

Edition 1.0 2023-05

TECHNICAL SPECIFICATION

Nanomanufacturing – Key control characteristics –
Part 6-17: Graphene-based material – Order parameter
transmission electron microscopy colour

Orde Chora Chick to view the full

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2023 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

Tel.: +41 22 919 02 11

IEC Secretariat 3, rue de Varembé CH-1211 Geneva 20 Switzerland

info@iec.ch www.iec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigendum or an amendment might have been published.

IEC publications search - webstore.iec.ch/advsearchform

The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee, ...). It also gives information on projects, replaced and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished
Stay up to date on all new IEC publications. Just Published details all new publications released. Available online and once a month by email.

IEC Customer Service Centre - webstore.iec.ch/csc

eed Jervice stories the Je If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: sales@iec.ch.

IEC Products & Services Portal products.iec.ch

Discover our powerful search engine and read freely all the publications previews. With a subscription you will always have access to up to date content tailored to your needs.

Electropedia - www.electropedia.org

The world's leading online dictionary on electrotechnology, containing more than 22 300 terminological entries in English and French, with equivalent terms in 19 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) on line.

Edition 1.0 2023-05

TECHNICAL SPECIFICATION

Nanomanufacturing – Key control characteristics –
Part 6-17: Graphene-based material – Order parameter transmission electron microscopy colour

Orde Orde Full Conf. Click to view the full

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ICS 07.120 ISBN 978-2-8322-6941-1

Warning! Make sure that you obtained this publication from an authorized distributor.

CONTENTS

Г	JREWU		4
IN	TRODU	JCTION	6
1	Scop	oe	7
2	Norm	native references	7
3	Term	ns and definitions	7
	3.1	General terms	
	3.2	Key control characteristics measured in accordance with this document	
	3.3	Terms related to the measurement method	
4		eral	3011
	4.1	Measurement principle	
	4.2	Sample preparation method	11
	4.3	Sample preparation method Description of measurement equipment and apparatus XRD equipment TEM equipment Supporting materials	12
	4.3.1	XRD equipment	12
	4.3.2	TEM equipment	12
	4.4	Supporting materials	12
	4.5	Ambient conditions during measurement	12
5	Meas	Ambient conditions during measurementsurement procedure	13
	5.1	Calibration of measurement equipment	13
	5.2	Detailed protocol of the measurement procedure	13
	5.3	Measurement uncertainty source	14
6	Data	analysis	14
7	Resu	ults to be reported	15
-	7.1	General	15
	7.2	Product or sample identification	
	7.3	Test conditions	
	7.4	Measurement specific information	
	7.4.1		
	7.4.2		
	7.5	Test results	
Ar	nnex A	(informative) Format of the test report	17
		(informative) Case study: Measurement and data analysis	
	B.1	Data analysis of XRD measurements	
		Data analysis of TEM measurements	
	. (Calculation of order parameter	
Bi		phy	
	5 1	•	
Fi	aure 1 -	 Different packing configurations of graphene layers in graphite powder are 	nd
	-	powder	
_	•	. – A flow chart illustrating the cases when TEM measurement is needed	
	•	1 – d-spacing versus intensity of HOPG and the fitting result of peak (002)	
	•	2 – The fitting results of peak (002) of different samples	
	•	- , , , , , , , , , , , , , , , , , , ,	
	-	3 – The fitting results of peak (100) of amorphous carbon sample	
	•	4 – The fitting results of peak (100) of different samples	
Fi	gure B.	5 – The diagram of graphene area determined by order parameter	23

Table A.1 – Product identification (in accordance with the relevant blank detail specification)	17
Table A.2 – General material description (in accordance with the relevant blank detail specification)	17
Table A.3 – Information related to XRD test	18
Table A.4 – Information related to TEM test	18
Table A.5 – Measurement results	19
Table B.1 – Order parameters of different samples	22

Echopan.com. Click to view the full poly of the Tes obsolved in the Tes ob

INTERNATIONAL ELECTROTECHNICAL COMMISSION

NANOMANUFACTURING – KEY CONTROL CHARACTERISTICS –

Part 6-17: Graphene-based material – Order parameter: X-ray diffraction and transmission electron microscopy

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is down to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

IEC TS 62607-6-17 has been prepared by IEC technical committee 113: Nanotechnology for electrotechnical products and systems. It is a Technical Specification.

