda-list form*)*) body-forms¥) — <object> special operator

The fleft and labels special forms allow the definition of new identifiers in the function
namespdce for function objects.

In a labels special form the scope of an,identifier function-name is the whole labels special
form (excluding nested scopes, if any);for the flet special form, the scope of an identifier is
only the| body-form*. Within these scopes, each function-name is bound to a function object
whose bkhavior is equivalent to (lambda lambda-list form*), where free identifier references are
resolved|as follows:

e Fdr a labels form\.stich free references are resolved in the lexical environment that was
achive immedidtely outside the labels form augmented by the function bindings for the
given funs (4.é., any reference to a function function-name refers to a binding created by
the labels):

e Fdr & f¥et form, free identifier references in the lambda-expression are resolved in the
lexical environment. that was active immediately outside the flet form (i.e., any reference

to a function function-name are not visible).

During activation, the prepared labels or flet establishes function bindings and then evaluates
each body-form in the body sequentially; the value of the last one (or nil if there is none) is the
value returned by the function activation.

No function-name may appear more than once in the function bindings.

Example:
(labels ((evenp (n)

22

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

© ISO/IEC ISO/IEC 13816:1997(E)

(if (= n 0)
t
(oddp (- n 1))))
(oddp (n)
(if (= n 0)
nil
(evenp (- n 1)))))
(evenp 88)) =t
———————¢Eret—LE o3>
(flet ((f (x) (+ x (£ x))))
(£ 7)) = 17
(apply function obj* list) — <object> function

Applies function to the arguments, obj*, followed by the eléments of list, if any. It retyrns the
value returned by function.

An error shall be signaled if function is not a function (error-id. domain-error). Each pbj may
be any ISLISP object. An error shall be signaled i list is not a proper list (see §1.5) (error-id.
improper-argument-list).

Example:

(apply (if (< 1 2) (function max) (function min))
12 (list 374)) = 4

(defun compose(f g)
(lambda (:rest args)
(funcall f (apply g args))))) = compose

(funcall (compose (function sqrt) (function *)) 12 75)
= 30

(funcall function obj*) — <object> function

Activates the specified function function and returns the value that the function returns. The
ith argument (2 < i) of funcall becomes the (i — 1)th argument of the function. funcall could
have been defined using apply as follows:

(defun funcall (function :rest arguments)
(apply function arguments))

An error shall be signaled if function is not a function (error-id. domain-error). Each argument
may be any ISLisp object.

23

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

ISO/IEC 13816:1997(E) © ISO/IEC

Example:

(et ((x ’(1 2 3)))
(funcall (cond ((listp x) (function car))
(t (lambda (x) (coms x 1)))) x))

o4
= 1

4.8 Dleﬁning Operators

the prepafre

£
e+

Two defining forms with the same identifier in the same namespace are not allowed in one
toplevel scope.

(defcongtant name form) — <symbol> defining operator

Th}s fer‘l 1e¢ need to define a named constant in the variahle hamncpaco n{'t e ¢l rrept t

scope. T

Although| name is globally constant, a variable bindingdor name can be locally established by a
binding fprm.

The result of the evaluation of form is bound to the variable named by name. The binding and
the object created as the result of evaluating) the second argument are immutable. The symbol

named n

Example|

tme 1s returned.

(defconstant e.2.7182818284590451) = e

e = 2.7182818284590451
(defun £ (Jve) = f
(£) = 2.7182818284590451
(defglobal name form) — <symbol> defining operator

This form is used to define an identifier in the variable namespace of the current toplevel scope.

The scop

form is e

e of name is the entire current toplevel scope except the body form.

valuated to compute an initializing value for the variable named name. Therefore,

defglobal is used only for defining variables and not for modifying them. The symbol named
name is returned.

A lexical
case, the

24

variable binding for name can still be locally established by a binding form; in that
local binding lexically shadows the outer binding of name defined by defglobal.

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

© ISO/IEC ISO/IEC 13816:1997(E)

Example:
(defglobal today ’wednesday) = today
today = wednesday
(defun what-is-today () today) = what-is-today
(what-is-today) = wednesday
(let ((what-is-today ’thursday)) (what-is-today))
= wednesday
(let ((today ’thursday)) (what-is-today))
= wednesday
(defdynamic name form) — <symbol> defining dperator

This form is used to define a dynamic variable identifier in the dynamntic variable namesppce. The
scope of name is the entire current toplevel scope except the bédy" form.

The symbol named name is returned.

Example:

(defdynamic *color* ’red) = red
(dynamic *colork) = red
(defun what-color () (dynamic *color*))

= what-color

(what-color) = red
(dynamic-let ((*color* ’green)) (what-color))
= green
(defun function-ngme lambda-list form*) — <symbol> defining dperator

The defun-form defines function-name as an identifier in the function namespace; functjon-name
is baund“to a function object equivalent to (lambda lambda-list form*).

Fhe scope of functzon name is the whole current toplevel scope. Therefore, the defin1t101 of a

€ jorm T IEler to unction

being defined. The blndlng between function-name and the function object is 1mrnutable

defun returns the function name which is the symbol named function-name. The free identifiers
in the body (i.e., those which are not contained in the lambda list) follow the rules of lexical
scoping.

Example:

(defun caar (x) (car (car x))) = caar

25

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

ISO/IEC 13816:1997(E) © ISO/IEC
5 Predicates

5.1 Boolean Values

The values t and nil are called booleans. t denotes true, and nil is the only value denoting
false. Predicates, also called boolean functions, are functions that return t when satisfied
and nil otherwise.

Any objgct other than nil 1s treated as true (not just t). When objects are treated as true or
nil this|way they are called quasi-booleans.

t is an iflentifier naming the symbol t, and nil is an identifier naming the symbol nil (which is
also the lempty list). nil is the unique instance of the <null> class.

Like bodlean functions, the and and or special forms return truth values; howeyer, these truth
values afe nil when the test is not satisfied and a non-nil value otherwise. Theresult of and
and or gre quasi-booleans.

t — <Jsymbol> named constant
nil —f <null> named constant

t is a named constant whose value is the symbol t itself. nil is a named constant whose value is
the sympol nil itself.

5.2 (lass Predicates

The following functions are one-argument class membership predicates:

basicfarray*-p floatp integerp stringp
basicfarray-p functionp listp symbolp
basicfvector-p general-array*-p null

charagterp gemeral-vector-p numberp

consp generic-function-p streamp

In addifion, the(finction instancep is a two-argument predicate that tests membership in an
arbitrafy class;

5.3 Equality

(eq objy objz) — boolean function
(eql obj; objs) — boolean function

eq and eql test whether obj; and objs are same identical object. They return t if the objects are
the same; otherwise, they return nil. Two objects are the same if there is no operation that

could distinguish them (without modifying them), and if modifying one would modify the other
the same way.

26

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

© ISO/IEC ISO/IEC 13816:1997(E)

For eq, the consequences are undefined if either obj; or obj is a number or a character. For eql
the meaning for numbers and characters is defined as follows:

o If obj; and obj, are numbers, eql tests whether they are direct instances of the same
classes and have the same value.

If an implementation supports positive and negative zeros as distinct values, then (eql
0.0 -0.0) returns nil. When the syntax -0.0 is read and it is interpreted as the value
0.0 then (eql 0.0 -0.0) returns t.

e If 0bj; and obj, are characters, eql tests whether they are the same character (sed char=).
Example:
(eql) O) => t
(eq O O) =t
(eql O *()) > t
(eq 20 20 > t
(eql ’a ’a) = t
(eq ’a ’a) => A
(eql ’a ’A) %t
(eq ’a ’h) >t
(eql ’a ’b) = nil
(eq ’a ’b) = nil
(eql ’f ’nil) = nil
(eq ’f ’nil) = nil
(eql 2 2) = t
(eq 2 2) = nil or t (implementation-defined)
(eql 2 2.0) = nil
(eq 2 2.0) = nil
(eql 100000000 (160000000) = t
(eq 100000000~"100000000) = nil or t (implementation-defined)
(eql 10.00000 10.0) = t
(eq 10500000 10.0) = nil or t (implementation-ddfined)
(eql~(cons 1 2) (cons 1 2)) = nil
(eq ~(cons 1 2) (cons 1 2)) = nil
(Tet ((x ’(a))) (eql x x)) =
(let ((x ’(a))) (eq x x)) => t
(eql ’(a) ’(a)) = nil or t (implementation-ddfined)
(eq ’(a) ’(a)) = nil or t (implementation-ddfined)
(let ((x ’(b))

(y '(a b))
(eql x (cdr y)))
(let ((x (b))

Y

nil or t (implementation-defined)

(y ’(a b))

(eq x (cdr y))) = nil or t (implementation-defined)
(eql ’(b) (cdr ’(a b))) = nil or t (implementation-defined)
(eq *(b) (cdr ’(a b))) = nil or t (implementation-defined)
(let ((p (lambda (x) x)))

(eql p p)) > t
(let ((p (lambda (x) x)))

(eq p P)) = t
(let ((x "a")) (eql x x)) = t

27

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

ISO/IEC 13816:1997(E) © ISO/IEC

(let ((x "a")) (eq x x)) > t

(eql "a" "a" = il or t (implementation-defined)
(eq "a" "a" = il or t (implementation-defined)
(1et ((x ")) (eql x x)) => t

(let ((x ")) (eq x X)) = t

(eql " ") = nil or t (implementation-defined)
(eq "™ ") = il or t (implementation-defined)
(eql #\a #\A) = nil

(eq #\a #\A) = nil

(eql #t\a #\a) = t

(eq #\a #\a) = il or t (implementation-defined)
(eql #\space #\Space) =t

(eq #\space #\Space) = nil or t (implementation-defined)
(eql #\space #\space) =t

=

(eq #\space #\space) nil or t (implementation-defined)

(equal pbj; 0bjs) — boolean function

This funftion tests whether obj; and obj; are isomorphic—1.e./Whether obj, and 0bj, denote the

same strficture with equivalent values. equal returns t if thé test was satisfied, and nil if not.
Specifically:

If obj; ahd obj, are instances of the same classes, equad returns t if they are eql. Otherwise (if
they are|direct instances of the same classes but not-eql), the result is t if one of the following
cases applies:

(a) lists: either obj; and objy are both the empty list (i.e., nil), or

(and (equal (car objy) car objz))
(equal (cdr obj;Y (cdr obj2))) holds;

(b) bagic arrays:

(equal (artay-dimensions obj)
(array-dimensions o0bj2))

holds and-fer every valid reference (aref obj; ind, ...ind,)

(equal (aref obj; ind; ...indy,)

L £ ho o | b I W W trafiad
VXL CI—OU 7 ¢ItuT - - - ity 77 1o SauISITCa.

Otherwise the value is nil.

obj1 and o0bjs may be any ISLISP objects.

Example:
(equal ’a ’a) = t
(equal 2 2) = t
(equal 2 2.0) = nil

28

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

© ISO/IEC ISO/IEC 13816:1997(E)

(equal ’(a) ’(a)) =t
(equal ’(a (b) c)
’(a (b) ¢)) >t

(equal (cons 1 2) (coms 1 2)) =t

(equal ’(a) (list ’a)) = t

(equal "abc' "abc") = t

(equal (vector ’a) (vector ’a)) => t

(equal #(a b) #(a b)) = t

(equal #(a b) #(a ¢)) = nil

(eqna‘l Vgt wpAn) = nil
5.4 Logical Connectives
(not obj) — boolean function
This predicate is the logical “not” (or “=”). It returns t if)obj is nil and nil otherwise| obj
may be any ISLISP object.
Example:

(not t) = nil

(not ’()) =t

(not ’nil) >t

(not nil) =t

(not 3) = nil

(not (list)) =t

(not (list 3)) = nil
(and form™)*— <object> special operator
and isthe sequential logical “and” (or “A”). forms are evaluated from left to right until|either
one of them evaluates to nil or else none are left. If one of them evaluates to nil, then nil is
returned Irom the and; otherwise, the value of the last evaluated form is returned. The form and

1s equivalent to the following:

(and) = ’t
(and form) = form
(and formy formg ... form,) = (if formy (and form, ... form,) 'nil)?

Example:

2For the definition of if, see §6.4 below.

29

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

ISO/IEC 13816:1997(E) © ISO/IEC

(and (=2 2) > 21)) = t
(and (= 2 2) (< 21)) = nil
(and (eql ’a ’a) (mot (> 1 2))) > t
(Let ((x ’a)) (and x (setq x ’b))) = b
(let ((x nil)) (and x (setq x ’b))) = nil
(let ((time 10))
(if (and (< time 24) (> time 12))
(- time 12) time)) = 10
(let ((time 18))
—(if (oand (< time24) (> time 12))
(- time 12) time)) = 6
(or form*) — <object> special operator

or is the sequential logical “or” (or “V”). forms are evaluated from left to\right until either one
of them| evaluates to a non-nil value or else none are left. If one of thém €valuates to a non-nil
value, then this non-nil value is returned, otherwise nil is returned; The form or is equivalent
to the fpllowing:

(¢r) = ‘nil
(¢r form) = form
(br formy formy ... form,) = ((Lambda (fvar)

(f var var (or forms ...formy,))) formy)
wheré&war does not occur in formy ... form,

[]

Example:

(or (=22) (> 2 1)) =t
(or (= 22) (< 2W)) >t
(let ((x ’a))(Cor x (setq x ’b))) = a
(let ((x nil)) (or x (setgq x ’'b))) = b

(=]
~

Control Structure

6.1 Constants

constant — <object> syntax

There are three kinds of constants: literals, quoted expressions, and named constants. Quoted
expressions are described below.

The consequences are undefined if an attempt is made to alter the value of a constant.

30

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

© ISO/IEC ISO/IEC 13816:1997(E)

The result of evaluating the literal constant constant is constant itself. Instances of the following
classes are literal constants: <basic-array>, <character>, and <number>

Example

#24((a b c) (d e £f)) = #2A((a b c) (d e £))

#\a => #\a

145932 = 145932

l|abcll : "abc"

#(a b c) = #(a b C)
(quote obj) — <object> special pperator
Tobj — <object> syntax

A quoted expression denotes a reference to an object. This notation is used to include gny object
in an ISLisP text.

The character ’ (apostrophe or single quote) is syntax fér quotation. That is, (quote a) = ’a.

The result of the evaluation of the quote special form is obj.

Example:
(quote a) = a
(quote #(a b c)) = #(abc)
(quote (+ 1 2)) = (+12)
0] = nil
‘a = a
'#(a b ¢c) = #(abc)
’(car 1) = (car 1)
(+1.2) = (+12)
' (quote’ a) = (quote a)
Y la = (quote a)
(car ’’a) = quote

The consequences are undefined if an attempt is made to alter the value of a quoted expression.

6.2 Variables

Variable bindings, or variables, are entities established during execution of the prepared
variable-binding forms or by the activation of functions.

A variable is an association between an identifier and an ISLISP object and is denoted by that
identifier. The association can be altered (by assignment) using the setf special form or setq

special form.

The following are variable binding forms:

31

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

ISO/IEC 13816:1997(E) © ISO/IEC

defglobal 1let for letx*

var — <object> syntax

The value of var is the object associated with war in its variable binding.

Example:

(defglobal x 0) => x
X = 0
(et ((x 1)) x) =1
x =0
(setq vdr form) — <object> special operator

This fornp represents an assignment to the variable denoted by thelidentifier. In consequence, the
identifier|may designate a different object than before, the valuevof form.

The result of the evaluation of form is returned. This result is used to modify the variable
binding denoted by the identifier var (if it is mutable)(“setq can be used only for modifying
bindings,[and not for establishing a variable. The sétq special form must be contained in the
scope of par, established by defglobal, let, let*, 'for, or a lambda expression.

Example|
(defglobal x 2) = x
(+x1) = 3
(setq x 4) = 4
(+ x 1) = 5
(let ((x 1)) (setq x 2) x) = 2
(+ x 1) = 5
(setf place form) — <object> special operator

This macro is used for generalized assignment.

setf takes a place and stores in this place the result of the evaluation of the form form. The
place form is not evaluated as a whole entity, but subforms of place are evaluated sequentially
from left to right to determine a place to be assigned a value. When place is denoted by an
identifier, setf behaves exactly as setq. The returned value is the result of the evaluation of
form. The valid places for the setf special form are as follows:

32

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

© ISO/IEC ISO/IEC 13816:1997(E)

variables var

dynamic bindings (dynamic war)

the components of a basic-array (aref basic-array z ...2z,)

the components of a general array (garef general-array z; ...z,)

the components of a list (elt list 2)

the components of a vector (elt basic-vector z)

the left component of a cons (car cons)

the right component of a cons (cdr cons)

a property of a symbol (property symbol property)
—a-slot-of aninstanceof aclass (accessor-name—instance)

A place can also be a macro form that expands (during preparation for execution)czto

4 place or

a function application form with operator op for which setf is defined or for which a ggneric
function named (setf op) has been defined. In these last two cases, that funétion will freceive
as arguments the new value to be assigned followed by the objects that reguited from evaluating

the arguments of the place form.

