

Edition 3.0 2023-05 **COMMENTED VERSION**

INTERNATIONAL STANDARD

colour inside

Electric cables – Calculation of the current rating –
Part 1-1: Current rating equations (100 % loan factor)
General Part 1-1: Current rating equations (100 % load factor) and calculation of losses -

ECNORIN. Click to view the full

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2023 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

Tel.: +41 22 919 02 11

IEC Secretariat 3, rue de Varembé CH-1211 Geneva 20 Switzerland

info@iec.ch www.iec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigendum or an amendment might have been published.

IEC publications search - webstore.iec.ch/advsearchform

The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee, ...). It also gives information on projects, replaced and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished

Stay up to date on all new IEC publications. Just Published details all new publications released. Available online and once a month by email.

IEC Customer Service Centre - webstore.iec.ch/csc

If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: sales@iec.ch.

IEC Products & Services Portal - products.iec.ch

Discover our powerful search engine and read freely all the publications previews. With a subscription you will always have access to up to date content tailored to your needs.

Electropedia - www.electropedia.org

The world's leading online dictionary on electrotechnology, containing more than 22 300 terminological entries in English and French, with equivalent terms in 19 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

Edition 3.0 2023-05 COMMENTED VERSION

INTERNATIONAL **STANDARD**

Electric cables – Calculation of the current rating –
Part 1-1: Current rating equations (100 % load factor) = General colour

ECNORM. Circk to view the full Part 1-1: Current rating equations (100 % lead factor) and calculation of losses -

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ICS 29.060.20 ISBN 978-2-8322-7059-2

Warning! Make sure that you obtained this publication from an authorized distributor.

CONTENTS

F	OREWORD)	4
IN	ITRODUCT	TON	€
4	General		
1			
2	•	ve references	
3			
J	3.1 Te	urms and definitions	٠و
	3.1 Te	definitions and symbols. rms and definitions mbols ible current rating of cables eneral	
4	Permiss	ible current rating of cables	12
•	4.1 Ge	aneral	12
	4.2 Bu	ried cables where drying out of the soil does not occur or cables in air	12
	4.2.1	AC cables	12
	4.2.2	DC cables up to 5 kV	13
	4.3 Bu	AC cables	14
	4.3.1	AC cables	14
	4.3.2	AC cables DC cables up to 5 kV	14
	4.4 Bu	ried cables where drying-out of the soil shall be avoided	15
	4.4.1	AC cablesDC cables up to 5 kV	15
	4.4.2		
		ables directly exposed to solar rad <mark>iati</mark> on	
	4.5.1	General	16
_	4.5.2	General AC cablesion of losses	16
5	Calculat	ion of losses	16
	5.1 AC	cresistance of conductor	16
	5.1.1	General	
	5.1.2 5.1.3	DC resistance of conductor	
			17
	5.1.4	Proximity effect factor y_p for two-core cables and for two single-core	4.0
	E 1 E	cables	16
	5.1.5	Proximity effect factor y_p for three-core cables and for three single-core cables	10
	5.1.6	Skin and proximity effects in pipe-type cables	
		electric losses (applicable to AC cables only)	
		ss factor for sheath and screen (applicable to power frequency AC cables	
		ly)	20
	5.3.1	General	20
	5.3.2	Two single-core cables, and three single-core cables (in trefoil formation),	
		sheaths bonded at both ends of an electrical section	21
	5.3.3	Three single-core cables in flat formation, with regular transposition, sheaths bonded at both ends of an electrical section	22
	5.3.4	Three single-core cables in flat formation, without transposition, sheaths	∠∠
	5.5.4	bonded at both ends of an electrical section	22
	5.3.5	Variation of spacing of single-core cables between sheath bonding points	24
	5.3.6	Effect of Milliken conductors	24
	5.3.7	Single-core cables, with sheaths bonded at a single point or cross-bonded	25