The text of this Technical Specification is based on the following documents:

Draft	Report on voting	
113/700/DTS	113/746/RVDTS	

Full information on the voting for its approval can be found in the report on voting indicated in the above table.

The language used for the development of this Technical Specification is English.

This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are described in greater detail at www.iec.ch/publications.

A list of all parts in the IEC TS 62607 series, published under the general title Nanomanufacturing - Key control characteristics, can be found on the IEC website.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under webstore.iec.ch in the data related to the 62601.6.77.2023 specific document. At this date, the document will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

IMPORTANT - The "colour inside" logo on the cover page of this document indicates that it contains colours which are considered to be useful for the correct understanding of its At us

At us

At us

Circk to view the full but the full contents. Users should therefore print this document using a colour printer.

INTRODUCTION

Graphite is composed of layers of carbon atoms just a single atom in thickness, known as graphene layers, to which it owes many of its remarkable properties. When the thickness of graphite flakes is reduced to just a few graphene layers, some of the material's technologically most important characteristics are greatly enhanced. In other words, graphene is more than just graphite. Although graphene has a vast number of potential applications, a survey of commercially available graphene samples reveals that research could be undermined by the poor quality of the available material [1]¹. Many highly priced graphene products from 60 producers consist mostly of graphite powder [2]. Therefore, a lack of classification standards is creating a situation that downstream users are afraid to use graphene because they do not know whether the graphene is fake.

Figure 1 shows the schematic packing configurations of graphene layers in graphite powder (left side of Figure 1) and graphene powder (right side of Figure 1) and their corresponding SEM images. It can be seen that graphite can be formed regularly in the z-axis, but graphene powder is assembled like house-of-card-type stacking, which is formed by graphene layers in a disorderly way in 3D space. For other carbon-related materials – for example, amorphous carbon, glassy carbon, expanded graphite – their packing configurations differ from those of graphite and graphene. An order parameter which indicates the order degree of a system can be employed to classify different carbon-related materials.

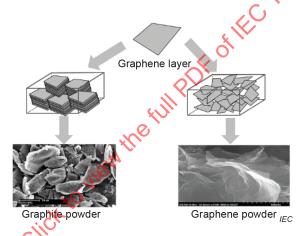


Figure 1 – Different packing configurations of graphene layers in graphite powder and graphene powder

This document establishes a method for determining the order parameter of graphene-based material and carbon material. The order parameter can be analysed from the z-axis and x-y-axis, respectively. The former can be derived from X-ray diffraction (XRD) spectra based on Bragg diffraction, and the latter can be derived from the diffraction patterns by selected area electron diffraction (SAED) technique, which is performed on a transmission electron microscope (TEM) with very high-resolution imaging. Since thermal temperature can lead to re-graphitization, the FWHM of peak (002) in the XRD spectrum indicates the quality of thermally reduced graphene powder [3]. Therefore, the order parameter can be an index of production uniformity of graphene-based materials, and also relates the materials' application with respect to heat dissipation.

Numbers in square brackets refer to the Bibliography.

NANOMANUFACTURING -**KEY CONTROL CHARACTERISTICS -**

Part 6-17: Graphene-based material – Order parameter: X-ray diffraction and transmission electron microscopy

Scope

This part of IEC TS 62607 establishes a standardized method to determine the key control 62601.6.17 characteristic

order parameter

for graphene-based material and layered carbon material by

X-ray diffraction (XRD) and transmission electron microscopy.

The order parameter is analysed from two perspectives: z-axis and x-y-axis. In the z-axis the order parameter is derived from the full width at half maximum (FWHM) of peak (002) in the XRD spectrum. In the x-y-axis, it is derived from the FWHM of peak (100) corresponding to diffraction patterns obtained by SAED (selected area electron diffraction) technique, which is routinely performed on most transmission electron microscopes in the world.

- The method is applicable for graphene-based material and layered carbon material including graphite, expanded graphite, amorphous carbon, vitreous carbon or glassy carbon, the structures of which are clarified by other characterization techniques.
- The method is applicable for differentiating few-layer graphene or reduced graphene oxide from layered carbon material.
- Typical application area is quality control in manufacturing to ensure batch-to-batch reproducibility.

NOTE Graphene oxide, one type of graphene-based material, is not within the scope of this document.

Normative references

There are no normative references in this document.