Example:

(setf (car x) 2) = 2
In the cons x, the car now is 2.
{defmacro first

*(car ,spot)) = first
(setf (first x) 2) = 2
In the cons x, the car now 18,2

(Let ((var form)*) body-form*) — <object> special ¢perator

The 1let special forin i$ used to define a scope for a group of identifiers for a sequence of forms
body-form* (colléctively referred to as the body). The list of pairs (var form)* is called the let

variable list. The scope of the identifier var is the body.

The forms-form are evaluated sequentially from left to right; then each variable denoted by the

identifier var is initialized to the corresponding value. Using these bindings along with

the

already existing bindings of visible identifiers the forms are evaluated. The returned value of let

is' the result of the evaluation of the last body-form of its body (or nil if there is none)

No var may appear more than once in let variable list.

Note: Although this form is a special form, one can think of it as a macro whose rewriting rules are as

follows:

(let () body-form*) (progn body-form*)3

I

(et ((wary formy) ((lambda (var; vary ... var,)
(vary forms) body-form*
) formy forms ... formy)*

(vary, formy,)
body-form*)

33

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

ISO/IE

Example

C 13816:1997(E) © ISO/IEC

(let ((x 2) (y 3))
(* x y)) = 6

(let ((x 2) (y 3))
(let ((x 7)
(z (+ xy))

(x z x))) = 35

(let ((x 1) (y 2))
(let ((x y) (y x)

(list x y))) = (2 1)
(let* (Kwvar form)*) body-form*) — <object> special operator
The letf form is used to define a scope for a group of identifiers for-a sequence of forms

body-for

m* (collectively referred to as the body). The first subform (the let* variable list) is a

list of pgirs (var form). The scope of an identifier var is the/body excluding nested regions of

var, if a

hy, along with all form forms following the pair (¢ar form) in the let* variable list.

For each| pair (var form) the following is done: form4s evaluated in the context of the bindings

in effect
variable
perhaps

at that point in the evaluation. The result ‘of the evaluation is bound to its associated
named by the identifier var. These defimtions enlarge the set of current valid identifiers
shadowing previous definitions (in casée some var was defined outside), and in this

enlarged| or modified environment the forms are executed. The returned value of let* is the
result of| the evaluation of the last formlef its body (or nil if there is none).

Note: Although this form is a special/form, one can think of it as a macro whose rewriting rules are as

follows:

(1
(1

t* () body-ferm™) = (progn body-form*)
Et* ((varyform,) = (let ((wvary formy))
(vdry formy) (let ((wars forms))
(varn. .f;rmn)) o (let ((var, formy))
body-form™*) body-form*)...))

Example:

(let ((x 2) (y 3))
(let* ((x 7)
(z (+ xy)))
(* z x))) = 70

3For the definition of progn see §6.5 below.
“For the definition of 1ambda see 5.6.d.

34

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

© ISO/IEC ISO/IEC 13816:1997(E)

(et ((x 1) (y 2))
(let* ((x y) (y x))
(1ist x y))) = (2 2)

6.3 Dynamic Variables

A dynamic variable 1s an association between an identifier var and an ISLISP object 1n

dynamic variable namespace. Dynamic variables implement a form of dynamic binding.

{he

Dynamic variables are defined globally by defdynamic and are established during the execution

of a prepared dynamic-let.

Dynamic variable bindings defined by defdynamic persist indefinitely whereas those estpblished

by dynamic-let are disestablished upon end of execution of this special form.

The value of a dynamic variable can be accessed by (dynamic var).

(dynamic war) — <object> special ¢perator

This special form denotes a reference to the idéntifier denoting a dynamic variable. Thif special
form is not allowed in the scope of a definition of var which is not done by defdynamic| or

dynamic-let.

During activation, the current dynafic binding of the variable var is returned that was
established most recently and is still in effect. An error shall be signaled if such a bindj

not exist (error-id. unbound-viciable).

hg does

(setf (dynamic war) form) — <object> spe(

ial form

This special form denotes an assignment to a dynamic variable. This form can appear
that (dyn&mic var) can appear.

form is-evaluated and the result of the evaluation is used to change the dynamic bindix

Aq etror shall be signaled if var has no dynamic value (error-id. unbound-variable). se
dynamic can be used only for modifying bindings, and not for establishing them.

inywhere

g of var.
bt of

(dynamic-let ((var form)*) body-form*) — <object> special operator

The dynamic-let special form is used to establish dynamic variable bindings. The first subform
(the dynamic-let variable list) is a list of pairs (var form). The scope of an identifier var
defined by dynamic-let is the current toplevel scope. The extent of the bindings of each var is

the extent of the body of the dynamic-1let. The dynamic-let special form establishes
variables for all vars.

dynamic

References to a dynamic variable named by var must be made through the dynamic special form.

35

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

ISO/IEC 13816:1997(E) © ISO/IEC

All the initializing forms are evaluated sequentially from left to right, and then the values are
associated with the corresponding wvars. Using these additional dynamic bindings and the already
existing bindings of visible identifiers, the forms body-form™* are evaluated in sequential order.
The returned value of dynamic-let is that of the last body-form of the body (or nil if there is
none). The bindings are undone when control leaves the prepared dynamic-let special form.

Example:

defun foo (x)

(dynamic-let ((y x))
(bar 1))) = foo

defun bar (x)
(+ x (dynamic y))) = bar

foo 2) = 3

6.4 Conditional Expressions

(if test-form then-form [else-form]) — <object> special operator

The test-form is evaluated. If its result is anythingwon-nil, the then-form is evaluated and its
value is rgturned; otherwise (if the test-form rétitrned nil), the else-form is evaluated and its
value is rgturned.

If no else{form is provided, it defaults_to,nil.

Example:
if (> 3 2) ’yes ’'no) = yes
if (> 2 3)«yes ’no) = no
if (> 2.8)’yes) = nil
if (>.3.2) (-3 2) (+32)) =1
let, ((x 7))
Hf—f<x 60— =T
(cond (test form*)*) — <object> special operator

Executing the prepared cond, the clauses (fest form*) are scanned sequentially and in each case
the test is evaluated; when a test delivers a non-nil value the scanning process stops and all
forms associated with the corresponding clause are sequentially evaluated and the value of the
last one is returned. If no test is true, then nil is returned. If no form exists for the successful
test then the value of this test is returned.

36

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

© ISO/IEC ISO/IEC 13816

cond obeys the following equivalences:

:1997(E)

(cond) = nil
(cond (testy) = (or testy
(testy form3) (cond (testy form})
co) o))
(cond (test; form‘l") = (if testy
(testy form3) (progn form?)
) (cond (tests form?)
ce))
Example:
(cond ((> 3 2) ’greater)
((< 3 2) ’less)) = greater
(cond ((> 3 3) ’greater)
((< 3 3) ’less)) = il
(cond ((> 3 3) ’greater)
((< 3 3) ’less)
(t ’equal)) = equal
(case keyform ((key*) form*)* [(t form*)]) — <object> special ¢perator

(case-using predform keyform ((Eey*) form*)* [(t form*)])

— <object> special ¢perator

The case and case-using.special forms, called case forms, provide a mechanism to execute a
matching clause from aseries of clauses based on the value of a dispatching form keyfoqm.

The clause to berexecuted is identified by a set of keys. A key can be any object. If the
the last claus€’1st the associated clause is executed if no key matches the keyform.

keylist of

keyformds.a form to be computed at the beginning of execution of the case form. If th¢ result of
evaludting keyform is equivalent to a key, then the forms, if any, in the corresponding clause are
evaluated sequentially and the value of the last one is returned as value of the whole cape form.
¢ase determines match equivalence by using eql; case-using match determines equivdlence by
using the result of evaluating predform. predform must be a boolean or quasi-boolean fhinction

that accepts two arguments, the value returned by keyform and key. If no form exists for a
matching key, the case form evaluates to nil. If the value of keyform is different from every key,

and there is a default clause, its forms, if any, are evaluated sequentially, and the value
last one is the result of the case form.

of the

The same key (as determined by the match predicate) may occur only once in a case form.

Example:

(case (* 2 3)
((2 35 7) ’prime)

37

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

ISO/IEC 13816:1997(E)

((4 6 8 9) ’composite)) = composite

(case (car ’(c 4))

((a) ’a)

((®) ’b)) = nil

(case (car "(c d))
((a e i o u) ’vowel)

((y) ’semivowel)
AWAY

© ISO/IEC

6.5 Sequencing Forms

(t consonant) =) consonant
(let ((char #\u))
(case char
((#\a #\e #\o #\u #\i) ’vowels)
(t ’consonants))) = vowels
case-using #’= (+ 1.0 1.0)
((1) ’ome)
((2) ’two)
(t ’more)) = two
(case-using #’string= "bar"
(("foo") 1)
(("bar") 2)) => 2

(progn form*) — <object>

special operator

This spedial form allows a seties of forms to be evaluated, where normally only one could be used.

The result of evaluationtof the last form of form* is returned. All the forms are evaluated from
left to right. The valies of all the forms but the last are discarded, so they are executed only for

their sidq effects. ‘progn without forms returns nil.

Example}
(defglobal x 0) = x
(progn
(setq x 5)
(+ x 1)) = 6
(progn

(format (standard-output) "4 plus 1 equals ")

(format (standard-output) "“D" (+ 4 1)))
= nil

38

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

© ISO/IEC ISO/IEC 13816:1997(E)

prints 4 plus 1 equals 5

6.6 Iteration

(while test-form body-form*) — <null> special operator

Iterates while the test-form returns a true value. Specifically:

1. test-form is evaluated, producing a value V;.
2. If V, is nil, then the while form immediately returns nil.

3. Otherwise, if V; is non-nil, the forms body-form* are evaluatéd sequentially (from|left to
right).

4. Upon successful completion of the body-forms*, the whileform begins again with spep 1.

Example:

(et ((x () (i 5))
(while (> i 0) (setq x (con§’i x)) (setq i (- i 1)))

x) = (12345)
(for (iteration-spec*) (end-test result*) form*) — <object> special operator
Where:
iteration-spec = (war init [step])

fof repeatedly executes a sequence of forms form*, called its body. It specifies a set of iflentifiers
fidming variables that will be local to the for form, their initialization, and their updatq for each

-] — YALL 4 : i dats 3 4 4l tonodioa avido ol o 3
tteratior—Whemratermimation—conditionts-met—the-tteration—exibs-with-a-speetfied+esult value.

The scope of an identifier var is the body, the steps, the end-test, and the result*. A step might
be omitted, in which case the effect is the same as if (var init var) had been written instead of
(wvar init). It is a violation if more than one iteration-spec names the same var in the same for
form.

The for macro is executed as follows: The init forms are evaluated sequentially from left to
right. Then each value is used as the initial value of the variable denoted by the corresponding

identifier var, and the iteration phase begins.

Each iteration begins by evaluating end-test. If the result is nil, the forms in the body are
evaluated sequentially (for side effects). Afterwards, the step-forms are evaluated sequentially

39

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

ISO/IEC 13816:1997(E) © ISO/IEC

order from left to right. Then their values are assigned to the corresponding variables and the
next iteration begins. If end-test returns a non-nil value, then the result* are evaluated
sequentially and the value of the last one is returned as value of the whole for macro. If no
result is present, then the value of the for macro is nil.

Example:

(for ((vec (vector 0 0 0 0 0))
10 i1y

((= i B) vec)
(setf (elt vec i) 1)) = #(0 12 3 4)

let ((x (1 357 9)))
(for ((x x (cdr x))

(sum 0 (+ sum (car x))))
((null x) sum))) = 25

6.7 Npn-Local Exits
6.7.1 Establishing and Invoking Non-Local Exits

ISLisp defines three ways in which to perform non-local exits:

Destinaflion Kind Established by Invoked by Operation Performed

block tag block return-from lexical exit
tagbody fag tagbody go lexical transfer of control
catch taj catch throw dynamic exit

A non-Idcal exit, is an operation that-forces transfer of control and possibly data from an

invoking gpecial form to a previously established point in a program, called the destination of
the exit.

A lexical exit is a non-localéxit from a return-from form to a block form which contains it
both lexidally and dynafnically, forcing the block to return an object specified in the
return-flrom form.

dynamicallly/(but not necessarily lexically), forcing the catch to return an object specified in the

A dynanpic exitis a non-local exit from a throw form to a catch form which contains it
throw folzr:En‘

A lexical transfer of controlis a non-local exit from a go form to a tagged point in a tagbody
form which contains it both lexically and dynamically.

When a non-local ezit is initiated, any potential destination that was established more recently
than the destination to which control is being transferred is immediately considered invalid.

(block name form*) — <object> special operator
(return-from name result-form) transfers control and data special operator

40

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

© ISO/IEC

ISO/IEC 13816:1997(E)

The block special form executes each form sequentially from left to right. If the last form exits
normally, whatever it returns is returned by the block form.

The name in a block form is not evaluated; it must be an identifier. The scope of name is the

body form*—only a return-from textually contained in some form can exit the block. The

extent of

name is dynamic.

If a return-from is executed, the result-form is evaluated. If this evaluation returns normally,
the value it returns is immediately returned from the innermost lexically enclosing block form
with the same name.

return—-from is used to return from a block. name is not evaluated and must be an-ide

block special form must lexically enclose the occurrence of return-from; the value’pro

result-form is immediately returned from the block. The return-from form never retur

does not have a value.

An error shall be signaled if an attempt is made to exit a block after-it has been exited

(error-id.

control-error); It is a violation if name is not an identifi€r: } is a violation if

with a corresponding name does not exist. See §6.7.2 for other errors.

Example:

(block x
(+ 10 (return—-from x 6) 22)) ;;;<Bad programming style
= 6

(defun f1 ()
(block b
(let ((f (lambda ()’)(return-from b ’exit))))
... ; big computation
(£2 £)))) => f1

(defun f2 (g)
; big computation
(funcall g)) = f2

(£1) = exit

(block sum-block
(for ((x ’(1 a 2 3) (cdr x))
(sum 0 (+ sum (car x))))
((null x) sum)

(cond ((not (numberp (car x))) (return-ifrom sum-block 0)))))
= 0

(defun bar (x y)
(let ((foo #’car))
(let ((result
(block bl
(setq foo (lambda () (return-from bl ’first-exit)))
(if x (return-from bl ’second-exit) ’third-exit))))
(if y (funcall foo) nil)
result))) = bar

ntifier. A
Huced by
ns and

b block

41

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

ISO/IEC 13816:1997(E) © ISO/IEC

(bar t nil) = second-exit

(bar nil nil) = third-exit

(bar nil t) an error shall be signaled

(bar t t) an error shall be signaled
(catch tag-form form*) — <object> special operator
(throw tag-form result-form) transfers control and data special operator

The spedial forms catch and throw provide a facility for programming of structured non-local
dynamic|exits. A catch form and a throw form are said to correspond if the tag-form of-the
catch aild the tag-form of the throw evaluate to the same object, a catch tag. A catch.tag may
be any opject other than a number or a character.

The catfh special form first evaluates the tag-form to produce a catch tag, andthen executes
each forin sequentially from left to right. If execution of the forms finishes notrhally, whatever is
returned|by the last form is returned by the catch form.

Prior to

execution of the forms of a catch form Cp, an association bétween the catch tag To and

the exec]xting form Cj is dynamically established, upon exit frond Cy, the association is

disestab

ished. If there was an outer association for the same_ gaich tag Ty, it is hidden during

the execfition of Cy’s forms; only the most recently established (i.e., innermost) association for
To is evdr visible.

If a thr

w special form is executed, it evaluates the ag-form producing a catch tag T1, and then

evaluatep the result-form producing a result R;. If there is a corresponding association between
T, and fome catch form C; that is executing; R; is immediately returned as the value of C;.
The throw form can be anywhere in the entire current toplevel scope; it need not be lexically
containdd within C;.

A caich
tags use

tag may be any object that s neither a number nor a character; the comparison of catch
either eq.

An errop shall be signaled if there is no outstanding catcher for a Ty (error-id. control-error).
See §6.7|2 for other errors.

Examplg:

42

@eftn foo (x)
| Y (catch ’block-sum (bar x))) = foo

(defun bar (x)
(for ((1 x (cdr 1))
(sum 0 (+ sum (car 1))))
((null 1) sum)
(cond ((not (numberp (car 1))) (throw ’block-sum 0)))))

= bar
(foo ’(1 2 3 4)) = 10
(foo (1 2 a 4)) =0

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

© ISO/IEC ISO/IEC 13816:1997(E)

(tagbody {tagbody-tag | form}*) — <object> special operator
(go tagbody-tag) transfers control special operator

tagbody executes the forms sequentially from left to right, discarding their values. If the
execution of the last form completes normally, nil is returned by the tagbody special form.

The series of tagbody-tags and forms is collectively referred to as the body of a tagbody form.
An identifier tagbody-tag that appears at toplevel of the body denotes a tagbody tag that can

be used with g0 o transier COMtror to that pUIﬂE imthe budy. K”y CUH”SUHH" formtirag appears

is taken as a form. Literals are not permitted at the toplevel of a tagbody. No taghedyitag may
appear more than once in the tags in the body

The namespace used for taghody tags is distinct from that used for block tags:

At any point lexically contained in the tagbody a form (go tag;) can bewised to transfer control
to a tag tag; that appears among the tagbody-tags, except where a fag; is shadowed acdording to
the lezical principle (see §3.1).

