

IEC TR 63170

Edition 1.0 2018-08

TECHNICAL REPORT

wer de colour inside

Measurement procedure for the evaluation of power density related to human exposure to radio frequency fields from wireless communication devices operating between 6 GHz and 100 GHz

Jen 6 GHz and 100 GHz

Cick to view the full

ECNORM. Chick to view the full

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ICS 17.220.20 ISBN 978-2-8322-5878-1

Warning! Make sure that you obtained this publication from an authorized distributor.

– 2 –

CONTENTS

F(OREWORD	8
IN	ITRODUCTION	10
1	Scope	11
2	Normative references	11
3	Terms and definitions	11
4	Symbols and abbreviated terms	
_	4.1 Symbols	
	4.1.1 Physical quantities	J.A 13
	4.1.2 Constants 4.2 Abbreviated terms	10
5	Description of the manufacturement system	10
5	Description of the measurement system 5.1 General	10
	5.1 General	16
	5.2 Scanning system	16
	5.3 Device holder	17
_	5.4 Reconstruction algorithms	17
6	Power density assessment	17
	5.4 Reconstruction algorithms Power density assessment 6.1 General 6.2 Measurement preparation 6.2.1 System check 6.2.2 Preparation of the device under test	17
	6.2 Measurement preparation	19
	6.2.1 System check	19
	6.2.2 Preparation of the device under test	20
	6.2.3 Operating modes	20
	0.2.4 Test frequencies for DOT	20
	6.2.5 Evaluation surface and DUT test position	
	6.3 Tests to be performed	23
	6.4 General measurement procedure	
	6.4.1 General	23
	6.4.2 Power density assessment based on E- and H-field	24
	6.4.3 Power density measurement based on the evaluation of E-field or H-field amplitude only	25
	6.5 Measurements of devices with multiple antennas or multiple transmitters	26
	6.5.1 General	26
	6.5.2 Examples	28
7	Uncertainty estimation	30
	7.1 General considerations	30
	7.2 Uncertainty model	
	7.3 Uncertainty components dependent on the measurement system	
	7.3.1 Calibration of the measurement equipment	30
	7.3.2 Probe correction	
	7.3.3 Isotropy	31
	7.3.4 Multiple reflections	
	7.3.5 System linearity	
	7.3.6 Probe positioning	
	7.3.7 Sensor location	
	7.3.8 Amplitude and phase drift	
	7.3.9 Amplitude and phase noise	
	7.3.10 Data point spacing	
	• • •	

	7.3.11	Measurement area truncation	32
	7.3.12	Reconstruction algorithms	32
	7.4 Unc	ertainty terms dependent on the DUT and environmental factors	32
	7.4.1	Probe coupling with DUT	32
	7.4.2	Modulation response	32
	7.4.3	Integration time	32
	7.4.4	DUT alignment	32
	7.4.5	RF ambient conditions	33
	7.4.6	Measurement system immunity/secondary reception	33
	7.4.7	Drift of DUT	
	7.5 Com	nbined and expanded uncertainty	33
8	Measuren	nent report	35
	8.1 Gen	eral	35
	8.1.1	General	35
	8.1.2	Items to be recorded in the measurement report	35
9	Recomme	endation for future work	36
	9.1 Mea	surement standard for EMF compliance assessment of devices	36
	9.1.1	rating at frequencies above 6 GHz	36
	9.1.2	Test frequencies	37
	9.1.3	Test frequencies	37
	9.1.4	Evaluation of exposure from multiple transmitters	
	9.1.5	Other future work items	
		nerical standard for EMF compliance assessment of devices operating at	
	freq	uencies above 6 GHz	39
	9.3 Upd	uencies above 6 GHzates to IEC 62232	39
Αr	nnex A (infor	mative) Measurement system check and validation	40
	A.1 Bac	kgroundGeneral	40
	A.1.1	General	40
	A.1.2	Objectives of system check	
	A.1.3	Objectives of system validation	
	A.2 Mea	surement setup and procedure for system check and system validation	
	A.2.1	General	
	A.2.2	Rower measurement setups	41
	A.2.3	Procedure to normalize the measured power density	42
	A.3 Syst	tem check	42
	A.3.1	System check sources and test conditions	42
	A.3.2	Test procedure	42
	A.4 Syst	tem validation	42
	A.4.1	Reference sources and test conditions	42
	A.4.2	System validation procedure	43
Αı	nnex B (infor	mative) Examples of reference sources	44
	B.1 Bac	kground	44
		ity-fed dipole arrays	
	B.2.1	Description	
	B.2.2	Target values	
		amidal horns loaded with a slot array	
	B.3.1	Description	
	B.3.2	Target values	