Terms and definitions

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- IEC Electropedia: available at http://www.electropedia.org/
- ISO Online browsing platform: available at http://www.iso.org/obp

3.1.1

graphene graphene layer single layer graphene monolayer graphene

single layer of carbon atoms with each atom bound to three neighbours in a honeycomb structure

- 8 -

Note 1 to entry: It is an important building block of many carbon nano-objects.

Note 2 to entry: As graphene is a single layer, it is also sometimes called monolayer graphene or single-layer graphene and abbreviated as 1LG to distinguish it from bilayer graphene (2LG) and few-layer graphene (FLG).

Note 3 to entry: Graphene has edges and can have defects and grain boundaries where the bonding is disrupted.

[SOURCE: ISO/TS 80004-13:2017, 3.1.2.1]

3.1.2

graphene-based material

GBM

graphene material grouping of carbon-based 2D materials that include one or more of graphene, bilayer graphene, few-layer graphene, graphene nanoplate, and functionalized variations thereof as well as graphene oxide and reduced graphene oxide

Note 1 to entry: "Graphene material" is a short name for graphene based material.

3.1.3

few-layer graphene

FLG

two-dimensional material consisting of three to ten well-defined stacked graphene layers

[SOURCE: ISO/TS 80004-13:2017, 3:12.10]

3.1.4

reduced graphene oxide

rGO

reduced oxygen content form of graphene oxide

Note 1 to entry: This can be produced by chemical, thermal, microwave, photo-chemical, photo-thermal or microbial/bacterial methods or by exfoliating reduced graphite oxide.

Note 2 to entry: If graphene oxide was fully reduced, then graphene would be the product. However, in practice, some oxygen containing functional groups will remain and not all sp³ bonds will return back to sp² configuration. Different reducing agents will lead to different carbon to oxygen ratios and different chemical compositions in reduced graphene oxide.

Note 3 to entry: It can take the form of several morphological variations such as platelets and worm-like structures.

[SOURCE: ISO/TS 80004-13:2017, 3.1.2.14]

3.1.5

graphite

allotropic form of the element carbon, consisting of graphene layers stacked parallel to each other in a three-dimensional, crystalline, long-range order

Note 1 to entry: Adapted from the definition in the IUPAC Compendium of Chemical Terminology.

Note 2 to entry: There are two primary allotropic forms with different stacking arrangements: hexagonal and rhombohedral.

[SOURCE: ISO/TS 80004-13:2017, 3.1.2.2]

3.1.6

highly oriented pyrolytic graphite **HOPG**

highly pure and ordered form of synthetic graphite

Note 1 to entry: HOPG is often used as reference material for calibration of measurement equipment.

3.1.7

amorphous carbon

carbon material without long-range crystalline order

Note 1 to entry: Adapted from the definition in the IUPAC Compendium of Chemical Terminology.

Note 2 to entry: Short-range order exists, but with deviations of the interatomic distances or interbonding angles 62607.6.17 with respect to the graphite lattice as well as to the diamond.

expanded graphite

modified graphite that has a layered structure with interlayer spacing

3.1.9

vitreous carbon

form of carbon derived through solid-phase carbonization from a preform comprising an appropriate highly cross-linked polymer

Note 1 to entry: Vitreous carbon is characterized by a pseudo-amorphous, isotropic structure with low density, and non-permeability for gases.

[SOURCE: ISO 20507:2022, 3.2.79]

3.1.10

key control characteristic

KCC

key performance indicator

material property or intermediate product characteristic which can affect safety or compliance with regulations, fit, function, performance, quality, reliability or subsequent processing of the final product

Note 1 to entry: The measurement of a key control characteristic is described in a standardized measurement procedure with known accuracy and precision.

Note 2 to entry: It is possible to define more than one measurement method for a key control characteristic if the correlation of the results is well-defined and known.

Key control characteristics measured in accordance with this document 3.2

3.2.1

order parameter

normalized parameter that indicates the degree of order of a system

Note 1 to entry: Adapted from the definition in the IUPAC Compendium of Chemical Terminology.

Note 2 to entry: An order parameter of 0 indicates disorder; the absolute value in the ordered state is 1.

Note 3 to entry: The order parameter includes z-axis order parameter and x-y-axis order parameter.

Terms related to the measurement method

3.3.1

3.3

X-ray diffraction

XRD

method to obtain crystallographic information about a sample by observing the diffraction pattern due to an X-ray beam hitting a sample

- 10 -

Note 1 to entry: The method can be used to estimate the size of coherent scattering regions.