A tagbody-tag established by tagbody has lexical scope, but thie point in the program tp which it
refers has dynamic extent. Once tagbody has been exited, it is no longer valid to use go to
transfer to any tag in its body.

The determination of which elements of the body<re tagbody-tags and which are form§ is made
prior to any macro expansion of that element.\If form is a macro form and its macro expansion
is a symbol or literal, that atom is treated as'a form, not as a tagbody-tag.

It is a violation if a tagbody tag is other than an identifier. See §6.7.2 for other errors.

Note: As a stylistic matter, programmers are not encouraged to use tagbody and go in everyday

programming. The primary uses\for which these forms are intended are for implementing oth¢r control
abstractions (using macros),cand for the occassional real-world situation that parallels the ungtructured
imperative transfer of cofittol that these facilities provide (such as a finite state machine).

Example:

(defmacro with-retry (:rest forms)
(let ((tag (gensym)))
*(block ,tag
(tagbody
,tag

treturm{trom s tag
(flet ((retry () (go ,tag)))
,@forms))))))
= with-retry

(1et ((i -5))
(with-retry
;; if-error is a hypothetical error correction function
;; not supplied by ISLISP.
(if-error (sqrt (setq i (+ i 4)))
(retry))))
= 1.7320508075688772

43

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

ISO/IEC 13816:1997(E) © ISO/IEC

6.7.2 Assuring Data Consistency during Non-Local Exits

(unwind-protect form cleanup-form*) — <object> special operator

unwind—plrotect first evaluates form. Evaluation of the cleanup-forms always occurs, regardless
of whether the exit is normal or non-local.

If the for

m exits normally yielding a value R, then if all of the cleanup-forms exit normally the

value R ig returned by the unwind-protect form.

If a non-|
and then

beal exit from form occurs, then the cleanup-forms are executed as part of that exit,
if all of the cleanup-forms exit normally the original non-local exit eontinues.

The cleanup-forms are evaluated from left to right, discarding the resulting values. If execution

of the cle
described
unwind-p

An error
a non-loc
non-local

Note: Bg
recovery ¢
processor

go) would

Example;

inup-forms finishes normally, exit from the unwind-protectform proceeds as
above. It is permissible for a cleanup-form to contain a/mon=local exit from the
rotect form, subject to the following constraint:

khall be signaled if during execution of the cleanup~forms of an unwind-protect form,
hl exit is executed to a destination which has been marked as invalid due to some other
exit that is already in progress (see §6.7.1)\(error-id. control-error).

cause ISLISP does not specify an interactive debugger, it is unspecified whether or how error
an occur interactively if programmatic handling fails. The intent is that if the ISLISP

Hoes not terminate abnormally, normtal mechanisms for non-local exit (return-from, throw, or
be used as necessary and would-respect these cleanup-forms.

(defun foo (x)
(catch ’duplicates
(ubwind-protect (bar x)
(for ((1 x (cdr 1)))
((null 1) ’unused)
(remove-property (car 1) ’label)))))

= foo

44

(defun bar (1)
(cond ((and (symbolp 1) (property 1 ’label))
(throw ’duplicates ’found))
((symbolp 1) (setf (property 1 ’label) t))
((bar (car 1)) (bar (cdr 1)))

(t nil)))
= bar
(foo ’(a b ¢)) =t
(property ’a ’label) = nil

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

© ISO/IEC ISO/IEC 13816:1997(E)

(foo ’(a b a ¢)) = found
(property ’a ’label) = nil

(defun test ()
(catch ’outer (test2))) = test

(defun test2 ()
(block inner
(test3 (lambda ()

(ot from—in 23331
T oo n=rIo TRXCT /7777

= test2

(defun test3 (fun)
(unwind-protect (test4) (funcall fun)))
= test3

(defun testé ()
(throw ’outer 6)) = test4d

(test) = an error shall be signaled

In the test example, the throw executed in test4’has as destination the catcher established in
test. The unwind-protect in test3 intercepts the transfer of control and attempts to pxecute a
return-from from the block in test2. Because this block is established within the dynamic
extent of the destination catcher, an erroris’signaled.

7 Objects

7.1 Defining Classes

The defclass defining form is used to define a new named class.

The definition of a class includes the following:

o The name of the new class.

The list of the direct superclasses of the new class.

A set of slot specifiers. Each slot specifier includes the name of the slot and zero or more
slot options. A slot option pertains only to a single slot. A class definition must not
contain two slot specifiers with the same name.

A set of class options. Each class option pertains to the class as a whole.

The slot options and class options of the defclass defining form provide mechanisms for the
following:

e Supplying a default initial value form for a given slot.

45

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

ISO/IEC 13816:1997(E) © ISO/IEC

o Requesting that methods for generic functions be automatically generated for retrieving or
storing slot values and inquiring whether a value is bound to the slot.

o Indicating that the metaclass of that class is to be other than the default.

(defclass class-name (sc-name*) (slot-spec*) class-opt*) — <symbol> defining operator

Where:

class-name = identifier

sc-name = identifier

slot-spec = slot-name | (slot-name slot-opt*)
slot-namp := identifier

slot-opt = :reader reader-function-name |

:writer writer-function-name |
:accessor reader-function-name |
:boundp boundp-function-name |
:initform form |

:initarg initarg-name
nitarg-nlame = identifier

reader-finction-name = identifier

writer-finction-name ::= identifier

class-opt = (:metaclass class-name)>|
(:abstractp abstract-flag)

abstract{flag = t|nil

The defklass defining form returns thessymbol named class-name as its result.

The clads-name argument is an ideéntifier which becomes the name of the new class. The defining
point of [the class-name is the ¢nd of the defclass defining form.

Each superclass name argument sc-name is an identifier that specifies a direct superclass of the
new class. The new _class will inherit slots and their :reader or :writer or :accessor methods
from eadh of its supérclasses. See §7.1.3 for a definition of how slots are inherited, and §7.2.3 for
a definitfion of hew’methods are inherited. No sc-name may appear more than once in super
class nafnes.(It)is a violation if the superclasses of any two direct superclasses sc-name have
superclassés other than <standard-object> and <object> in common unless a metaclass other

than <standard=cIass> IS speciied:

Each slot-spec argument is the name of the slot or a list consisting of the slot name followed by
zero or more slot options. The slof-name argument is an identifier that is syntactically valid for
use as an ISLISP variable name. No slot names may appear more than once in slot-spec

The following slot options are available:
e The :reader slot option specifies that an unqualified method with the parameter profile
((z class-name)) is to be defined on the generic function named reader-function-name to

retrieve the value of the given slot. The :reader slot option may be specified more than
once for a given slot.

46

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

© ISO/IEC ISO/IEC 13816:1997(E)

e The :writer slot option specifies that an unqualified method with the parameter profile
((y <object>) (z class-name)) is to be defined on the generic function named
writer-function-name to store the value into the slot. The writer-function-name argument
is an identifier. The :writer slot option may be specified more than once for a given slot.

e The :accessor slot option specifies that an unqualified method is to be defined on the
generic function named reader-function-name to retrieve the value of the given slot.
Furthermore, there is a generic function such that (setf (reader-function-name z) y) is
equivalent to calling this generic function with first argument y and second argument z.
This generic function is extended by a method with the parameter profile ((y <object>)

(z class-name)). The reader-function-name argument 1s an 1dentifier. The :accdssor
slot option may be specified more than once for a given slot.

e The :boundp slot option specifies that an unqualified method with the parameter profile
((z class-name)) is to be defined on the generic function named boundp-functiontname to
test whether the given slot has been given a value. The :boundp slot Option may be
specified more than once for a given slot.

e The :initform slot option is used to provide a default initial value form to be usqd in the
initialization of the slot. The :initform slot option maybe\specified once at mosf for a
given slot. This form is evaluated every time it is used do,initialize the slot. The l¢xical
scope of the identifiers used in the initialization of the slot is the lexical scope of those
identifiers in the defclass form. Note that the lexical scope refers both to variable and to
function identifiers. In contrast, the current dyndmic bindings used are those exisfiing
during activation of create. For more inforfoation, see §7.4.1.

o The :initarg slot option declares an initialization argument named initarg-name|and
specifies that this initialization argument initializes the given slot. If the initializafion
argument and associated value are*supplied in the call to initialize-object, th¢ value
will be stored into the given slottand the slot’s : initform slot option, if any, is nqt
evaluated. If none of the initialization arguments specified for a given slot has a value, the
slot is initialized according-to the :initform option, if specified. The consequencgs are
undefined if more than one initialization argument for the same slot is supplied. Hor more
information, see §7.4 L)

The generic functions, to which the methods created by the :reader, :writer, and :agcessor
slot options beléng are called slot accessors.

No implerfientation is permitted to extend the syntax of defclass to allow (slot-name [form) as
an abbretiation for (slot-name :initform form).

Eé4ch class option is an option that refers to the class as a whole. The following class options are
dyvailable:

e The :metaclass class option is used to specify that instances of the class being defined are
to have a different metaclass than the default provided by the system, that is, different
from the class <standard-class>. The class-name argument is the name of the desired
metaclass. The :metaclass class option may be specified once at most. It is a violation if
<built-in-class> is specified as the metaclass.

e The :abstractp class option is used to specify that the class is an abstract class. If this
option is supplied and abstract-flag is t, create will signal an error if an attempt 1is made
to create an instance of this class. If the option is unsupplied, or if abstract-flag is nil, the
class is not an abstract class. It is a violation if the abstract-flag is supplied but is neither ¢
nor nil.

47

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

ISO/IEC 13816:1997(E) © ISO/IEC

The following rules of defclass hold for standard classes:

e The defclass defining form must be in the scope of any superclass identifier it refers to.

e All the superclasses of a class must be defined before an instance of the class can be made.

e Any reference to class-name as a parameter specializer in a defmethod form must be in the
scope of class-name. That is, a defmethod form that names a class must textually follow
the defclass form that defines that class.

An ISLisp processor may be extended to cover situations where these rules are not obeyed.

These e

tensions shall be implementation defined.

Some sldt options are inherited by a class from its superclasses, and some can be shadowed or
altered Hy providing a local slot description. No class options are inherited. For aldetailed
descriptipn of how slots and slot options are inherited, see the section §7.1.3.

If no slo

When a

form is i

accessors are specified for a slot, the slot cannot be accessed.

class is defined, the order in which its direct superclasses aré mentioned in the defining
mportant. The new class has a local precedence order, which is a list consisting of

the clasd followed by its direct superclasses in the order mentioned in its defclass defining form.

7.1.1

The def

Determining the Class Precedence List

class defining form for a class provides.a‘total ordering on that class and its direct

superclapses. This ordering is called the local\précedence order. It is an ordered list of the class

and its d
its supet
superclal

The clas
list. Thd

same or

Let Cl ,

for C. 1

class pre

iSC‘Pl

a class 9

irect superclasses. The class pregcedence list for a class C is a total ordering on C and
classes that is consistent with, the-local precedence orders for each of C and its
bses.

s precedence list is always consistent with the local precedence order of each class in the

classes in each localiprecedence order appear within the class precedence list in the
ler.

.., Cp be thewdirect superclasses of C' in the order defined in the defclass defining form
et Py, .. P, be the class precedence lists for Cy, ..., Cy, respectively. Define P - @ on
cedencelists P and @) to be the two lists appended. Then the class precedence list for C
-+ \Pp with duplicate classes removed by repeated application of the following rule: If
ppéars twice in the resulting class precedence list, the leftmost occurrence is removed.

It is a violation if an attempt is made to define an instance of <standard-class> whose direct
superclasses have class precedence lists with classes other than <standard-object> and
<object> in common.

7.1.2 Accessing Slots

Slots can be accessed by use of the slot accessors created or modified by the defclass defining

form.

48

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

© ISO/IEC ISO/IEC 13816:1997(E)

The defclass defining form provides syntax for generating methods to retrieve and store slot
values. If a reader is requested, a method is automatically generated for retrieving the value of
the slot, but no method for storing a value into it is generated. If a writer is requested, a
method is automatically generated for storing a value into the slot, but no method for retrieving
its value is generated. If an accessor is requested, a method for retrieving the value of the slot
and a method for storing a value into the slot are automatically generated.

When a reader or writer is specified for a slot, the name of the generic function to which the
generated method belongs is directly specified. If the name specified for the writer option is the
identifier name, the name of the generic function for storing a value into the slot is the identifier

name, and the generic function takes two arguments: the new value and the instance;\ir} that
order. If the name specified for the accessor option is the identifier name, the name-of the
generic function for retrieving the slot value is the identifier name, and storing alvalue ipto the
slot can be done by using the syntax (setf (name instance) new-value).

A generic function created or modified by supplying reader, writer, or accessor slot optipns is a
direct instance of <standard-generic-function>.

7.1.3 Inheritance of Slots and Slot Options

The set of the names of all slots accessible in an instafice of a class C is the union of th¢ sets of
names of slots defined by C' and its superclasses. The structure of an instance is the sdt of
names of slots in that instance.

In the simplest case, only one class among C. and its superclasses defines a slot with a gjven slot
name. If a slot is defined by a superclass:6f*C, the slot is said to be inherited. The
characteristics of the slot are determined by the slot specifier of the defining class.

In general, more than one class among C and its superclasses can define a slot with a given
name. In such cases, only one slot with the given name is accessible in an instance of C|and the
characteristics of that slot area combination of the several slot specifiers, computed as follows:

o All the slot specifiers for a given slot name are ordered from most specific to least [specific,
according to'the order in C’s class precedence list of the classes that define them. [All

referencés to the specificity of slot specifiers immediately below refer to this order:[:g.

e The)default initial value form for a slot is the value of the :initform slot option in the
most specific slot specifier that contains one. If no slot specifier contains an :init{fform slot
option, the slot has no default initial value form.

The :reader, :writer, and :accessor slot options create methods rather than define the
characteristics of a slot. Reader and writer methods are inherited in the sense described in the
section §7.2.3.

7.2 Generic Functions

A generic function is a function whose application behavior depends on the classes of the
arguments supplied to it. A generic function object contains a set of methods, a lambda-list, a
method combination type, and other information. The methods define the class-specific behavior

49

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

ISO/IEC 13816:1997(E) © 1SO/IEC

and operations of the generic function; a method is said to specialize a generic function. When
invoked, a generic function executes a subset of its methods based on the classes of its arguments.

A generic function can be used in the same ways that an ordinary function can be used.

A method consists of a method function, a lambda list, a sequence of parameter specializers
that specify when the given method is applicable, and a sequence of qualifiers that is used by
the method combination facility to distinguish among methods. Each required formal parameter
of each method has an associated parameter specializer, and the method is invoked only on
arguments that satisfy its parameter specializers.

The method combination facility controls the selection of methods, the order in which they are
activated| and the value that is returned by the generic function. ISLISP provides a default
method cpmbination type and provides a facility for declaring new types of method combination.

Like an ofdinary ISLisp function, a generic function takes arguments, performs a series of
operation, and returns a value. An ordinary function has a single body of code that'is always
executed when the function is called. A generic function has a set of bodies of edde of which a
non-empfly subset is selected for execution. The selected bodies of code and-the manner of their
combinatjon are determined by the classes of the arguments to the genericfunction and by its
method combination type.

(generid-function-p obj) — boolean function

Returns $ if obj is a generic function; otherwise, returnig/nil. obj may be any ISLisP object.

7.2.1 DDefining Generic Functions

Some forjms specify the options of a generic function, such as the type of method combination it
uses or ifs argument precedence order: These forms will be referred to as “forms that specify
generic finction options.” These .forms are the defgeneric defining forms.

Some forms define methods for a generic function. These forms will be referred to as
“method}defining forms. These forms are the defmethod and defclass defining forms.

During freparation’for execution, a defmethod form must be preceded by the defgeneric form
for the gpneric fuhetion to be specialized. (Methods implicitly defined by defclass due to
:reader| :writer, or :accessor options do not need a preceding defgeneric.)

(defgeneric func-spec lambda-list {option | method-desc}*) — <symbol>defining operator

Where:
func-spec = identifier | (setf identifier)
lambda-list = (var* [grest wvar]) |
(var* [:rest wvar])
option = (:method-combination symbol) |
(:generic-function-class class-name)
method-desc = (:method method-qualifier* parameter-profile form*)

50

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

© ISO/IEC ISO/IEC 13816:

method-qualifier :before | :after | :around
parameter-profile
parameter-specializer-name ::

ﬁ’nce-'nnmp

ColSS-To 7l

class-name
identifier

LACILe JLet

1997(E)

({var | (var parameter-specializer-name) }* [{&rest | :rest}var])

The defgeneric defining form is used to define a generic function and to specify options and

declarations that pertain to a generic function as a whole.

L . g i L.
ftTeturnsthe ZEIIETIT TUIICLIOIT TIaIIIe JeT=5PTT

Tha
10nc

context.
The lambda-list argument is an ordinary function lambda-list.