Annex C (informative) Examples	of system check sources59
C.1 Background	59
C.2 Source description	59
C.3 Target values	59
Annex D (informative) Information	on the applicability of far-field methods60
D.1 Background	60
_	g EIRP60
	60
D.2.2 Numerical simulate	d results60
D.3.1 General	approximation63
D.3.2 Numerical simulate	d results 63
Annex E (informative) Rationale f	d results
E.1 General	onal analysis
E.2 Method using computat	onal analysis66
E.3 Areas averaged with sq	uare and circular shapes66
Annex F (informative) Near field i	econstruction algorithms
F.1 General	68
F.2 Field expansion method	s
F.2.1 General	69
F.2.2 The plane wave sp	ectrum expansion69
F.3 Inverse source methods	71
F.4 Implementation scenari	os 72
F.4.1 General	71 ps
	easurements72
	ches72
• •	ot near field measurements72
· · · · · · · · · · · · · · · · · · ·	f a mixed (numerical and experimental) approach to
	ig device73
G.1 General	73
	ss conformance73
	76
Annex H (informative) Use cases	77
	77
	78
	oratory 179
	79
	79
•	79
	er density reconstruction81
·	aging81
•	82
•	83
	83
	oratory 289
	89
	o89
	90
,	

H.4.4 Numerical simulatio	ns and comparison with measurements90
H.5 Measurements at Labora	tory 396
H.5.1 General	96
H.5.2 Measurement setup	96
H.5.3 Scans	97
Bibliography	98
	eric measurement setup involving the use of17
Figure 2 – Evaluation process over	view
Figure 3 – Overview of power dens	ity measurement methods19
Figure 4 – Illustration of evaluation	ity measurement methods
Figure 5 – Illustration of evaluation	surface corresponding to the flat phantom surface
	22
	surface corresponding to the maximum available sity23
	evaluation at a point r27
Figure A.1 – A recommended power	r measurement setup for system check and system
	ne cavity-backed array of dipoles45
Figure B.2 – 10 GHz patterns for the	the $ E_{\text{total}} $ and Re $\{s\}_{\text{total}}$ for the cavity-backed array from the upper surface of the dielectric substrate48
Figure B.3 – 30 GHz patterns for th	tile $ E_{total} $ and $Re\{S\}_{total}$ for the cavity-backed array from the upper surface of the dielectric substrate49
Figure B.4 – 60 GHz patterns for the of dipoles at various distances, d , f	tile $ E_{total} $ and Re $\{S\}_{total}$ for the cavity-backed array from the upper surface of the dielectric substrate50
Figure B.5 – 90 GHz patterns for the of dipoles at various distances, d_{\bullet}	$ E_{\text{total}} $ and Re $\{S\}_{\text{total}}$ for the cavity-backed array rom the upper surface of the dielectric substrate51
Figure B.6 – Main dimensions for the	ne 0,15 mm stainless steel stencil with slot array52
Figure B.7 – Main dimensions for the	ne pyramidal horn antennas52
Figure B.8 – 10 GHz patterns for the loaded with an array of slots at var	te $ E_{\text{total}} $ and $\text{Re}\{S\}_{\text{total}}$ for the pyramidal horn ous distances, d , from the array surface and
	55
Figure B.9 – 30 GHz patterns for the loaded with an array of slots at var $P_{\text{in}} = 0$ dBm	te $ E_{\text{total}} $ and Re $\{S\}_{\text{total}}$ for the pyramidal horn ous distances, d , from the array surface and56
Figure B.10 – 60 GHz patterns for loaded with an array of slots at var	the $ E_{\text{total}} $ and Re $\{S\}_{\text{total}}$ for the pyramidal horn lous distances, d , from the upper surface of the slot
Figure B.11 – 90 GHz patterns for loaded with an array of slots at var	the $ E_{\text{total}} $ and Re $\{S\}_{\text{total}}$ for the pyramidal horn ous distances, d , from the upper surface of the slot
•	,5 GHz61
_	, (normalized to maximum of $S_{\sf eirp}$)62
·	t approximation ($S_{\mathbf{e}}$) and simulation ($S_{\mathbf{av}}$) results64
	for all antennas (%)65
=	assessment of the variation of S_{aV} using square66