5.3.8	Two-core unarmoured cables with common sheath	28
5.3.9	Three-core unarmoured cables with common sheath	28
5.3.10	Two-core and three-core cables with steel tape armour	30
5.3.11	Cables with each core in a separate lead metallic sheath (SL type) and	
	armoured	
5.3.12	Losses in screen and sheaths of pipe-type cables	31
	ss factor for armour, reinforcement and steel pipes (applicable to power quency AC cables only)	
5.4.1	General	
5.4.2	Non-magnetic armour or reinforcement	32
5.4.3	Magnetic armour or reinforcement	32
5.4.4	Non-magnetic armour or reinforcement Magnetic armour or reinforcement Losses in steel pipes	37
Annex A (nor	mative) Correction factor for increased lengths of individual cores within	
multicore cab	ents	43
Bibliography.		44
List of comm	ents.	45
	<u>, C</u>	
Table 1 Ele	ectrical resistivities and temperature coefficients of metals used	20
Table 2 – Ski	in and proximity effects – Experimental values for the coefficients k_{S} and k_{p} .	39
	lues of relative permittivity and loss factors for the insulation of high-voltage	
	voltage cables at power frequency	
Table 4 – Ab	sorption coefficient of solar radiation for cable surfaces	42
Table A.1 – \	/alues of factor C_{fL} for different numbers of cores	43
	Values of factor C_{fL} for different numbers of cores	
	\mathcal{C}^{\bullet}	
	\mathcal{N} .	
	c ^O V	
~C		
C		
	RM. COM.	

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ELECTRIC CABLES – CALCULATION OF THE CURRENT RATING –

Part 1-1: Current rating equations (100 % load factor) and calculation of losses – General

FORFWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

This commented version (CMV) of the official standard IEC 60287-1-1:2023 edition 3.0 allows the user to identify the changes made to the previous IEC 60287-1-1:2006+AMD1:2014 edition 2.1. Furthermore, comments from IEC TC 20 experts are provided to explain the reasons of the most relevant changes, or to clarify any part of the content.

A vertical bar appears in the margin wherever a change has been made. Additions are in green text, deletions are in strikethrough red text. Experts' comments are identified by a blue-background number. Mouse over a number to display a pop-up note with the comment.

This publication contains the CMV and the official standard. The full list of comments is available at the end of the CMV.

IEC 60287-1-1 has been prepared by IEC technical committee 20: Electric cables. It is an International Standard.

This third edition cancels and replaces the second edition published in 2006 and Amendment 1:2014. This edition constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

- a) thorough redefinition of symbols used across the IEC 60287 and IEC 60853 series to realign and unify definitions, eliminate inconsistencies and to improve cross-use of the different parts of both IEC 60287 and IEC 60853 series; 1
- b) introduction of corrective factors on relevant calculated physical characteristics to take into account the effect of multicore lay-lengths; a dedicated annex to highlight correction factors for different number of cores has been introduced (Annex A).

The text of this International Standard is based on the following documents:

Draft	Report on voting
20/2096/FDIS	20/2103/RVD

Full information on the voting for its approval can be found in the report on voting indicated in the above table.

The language used for the development of this International Standard is English.

This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are described in greater detail at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are described in greater detail at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are described in greater detail at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are described in greater detail at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are described in greater detail at www.iec.ch/members_experts/refdocs.

A list of all parts in the IEC 60287 series, published under the general title *Electric cables – Calculation of the current rating*, can be found on the IEC website.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under webstore.iec.ch in the data related to the specific document. At this date, the document will be

- reconfirmed
- withdrawn
- replaced by a revised edition, or
- amended.

IMPORTANT – The "colour inside" logo on the cover page of this document indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

INTRODUCTION

This part of IEC 60287 contains formulae for the quantities -R R_C , W_d , λ_1 and λ_2 .

It contains methods for calculating the permissible current rating of cables from details of the permissible temperature rise, conductor resistance, losses and thermal resistivities.