The following options are provided. A given option may occur”only once.

e The :generic-function-class option specifiesithat the generic function is to hay

pProvi

A Lo 2 Yieadan thot 30 AifTanan
Ucu by UUCT dSy>SuLTlll, uvllav 15, u1ﬂc1cu

<standard-generic-function>. The class:name argument is the name of a class
be the class of a generic function.

a1 I i (DR LR 1 . PR o,
different class from the default t from the

e The :method-combination option is*followed by a symbol or keyword that names
of method combination. The names of the built-in method combination types are
standard.

The method-desc argument$_define methods that will belong to the generic function, as
by defmethod. The method-qualifier and parameter-profile arguments in a method descr
are the same as for defmethod. The form arguments specify the method body.

If no method descriptions are specified, a generic function with no methods is created. 4

shall be signaled if a generic function is called and no methods apply.

The lamibda-list argument of defgeneric specifies the shape of lambda-lists for the met
this generic function. All methods on the resulting generic function must have lambda-l
aré.congruent with this shape. For further details on method congruence, see §7.2.2.2.

thod

e in this

€ a

1ADD

that can

a type
nil and

f defined

ption

An error

hods on
ists that

Implementations can extend defgeneric to include other implementation-defined options.

7.2.2 Defining Methods for Generic Functions

(defmethod func-spec method-qualifier* parameter-profile form*)
— <symbol>

defining operator

Where:

51

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

ISO/IEC 13816:1997(E) © ISO/IEC

func-spec = identifier | (setf identifier)

method-qualifier :before | :after | :around

parameter-profile ({var | (var parameter-specializer-name)}* [{&rest | :rest}var])
parameter-specializer-name class-name

class-name w= identifier

The defmethod defining form defines a method on a generic function. It returns the generic
function name func-spec.

A metholl-defining form contains the code that is to be executed when the arguments to the
generic fiinction cause the method that it defines to be invoked.

Preparing a method-defining form for execution causes one of the following cases:

e It ik a violation if the given name func-spec already designates a generic function and this
gerferic function contains a method that agrees with the new one on pafameter specializers
and qualifiers. For a definition of one method agreeing with anotherron parameter
spdcializers and qualifiers, see the section §7.2.2.1.

o If the given name func-spec designates a generic function and this generic function does not
conftain a method that agrees with the new one on parameter specializers and qualifiers,
thd new method is added to the generic function.

e It is a violation if the defmethod defining form is in the scope of a func-spec identifier that
dog¢s not designate a generic function.

e It is a violation if the given name func-spec does not exist in the current toplevel scope
immediately containing the defmethod defining form. Furthermore, it is a violation if a
defgeneric form for func-spec does not\precede the method-defining form in the text unit
being prepared for execution unless, thie method-defining form is a defclass.

The lampda-list of the method being defined must be congruent with the lambda-list of the
generic function. See §7.2.2.2 for a definition of congruence in this context.

Each mdthod-qualifier argument is an object that is used as an attribute to the given method by
method fombination. A meéthod qualifier is a non-nil symbol or keyword. The method
combinalion type fusther restricts what a method qualifier may be. The standard method
combinaltion typeallows for unqualified methods or methods whose sole qualifier is one of the
keywordp :before; :after, :around.

The pargmétér-profile argument is like an ordinary function lambda-list except that the names of
required parameters can be replaced by specialized parameters. A specialized parameter 1s a [1st
of the form (variable-name parameter-specializer-name). Only required parameters may be
specialized. A parameter specializer name is an identifier that names a class. If no parameter
specializer name is specified for a given required parameter, the parameter specializer defaults to
the class named <object>.

The form arguments specify the method body.

No two methods with agreeing parameter specializers and qualifiers may be defined for the same
generic function. See the section §7.2.2.1 for a definition of agreement in this context.

A method is not a function and cannot be invoked as a function.

52

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

© ISO/IEC ISO/IEC 13816:1997(E)

Each method has a specialized lambda-list, which determines when that method can be
applied. A specialized lambda-list is like an ordinary lambda-list except that a specialized
parameter may occur instead of the name of a required parameter.

7.2.2.1 Agreement on Parameter Specializers and Qualifiers Two methods are said
to agree with each other on parameter specializers and qualifiers if the following conditions hold:

1. Both methods have the same number of required parameters. Suppose the parameter

specializers of the two methods are Py ;... P;, and Py ... Py .

2. For each 1 <i<n, Py ; agrees with P, ;. The parameter specializer P; ; agrees with P ; if
P, ; and P, ; denote the same class. Otherwise P, ; and P, ; do not agree.

3. The qualifiers of both methods, if any, are the same.

The parameter specializers are derived from the parameter specializér names as describgd above.

7.2.2.2 Congruent Lambda-Lists for all Methods of a Generic Function THese rules
define the congruence of a set of lambda-lists, including the lambda-list of each method|for a
given generic function and the lambda-list specified for\the generic function itself, if given.

1. Each lambda-list must have the same number of required parameters.

2. If any lambda-list mentions &rest ot “:rest, each lambda-list must mention &rest or
:rest.

7.2.3 Inheritance of Methods

A subclass inherits methods in the following sense: Any method applicable to all instankes of a
class is also applicable to all instances of any subclass of that class, since they are also instances
of that class.

The inhefitance of methods acts the same way regardless of whether the method was crpated by
using, éneé ‘of the method-defining forms or by using one of the defclass options that cquses
methods to be generated automatically.

7.3 Calling Generic Functions

When a generic function is called with particular arguments, it must determine the code to
execute. This code is called the effective method for those arguments. The effective method is
a combination of the applicable methods in the generic function, which might be some or all of
the defined methods. An error shall be signaled if a generic function is called and no methods

apply.
When the effective method has been determined, it is invoked with the same arguments that

were passed to the generic function. Whatever value it returns is returned as the value of the
generic function.

53

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

ISO/IEC 13816:1997(E) © ISO/IEC

The effective method is determined by the following three-step procedure:

1. Select the applicable methods.
2. Sort the applicable methods by precedence order, putting the most specific method first.

3. Apply applicable methods according to the method combination.

7.3.1 Yelecting the Applicable Methods

Given a generic function and a set of arguments, an applicable method is a method for/that
generic fynction whose parameter specializers are satisfied by their corresponding argumnents.
The follo‘[wing definition specifies what it means for a method to be applicable and foryan
argument to satisfy a parameter specializer.

Let (A1,].., An) be the required arguments to a generic function in order, Let{Py, ..., Pn) be
the parameter specializers corresponding to the required parameters of phe.thethod M in order.
The method M is applicable when each A; satisfies P;. If P; is a class,"and if A; is an instance
of a clasq C, then it is said that A; satisfies P; when C' = P; or when C is a subclass of P;.

A method all of whose parameter specializers are the class nanted <object> is called a default
method, it is always applicable but might be shadowed by\a more specific method.

Methods| can have qualifiers, which give the method combination procedure a way to
distinguish among methods. A method that has one ot more qualifiers is called a qualified
method. A method with no qualifiers is called an‘unqualified method. A qualifier is any
object other than a list; i.e., any non-nil symbel or keyword. The qualifiers defined by standard
method fombination are keywords.

7.3.2 Sorting the Applicablé Methods

To complare the precedence of two methods, their parameter specializers are examined in order.
The examination order is.from left to right.

The corfesponding ‘parameter specializers from each method are compared. When a pair of
parametier specializers are equal, the next pair are compared for equality. If all corresponding
parametier specializers are equal, the two methods must have different qualifiers; in this case,
either method can be selected to precede the other.

If some corresponding parameter specializers are not equal, the first pair of parameter
specializers that are not equal determines the precedence. The more specific of the two methods
is the method whose parameter specializer appears earlier in the class precedence list of the
corresponding argument. Because of the way in which the set of applicable methods is chosen,
the parameter specializers are guaranteed to be present in the class precedence list of the class of
the argument.

The resulting list of applicable methods has the most specific method first and the least specific
method last.

54

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

© ISO/IEC ISO/IEC 13816:

7.3.3 Applying Methods

1997(E)

In general, the effective method is some combination of the applicable methods. It is defined by
a form that contains calls to some or all of the applicable methods, returns the value that will be
returned as the value of the generic function, and optionally makes some of the methods
accessible by means of call-next-method. This form is the body of the effective method; it is

augmented with an appropriate lambda-list to make it a function.

determined by the way that these marks are used by this step of the procedure.
be signaled if an applicable method has an unrecognized qualifier.

ISLIsp provides two method combination types. To specify that a generic function is to
of these method combination types, the name of the method combinationstype is given
argument to the :method-combination option to defgeneric.

The names of the method combination types are nil and standaxd,

7.3.3.1 Simple Method Combination In the simplé.case—the nil method comb
type where all applicable methods are primary methods—the effective method is the m
specific method. That method can call the next most specific method by using

call-next-method. The method that call-next>method calls is referred to as the next

The role of each method in the effective method is determined by its method qualifiers and the

alifier is

An_érrqr shall

use one
hs the

nation
st

method. The predicate next-method-p tests whether a next method exists. An error ghall be

signaled if call-next-method is called and there is no next most specific method.

7.3.3.2 Standard Method Conibination Standard method combination is used if no other

type of method combination is specified or if the method combination standard is spec

Primary methods definetheé main action of the effective method, while auxiliary m
modify that action in ofie;of three ways. A primary method has no method qualifiers. 4
auxiliary method is_a‘method whose method qualifier is :before, :after, or :around.

e A :befdré method has the keyword :before as its qualifier. A :before method
codesthat is to be run before any primary methods.

o . An :after method has the keyword :after as its qualifier. An :after method s
code that is to be run after primary methods.

e An :around method has the keyword :around as its qualifier. An :around methg

fied.

bthods

A1l

specifies

pecifies

d

specifies code that is to be run instead of other applicable methods but which is able to

cause some of them to be run.

The semantics of standard method combination is as follows:

e If there are any :around methods, the most specific :around method is called. It
the value of the generic function.

supplies

e Inside the body of an :around method, call-next-method can be used to call the next
method. When the next method returns, the :around method can execute more code,

55

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

ISO/IEC 13816:1997(E) © ISO/IEC

perhaps based on the returned value. An error shall be signaled if call-next-method is
used and there is no applicable method to call. The function next-method-p can be used
to determine whether a next method exists.

e If an :around method invokes call-next-method, the next most specific :around method
is called, if one is applicable. If there are no :around methods or if call-next-method is
called by the least specific :around method, the other methods are called as follows:

o All

the :before methods are called, in most-specific-first order. Returned values are

ignored. An error shall be signaled if call-next-method is used in a :before method.

e Thed most specific primary method is called. Inside the body of a primary method, the
forth call-next-method can be used to call the next most specific primary method. When

tha

method returns, the previous primary method can execute more code, perhaps based

on fhe returned value. An error shall be signaled if call-next-method is used and ‘there

are

no more applicable primary methods. The next-method-p function can be uged to

det¢rmine whether a next method exists. If call-next-method is not used, only the most

spe

e All
An

e Ifn
rety
call
spe

An error
while usi

The :bet
least-spe
example.
rafter
is inherit
instances|

Class C

By contr
:around

If only p
method i

ific primary method is called.

the :after methods are called in most-specific-last order. Returned‘wvalues are ignored.
error shall be signaled if call-next-method is used in an :after.method.

b :around methods were invoked, the most specific primary-method supplies the value
rned by the generic function. The value returned by the invocation of
l-next-method in the least specific :around method @ré those returned by the most
rific primary method.

shall be signaled if there is an applicable method but no applicable primary method
hg standard method combination.

ore methods are run in most-specific-first order while the :after methods are run in
ific-first order. The design rationale for this difference can be illustrated with an
Suppose class C; modifies the.behavior of its superclass, Cs, by adding :before and
nethods. Whether the behavior of the class Cs is defined directly by methods on C5 or
bd from its superclasses does not affect the relative order of invocation of methods on
of the class C,. Clas$iC1’s :before method runs before all of class Cy’s methods.

s :after method runs after all of class Cy’s methods.

hst, all :around.methods run before any other methods run. Thus a less specific
method ruis-before a more specific primary method.

imary methods are used and if call-next-method is not used, only the most specific
5 invoked; that is, more specific methods shadow more general ones.

7.3.4 Calling More General Methods

(call-next-method) — <object> local function

The call-next-method function can be used within the body of a method to call the next

method.

It returns the value returned by the method it calls.

56

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

© ISO/IEC ISO/IEC 13816:1997(E)

The type of method combination used determines which methods can invoke call-next-method
and what is the next method to be called.

In the case of simple method combination where the method combination qualifier is nil the
next method is the next most specific method.

The standard method combination type allows call-next-method to be used within primary
methods and :around methods. The standard method combination type defines the next
method as follows:

e In an :around method, the next method is the next most specific : around method.

e In a primary method the next method is the next most specific method.

For further discussion of call-next-method, see §7.3.3.

call-next-method passes the current method’s original argumentsito the next method.|Neither
using setq nor rebinding variables with the same names as parameters of the method affects the
values call-next-method passes to the method it calls. The €all-next-method functiop returns
the value returned by the method it calls. After call-next—method returns, further conI)utation
is possible. The next-method-p function can be used to test whether there is a next method.

The functional binding of call-next-method is legical within the body of the method-defining
form; i.e., it is as if it were established by labels. The function object to which the binding
refers has indefinite extent.

An error shall be signaled if call-next-method is used in methods that do not support [it. An
error shall be signaled if call-next-method is executed and there is no next method.

(next-method-p) — boolean local function

The next-method-p.function can be used within the body of a method defined by a
method-defining form to determine whether a next method exists. The next-method-p function
takes no argumments and returns t or nil.

The functional binding of next-method-p is lexical within the body of the method-defining form;
i.e., it is'@s if it were established by labels. The function object to which the binding refers has
indefinite extent.

7.4 Object Creation and Initialization

(create class {initarg initval}*) — <object> generic function

The function create creates and returns a new instance of a class. The argument is a class
object.

The initialization of a new instance consists of several distinct steps, including the following:
allocating storage for the instance, filling slots with values, and executing user-supplied methods

57

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

ISO/IEC 13816:1997(E) © ISO/IEC

ot

[¢]
=]
o
F3
.8

1al initialization. The last two steps of create are implemented by the
generic functlon initialize-object to provide a mechanism for ¢ ustomlzlng those steps. The
initialization arguments (the initargs and initvals) are given as a single list argument to
initialize-object. The instance returned by create is the new instance, which has been

modified and returned by initialize-object.

a
i a

ISLisp specifies system-supplied primary methods for each step and thus specifies a well-defined
standard behavior for the entire initialization process. The standard behavior provides two
simple mechanisms for controlling initialization:

¢ Supplying a default initial value form for a slot. A default initial value form for a slot is
defined by using the :initform slot option to defclass. This default initial value form™s
evgluated (with scope rules as in the description of the :initform option to defelass),

PR |

angl the resumng value is stored in the slot.

e Ddfining methods for initialize-object. The slot-filling behavior described above is
imjplemented by a system-supplied primary method for initialize-object.

7.4.1 Initialize-Object

The genric function initialize-object is called by creat€ to initialize a newly created
instance] It uses standard method combination. Methodsfor initialize-object can be defined
on user-fefined classes in order to augment or override, the system-supplied slot-filling
mechanisms (described below).

During Initialization, initialize-object is iri¥oked after a new instance whose slots are
unbound has been created.

The gengric function initialize-object is called with the new instance. There is a
system-$upplied primary method forninitialize-object whose parameter specializer is the
class <standard-object>. This-method fills in the slots according to the initialization
arguments provided and accerding to the :initform forms for the slots as follows:

o Ifthe slot already-has a value, no attempt is made to change that value.

o Iflan initialization argument and value pair for the slot was provided among the
injtialization arguments, the slot is initialized with the value from that pair. The name of
thle ihittalization argument for a slot is declared by the :initarg option to slots in
ddfelass The consequences are undefined if more than one initialization argument for the

same slot is supplied.

o If the slot has a default initial value form (see defclass), that form is evaluated in the
lexical environment in which that form was established and in the current dynamic
environment. The result of the evaluation is an object which becomes the value of the slot.

e Otherwise, the slot is left uninitialized.

Methods for initialize-object can be defined to specify actions to be taken when an instance
is initialized. If only :after methods for initialize-object are defined, they will be run after
the system-supplied primary method for initialization and therefore will not interfere with the
default behavior of initialize-object.

58

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

© ISO/IEC ISO/IEC 13816:1997(E)

(initialize-object instance initialization-arguments) — <object> generic function

The generic function initialize-object is called by create to initialize a newly created
instance. The generic function initialize-object is called with the new instance and a list of
initialization arguments.

The system-supplied primary method on initialize-object initializes the slots of the instance
with values according to the initialization-arguments (an alternating list of initialization

argument keywords and values) and the :1initform lorms of the slots (see §7.4.1).

The instance argument is the object to be initialized. The modified instance is returned|(as the
result. Programmers can define methods for initialize-object to specify actions to bp taken
when an instance is initialized. If only :after methods are defined, they will'be run afté¢r the
system-supplied primary method for initialization and therefore will not ifiterfere with the
default behavior of initialize-object. The consequences are undefined\if a
programmer-defined primary method for this generic function does/not/return instance.