Figure E.2 – Comparison of maximum values of $S_{\sf av}$ averaged toward square and circular shapes	67
Figure F.1 – Comparison of maximum values of $S_{\sf av}$ between the computational simulation and back projection at 30 GHz	70
Figure F.2 – Comparison of maximum values of $S_{\sf av}$ between the computational simulation and back projection at 60 GHz	71
Figure G.1 – Evaluation plane and antenna position	74
Figure G.2 – Local and spatial-average power densities in mW/cm ²	75
Figure G.3 – Spatial-average power densities variation with the distance from evaluation plane	}. 76
Figure G.4 – Correlation (simulation vs. measurement)	76
Figure H.1 – Picture of the mock-up used for power density measurements	77
Figure H.2 – Antenna geometry	78
Figure H.3 – Picture of the mock-up numerical model	78
Figure H.4 – Illustration of the angles used for the numerical description of the sensor and the orientation of an ellipse in 3-D space	80
Figure H.5 – Numerical algorithm for reconstructing the ellipse parameters	81
Figure H.6 – Measuring setup used at Laboratory 1	82
(b) TOP orientation	83
Figure H.7 – DUT while measuring showing the numbering for the ports	83
Figure H.8 – Simulated (left) and measured (right) power density distribution for the TOP configuration	85
Figure H.9 – Simulated (left) and measured (right) power density distribution for the FRONT configuration	86
Figure H.10 – Averaged power density as a function of distance for port 1, at 27,925 GHz, for TOP and FRONT configurations averaged over an area of 4 cm ²	87
Figure H.11 – Averaged power density as a function of averaging area for port 1 at different frequencies	88
Figure H.12 – Distribution of the power density corresponding to the array with zero phase-shift between elements (configuration w_1 of Table H.1)	89
Figure H.13 –Mock-up with antenna port number 2 connected to the VNA (left) and the open waveguide probe and alignment system (right)	90
Figure H.14 – Simulated (left) and measured (right) power density distribution for the TOP configuration over a 15 cm × 15 cm plane	92
Figure H.15 Simulated (left) and measured (right) power density distribution for the FRONT configuration over a 15 cm × 15 cm plane	93
Figure H.16 – Averaged power density as a function of distance for port 1, at 27,925 GHz, for TOP and FRONT configurations averaged over an area of 4 cm ²	94
Figure H.17 – Averaged power density as a function of averaging area for port 1 at different frequencies	95
Figure H.18 – Distribution of the power density corresponding to the array with zero phase-shift between elements (configuration w_1 of Table H.1)	96
Figure H.19 – Measurement setup	97
Table 1 – Minimum separation distance between the DUT's antenna and the evaluation surface for which Formula (3) applies	26
Table 2 – Example of measurement uncertainty evaluation template for power density measurements	34

IEC TR 63170:2018 © IEC 2018 -7 -

Table B.2 – Target values for the cavity-backed dipole arrays at different frequencies $(u_S \ (k=1)=0.5 \ dB)$	interest	46
Table B.4 – Main dimensions for the corresponding pyramidal horn at each frequency	Table B.2 – Target values for the cavity-backed dipole arrays at different frequencies	
Table B.5 – Target values for the pyramidal horns loaded with slot arrays at different frequencies (u _S (k = 1) = 0,5 dB)	Table B.3 – Main dimensions for the stencil with slot array for each frequency	53
frequencies (u _s (k = 1) = 0,5 dB)	Table B.4 – Main dimensions for the corresponding pyramidal horn at each frequency	53
Table G.1 – Phase shifts between antenna elements leading to the maximum power density for each channel	Table B.5 – Target values for the pyramidal horns loaded with slot arrays at different frequencies $(u_S (k = 1) = 0.5 \text{ dB})$	54
Table H.1 – Phase shift values for the mockup antenna ports	Table C.1 – Target values for pyramidal horn antennas at different frequencies	59
Table H.2 – Measured power at the end of the adapter 2,4 mm to 3,5 mm and input power at the antenna port after considering extra losses introduced by the semi-rigid 200 mm coaxial cable and connectors	Table G.1 – Phase shifts between antenna elements leading to the maximum power density for each channel)75
power at the antenna port after considering extra losses introduced by the semi-rigid 200 mm coaxial cable and connectors	Table H.1 – Phase shift values for the mockup antenna ports	79
Table H.3 – Edge length of the scanned planes for the different configurations	Table H.2 – Measured power at the end of the adapter 2,4 mm to 3,5 mm and input power at the antenna port after considering extra losses introduced by the semi-rigid 200 mm coaxial cable and connectors	82
ECNORM. Click to view the full PDF of IEC, TIR 63	Table H.3 – Edge length of the scanned planes for the different configurations	84
	ECNORM. Click to view the full Polific of III	

INTERNATIONAL ELECTROTECHNICAL COMMISSION

MEASUREMENT PROCEDURE FOR THE EVALUATION OF POWER DENSITY RELATED TO HUMAN EXPOSURE TO RADIO FREQUENCY FIELDS FROM WIRELESS COMMUNICATION DEVICES OPERATING BETWEEN 6 GHz AND 100 GHz

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicy Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC of its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

The main task of IEC technical committees is to prepare International Standards. However, a technical committee may propose the publication of a Technical Report when it has collected data of a different kind from that which is normally published as an International Standard, for example "state of the art".

IEC TR 63170, which is a Technical Report, has been prepared by IEC technical committee 106: Methods for the assessment of electric, magnetic and electromagnetic fields associated with human exposure.