[SOURCE: ISO 80004-6:2013, 5.2.1]

3.3.2

transmission electron microscope

TEM

instrument that produces magnified images or diffraction patterns of the sample by an electron beam which passes through the sample and interacts with it

[SOURCE: ISO 29301:2017, 3.34, modified – In the definition, "specimen" has been replaced by "sample".]

3.3.3

selected area electron diffraction

SAED

technique in which the crystalline structure of a sample area selected by an aperture is examined by the diffraction of transmitted electrons resulting in a diffraction pattern

Note 1 to entry: The electrons used typically have energies of 10 keV to 200 keV.

Note 2 to entry: The diffraction pattern represents image of the reciprocal lattice and therefore contains information about crystal structure.

[SOURCE: ISO 80004-6:2021, 6.3.3]

3.3.4

full width at half maximum

FWHM

measure of the width of an X-ray peak in which the background is first removed to reveal the complete peak profile

Note 1 to entry: FWHM is determined by measuring the width at half the maximum height.

[SOURCE: ISO 22309:2011, 3.16]

3.3.5

lattice spacing

d-spacing

lattice plane spacing

distance between adjacent parallel crystallographic lattice planes

[SOURCE: ISO 21432:2019, 3.20]

3.3.6

Bragg diffraction

width between the wavelength of light and the width of crystal structure, or relationship between the reflecting surface and the angle formed by the ray

Note 1 to entry: The formula is $2d\sin\theta = n\lambda$

where

d is the width of periodic structure;

- θ is the angle between the crystal plane and incident light;
- λ is the wavelength of light;
- n is the constant.

[SOURCE: ISO 22278:2020, 3.4]

3.3.7

2 theta

 2θ

angle of the detected X-ray beam with respect to the incident X-ray beam direction

[SOURCE: ISO 22278:2020, 3.9]

3.3.8

diffraction pattern

distribution of light due to diffraction, which depends on the geometrical and optical properties of the object, the aberrations of the lens and the shape of its exit pupil, and the wavelength of the light

Note 1 to entry: Also misused as the angle between the direction of an incident optical radiation beam to a diffractive optical element and the direction of any resulting diffracted optical radiation beam.

[SOURCE: ISO 10934:2020, 3.1.41.1, modified – Note 1 to entry has been added.]

4 General

4.1 Measurement principle

XRD works by irradiating a material with incident X-rays and then measuring the intensities and scattering angles of the X-rays that leave the material. With the obtained spectrum, one can get information on the FWHM corresponding to peak (002) in the XRD spectrum. Using HOPG as a reference sample, the order parameter of tested sample in z-axis can be derived from the FWHM ratio of HOPG and tested sample.

When an energetic electron beam is incident upon a thin sample in a TEM, a diffraction pattern, (e.g. diffraction spot, diffraction ring) will be produced in the back focal plane of the objective lens. This pattern is magnified by the intermediate and projector lenses, then displayed on a viewing screen and recorded [4]. This pattern can also be displayed on a monitor if the TEM is equipped with a digital camera system. One can obtain information on corresponding interplanar spacing and diffraction intensity from the diffraction patterns. Also the FWHM corresponding to peak (100) is available. Using amorphous carbon as a reference sample, the order parameter of tested sample in x-y-axis can be derived from one minus the FWHM ratio of tested sample and amorphous carbon.

4.2 Sample preparation method

As for XRD measurement, take an appropriate amount of powder sample with a spoon and deposit it in the groove of a sample loader. Gently press the sample with a glass slide so that the sample surface is as flat as possible. The centre of the groove in the sample loader should be covered by powder sample.

As for TEM measurement, disperse an appropriate amount of tested sample in absolute ethanol, and shake the mixture for 15 minutes with an ultrasonic machine at a power of 120 W and frequency of 40 Hz. Then suck 2 μ l dispersed mixture with a micropipette and drop it onto a support grid. Finally leave it to dry naturally for one hour prior to TEM measurement.

4.3 Description of measurement equipment and apparatus

4.3.1 XRD equipment

4.3.1.1 X-ray generator

Device which generates an X-ray beam of fixed intensity. Different target materials (i.e. Cu, Cr, Co, Fe, Mo) correspond to different wavelengths in Bragg diffraction.