7.5 Class Enquiry

(class—-of object) — <class> function

Returns the class of which the given objecf 1s a direct instance. object may be any ISLisp object.

(instancep object class) — boolean function

Returns t if object is an-ihstance (directly or otherwise) of the class class; otherwise, returns nil
object may be any ISLisP object. An error shall be signaled if class is not a class object error-id.
domain-error).

(subclasspiclass; classy) — boolean function

Réturns t if the class class; is a subclass of the class classs; otherwise, returns nil. Anferror
shall be signaled if either class, or classy is not a class object (error-id. domain-error).

(class class-name) — <class> special operator

Returns the class object that corresponds to the class named class-name.

59

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

ISO/IEC 13816:1997(E) © ISO/IEC

8 Macros

Macros are a feature to extend the language syntactically. A macro is an abstraction for surface
transformations. Because ISLISP texts (e.g., function definitions) can be represented internally
by objects in ISLisP, the surface transformations can be described by means of list processing.
Forms are represented by conses or other objects and a macro describes a transformation
function from one group of objects onto another.

Macros can be internally defined by expander functions which implement the transformation

from one[group of objects to another. The operation of an expander Tunctions Is specified by a
defmacr¢ defining form.

An expander receives a form as argument and returns a different form as value. The primary
activity ¢f an expander is to create sets of nested lists; for this purpose, the backquote,facility is
provided

Macros gre expanded at preparation time. No runtime information is available,

The set ¢f usable operations is restricted to simple data structure creation_and manipulation;
those opgrations are forbidden that cause side-effects to the environmenf-(such as I/0 to the
terminal), to externally accessible data structure (such as a modification to the property list of a
symbol)for to the macro form itself.

Macro d¢finitions are allowed only at toplevel. Redefinition.(#e., multiple definition) of macros is
forbidden. A macro’s definition must textually precede anyyuse of that macro during preparation

for execytion.

The resullt of expanding a macro form is another form. If that form is a macro form, it is
expandedl by the same mechanism until the restdt is not a macro form.

When a ftoplevel form is a macro form, its\resulting macro expansion is also considered to be a
toplevel form.

A macrq form can appear as the.place specified in a setf special form. See setf on page 32.

(defmacfro macro-name(lgmbda-list form*) — <symbol> defining operator

Defines 3 named-.(toplevel) macro. No implicit block with the macro name is established when
the macgo-expansion function is invoked. macro-name must be an identifier whose scope is the
current foplével scope in which the defmacro form appears. lambda-list is as defined in page 21.

The defitttttomrpotntof macro-rane s tie closing parenthesisof the tombda-1i5t:

Example:

(defmacro caar(x) (list ’car (list ’car x)))
= caar

60

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

© ISO/IEC ISO/IEC 13816:1997(E)

‘form — <object> syntax
,form — <object> syntax
,@form — <object> syntax

¢ or quasiquote constructs a list structure. quasiquote, like quote, returns its argument
unevaluated if no commas or the syntax , (unquote) or ,@ (unquote-splicing) appear within the
form.

quasiquote the form is evaluated and its result is inserted into the quasiquote structute Instead
of the unquote form.

,@ (unquote-splicing) is also syntax valid only within ¢ expressions. When appearing within a
quasiquote the expression form must evaluate to a list. The elements of the(list are splided into
the enclosing list in place of the unquote-splicing form sequence.

Quasiquote forms may be nested. Substitutions are made only foruhquoted expressions
appearing at the same nesting level, which increases by one inside ‘each successive quasiquotation
and decreases by one inside each unquotation.

Example:

“(list ,(+ 1 2) 4)
= (list 3 4)
(let ((name ’a)) ~(list name.$hame °’,name))
= (list name a (quote,a))
“(a ,(+ 1 2) ,@(createtiist 3 ’x) b)
= (a3 xxxb)
*((foo ,(- 10 3)) %@(cdr ’(c)) . ,(car ’(coms)))
= ((foo T) v—cons)
“(a “(b ,(+ A°2) ,(foo ,(+ 1 3) d) e) £)
= (a "(b(+ 12) ,(foo 4 d) e) £)
(let ((namei ’x)
(name2 ’y))
“(a “(b ,,namel ,’,name2 d) e))
= (a “(b ,x ,’y d) e)

9 Declarations and Coercions

(the class-name form) — <object> special operator
(assure class-name form) — <object> special operator

These forms evaluate form. If form returns, the returned value is returned by the the or assure
form. In addition, these forms specify that the value of form is of the class specified by
class-name (which must be the name of an existing class).

61

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

ISO/IEC 13816:1997(E) © ISO/IEC

In a the special form, the consequences are undefined if the value of form is not of the class or a
subclass of the class designated by class-name (error-id. domain- error) In an assure special
form, an error shall be signaled if the value of form is not of the class or a subclass of the class

designated by class-name (error-id. domain-error).

Example:
(the <integer> 10) = 10
_(the <number> 10) = 10
(the <float> 10) the consequences are undefined
(assure <integer> 10) = 10
(assure <number> 10) = 10

(assure <float> 10) an error shall be signaled

(convert obj class-name) — <object> special operator

Returns|an object of class class-name which corresponds to the object obj according to one of

the following projections called a coercion function. The table\shows obj along the left-hand

Alacd AN nc ~ 1.
1

column pnd class-name d.luug, the bUp TOW \Wlbh <>’s in class\iaimes omitted her

brevity)

a ~nler far dawdaial
€ OIllly 101 CAatvual

character | integer | float | symbol“| string | general-vector | list
character = I - I(3) —(4) - -
integer I = X - X(5) - -
float - -(1) = - X(6) - -
symbo - ~ S = I(3) - -
string - X(2). 43X(2) | I(3) = X(7) X
general-vector - 1 - - - = X
list - - - - - X =

Legend:

= This|is the identity function
X This|coercion*shall be provided

XK 2)_ An error shall be signaled if this coercion is attempted and the string does not

contain the textual Tepresentation of a number of the target class. In all other
respects, this is the same as parse-number.

X(5) This may be the same as the “D format directive.
X(6) This may be the same as the "G format directive.

X(7) This is the identity if strings are vectors in the implementation.
I This coercion shall be provided, but its definition is implementation defined.

I(3) This coercion shall be provided, but its definition is implementation defined. The
coercion depends on the implementation’s neutral alphabetic characters (see §10.1.2).

— An error shall be signaled if this coercion is attempted.

62

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

© ISO/IEC ISO/IEC 13816:1997(E)

—(1) Programmers requiring this kind of functionality may wish to consider instead using
one of the functions, floor, ceiling, round, or truncate.

—(4) programmers requiring this kind of functionality may wish to consider instead using
the following: (create-string 1 obj)

If an implementation provides implementation-defined classes, it may also provide
implementation-defined coercions for the names of those classes using convert.

—Example.

(convert 3 <float>) = 3.0
(convert "abc" <general-vector>) = #(#\a #\b #\c)
(convert #(a b) <list>) = (a b)

ACO -

10 Symbol class

A symbol (an instance of class <symbol>) is an objéct." Symbols can be named or unnamed. A
symbol’s name is sometimes called a print namedbecause it is used to identify the symbol
during reading and printing. Symbols can haveassociated properties.

(symbolp 0bj) — boolean function

Returns t if obj is a symbol (lustance of class <symbol>); otherwise, returns nil. The pbj may
be any ISLISP object.

Example:

(symbolp ’a) =t
(symbolp "a" = nil
(symbolp #\a) = nil
(symbolp ’t) =t
(symbolp t) =t
(symbolp ’nil) =t
(b_ym'uulp i) =%
(symbolp ’()) =t
(symbolp ’*pi*) >t
(symbolp *pix*) = nil

10.1 Symbol Names

Symbols can be either named or unnamed.

63

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

ISO/IEC 13816:1997(E) © ISO/IEC

There is a mapping from names to symbols. Distinct symbols (symbols that are not eq) always
have distinct names. No such mapping is defined for unnamed symbols.

Mha notaas ~F
L

a name Py AP I nt
A1 11C 1lallic€ O [919] 1]

a Syiioo.

10.1.1 Notation for Symbols

A named|symbol is denoted by its print name enclosed within the vertical bars (“1”). However;
the encloging vertical bars are not necessary if the symbol satisfies the following conditions:

1. Th¢ symbol’s print name consists only of neutral alphabetic characters (see §10:1.2) or the
follpwing additional characters:
0123456789+ -<>/%=72_18¢%[1"{}~"

(THis set may have additional implementation-defined characters,)

2. The first character of the symbol’s print name is a neutral alphabetic character or one of
the|following characters:

<>/ *=72_Vv$%L] L}~

(This set may have additional implementation-defined characters.)

In additipn, the following are the names of symbols that can be written without enclosing
vertical bars:

+ |- 1+ 1-

If the syinbol name contains-a.vertical bar, the vertical bar must be preceded by a backslash “\”.
If the symbol name contains-a backslash, the backslash must be preceded by another backslash.
For example, “IN\\\\I\\\11!” denotes a symbol whose name is a 5 character string containing
backslash, backslash;vertical bar, backslash, vertical bar.

Note: required symbols can be written without vertical bars.

It is implementation defined whether the names of symbols can contain colon (:) or ampersand

(%). Consequently, whether &rest, :rest, and keywords (e.g., :before and :after) are
represented as symbols or something else is implementation defined.

10.1.2 Alphabetic Case in Symbol Names

If the enclosing vertical bars are omitted, the case of alphabetic characters in a symbol is
translated by the reader to a canonical case that is used internally. Therefore, for example, each
of the following denotes the same symbol in all implementations:

foo fo0 f0o £00 Foo FoO FOo FOO

64

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

© ISO/IEC ISO/IEC 13816:1997(E)

Internally, alphabetic case in a symbol’s print name is maintained, and is significant. For
example, |FOO| and |fool are not the same symbol in any implementation. However, the reader
canonicalizes the case of symbols whose names are not written enclosed by vertical bars. So foo
and FOO both represent the same symbol, but it is implementation defined whether that symbol
is |fool or |FOOI.

Specifically, each implementation has an implementation-defined attribute called its neutral
alphabetic case, which is either “lowercase” or “uppercase.” If the neutral alphabetic case of
an implementation is lowercase, the neutral alphabetic characters for that implementation
are defined to be as follows:

abcdefghijklmnopqrstuvwxyz

Otherwise (if the neutral alphabetic case of an implementation is uppercase); the neutrg
alphabetic characters for that implementation are defined to be as follows:

et

ABCDEFGHIJKLMNOPQRSTUVWIXY\Z

Continuing again with the above example, if the neutral alphabetic case of an implemertation is
lowercase, foo, FOO and |foo| denote the same symbol; otherwise, foo, FOO and |FOO| [denote

the same symbol.
An implementation may extend the set of neutralalphabetic characters to include addifional

implementation-defined characters.

10.1.3 1nil and ()

The symbol nil, which represents both the false value and the empty list, can also be denoted
by).

10.2 Symbol‘Properties

A propertyof a symbol is a named association between a property indicator and a property
valueASsymbol s is said to have a property p if a property indicator p is associated with s.

(property symbol property-name [obj]) — <object> function

Returns the value of the property named property-name associated with the symbol symbol. If
symbol has no property named property-name, obj (which defaults to nil) is returned.

An error shall be signaled if either symbol or property-name is not a symbol (error-id.
domain-error). obj may be any ISLisp object

Example:

(property ’zeus ’daughter) = athena

65

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

ISO/IEC 13816:1997(E) © ISO/IEC

(setf (property symbol property-name) obj) — <object> special form
(set-property obj symbol property-name) — <object> function

Causes 0bj to be the new value of the property named property-name asssociated with the
symbol symbol. If the property named property-name already exists, its corresponding property
value is replaced; otherwise, a new property is created. obj is returned.

An error shall be signaled if either symbol or property-name is not a symbol (error-id.

domain-¢rror). obj may be any ISLIsP object

Example:

(setf (property ’zeus ’daughter) ’athena)

=> athena
(set-property ’athena ’zeus ’daughter)
= athena
(remove-property symbol property-name) — <object> function

Removes the property property-name associated with sgnbol and returns the property value of
the rem¢ved property if there is such a property. If tliere is no such property, nil is returned.

An errof shall be signaled if either symbol or property-name is not a symbol (error-id.
domain-error).

Examplg:

(remove-property ’zeus ’daughter) = athena

10.3 |Unnamed Symbols

(gensymp) &5 <symbol> function

Returns an unnamed symbol. gensym is useful for writing macros. It is impossible for an
identifier to name an unnamed symbol.

Example:
(defmacro twice (x)
(let ((v (gensym)))

(et (v ,x)) (+ ,v ,v)))) = twice
(twice 5) = 10

66

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

© ISO/IEC ISO/IEC 13816:1997(E)

11 Number class

The class <number> has the disjoint subclasses <float> and <integer>.

11.1 Number class

(numberp—ohi) — baolean function

Returns t if obj is a number (instance of class <number>); otherwise, returns nil. The|obj may
be any ISLisP object.

Example:
(numberp 3) =t
(numberp -0.3) =t
(numberp ’(a b ¢)) = nil
(numberp "17") = ndl
(parse-number string) — <number> function

The characters belonging to string ‘are scanned (as if by read) and if the resulting lexeme is the
textual representation of a nuriber, the number it represents is returned.

An error shall be signaled\if string is not a string (error-id. domain-error). An error sll:lall be
signaled if string is not-the textual representation of a number (error-id. cannot-parse-pumber).

Example:

(parse-number "123.34") = 123.34
(parse-number "#XFACE") = 64206
(parse-number "-37.") an error shall be signaled
(parse-number "-.5") an error shall be signaled
since floating-point number lezemes have
at least one mantissa digit before and at least
one mantissa digit after the dectmal point.

= gy I3) — boolean function

Returns t if #; has the same mathematical value as zp; otherwise, returns nil. An error shall be
signaled if either z; or z7 is not a number (error-id. domain-error).

67

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

ISO/IEC 13816:1997(E) © ISO/IEC

Note: = differs from eql because = compares only the mathematical values of its arguments, whereas

eql also compares the representations.
Example:
(=3 4) = nil
(= 3 3.0) = t
(= (parse-number "134.54") 134.54) = t
(= 0.0 -0.0) >t
(/= z; zp) — boolean function

Returns ¢ if z; and z have mathematically distinct values; otherwise, returns nil, An error
shall be dignaled if either z; or z; is not a number (error-id. domain-error).

Examplej

(/= 3 4) >t

(/= 3 3.0) = nil

(/= (parse-number "134.54") 134.54)= nil
(>= 1, 1) — boolean function
(<= 77 4o) — boolean function
(> 21 13)) — boolean function
(< 71 zof) — boolean function

>= returyls t if z; is greater than or = z,. <= returns t if z; is less than or = z5. > returns t if z;
is greatef than z,. < returng—t\if z; is less than z.

The mat

hematical values of the arguments are compared. An error shall be signaled if either z;

or z3 is ot a numbép-(error-id. domain-error).

Example}

68

> 2 2) = nil
(> 2.02) = nil
(> 2 -10) =t
(> 100 3) =t
(<22 = nil
(<12) =t
(>=2 2) = t
(>= 2.0 2) =t
(>=-12) = nil
(<= -1 2) =t
(<= 2 -1) = nil

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

© ISO/IEC ISO/IEC 13816:1997(E)

In the remaining definitions in this section, any noted coercion to <float> is done as if by float
or by (convert <float> z).

(+ z*) — <number> function
(* z¥) — <number> function

The functions + and * return the sum and the product, respectively, of their arguments. If all
arguments are integers, the result is an integer. If any argument is a float, the result is a float.

When given no arguments, + returns 0 and * returns 1. An error shall be signaled if any| z is not
a number (error-id. domain-error).

Example:
(+ 12 3) = 15
(+123) = 6
(+ 12 3.0) = 15.0
(+ 4 0.0) = 4.0
+ =0
(* 12 3) = 36
(* 12 3.0) = ,36.0
(* 4.0 0) ='0.0
(*x 2 3 4) = 24
(*) =1

(- zt) — <number> function

Given one argument, z, this-function returns its additive inverse. An error shall be signaled if =
is not a number (error-id.’ domain-error).

If an implementation supports a -0.0 that is distinct from 0.0, then (- 0.0) returns -p.0; in
implementationsywhere 0.0 and 0.0 are not distinct, (- 0.0) returns 0.0.

Example<
-1 = -1
(- -4.0) = 4.0
(- 4.0) = -4.0
(eql (- 0.0) -0.0) =t
(eql (- -0.0) 0.0) >t
Given more than one argument, z; ... z,, - returns their successive differences, z;—22—...—z,.

An error shall be signaled if any z is not a number (error-id. domain-error).