Formulae for the calculation of losses are also given.

The formulae in this document contain quantities which vary with cable design and materials used. The values given in the tables are either internationally agreed, for example, electrical resistivities and resistance temperature coefficients, or are those which are generally accepted in practice, for example, thermal resistivities and permittivities of materials. In this latter category, some of the values given are not characteristic of the quality of new cables but are considered to apply to cables after a long period of use. In order that uniform and comparable results—may can be obtained, the current ratings should be calculated with the values given in this document. However, where it is known with certainty that other values are more appropriate to the materials and design, then these may be used, and the corresponding current rating declared in addition, provided that the different values are quoted.

Quantities related to the operating conditions of cables are liable to vary considerably from one country to another. For instance, with respect to the ambient temperature and soil thermal resistivity, the values are governed in various countries by different considerations. Superficial comparisons between the values used in the various countries—may can lead to erroneous conclusions if they are not based on common criteria: for example, there—may can be different expectations for the life of the cables, and in some countries design is based on maximum values of soil thermal resistivity, whereas in others average values are used. Particularly, in the case of soil thermal resistivity, it is well known that this quantity is very sensitive to soil moisture content and—may can vary significantly with time, depending on the soil type, the topographical and meteorological conditions, and the cable loading.

The following procedure for choosing the values for the various parameters should, therefore, be adopted.

Numerical values should preferably be based on results of suitable measurements. Often such results are already included in national specifications as recommended values, so that the calculation—may can be based on these values generally used in the country in question; a survey of such values is given in IEC 60287-3-1.

A suggested list of the information required to select the appropriate type of cable is given in IEC 60287-3-1.

ELECTRIC CABLES – CALCULATION OF THE CURRENT RATING –

Part 1-1: Current rating equations (100 % load factor) and calculation of losses – General

1 General

1 Scope

This part of IEC 60287 is applicable to the conditions of steady-state operation of cables at all alternating voltages, and direct voltages up to 5 kV, buried directly in the ground, in ducts, troughs or in steel pipes, both with and without partial drying-out of the soil, as well as cables in air. The term "steady state" is intended to mean a continuous constant current (100 % load factor) just sufficient to produce asymptotically the maximum conductor temperature, the surrounding ambient conditions being assumed constant.

This document provides formulae for current ratings and losses

The formulae given are essentially literal and designedly leave open the selection of certain important parameters. These may can be divided into three groups:

- parameters related to construction of a cable (for example, thermal resistivity of insulating material) for which representative values have been selected based on published work;
- parameters related to the surrounding conditions, which may can vary widely, the selection
 of which depends on the country in which the cables are used or are to will be used;
- parameters which result from an agreement between manufacturer and user and which involve a margin for security of service (for example, maximum conductor temperature).

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 600273, Letter symbols to be used in electrical technology - Part 3: Logarithmic and related quantities, and their units

IEC 60028:1925, International standard of resistance for copper

IEC 60141 (all parts), Tests on oil filled and gas pressure cables and their accessories

IEC 60228, Conductors of insulated cables

IEC 60287-1-3, Electric cables – Calculation of the current rating – Part 1-3: Current rating equations (100 % load factor) and calculation of losses – Current sharing between parallel single-core cables and calculation of circulating current losses

IEC 60287-2-1:2023, Electric cables – Calculation of the current rating – Part 2-1: Thermal resistance – Calculation of the thermal resistance

- 8 -

IEC 60502-1, Power cables with extruded insulation and their accessories for rated voltages from 1 kV (Um = 1,2 kV) up to 30 kV (Um = 36 kV) Part 1: Cables for rated voltages of 1 kV (Um = 1,2 kV) and 3 kV (Um = 3,6 kV)

IEC 60502-2, Power cables with extruded insulation and their accessories for rated voltages from 1 kV (Um = 1,2 kV) up to 30 kV (Um = 36 kV) - Part 2: Cables for rated voltages from 6 kV (Um = 7,2 kV) up to 30 kV (Um = 36 kV)

IEC 60889, Hard-drawn aluminium wire for overhead line conductors

Terms, definitions and symbols

Terms and definitions 3.1

No terms and definitions are listed in this document.