4.3.1.2 Monochromator

When X-rays having diverse wavelengths are incident on a sample, a diffraction peak broadening occurs, disrupting interpretation of the diffraction peak. For this reason, a monochromator that takes only one ray from incident X-rays to make a single wavelength shall be used for accurate diffraction tests with high resolution.

4.3.1.3 Goniometer

Device designed for the sample to move in the x-axis, y-axis and z-axis. A mechanically well-aligned and state X-ray goniometer is required.

4.3.2 TEM equipment

4.3.2.1 Facilities for sample preparation

Ultrasonic machine can be used to completely disperse and mix the samples.

4.3.2.2 Acquisition of SAED patterns and images

The SAED patterns and images obtained on the TEM shall be recorded on the photographic films or imaging plates or an image sensor built in the digital camera.

4.4 Supporting materials

During the measurement, reagents and materials are needed. Unless otherwise stated, use only reagents of recognized analytical grade.

- **4.4.1** Appropriate solvent, suitable for dispersing powder samples or cleaning sample holders, e.g. absolute ethanol.
- **4.4.2** Spoon, suitable for taking powder samples from the containers.
- **4.4.3** Glass slide, suitable for pressing the sample to ensure the flatness of the surface.
- **4.4.4** Centrifugal tube, suitable for dispersing powder samples and being vibrated in an ultrasonic oscillator.
- **4.4.5** Micropipette, suitable for sucking dispersed mixtures.

4.5 Ambient conditions during measurement

All measurements shall be carried out at room temperature and relative humidity below 60 %. Specific temperature and relative humidity are not required.

5 Measurement procedure

5.1 Calibration of measurement equipment

Calibration on a regular basis shall be conducted in accordance with the procedures and methods in the manual provided by the TEM and XRD manufacturer.

5.2 Detailed protocol of the measurement procedure

For XRD measurement, firstly prepare the HOPG sample in accordance with the method described in 4.2, and place the sample loader on the flat sample stage. Set measurement parameters through the programme panel, including voltage, current, scan mode, range of scan angle, scan step and scan speed, etc. Afterwards, start the measurement programme until the automatic measurement ends. Then prepare the tested samples in accordance with the method described in 4.2, and follow the above steps without changing the operation conditions. Finally obtain the XRD spectrum of all samples for analysis.

For TEM measurement, firstly prepare the amorphous sample in accordance with the method described in 4.2, and place the sample loader into the chamber. Select an appropriate accelerating voltage so that the incident electron beam can penetrate through the sample. After setting the appropriate instrument parameters and attaining the optimal beam conditions for high resolution, it is important to start the sample investigation at low magnification, i.e. at large field-of-view. A quick survey of the sample can determine whether the quality of sample preparation is acceptable. Adjust the magnification until the sample can be observed clearly. A suitable magnification for SAED analysis is usually from several thousands to tens of thousands of times. Insert the selected area aperture available and switch the microscope from image mode to diffraction mode. Remove the objective aperture and obtain a diffraction pattern on the viewing screen. In one sample, three to five examination regions can be chosen during measurements. Then prepare the tested samples in accordance with the method described in 4.2, and follow the above steps without changing the operation conditions. Finally obtain the SAED images of all samples for analysis.

For an unknown sample, XRD measurement and z-axis order parameter analysis should be performed first. If the z-axis order parameter is larger than that of expanded graphite, the sample is graphite. Otherwise, TEM measurement and x-y-axis order parameter analysis should be performed to further determine the type of the sample. If the x-y-axis order parameter is smaller than that of glassy carbon, the sample is amorphous carbon. Otherwise, the sample is graphene-based material. A flow chart in Figure 2 illustrates when XRD measurement alone is sufficient to determine the sample type.

NOTE For users like manufacturers who have basic recognition of products, it is likely that costly TEM measurement can be avoided. XRD measurement plus other characterization techniques like Raman spectroscopy can possibly be sufficient.