Example:
(-12) = -1

69

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

ISO/IEC 13816:1997(E) © ISO/IEC
(- 92 43) = 49
(- 2.3 -3.0) = 5.3
(- 0.0 0.0) = 0.0
(- 345) = -6
(quotient dividend divisort) — <number> function
(reciprocal z) — < number> function

The fun
signaled

The fun
numbers
dividend

Given nf
divisory,

tion reciprocal returns the reciprocal of its argument z; that is, 1/z. An error shallbe
if z is zero (error-id. division-by-zero).

tion quotient, given two arguments dividend and divisor, returns the qudtient of those
. The result is an integer if dividend and divisor are integers and divispr evenly divides
, otherwise it will be a float.

ore than two arguments, quotient operates iteratively on each-of the divisor; ...
as in dividend/divisor;/ .../ divisor,. The type of the result follows from the

two-argument case because the three-or-more-argument quotient can be defined as follows:

(quotient dividend divisor; divisors ...

)

(quotient (quotient dividend divisor;) divisors: ...

)

An errof shall be signaled if dividend is not a number (error-id. domain-error). An error shall be
signaled if any divisor is not a number (errorid. domain-error). An error shall be signaled if
any divisor is zero (error-id. division-by-zexo).
Example:

(reciprocal 2) = 0.5

(quotient 10,5) = 2

(quotient 1 2) = 0.5

(quotient™2:-0.5) = -4.0

(quotient 0 0.0) an error shall be signaled

(quotient 2 3 4) = 0.16666666666666666
(max zt) — <number> function
(min zt) — <number> function

The function min returns the least (closest to negative infinity) of its arguments. The
comparison is done by <.

The function max returns the greatest (closest to positive infinity) of its arguments. The
comparison is done by >.

An error shall be signaled if any z is not a number (error-id. domain-error).

70

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

© ISO/IEC ISO/IEC 13816:1997(E)

Example:
(max -5 3) = 3
(max 2.0 3) = 3
(max 2 2.0) = 2 or 2.0 (implementation-defined)
(max 1 5 2 4 3) = 5
(min 3 1) = 1
(min 1 2.0) =1
(min 2 2.0) = 2 or 2.0 (implemeniation-defined)
(min 1 5 2 4 3) =1
(abs z) — <number> function

The function abs returns the absolute value of its argument. An\error shall be signaled if z is
not a number (error-id. domain-error).

Example:
(abs -3) = 3
(abs 2.0) = 2.0
(abs -0.0) = 0.0
(exp z) — <number> function

Returns e raised to the power z, where e is the base of the natural logarithm. An erroy shall be
signaled if z is ndt-a number (error-id. domain-error).

Example:

(exp 1) = 2.718281828459045

(exp 2) = 7.38905609893065

(exp 1.23) = 3.4212295362896734

(exp 0) =t or t-0(implementutivn=defined)
(log z) — <number> function

Returns the natural logarithm of z. An error shall be signaled if z is not a positive number
(error-id. domain-error).

Example:

71

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

ISO/IEC 13816:1997(E)

(log 2.718281828459045)

(log 10)
(log 1)

© ISO/IEC

o

= 1.
= 2.302585092994046
= 0 or 0.0 (implementation-defined)

(expt 1 z3) — <number>

function

Returns #; raised to the power 5. The result will be an integer if z; is an integer and z» is a
non-negative integer. An error shall be signaled if z; is zero and z is negative, or if z; is zero
and z, is|a zero float, or if ; is negative and z, is not an integer.
Example;|

(expt 2 3) = 8

(expt -100 2) = 10000

(expt 4 -2) = 0.0625

(expt 0.5 2) = 0.25

(expt z 0) = 1 if z ts-an inleger

(expt z 0) = 1.0 if&ss a float

(expt -0.25 -1) = -4.0

(expt 100 0.5) = 10,0

(expt 100 -1.5) = 0.001

(expt z 0.0) =>1.0 if £ 1s a posttive float

(expt 0.0 0.0) an error shall be signaled
(sqrt z) — <number> function
Returns the square root of z._An érror shall be signaled if z is not a non-negative number

(error-id.

Examplef

(sqrt
(sqrt

(sgrt

domain-error).

4) => 2
2) = 1.4142135623730951
-1) an error shall be signaled

*pix — <float>

named constant

The value of this constant is an approximation of .

Example:

72

Pi

= 3.141592653589793

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

© ISO/IEC ISO/IEC 13816:1997(E)

(sin z) — <number> function
(cos) — <number> function
(tan z) — <number> function

The function sin returns the sine of z. The function cos returns the cosine of z. The function

—tan Teturns the tangent of T i each case; 7 must be given i radians.

An error shall be signaled if z is not a number (error-id. domain-error).

Example:
;; Note that conforming processors are permitted, tojvary
;3 in the floating precision of these results.
(sin 1) = 0.8414709848078965
(sin 0) = 0 01020 (implementation-defiped)
(sin 0.001) = 9.999998333333417E-4
(cos 1) =,0.5403023058681398
(cos 0) ="1 or 1.0 (implementation-defiped)
(cos 0.001) = 0.9999995000000417
(tan 1) = 1.557407724654902
(tan 0) = 0 or 0.0 (implementation-defiped)
(tan 0.001) = 0.0010000003333334668
(atan z) — <number> function

Returns the arc tangent of z. This can be mathematically defined as follows:

—ilog ((1+iz) /1/(1+ a2))

This formula is mathematically correct, assuming completely accurate computation. It {s not
necessarily the simplest one for real-valued computations.

Theresult is a (real) number that lies between —7/2 and 7/2 (both exclusive).

The following definition for (one-argument) arc tangent determines the range and branch cuts:

log (14 iz) — log (1 — i)

arctan r =
2t

Note: Beware of simplifying this formula; “obvious” simplifications are likely to alter the branch cuts
or the values on the branch cuts incorrectly. The branch cut for the arc tangent function is in two pieces:
one along the positive imaginary axis above i (exclusive), continuous with quadrant II, and one along the
negative imaginary axis below —i (exclusive), continuous with quadrant IV. The points ¢ and —3 are
excluded from the domain. The range is that strip of the complex plane containing numbers whose real
part is between —n/2 and 7/2. A number with real part equal to —7/2 is in the range if and only if its

73

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

ISO/IEC

13816:1997(E)

y Condition

z Condition

Cartesian locus

© ISO/IEC

Range of result

imaginary
imaginary

y=0 z>0 Positive x-axis 0

* y=+40 z>0 Positive x-axis 40

¥ y=-0 z>0 Positive x-axis -0
y>0 z>0 Quadrant I 0 < result < 7/2
y>0 z=0 Positive y-axis = m/2
y>0 z<0 Quadrant II m/2 < result < 7
y=20 z<0 Negative x-axis

* gy — 40 r<(Negative x-axis 47

* y=-0 z<0 Negative x-axis —m
y<0 z<0 Quadrant III —m < result < —7/2
y<0 z=0 Negative y-axis —m/2
y<0 z>0 Quadrant IV —7/2 < result < 0
y=0 z=0 Origin undefined consequences

* y=+40 z =40 Origin +0

* y=-0 z=+40 Origin -0

* y=+40 z=-0 Origin +7

* y=-0 z=-0 Origin -7

Figure 3. Quadrant information for atan2

part is strictly positive; a number with real part equal to 7/2 is in the range if and only if its
part is strictly negative.

An error|shall be signaled if z is not a number (error-id; domain-error).

(atan2

r, 29) — <number>

function

Given a

point (2, ;) in rectangular.oordinates, this function returns the phase of its

represenfation in polar coordinate§. If 2, is zero and z is negative, the result is positive. If z;
and z5 are both zero, the result is implementation defined.

An error

shall be signaled-if-¢ is not a number (error-id. domain-error).

The valle of atan2/s-always between —m (exclusive) and 7 (inclusive) when minus zero is not
supportdd; when minus zero is supported, the range includes —.

The sigifs of 'z (indicated as z) and z; (indicated as y) are used to derive quadrant information.
Figure 1f1*1%details various special cases. The asterisk (*) indicates that the entry in the figure

applies to implementations that support minus zero.

Example:
(atan2 0 3.0) = 0 or 0.0 (implementation-defined)
(atan2 1 1) = 0.7853981633974483
(atan2 1.0 -0.3) = 1.8622531212727635
(atan2 0.0 -0.5) = 3.141592653589793
(atan2 -1 -1) = -2.356194490192345
(atan2 -1.0 0.3) = -1.2793396
(atan2 0.0 0.5) = 0.0

74

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

© ISO/IEC ISO/IEC 13816:1997(E)

(defun asin (x) (atan2 x (sqrt (- 1 (expt x 2))))) = asin
(defun acos (x) (atan2 (sqrt (- 1 (expt x 2))) x)) = acos

(defun atan (x) (atan2 x 1)) = atan

(sfinh z) — <number> function
(cpsh z) — <number> fundtion
(tpnh z) — <number> fundtion

THe function sinh returns the hyperbolic sine of z. The function cosh returrs-the hyperbol
cogine of z. The function tanh returns the hyperbolic tangent of z.

o

A1 error shall be signaled if ¢ is not a number (error-id. domain-errot).

Expmple:
(sinh 1) =.4.1752011936438014
(sinh 0) =<0 or 0.0 (implementation-defined
(sinh 0.001) => 0.001000000166666675
(cosh 1) = 1.5430806348152437
(cosh 0) = 1o0r 1.0 (implementation-defined
(cosh 0.001) = 1.0000005000000416
(tanh 1) = 0.7615941559557649
(tanh 0) = 0 or 0.0 (implementation-defined|
(tanh 0.001) = 9.999996666668002E-4

(dtanh) — <number> fungtion

Réturns the-liyperbolic arc tangent of z. An error shall be signaled if z is not a number with
absolutecvalde less than 1 (error-id. domain-error).

The following definition for the inverse hyperbolic tangent determines the range and branch |cuts:

log (1+2)—log (1 —=2)
5)

arctanh z =

Note that:

¢ arctan ¥ = arctanh iz.

The branch cut for the inverse hyperbolic tangent function is in two pieces: one along the
negative real axis to the left of —1 (inclusive), continuous with quadrant III, and one along the

75

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

ISO/IEC 13816:1997(E) © ISO/IEC

positive

real axis to the right of 1 (inclusive), continuous with quadrant I. The points —1 and 1

are excluded from the domain. The range is that strip of the complex plane containing numbers
whose imaginary part is between —7/2 and 7/2. A number with imaginary part equal to —m/2
is in the range if and only if its real part is strictly negative; a number with imaginary part equal

to /2 is in the range if and only if its imaginary part is strictly positive.
Example:
(atanh 0.5) = 0.5493061443340549
(atanh 0.001) = 0.0010000003333335335

11.2

This clags represents the set of floating-point numbers. Each floating-point number is represented
by a rational number with some given precision; see IEEE standard 754-1985 for details.

Floating}point numbers are written in one of the following)formats:

[s]gd...d.dd...d
[slgd...d.dd...dE[s]dd...d
[s]gd...d.dd...de[s]dd...d
[s]gd .. .dE[s]dd...d

[slHd .. .de[s]dd...d

where s

There must be at least one digit before the decimal point and at least one mantissa digit after

(defun asinh (x) (atanh (quotient x (sqrt (+ 1 (expt x 2)))))) = .asinh

(defun acosh (x) (atanh (quotient (sqrt (* (- x 1) (+ x 1))) x))) = acos}

Float class

is either “+” or “~”, and dd'...d is at least one digit from “0”-“9”.

the decimal point.
most-fositive-float — <float> named constant
most-regative~float — <float> named constant

The value of *most-positive-float*is the implementation-dependent floating-point number
closest to positive infinity.

The value of *most-negative-float* is the implementation-dependent floating-point number
closest to negative infinity.

(floatp obj) — boolean function

Returns

t if obj is a float (instance of class <float>); otherwise, returns nil. The obj may be

any ISLisp object.

76

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

© ISO/IEC ISO/IEC 13816:1997(E)

Example:

(floatp "2.4") = nil

(floatp 2) = nil

(floatp 2.0) =t

_éf'l'ﬂ'a.t .b) — _,l,uu,t unction

Returns z itself if it is an instance of the class <float> and returns a floating-point
approximation of z otherwise. An error shall be signaled if z is not a numbér. (€rror-id.
domain-error).
Example:

(float 0) = 0.0

(float 2) = 2£0

(float -2.0) = -2.0

(float 123456789123456789123456789)/=>\ 1.2345678912345679E26
(floor z) — <integer> function

Returns the greatest integer less-than or equal to z. That is, z is truncated towards negative
infinity. An error shall be signaled if z is not a number (error-id. domain-error).

Example:

(floox 3.0)
(floor 3.4)
(£door 3.9)
(floor -3.9)
(floor -3.4)
(floor -3.0)

R
RS

(ceiling z) — <integer> function

Returns the smallest integer that is not smaller than z. That is, z is truncated towards positive
infinity. An error shall be signaled if z is not a number (error-id. domain-error).

Example:
(ceiling 3.0) = 3

77

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

ISO/IEC 13816:1997(E) © ISO/IEC

(ceiling 3.4) = 4
(ceiling 3.9) => 4
(ceiling -3.9) = -3
(ceiling -3.4) = -3
(ceiling -3.0) = -3
(truncate z) — <integer> function

Returns [the integer between 0 and z (inclusive) that is nearest to z. That is, z is truncated
towards [zero. An error shall be signaled if z is not a number (error-id. domain-error).

Examplg:

(truncate 3.0)
(truncate 3.4)
(truncate 3.9)
(truncate -3.4)
(truncate -3.9)
(truncate -3.0)

R R

(round [z) — <integer> function

Returns| the integer nearest to z. If = is ekactly halfway between two integers, the even one is
chosen. |An error shall be signaled if z\s-not a number (error-id. domain-error).

Example:
(round 3.0) = 3
(round 3.4) = 3
(round =3.%) = -3
(round 3.6) = 4
(round> -3.6) => -4
(round 3.5) => 4
(round -3.5) = -4
(round 2.5) = 2
(round -0.5) = 0

11.3 Integer class

Integer objects correspond to mathematical integers.

Arithmetic operations that only involve integers behave in a mathematically correct way,
regardless of the size of the integer. If there are cases where arithmetic on integers would

78

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

© ISO/IEC

ISO/IEC 13816:1997(E)

produce results or intermediate expressions that exceed the precision of the underlying hardware,
an ISLIsP processor shall simulate any necessary operations in software in order to assure
mathematical correctness. The circumstances, if any, for which such simulation is necessary is
implementation defined; the point at which such simulation will exceed the capacity of the

processor is also implementation defined.

Integers are written in one of the following formats.

#B [s]bb...b, each b being either “0” or “1”.

#b [s]bb ... b, each 0 being either "0" or "1I".
#0 [s]oo. ..o, each o being one of “0”-“7".
#o [s]oo. ..o, each o being one of “0”-“7”.

[s]dd...d, each d being one of “0”-“9”.

[

[

#X [s]zz ...z, each & being one of “0”7-“9”, “A”-“F”, “a”-“£”.
#x [s]zz ...z, each z being one of “0”-“9”, “A”-“F”, “a”-“f”.

where s is either “4+” or “-”.

Note: In ISLISP, there is no variable that controls the reader. Thus the above notations are ¢

notations for integers.

xactly the

(integerp obj) — boolean

function

Returns t if obj is an integer (instance of-class <integer>); otherwise, returns nil. obj

may be

any ISLISP object.
Example:

(integerp 3) =t

(integerp 3:4) = nil

(integerp. "4") = nil

(integerp '(a b ¢)) = nil
(div 5 20) — <integer> function
(mod z; 20) — <integer> function

div returns the greatest integer less than or equal to the quotient of 2; and z;. An error shall be

signaled if z; is zero (error-id. division-by-zero).

mod returns the remainder of the integer division of z; by z3. The sign of the result is the sign of
2. The result lies between 0 (inclusive) and z; (exclusive), and the difference of z; and this

result is divisible by z; without remainder.

div and mod satisfy:

(= z9 (+ (* (div 2z 22) 22) (mod 2z 22)))

79

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

ISO/IEC 13816:1997(E)

That is, the evaluation of the above form always return t.

© ISO/IEC

An error shall be signaled if either z; or z is not an integer (error-id. domain-error).

Example

(div
(div

3z
Laiv

12 3)
14 3)

40 2)
Ti4 V)

(div
(div
(div
(div
(div
(mod
(mod
(mod
(mod
(mod
(mod
(mod
(mod
(mod

(mod

-14 3)
12 -3)
14 -3)
-12 -3)
-14 -3)
12 3)
7 247)
247 7)
14 3)
-12 3)
-14 3)
12 -3)
14 -3)
-12 -3)

-14 -3)

L R AL '

O = ONN N O W

O |
-

J
N

(ged 2z

22) — <integer>

function

gcd retu
integer.
and 2z, al

An error

Example|:

(gecd

(ged

12 5)
15 24)

ns the greatest common diviser of its integer arguments. The result is a non-negative
for nonzero arguments the_greatest common divisor is the largest integer such z that z;
e integral multiples of\z.

shall be signaled if €ither 2; or z is not an integer (error-id. domain-error).

(ged
(ged
(ged
(ged
(gcd

-15 24)
15 -24)
-15 -24)
0 -4)
0 0)

R

O v W W wlw

(lem 21 23) — <integer>

function

80

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

© ISO/IEC ISO/IEC 13816:1997(E)

lcm returns the least common multiple of its integer arguments. gcd and lcm satisfies:
(= (* (ged m n) (em m n)) (abs (* m n)))

That is, the evaluation of the above form always return t.