ISO and IEC maintain terminology databases for use in standardization at the following addresses:

- IEC Electropedia: available at https://www.electropedia.org/
- ISO Online browsing platform: available at https://www.isolorg/obp

3.2 **Symbols**

The symbols used in this document and the quantities which they represent are given in the following list.

AA_A	cross-sectional area of the armour	mm ²
B_{1}, B_{2}	coefficients (see 5.4.3)	Ω/m
C	capacitance per core	F/m
C_{F}	coefficient defined in 3.3.6	
C_{fL}	coefficient to take into account the position of the neutral axis of the helically wound core in Annex A	
$C_{\sf gs}$	coefficient used in 5.3.7.1	
C_{LL}	length correction factor for considering laying up of cores	
C_{M1}	coefficient defined in 5.3.6	
C_{N}	coefficient defined in 5.3.6	
C_{P}	coefficient defined in 5.3.4	Ω/m
C_{p}	coefficient used in 5.3.7.2	
C_{Q}	coefficient defined in 5.3.4	Ω/m
C_{q}	coefficient used in 5.3.7.2	
${D_{e}}^*$	external diameter of cable	m
D_{i}	diameter over insulation	mm
${D_{p}}^{*}$	diameter over the individual core of a multicore cable	m
D_{S}	external diameter of metal sheath	mm
D_{oc}	diameter of the imaginary coaxial cylinder which just touches the crests of a corrugated sheath	mm
D_{it}	diameter of the imaginary cylinder which just touches the inside surface of the troughs of a corrugated sheath	mm

F	coefficient defined in 2.3.5	
⊭ E _e	intensity of solar radiation	W/m^2
H	magnetizing force (see 5.4.3)	A/m
$H_{\mathtt{S}}$	inductance of sheath	H/m
H_1, H_2, H_3	components of inductance due to the steel wires (see 5.4.3)	H/m
I	current in one conductor (RMS value)	Α
I_{S}	current in sheath (RMS value)	Α
$L_{L}^{\;*}$	axial cable length over which the cores make one full helical turn	m
M, N	coefficients defined in 2.3.5	Chr
P, Q	coefficients defined in 2.3.3	® /m
R R _C	alternating current resistance of conductor at its maximum operating temperature per unit length of the cable	Ω/m
R_{A}	AC resistance of armour at its maximum operating temperature per unit length of the cable	Ω/m
R_{Ao}	AC resistance of armour at 20 °C per unit length of the cable	Ω/m
R_{e}	equivalent AC resistance of sheath and armour in parallel	Ω/m
R_{s}	AC resistance of cable sheath or screen at their maximum operating temperature per unit length of the cable	Ω/m
R_{so}	AC resistance of cable sheath or screen at 20 °C per unit length of the cable	Ω/m
R'	DC resistance of conductor at maximum operating temperature per unit length of the cable	Ω/m
R_{o}	DC resistance of conductor at 20 °C per unit length of the cable	Ω/m
T_{1}	thermal resistance per core between conductor and sheath per unit length of the cable	K·m/W
T_2	thermal resistance between sheath and armour per unit length of the cable	K·m/W
T_3	thermal resistance of external serving per unit length of the dable	K·m/W
T ₄	thermal resistance of surrounding medium (ratio of cable surface temperature rise above ambient to the losses per unit length)	K·m/W
7 <u>*</u> 1#4	external thermal resistance in free air, adjusted for solar radiation	K·m/W
T_{4}^{\prime}	thermal resistance between cable and duct (or pipe)	$K \cdot m/W$
T_4''	thermal resistance of the duct (or pipe)	$K \cdot m/W$
T_4'''	thermal resistance of the medium surrounding the duct (or pipe)	K·m/W
U_{o}	voltage between conductor and screen or sheath	V
W_{A}	losses in armour per unit length of the cable	W/m
W_{c}	losses in conductor per unit length of the cable	W/m
W_{d}	dielectric losses per unit length of the cable per phase	W/m