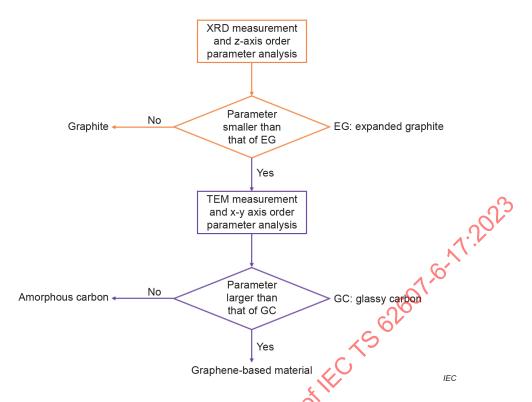


Figure 2 - A flow chart illustrating the cases when TEM measurement is needed

5.3 Measurement uncertainty source

The XRD measurement is affected by several factors, for instance, slit, scan step, and the flatness of the tested sample. The camera constant will change if the high voltage supply to the TEM fluctuates. Normally, stabilization ratios are 10⁵ to 1 or better and thus, this effect is minimal. Meanwhile, the spherical aberration of the objective lens also influences the SAED acquisition.

6 Data analysis

For XRD measurements firstly analyse the XRD spectrum of HOPG by commercially available software. Plot the curve of d-spacing versus intensity for analysis and fit the peak (002) by Gaussian algorithm. The horizontal axis is plotted as d-spacing for two reasons. One is that d-spacing is independent of the target (e.g. Cu, Co) used in XRD measurements. Another is that the d-spacing versus intensity can directly reflect the distribution of interplanar spacing. Measure the FWHM value of HOPG corresponding to peak (002) in XRD spectrum, denoting it as FWHM (002) of HOPG. Then analyse the XRD spectrum of other samples with the same procedure. The FWHM value of tested samples corresponding to peak (002) is denoted as FWHM (002) of tested sample. The order parameter in z-axis, a dimensionless value between 0 and 1, can be calculated by the ratio between FWHM (002) of HOPG and FWHM (002) of tested sample.

For TEM measurements, firstly analyse the diffraction pattern of amorphous carbon using commercially available software. Extract information on corresponding interplanar spacing and diffraction intensity. Plot the data in the same way as the XRD spectrum and fit the peak (100) by Gaussian algorithm. Measure the FWHM value of amorphous carbon corresponding to peak (100), denoting it as FWHM (100) of amorphous carbon. Then analyse the diffraction patterns of other samples with the same procedure. The FWHM value of tested samples corresponding to peak (100) is denoted as FWHM (100) of tested sample. The order parameter in x-y-axis, a dimensionless value between 0 and 1, can be calculated by subtracting the ratio between FWHM (100) of tested samples and FWHM (100) of amorphous carbon HOPG from 1.

With calculated order parameters in x-y-axis and z-axis, a spatial order system can be established. It helps to classify whether an unknown sample is graphene or other layered carbon material, like glassy carbon, amorphous carbon, graphite or expanded graphite.

For graphene powders consisting of single layer sheets, the sheets tend to randomly form a non face-to-face stacking with certain angles, which is described as "house-of-card stacking" in some work [5], [6]. Diffraction plane (002) can appear due to accidental repetition of the random stacking. In this case, the corresponding FWHM is close to infinite, leading to a z-axis order parameter of 0.

7 Results to be reported

7.1 General

The results of the measurement shall be documented in a measurement report, including the date and time of the measurement as well as the name and signature of the person responsible for the accuracy of the report. Guidelines are given in Annex A.

7.2 Product or sample identification

The report shall contain all information to identify the test sample and trace back the history of the sample:

- general procurement information, in accordance with the relevant blank detail specification;
- general material description in accordance with the relevant blank detail specification.

NOTE A blank detail specification for graphene is under development (IEC 62565-3-1).

7.3 Test conditions

The laboratory ambient conditions during the test:

- Temperature range: 20 °C < T < 30 °C.
- Range of relative humidity: 40
 RH < 60 %.

7.4 Measurement specific information

7.4.1 Detailed explanation of the XRD measurement

- manufacturer's name and model number of XRD equipment
- X-ray source type;
- X-ray beam size and shape;
- incident full beam intensity and detector background;
- details of incident and diffracted beam conditioning (monochromator, slits, collimator and other optics);
- detector type;
- scan parameters: step size, scan speed, start/stop range;
- FWHM calculation method;

The report should briefly specify the calculation approach used and what type of software was employed; if a commercially available or custom-made software was employed, it should be indicated in the text.

order parameter in z-axis.

Detailed explanation of the TEM measurement 7.4.2

- manufacturer's name and model number of TEM equipment;
- operation parameters: accelerating voltage, magnification, exposure time;
- powder dispersion method;
- image processing method;
- FWHM calculation method;

The report should briefly specify the calculation approach used and what type of software was employed; if a commercially available or custom-made software was employed, it

- order parameter in x-y-axis.