An error shall be signaled if either z; or z; is not an integer (error-id. domain-error).

—Example:
(lcm 2 3) = 6
(lcm 15 24) = 120
(lem 15 -24) = 120
(lcm -15 24) = 120
(lcm -15 -24) = 120
(lcm 0 -4) =0
(lcm 0 0) = 0

(isqrt z) — <integer>

function

shall be signaled if z is not a non-negative’integer (error-id. domain-error).
Example:

(isqrt 49) =7

(isqrt 63) =7

(isqrt 1000000000000002000000000000000)
= 1000000000000000

12" Character class

Returns the greatest integer less than or eq@al to the exact positive square root of z. An error

Characters are represented as instances of the <character> class. This insulates the
programmer from particular character codes,

The ISLisP character set has at least ninety-five printing characters plus a newline character.

The ISLisp printing characters are the space character, and the following ninety-four non-blank

characters:
te %’ ()x+,-./0123456789: ;<=>7
@QABCDEFGHIJEKLMENOPQRSTUVWXYZI[\N] " _
‘abcdefghijklmnopqrstuvwxyz{l|D}"~

81

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

ISO/IEC 13816:1997(E) © ISO/IEC

A character literal is denoted by #\ followed by a token which is either the character itself, or, if
the character has a name, the character’s name. For example, the letter A is denoted by “#\A”.
The newline and space characters have the names “newline” and “space,” respectively, so they
can be denoted by “#\newline” and “#\space”. (Case is not significant when naming a
character.)

Characters are ordered by char<, and this order satisfies:

0<1<2<3<4<5<6<7<8<9
A<BRCIDTETFIGIHCICIC R LM< Be PRSP v eieeyep—m—mMm —
a<h<c<d<e<f<g<h<i<j<k<1<m<n<o<p<q<ris<t<ucv<u<x<y<z

where clar! < char2 means that (char< char! char2) is true.

(charadterp obj) — boolean function

Returns|t if obj is a character (instance of class <character>); otherwise, returns nil. obj may
be any ISLisP object.

Examplgq:

(characterp #\a) =t

(characterp "a") =, nil

(characterp ’a) = nil
(char=|char; chary) — boolean function
(char/3 char; chary) — boolean function
(char<|char; chary) — boolean function
(char>|char; chary) — beolean function
(char<s char; chary) -5 boolean function
(char>% char; chary) =5 boolean function

The furlction char: tests whether char; is the same character as chary. The function char< tests
whether chari is less than chary. The function char<= tests whether chary is less than or equal
to chary. The ordering used is the partial order defined above, extended to a total order on all

characters™inan implementation-defined manner If the test is satisfied t is returned: otherwise

nil is returned.

Two characters are char/= if and only if they are not char=. Two characters are char> if and
only if they are not char<=. Two characters are char>= if and only if they are not char<.

An error shall be signaled if either char; or char; is not a character (error-id. domain-error).

Example:

(char= #\a #\a) >t
(char= #\a #\b) = nil

82

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

© ISO/IEC ISO/IEC 13816
(char= #\a #\4) = nil
(char/= #\a #\a) = nil
(char< #\a #\a) = nil
(char< #\a #\b) =t
(char< #\b #\a) = nil
(char< #\a #\A) = nil or t (implementation-d
(char< #* #\a) = nil or t (implementation-d
(char> #\b #\a) >t
(char<= #\a #\a) >t
(char<= #\a #\4) = nil or t (implementation-d

:1997(E)

efined)
efined)

efined)

(char>= #\b #\a)
(char>= #\a #\a)

¢4
ot o

13 List class

The <1ist> class is partitioned into two subclasses <cons> dnd <null>.

13.1 Cons

A cons (sometimes also called “dotted pair” J<¢onsists of two components; the left comppnent is

called car and the right component is calléd)cdr. The constructor of this class is cons.
are written as

(car . cdr)

Conses

where car and cdr denotéstHe values in the car and cdr components, respectively, of tHe cons

object. As a special case/if the cdr value is nil, then the cons object is written as

(car)

Thus, il general, a data structure that consists of cons objects will be written in either
following formats:

(z1 . (o (@p_1 o zn) ...)

of the

(z1 . (2o (Zp_1) ...))

These may be written, respectively, as

(131 g ... Tp-1 - iL‘n)
(1 z2 ... Tpo1)

(consp obj) — boolean

function

83

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

ISO/IEC 13816:1997(E) © ISO/IEC

Returns t if 0bj is a cons (instance of class <cons>); otherwise, returns nil. obj may be any
ISLisp object.

Example:
(consp ’(a . b)) = ¢
(consp ’(a b ¢)) = t
(consp '()) = nil
(consp #(a b)) = nil
(cons opj; objs) — <cons> function

This funftion builds a cons from two objects, with obj; as its car (or ‘left’) part_and with obj, as
its cdr (qr ‘right’) part. An error shall be signaled if the requested cons cannot'bé allocated
(error-id| cannot-create-cons). Both obj; and obj; may be any ISLisP object,

Example|
(cons ’a ’()) = (a)
(cons ’(a) (b ¢ d)) = ((aYXbcd)
(cons "a" (b c¢)) =, (" b c)
(cons ’a 3) =, (a . 3)
(cons ’(a b) ’¢) =" ((ab) . c)
(car cops) — <object> function

The fungtion car returns the left component of the cons. An error shall be signaled if cons is not
a cons (¢rror-id. domain-error)

Example|:
(car 20)) an error shall be signaled
(carV(a b c)) = a
(car”’((a) b c d)) = (a)
(ear (14 2)) = 1
(cdr cons) — <object> function

The function cdr returns the right component of the cons. An error shall be signaled if cons is
not a cons (error-id. domain-error).

Example:

84

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

© ISO/IEC ISO/IEC 13816:1997(E)

(cdr () an error shall be signaled

(cdr '((a) b c d)) => (bcd

(cdr (1 . 2)) = 2
(setf (car cons) obj) — <object> special form
(set—-car obj cons) — <object> function

The setf special form takes the place indicated by the selector car and updates the {eft

component of an instance of the <cons>. The returned value is the result of the evaluatjon of
obj. An error shall be signaled if cons is not a cons (error-id. domain-error). obj miay be any

ISLisP object.

Example:

(let ((x (list ’apple ’orange)))
(list x (car x)
(setf (car x) ’banana)
x (car x)))
= ((banana orange) apple banana (banana orange) banana)

(setf (cdr cons) obj) — <object> spec

al form

(set-cdr obj cons) — <object> function

The setf special form takes the/place indicated by the selector cdr and updates the right

component of an instance of <cons>. The returned value is the result of the evaluation
An error shall be signaled:if_cons is not a cons (error-id. domain-error). obj may be an)
object.

Example:

(Zet"((x (list ’apple ’orange)))
(list x (cdr x)
(setf (cdr x) ’banana)
x (cdr x)))

f obj.
¥ ISLisp

= ((apple . banana) (orange) banana (apple . banana) banana)

13.2 Null class

This class consists of only one element, the object called nil. This object is the false value in

boolean expressions. The length of the sequence nil is 0.

(null obj) — boolean function

85

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

ISO/IEC 13816:1997(E) © ISO/IEC

Returns t if 0bj is nil; otherwise, returns nil.> obj may be any ISLisP object.

Example:

(null ’(a b ¢)) = nil
(null Q) = t
(null (list)) = ot

13.3 List operations

(1istp pbj) — boolean function

Returns [t if obj is a list (instance of class <1ist>); otherwise, returns nil. obj may be any
ISLisp object.

Example|:

(listp ’(a b ¢)) = %
(listp *()) =t
(1istp ’(a . b)) =t
(let ((x (1ist ’a)))

(setf (cdr x) x)

(listp x)) = t
(1istp "abc") = nil
(listp #(1 2)) = nil
(listp ’jerome) = nil

(creatq-list i [initial-element]) — <list> function

Returns|a list of length 7. If initial-element is given, the elements of the new list are initialized
with this.@bject; otherwise, the initialization is implementation defined. An error shall be

: TN tod Vst eannotbeall ; :
signaledlif-therequested-tisteannot-be-alocated{errorid—cannot—ereatelish—Anerror shall be

signaled if 4 is not an integer (error-id. domain-error). initial-element may be any ISLisp object.

Example:

(create-list 3 17) = (17 17 17)
(create-list 2 #\a) = (#\a #\a)

5If the naming conventions were strictly observed, null would be named nullp; it is named null for historical
and compatibility reasons.

86

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

© ISO/IEC ISO/IEC 13816:1997(E)

(1ist obj*) — <list> function

Returns a new list whose length is the number of arguments and whose elements are the
arguments in the same order as in the list-form. An error shall be signaled if the requested list
cannot be allocated (error-id. cannot-create-list). Each obj may be any ISLisP object.

Example:

(list ’a (+ 3 4) ’c) = (a7c)

(list) = nil
(reverse list) — <list> function
(nreverse list) — <list> function

These functions each return a list whose elements are those of-thé given list, but in revegse order.
An error shall be signaled if list is not a list (error-id. domain-error).

For reverse, no side-effect to the given list occurs. The resulting list is permitted but ot
required to share structure with the input list.

For nreverse, the conses which make up the‘top level of the given list are permitted, but not
required, to be side-effected in order to produce this new list. nreverse should never b¢ called
on a literal object.

Example:
(reverse ’'(a b d e)) = (ed c b a)
(reverse ’(4)) = (a)
(reverse, ’()) = O

(let* (€x*(list ’a ’b)) (y (nreverse x))) (equal x y))

= implementation-defined

(append list*) — <list> function

Returns the result of appending all of the lists, or () if given no lists. An error shall be signaled
if any list is not a list (error-id. domain-error).

This function does not modify its arguments. It is implementation defined whether and when the
result shares structure with its list arguments.

An error shall be signaled if the list cannot be allocated (error-id. cannot-create-list).

Example:

87

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

ISO/IEC 13816:1997(E) © ISO/IEC

(append ’(a b c) '(d e f)) = (abcdef)

(member obj list) — <list> function

If list contains at least one occurrence of obj (as determined by eql), the first sublist of list
whose car is obj is returned. Otherwise, nil is returned. An error shall be signaled if list is not a

list (errorrid. domain-error).

Example!

(member ’c (a b cde f)) = (cd e f)

(member ’g (abcde f)) = nil

(member ’c ’(a b c abc)) = (cabc)
(mapcar |function list™) — <list> function
(mapc function listt) — <list> function
(mapcan |function listT) — <list> function
(maplist function listt) — <list> function
(mapl function listt) — <list> function
(mapcon |function list™) — <list> function

Successively applies the given function to setslof arguments determined by the given lists. The
way in which the arguments are determined,)and the way in which the result is accumulated are
how thes¢ functions differ.

Function Argument Result
mapcar successive elements successive cons
mapc successive elements none (¢.e., list; returned)

mapcan successive elements successive “destructive append”
maplist successive sublists successive cons

mapl successive sublists none (i.e., list; returned)
mapcon successive sublists successive “destructive append”

mapcar operates on successive elements of the isis.” funciion 1s applied to the first element of
each list, then to the second element of each list, and so on. The iteration terminates when the
shortest list runs out, and excess elements in other lists are ignored. The value returned by
mapcar is a list of the results of successive calls to function.

mapc is like mapcar except that the results of applying function are not accumulated; list; is
returned.

maplist is like mapcar except that function is applied to successive sublists of the lists. function

is first applied to the lists themselves, and then to the cdr of each list, and then to the cdr of the
cdr of each list, and so on.

88

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

© ISO/IEC

ISO/IEC 13816:1997(E)

mapl is like maplist except that the results of applying function are not accumulated; list; is

returned.

mapcan and mapcon are like mapcar and maplist respectively, except that the results of applying
function are combined into a list by the use of an operation that performs a destructive form of
append rather than list.

An error shall be signaled if function is not a function (error-id. domain-error). An error shall
be signaled if any list is not a list (error-id. domain-error).

In all cases, the calls to function proceed from left to right, so that if function has side ¢ffects, it
can rely upon being called first on all of the elements with index 0, then on all of tHose
numbered 1, and so on.
Example:
(mapcar #’car ’((1 a) (2b) (3¢))) = (1 2 3)
(mapcar #’abs (3 -4 2 -5 -6)) = (3425
(mapcar #’cons (abc) (1 23)) = ((a (. 2) (¢c.3))
(let ((x 0)) (mapc (lambda (v) (setq x (#yx v))) (3 5)) x)
= 8
(maplist #’append ’(1 2 3 4) ’(1)2) (1 2 3))
= ((123412x323) (23422 3))
(maplist (lambda (x) (comts ’foo x)) ’'(a b c d))
= ((foo @b ¢ d) (foo b ¢ d) (foo ¢ d) (foo d))
(maplist (lambda (%) (if (member (car x) (cdr x)) 0 1))
’(a blayec d b c))
= (0010111)
(Let(¢k 0))
(mapl (lambda (x)
(setq k¥ (+ k (if (member (car x) (cdr x)) 0 1))))
'abacdbc))
k)
= 4
(mapcan (lambda (x) (if (> x 0) (list x))) (-3 4 05 -2 7))
= (457)
(mapcon (lambda (x) (if (member (car x) (cdr x)) (list (car x))))
’@bacdbcbdc))
= (abcbec)
(mapcon #’list (1 2 3 4)) = ((1234) (234) (34) (4)

89

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

ISO/IEC 13816:1997(E) © ISO/IEC

(assoc obj association-list) — <coms> function

If assocation-list contains at least one cons whose car is 0bj (as determined by eql), the first
such cons is returned. Otherwise, nil is returned. An error shall be signaled if association-list is
not a list of conses (error-id. domain-error).

Examplq:
(assoc ’a '((a . 1) (b . 2))) = (a . 1)
(assoc ’a ’((a . 1) (a . 2))) = (a . 1)
(assoc ’c '((a . 1) (b . 2))) = nil
14 Arrays

14.1

Array Classes

Arrays gtore data in array components, which are iidexed by a tuple of non-negative integers
called ipdices.

The totpl number of elements in the array.isthe product of the dimensions. Zero-dimensional
arrays e];e permissible and, as a consequence of this rule, can store exactly one element, indexed

by an e

pty tuple of indices.

There afe several array classes. ‘For a pictorial representation of their inheritance relationship,
see Figyre 1. The following is\an explanation of the purpose of each of these classes:

90

e <Basic-array>

All arrays are of the abstract class <basic-array>, but (as with all abstract classes) there
aze no direct instances of this class. It is provided for type discrimination purposes only.

18P deéfines two direct subclasses of <basic-array>: <basic-vector> and
/ . ; .

the set of basic-arrays. There shall be no other direct subclasses of of <basic-array>.

<basic-vector>

All one-dimensional arrays are of the abstract class <basic-vector>, but (as with all
abstract classes) there are no direct instances of this class. It is provided for type
discrimination purposes only.

ISLisp defines only two direct subclasses of <basic-vector>: <general-vector> and
<string>. There may be additional, implementation-defined subclasses of
<basic-vector>.

Note: An implementation might provide specialized array representations for one-dimensional
arrays of bits. If provided, such an array representation would be subclass of <basic-vector>.

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

© ISO/IEC ISO/IEC 13816:1997(E)

e <general-vector>

An object of class <general-vector> is a one-dimensional array that is capable of holding
elements of type <object>. When the function create-array is asked to create a
one-dimensional array, the resulting array is of this class.

e <string>

An object of class <string> is a one-dimensional array that is capable only of holding
elements of type <character>. When the function create-string is used, the result is of
this class.

e <basic-array*>

All non-one-dimensional arrays are of the abstract class <basic-array*>, but“{ag with all
abstract classes) there are no direct instances of this class. It is provided for type
discrimination purposes only.

ISLisp defines only one direct subclass of <basic-array*>: <general-array*>. There may
be additional, implementation-defined subclasses of <basic-array*>.

Note: An implementation might provide specialized array representations for two-dimensional
arrays of 1 or more bits to hold display information for a mopechrome or color screen. If provided,
such array representations would be subclasses of <basic-dtray#*>.

e <general-array*>

An object of class <general-array#*> is a non-one-dimensional array that is capable of
holding elements of type <object>. When thefunction create-array is asked to|create an
array of dimensionality other than 1, the\resulting array is of this class.

14.2 General Arrays

An object that is either of class<general-vector> or of class <general-array*> is sometimes
called a “general array.”

General arrays are capable of storing any object of class <object>. Those arrays that are not
general arrays are the ones restricted to storage objects of more specialized classes.

A general array)can be expressed as a textual literal using #na notation (where n is anfinteger
indicating.the number of dimensions of the array) followed by a nested list of sequenceq denoting
the confents of the array. This structure can be defined as follows. If n = 1 the structufre is
simply-{obj; ... o0bj,). If n > 1 and the dimensions are (n; ng ...), the structure is|(str; ...
stTnyY) , where the str; are the structures of the n; subarrays, each of which has dimensjons (n,

/). For example, the textual representation of (create-array ’(2 3 4) 5) is as fo1lows:

14.3 Array Operations

To manipulate arrays ISLisp provides the following functions.