W_{S}	losses dissipated in sheath per unit length of the cable	W/m
$W_{(s+A)}$	total losses in sheath and armour per unit length of the cable	W/m
X	reactance of sheath (two-core cables and three-core cables in trefoil) per unit length of the cable	Ω/m
X_1	reactance of sheath (cables in flat formation)	Ω/m
X_{m}	mutual reactance between the sheath of one cable and the conductors of the other two when cables are in flat information	Ω/m
a	shortest minor length in a cross-bonded electrical section having unequal minor lengths	m
С	distance between the axes of conductors and the axis of the cable for three-core cables $(=0.55 r_4 + 0.29 t for sectorshaped conductors)$	mm CV
d	mean diameter of sheath or screen	mm
d'	mean diameter of sheath and reinforcement	mm
d_2	mean diameter of reinforcement	mm
d_{A}	mean diameter of armour	mm
$d_{\mathtt{c}}$	mean diameter of sheath or screen mean diameter of sheath and reinforcement mean diameter of reinforcement mean diameter of armour external diameter of conductor	mm
d'c	external diameter of equivalent round solid conductor having the same central duct as a hollow conductor	mm
d_{d}	internal diameter of pipe	mm
d_{f}	diameter of a steel wire	mm
d_{i}	internal diameter of hollow conductor	mm
d_{M}	major diameter of screen or sheath of an oval conductor	mm
d_{m}	minor diameter of screen or sheath of an oval conductor	mm
d_{X}	diameter of an equivalent circular conductor having the same cross sectional area and degree of compactness as the shaped one	mm
f	system frequency	Hz
g e	coefficient used in 2.3.6.1	
₩k _f	factor used in the calculation of hysteresis losses in armour or reinforcement (see 5.4.3.4)	
k_{p}	factor used in calculating x_{p} (proximity effect)	
k_s	factor used in calculating x_s (skin effect)	
! <i>!</i> *	length of a cable section (general symbol, see 5.3.5)	m
In	natural logarithm (logarithm to base e, see IEC 60027-3)	
m	$\frac{\omega}{R_s}$ 10 ⁻⁷	
	parameter used in calculation of eddy-current loss factor	$10^{-7}~\text{m}/\Omega$
n	number of conductors in a cable	
n_1	number of steel wires in a cable (see 5.4.3)	
p	length of lay of a steel wire along a cable (see 5.4.3)	
p, q	coefficients used in 2.3.6.2	

<i>r</i> ₁	circumscribing radius of two- or three-sector shaped conductors	mm
S	axial separation of conductors	mm
<i>s</i> ₁	axial separation of two adjacent cables in a horizontal group of three, not touching	mm
<i>s</i> ₂	axial separation of cables (see 2.4.2)	mm
	axial spacing between adjacent cables in trefoil formation; for cables in flat formation s_2 is the geometric mean of the three spacings	mm
t_0	insulation thickness between conductors	mm
t_3	thickness of the serving	mm
t_{S}	thickness of the sheath	THIP)
v	ratio of the thermal resistivities of dry and moist soils $(v = \rho_{\rm d}/\rho_{\rm W})$	
x_{p}	argument of a Bessel function used to calculate proximity effect	
x_s	argument of a Bessel function used to calculate skin effect	
y_{p}	proximity effect factor (see 5.1)	
y_s	skin effect factor (see 5.1)	
α_{20}	temperature coefficient of electrical resistivity at 20 °C, per kelvin	I/K
β_1	coefficient used in 5.3.7.1	
β_2	angle between axis of armour wires and axis of cable (see 5.4.3)	
γ	angular time delay (see 5.4.3)	
Δ_1, Δ_2	coefficients used in 5.3.7.1	
δ_{A}	equivalent thickness of armour or reinforcement	mm
$tan\delta$	loss factor of insulation	
ε	relative permittivity of insulation	
ε_0	permittivity of vacuum	F/m
θ	maximum operating temperature of conductor	°C
$\theta_{\rm a}$ $\theta_{\rm ar}$	ambient temperature	°C
θ_{ar}	maximum operating temperature of armour	°C
$\theta_{ t sc}$	maximum operating temperature of cable screen or sheath	°C
$ heta_{X}$	critical temperature of soil; this is the temperature of the boundary between dry and moist zones	°C
$\Delta heta$	permissible temperature rise of conductor above ambient temperature	K
$\Delta heta_{X}$	critical temperature rise of soil; this is the temperature rise of the boundary between dry and moist zones above the ambient temperature of the soil	K
λ_{0}	coefficient used in 5.3.7.1	
λ ₁ , λ ₂	ratio of the total losses in metallic sheaths and armour respectively to the total conductor losses (or losses in one sheath or armour to the losses in one conductor)	