7.5

- Results of order parameter measured according to this document.

Annex A

(informative)

Format of the test report

The form of the report is oriented on the relevant material specification², a related sectional blank detail specification or detail specification. Table A.1 to Table A.5 are guidelines to write the report and can be customized to fulfil the requirements of the involved parties.

Table A.1 – Product identification (in accordance with the relevant blank detail specification)

Item No.	Item		Information	
1.1	Supplier		. 60	
1.2	Trade name		-01,	
1.3	ID number		27,00	
1.4	Typical batch quantity	Mass [g]	180	
	Traceability requirements	☐ Batch number		
4.5		☐ Serial number		
1.5		☐ Others, specify		
		Manufacturing date	*	
		Number	\$ Company of the comp	
1.6	Specification	Revision level		
		Date of issue		
4.7	Material Safety Data Sheet (MSDS) available	□ No		
1.7		☐ Yes Reference		

Table A.2 – General material description (in accordance with the relevant blank detail specification)

Item No.	Mitem	Information
2.1	Material type	
2.2	Manufacturing method	
2.3	Physical form	
2.5	Shelf life	
2.6	Typical batch size	

 $^{^{\}rm 2}$ $\,$ A blank detail specification for graphene is under development (IEC 62565-3-1).

Table A.3 – Information related to XRD test

Item No.	Item		Information
		Name	
3.1	Instruments	Manufacturer	
		Model	
3.2	X-ray source type		
3.3	X-ray beam size and sha	ape	
3.4	Incident full beam intensity and detector background		ျှီ
	Details of incident and diffracted beam conditioning	Monochromator	.00
3.5		Slits	7.
3.5		Collimator	, 60°
		Other optics	c0/
3.6	Detector type		2
	Scan parameters	Step size	,5
3.7		Scan speed	
		Start/stop range	(
3.8	Environmental temperature		6
3.9	Environmental relative h	umidity	N. Carlotte
3.10	FWHW calculation method	bo	QV
3.11	z-axis order parameter		W. Taranta

3.11	z-axis order parameter	<u> </u>				
Table A.4 – Information related to TEM test						
Item No.	Item 10		Information			
3.1	Instruments	Name Manufacturer Model				
3.2	Operation parameters	Accelerating voltage Magnification Exposure time				
3.3	Powder dispersion metho	od				
3.4	Image processing metho	d				
3.5	Environmental temperatu	re				
3.6	Environmental relative hi	umidity				
3.7	FWHW calculation metho	od				
3.8	x-y-axis order parameter					

Table A.5 - Measurement results

Item		sample 1	sample 2	sample 3	•••
Order	x-y-axis				
parameter	z-axis				

Echopan. Com. Click to view the full port of the Tes of Son. Click to view the full port of the Company of the

Annex B (informative)

Case study: Measurement and data analysis

B.1 Data analysis of XRD measurements

Firstly, analyse the XRD data of HOPG. The intensity versus d-spacing can directly reflect the distribution of different layer spacing, which is key for the order degree. Therefore, for the data analysis of XRD, convert the 2 theta versus intensity curve to d-spacing versus intensity by using the Bragg's equation. Then remove the baseline and noise, and fit the target range of the curve by Gaussian fitting. Here the target range represents the surrounding range of peak (002). Then obtain the FWHM (002) value of HOPG as 0,013 3, as shown in Figure B.1.

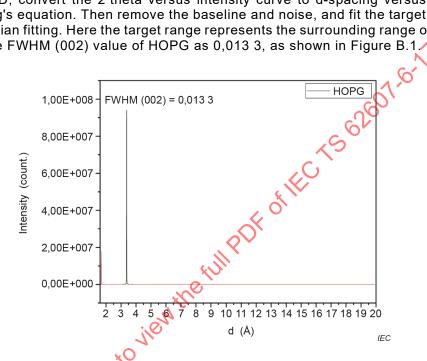


Figure B.1 – d-spacing versus intensity of HOPG and the fitting result of peak (002)

Then conduct data analysis for other samples, like glassy carbon, amorphous carbon, expanded graphite, graphene, etc. The corresponding results are presented in Figure B.2. With the FWHM (002) of different samples, one can derive the corresponding z-axis order parameter.