(basic-array-p obj) — boolean function
(basic-array*-p obj) — boolean function
(general-array*-p obj) — boolean function

91

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

ISO/IEC 13816:1997(E) © ISO/IEC

basic-array-p returns t if obj is a basic-array (instance of class <basic-array>); otherwise,

returns

nil. obj may be any ISLisp object.

basic-array*-p returns t if obj is a basic-array* (instance of class <basic-array#*>); otherwise,

returns

nil. obj may be any ISLIsP object.

general-array*-p returns t if obj is a general-array* (instance of class <general-array*>);

otherwi

se, returns nil. obj may be any ISLISP object.

Example:

(mapcar (lambda (x)
(1ist (basic-array-p x)
(basic-array*-p x)
(general-array*-p x)))
'((a b c)
"abc"
#(a b c)
#1a(a b c)
#2a((a) (b) (c))))
= ((nil nil nil) (¢t nil nil) (t nil nil) (¢ nil(mil) (¢t t t))

(creat

ef-array dimensions [initial-element]) — <basic-array> function

This fu

ngtion creates an array of the given dimeénsions. The dimensions argument is a list of

non-neggtive integers.

The res;]llt is of class <general-vectory if there is only one dimension, or of class

<gener

-array*> otherwise.

If initiallelement is given, the.elements of the new array are initialized with this object,
otherwisk the initialization\is)implementation defined.

An error] shall be signaled if the requested array cannot be allocated (error-id.

cannot-

greate-array).,

An erroq] shall be signaled if dimensions is not a proper list of non-negative integers (error-id.
domain-prpdp). initial-element may be any ISLISP object.

Example:
(create-array ’(2 3) 0.0) = #2a((0.0 0.0 0.0) (0.0 0.0 0.0))
(create-array ’(2) 0.) = #(0.0 0.0)
(aref basic-array 2*) — <object> function
(garef general-array z*) — <object> function

92

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

© ISO/IEC ISO/IEC 13816:1997(E)

aref returns the object stored in the component of the basic-array specified by the sequence of

integers z. This sequence must have exactly as many elements as there are dimensions
basic-array, and each one must satisfy 0 < z; < d;, d; the i** dimension and 0 < i < d,

in the
d the

number of dimensions. Arrays are indexed 0 based, so the ith row is accessed via the index 7z — 1.

An error shall be signaled if basic-array is not a basic-array (error-id. domain-error). An error

shall be signaled if any z is not a non-negative integer (error-id. domain-error).

garef is like aref but an error shall be signaled if its first argument, general-array, is not an
object of class <general-vector> or of class <general-array*> (error-id. domain-error).

Example:

(defglobal arrayl (create-array ’(3 3 3) 0))
= arrayl

arrayl
= #3a(((0 0 0) (0 0 0) (00 0))
((000) (000) (000))
((000) (000) (000)))

(aref arrayl 0 1 2) =,0
(setf (aref arrayl O 1 2) 3.14) = 3.14
(aref arrayl 0 1 2) = 3.14

(aref (create-array ’(8 8) 6),1"1) = 6

(aref (create-array ’() 19)) = 19
(setf (aref basic-array zX) 0bj) — <object> spedial form
(set-aref obj basic-arragrz*) — <object> function
(setf (garef gemerallavray 2*) obj) — <object> spedial form
(set-garef obj gemeral-array z*) — <object> function

With setf the-object obtainable by aref or garef, respectively, is replaced. The const

raints on

the basic-grray, the general-array, and the sequence of indices z is the same as for aref and

garefy

Exaniple:

(setf (aref arrayi 0 1 2) 3.15) = 3.15
(set-aref 51.3 arrayl 0 1 2) = 51.3

(array-dimensions basic-array) — <list>

function

Returns a list of the dimensions of a given basic-array. An error shall be signaled if basic-array
is not a basic-array (error-id. domain-error). The consequences are undefined if the returned list

is modified.

93

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

ISO/IEC 13816:1997(E) © ISO/IEC

Example:

(array-dimensions

15

A vector
arrays ar

General

(create-array ’(2 2) 0)) = (2 2)
(array-dimensions (vector ’a ’b)) = (2)
(array-dimensions "foo") = (3)
/ectors

is a one dimensional array. See §14.1 for detailed information about the relatiénship of
d vectors.

vectors are written as follows:

#(."1 Ty ... l’n)
(basic-fvector-p obj) — boolean function
(generall-vector-p obj) — boolean function

basic-v|
returns 1

general
otherwis|

Example:

ector-p returns t if obj is a basic-vector (instance of class <basic-vector>); otherwise,
1i1. obj may be any ISLISP object.

—vector-p returns t if obj is a general<vector (instance of class <general-vector>);
e, returns nil. obj may be any ISLISP object.

(mapcar (lambda (%)
(1ist~(basic-vector-p x)
(general-vector-p x)))
*((a.b)
Yabc"
#(a b c)
#1a(a b ¢c)
#2a((a) (v) (c))))

nil) (£ nil) (£ £) (£ t) (nil nil))

¥

7~

T
2]
L
n

(create-vector : [initial-element]) — <general-vector> function

Returns

a general-vector of length 1. If initial-element is given, the elements of the new vector

are initialized with this object, otherwise the initialization is implementation defined. An error

shall be
error sh
may be

94

signaled if the requested vector cannot be allocated (error-id. cannot-create-vector). An
all be signaled if 7 is not a non-negative integer (error-id. domain-error). initial-element
any ISLISP object.

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

© ISO/IEC ISO/IEC 13816:1997(E)

Example:
(create-vector 3 17) = #(17 17 17)
(create-vector 2 #\a) = #(#\a #\a)
(vector obj*) — <general-vector> function

Returns a new general-vector whose elements are its obj arguments. The length 6f'the pewly
created vector is, therefore, the number of objs passed as arguments. The vector is ind¢xed by
integers ranging from 0 to dimension—1. An error shall be signaled if the requested veqtor
cannot be allocated (error-id. cannot-create-vector). Each obj may be anyISLisP object.

Example:

(vector ’a ’b ’c) = #(&b c)
(vector) = #()

16 String class

A string is a vector that is capable only of holding elements of type <character>. See§14.1 for
detailed information about the relationship of arrays, vectors, and strings.

Any implementation-defined ¢hatracter can be a string element. In ISLisp, string indices are
0-based. Strings are written'by listing all the element characters in order and by encloging them
with double quotes “"7~ If the string has a double quote as its element, the double qudte must
be preceded by a backslash “\”. If the string has a backslash as its element, the backslash must
be preceded by another backslash. Strings contained in program text as literals are immutable
objects. The representation of non-printable characters is implementation defined.

(stringp obj) — boolean function

Returns t if obj is a string (instance of class <string>); otherwise, returns nil. obj iy be any

ISLISP object.

Example:
(stringp "abc") =>t
(stringp ’abc) = nil
(create-string i [inilial-character]) — <string> function

95

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

ISO/IEC 13816:1997(E) © ISO/IEC

Returns a string of length ¢. If initial-character is given, then the characters of the new string
are initialized with this character, otherwise the initialization is implementation defined. An
error shall be signaled if the requested string cannot be allocated (error-id. cannot-create-string).
An error shall be signaled if 7 is not a non-negative integer or if initial-character is not a
character (error-id. domain-error).

Example:

(create-string 3 #\a) = "aaa"

(create-string 0 #\a) = "
(string3 string; strings) — quasi-boolean function
(string/= string; strings) — quasi-boolean function
(stringdq siring; strings) — quasi-boolean function
(string} string; strings) — quasi-boolean function
(string}= string; strings) — quasi-boolean function
(stringq= siring; strings) — quasi-boolean function

The funclion string= tests whether string; is the same string 4s\string,. The function string<
tests whether string; is less than strings. The function string<= tests whether string; is less
than or gqual to strings.

The ordefing used is based on character comparisonst

Two strimgs are string= if they are of the sameilength, [, and if for every ¢, where 0 < i < I,
(char= (elt string; i) (elt stringy ¢)) holds.

Two strimgs string; and sirings are in order (string<) if in the first position in which they differ
the chargdcter of string; is char< the\¢orresponding character of strings, or if the string; is a
proper prefix of strings (of shorter length and matching in all the characters of siring,).

Two strings are string<= if they are either string< or they are string=.

Two strings are string/= if and only if they are not string=. Two strings are string> if and
only if they are not{string<=. Two strings are string>= if and only if they are not string<.

For thesqd 6 string*comparison functions, if the test is satisfied, an implementation-defined
non-nil palue4s returned; otherwise, nil is returned.

An error shall be signaled if either string, or strings is not a string (error-id. domain-error).

Example:

(if (string= "abcd" "abed") t nil) =t
(if (string= "abecd" "wxyz") t nil) = nil
(if (string= "abcd" "abcde") t nil) = nil
(if (string= "abcde" "abed") t nil) = nil
(if (string/= "abed" "wxyz") t nil) = t
(if (string< "abcd" "abcd") t nil) = nil
(if (string< "abcd" "wxyz") t nil) = t

96

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

© ISO/IEC ISO/IEC 13816:

(if (string< "abcd" "abcde") t nil) = t
(if (string< "abcde" "abcd") t nil) = nil
(if (string<= "abcd" "abcd") t nil) = t
(if (string<= "abcd" "wxyz") t nil) = t
(if (string<= "abcd" "abcde") t nil)= t
(if (string<= "abcde" "abcd") t nil)= nil
(if (string> "abcd" "wxyz") t nil) = nil
(if (string>= "abcd" "abcd") t nil) = t

1997(E)

(char-index character string [start-position]) — <object>

function

Returns the position of character in string, The search starts from the position indicate
start-position (which is 0-based and defaults to 0). The value returned if the search suc
an offset from the beginning of the string, not from the starting pémt” If the character
occur in the string, nil is returned. The function eql is used for\the comparisons.

An error shall be signaled if character is not a character ar ifstring is not a string (errd
domain-error).

Example:
(char-index #\b "abcab") =1
(char-index #\B "abcab") = nil
(char-index #\b "abcab".2) = 4
(char-index #\d "abcab!D) = nil
(char-index #\a "abecab" 4) = nil

d by
reeds 1is
does not

r-id.

(string-index substring string [start-position]) — <object>

function

Returns the“position of the given substring within string. The search starts from the pg
indicated‘by start-position (which is 0-based and defaults to 0). The value returned if t,
suceeeds is an offset from the beginning of the string, not from the starting point. If th
swbstring does not occur in the string, nil is returned. Presence of the substring is don

sition

he search
At

e by

Sequential use of eql on corresponding elements of the two strings.

An error shall be signaled if either substring or string is not a string (error-id. domain-error).

Example:
(string-index "foo" "foobar") = 0
(string-index "bar" "foobar") = 3
(string-index "F0O0" "foobar") = nil
(string-index "foo" "foobar" 1) = nil
(string-index "bar" "foobar" 1) = 3
(string-index "foo" "") = nil

97

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

ISO/IEC 13816:1997(E) © ISO/IEC

(string-index "" "foo") = 0
(string-append string*) — <string> function

Returns a single string containing a sequence of characters that results from appending the

sequencey £ characters—of cach of the c-lra"ngc’ or """ af g;vnn no c'frfimgc An error shall he

O Crrarateers

signaled [if any string is not a string (error-id. domain-error).

This funftion does not modify its arguments. It is implementation defined whether and when the
result shpres structure with its string arguments.

An error shall be signaled if the string cannot be allocated (error-id. cannot-creaté-string).

Example|:

(string-append "abc" "def") = "abcdef"
(string-append "abc'" "abc") = "abcabc!
(string-append "abc" "") = "abc"
e pssppeney. B [N TR TP SN TR — M A&
\SbLJ.u.s—aPPcuu ave J — AV,
(string-append "abc" "" "def") = "abcdef"

17 Bequence Functions

Objects|that are either of class <basic-vector> or of class <1list> are sometimes called
“sequenges”. The operations upon sequences are called “sequence functions.”

(length sequence) — <integer> function

Returns| the length’ of sequence as an integer greater than or equal to 0.

When sequénce is a basic-vector, length returns its dimension.

When sequence is a list, the result is the number of elements in the list; if an element is itself a

list, the elements within this sublist are not counted. In the case of dotted lists, length returns
the number of conses at the uppermost level of the list. Consistently with that, ’(a b . ¢) =
(cons ’a (coms ’b ’c)) and (length ’(a b . <¢)) = 2.

An error shall be signaled if sequence is not a basic-vector or a list (error-id. domain-error).

Example:

(length ’(a b ¢))
(length ’(a (b) (c d e)))

¢4
w w

98

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

© ISO/IEC ISO/IEC 13816:1997(E)

(length ’()) =
(length (vector ’a ’b ’c)) =

w o

(elt sequence z) — <object> function

element of sequence that has index z. Indexing_is 0-based; i.e., z = 0 designates the fits
element. An error shall be signaled if 2 is an integer outside of the mentioned range, (ers
indez-out-of-range).

or-id.

An error shall be signaled if sequence is not a basic-vector or a list or if zj18"hot an integer

(error-id. domain-error).

Example:

(elt ’(a b c) 2) = c

(elt (vector ’a ’b ’c¢) 1) = b

(elt "abc" 0) =\#\a
(setf (elt sequence z) obj) — <object> spedial form
(set-elt obj sequence z) — <objéct> function

The setf special form takes thie-place indicated by the selector elt and updates this place with

the result of the evaluation-of 0bj. The integer z satisfies 0 < z < (length sequence).

An error shall be signaled if z is an integer outside of the valid range of indices (error-id.

indez-out-of-range).\ The returned value is the result of the evaluation of obj. An error ghall be

signaled if sequénce is not a basic-vector or a list or if z is not an integer (error-id.
domain-error)obj may be any ISLISP object.

Example:

(let ((string (create-string 5 #\x)))
(satf (:ﬂf e+1—1'hg ')) ﬂ\\n\

x) = "xx0xx"

(subseq sequence zy z3) — Sequence function

Given a sequence sequence and two integers z; and zy satisfying

0 < z; < 23 < (length sequence), this function returns the subsequence of length 25 — 21,
containing the elements with indices from z; (inclusive) to z3 (exclusive). The subsequence is

newly allocated, and has the same class as sequence.

99

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

ISO/IEC 13816:1997(E)

An error shall be signaled if the requested subsequence cannot be allocated (error-id.
cannot-create-sequence). An error shall be signaled if z; or z; are outside of the bounds
mentioned (error-id. indez-out-of-range). An error shall be signaled if sequence is not a

aQin_wvao

haain_ v
DasiC-ve

ctor or a list, or if # is not an integer, or if z3 is not an integer (error-id. d

Example:

(subseq "abcdef" 1 4) = "bced"

(subseq '(abcdef)l4) = (b c d)

© ISO/IEC

(subseq (vector ’'a ’b ’c ’d ’e ’f) 1 4)
= #(b ¢ d)

(map-into destination function seq*) — sequence function

Destruct{vely modifies destination to contain the results of applying funetion to successive
elements|in the seqs. The destination is returned.

If destin

the shorflest sequence (of any of the segs or the destination) is)exhausted.

The call to function proceed from left to right, so that if\function has side effects, it can rely
upon being called first on all of the elements with index; 0, then on all of those numbered 1, and

SO on.

An error

An error|shall be signaled if any seq is not a, basic-vector or a list (error-id. domain-error).

Examplef

100

(setq-k ™ (one two three))
(map-into a #’cons k a)
(Tet ((x 0))

(one two three)
((one . 11) (two . 12) (three .

(setq a (list 1 2.3 4)) = (1234)
(setq b (1ist,10)10 10 10)) = (10 10 10 10)
(map-into a #+ a b) = (11 12 13 14)
a = (11 12 13 14)
b = (10 10 10 10)
=
=

vizon and each element of segs are not all the same length] the iteration terminates when

shall be signaled if destination is not &basic-vector or a list (error-id. domain-error).

13)

14)

(map-into a
(lambda () (setq x (+ x 2)))))

= (2 4 6 8)
a = (2 4 6 8)

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

© ISO/IEC ISO/IEC 13816

18 Stream class

:1997(E)

Streams are instances of the <stream> class. They are objects that serve as sources or sinks of

data.

(streamp obj) — boolean

function

E€LUrn

) s .
ISL1sP object. streamp is unaffected by whether its argument, if an instance of theclas
<stream>, is open or closed.

Example:

(streamp (standard-input)) >t
(streamp ’()) = nil

y be any

(open-stream-p 0bj) — boolean function
Returns t if 0bj is an open stream; otherwiséy réturns nil.
(input-stream-p obj) — boolean function
Returns t if 0bj is a stream, that can handle input operations; otherwise, returns nil.
Example:
(input-stream-p (standard-input)) =t
(input-stream-p (standard-output)) = nil
(dnput-stream-p ’(a b c)) = nil
| (output-stream-p obj) — boolean unction

Returns t if obj is a stream that can handle output operations; otherwise, returns nil.
Example:
(output-stream-p (standard-output)) = t

(output-stream-p (standard-input)) = nil
(output-stream-p "hello") = nil

101

https://iecnorm.com/api/?name=f4385572386fadb623eb13d3fb6105d2