λ'_1	ratio of the losses in one sheath caused by circulating currents in the sheath to the losses in one conductor	
λ ₁ "	ratio of the losses in one sheath caused by eddy currents to the losses in one conductor	
\mathcal{U}_{m}	loss factor for the middle cable of three cables in flat formation without transposition, with sheaths bonded at both ends	
λ ₁₁	loss factor for the outer cable with the greater losses of three cables in flat formation without transposition, with sheaths bonded at both ends	
<i>1</i> ₁₂	loss factor for the outer cable with the least losses of three cables in flat formation without transposition, with sheaths bonded at both ends relative magnetic permeability of armour material longitudinal relative permeability transverse relative permeability conductor resistivity at 20 °C thermal resistivity of dry soil thermal resistivity at 20 °C	CMY
μ	relative magnetic permeability of armour material	10/2
μ_{e}	longitudinal relative permeability	V
μ_{t}	transverse relative permeability	
ρ_{20}	conductor resistivity at 20 °C	$\Omega\cdot m$
$ ho_{d}$	thermal resistivity of dry soil	$K \cdot m/W$
$ ho_{W}$	thermal resistivity of moist soil	K·m/W
$ ho_{ extsf{S}}$	sheath resistivity at 20 °C	$\Omega\cdot m$
σ	absorption coefficient of solar radiation for the cable surface	
ω	angular frequency of system (2元/)	

4 Permissible current rating of cables

4.1 General

When the permissible current rating is being calculated under conditions of partial drying out of the soil, it is also necessary to calculate a rating for conditions where drying out of the soil does not occur. The lower of the two ratings shall be used.

4.2 Buried cables where drying out of the soil does not occur or cables in air

4.2.1 AC cables

The permissible current rating of an AC cable can be derived from the expression for the temperature rise above ambient temperature:

$$\Delta\theta = (I^2R + \frac{1}{2}W_d)T_1 + [I^2R(1+\lambda_1) + W_d]nT_2 + [I^2R(1+\lambda_1+\lambda_2) + W_d]n(T_3 + T_4)$$

$$\Delta\theta = (I^2R_C + \frac{1}{2}W_d)T_1 + n[I^2R_C(1+\lambda_1) + W_d]T_2 + n[I^2R_C(1+\lambda_1+\lambda_2) + W_d](T_3 + T_4)$$
(1)

where

- *I* is the current flowing in one conductor (A);
- $\Delta\theta$ is the conductor temperature rise above the ambient temperature (K);

NOTE The ambient temperature is the temperature of the surrounding medium under normal conditions, at a situation in which cables are installed, or will be installed, including the effect of any local source of heat, but not the increase of temperature in the immediate neighbourhood of the cables due to heat arising therefrom.

 R_C is the alternating current resistance per unit length of the conductor cable at maximum operating temperature (Ω/m) ;

- $W_{\rm d}$ is the dielectric loss per unit length of the cable for the insulation surrounding the conductor (W/m);
- T_1 is the thermal resistance per unit length of the cable between one conductor and the sheath (K · m/W);
- T_2 is the thermal resistance per unit length of the cable of the bedding between sheath and armour (K · m/W);
- T_3 is the thermal resistance per unit length of the cable of the external serving of the cable (K · m/W);
- T_4 is the thermal resistance per unit length between the cable surface and the surrounding medium, as derived from IEC 60287-2-1 (K · m/W);
- n is the number of load-carrying conductors in the cable (conductors of equal size and carrying the same load);
- λ_1 is the ratio of losses in the metal sheath to total losses in all conductors in that cable;
- λ_2 is the ratio of losses in the armouring to total losses in all conductors in that cable.

The permissible current rating is obtained from Formula (1) as follows:

$$I = \begin{bmatrix} \Delta\theta - W_{d} & [0.5 & T_{1} + n & (T_{2} + T_{3} + T_{4})] \\ RT_{1} + nR & (1 + \lambda_{1}) & T_{2} + nR & (1 + \lambda_{1} + \lambda_{2}) & (T_{3} + T_{4}) \end{bmatrix}^{0.5}$$

$$I = \begin{bmatrix} \Delta\theta - W_{d} & [0.5 & T_{1} + n & (T_{2} + T_{3} + T_{4})] \\ R_{C}T_{1} + nR_{C} & (1 + \lambda_{1}) & T_{2} + nR_{C} & (1 + \lambda_{1} + \lambda_{2}) & (T_{3} + T_{4}) \end{bmatrix}^{0.5}$$
(2)

Where the cable is exposed to direct solar radiation, the formulae given in IEC 60287-2-1:2023, 4.2.1.2 shall be used.

The current rating for a four-core low-voltage cable may be taken to be equal to the current rating of a three-core cable for the same voltage and conductor size having the same construction, provided that the cable is used in a three-phase system where the fourth conductor is either a neutral conductor or a protective conductor. When it is a neutral conductor, the current rating applies to a balanced load.

4.2.2 DC cables up to 5 kV

The permissible current rating of a DC cable is obtained from the following simplification of the AC Formula (2):

$$I = \left[\frac{\Delta \theta}{R'T_1 + nR'T_2 + nR'(T_3 + T_4)} \right]^{0.5}$$

where

R' is the direct current resistance per unit length of the conductor cable at maximum operating temperature (Ω/m) .

Where the cable is exposed to direct solar radiation, the formulae given in IEC 60287-2-1:2023, 4.2.1.2 shall be used.

4.3 Buried cables where partial drying-out of the soil occurs

4.3.1 AC cables

The following method shall be applied to a single isolated cable or circuit only, laid at conventional depths. The method is based on a simple two-zone approximate physical model of the soil where the zone adjacent to the cable is dried out whilst the other zone retains the site's thermal resistivity, the zone boundary being on isotherm¹. This method is considered to be appropriate for those applications in which soil behaviour is considered in simple terms only.

NOTE 1 Installations of more than one circuit as well as the necessary spacing between circuits are under consideration.

Changes in external thermal resistance, consequent to the formation of a dry zone around a single isolated cable or circuit, shall be obtained from the following Formula (3), compared with Formula (2):

$$I = \begin{bmatrix} \Delta\theta - W_{d} & [0.5 \ T_{1} + n \ (T_{2} + T_{3} + vT_{4})] + (v - 1) \ \Delta\theta_{x} \\ R & [T_{1} + n \ (1 + \lambda_{1}) \ T_{2} + n \ (1 + \lambda_{1} + \lambda_{2}) \ (T_{3} + vT_{4})] \end{bmatrix}^{0.5}$$

$$I = \begin{bmatrix} \Delta\theta - W_{d} & [0.5 \ T_{1} + n \ (T_{2} + T_{3} + vT_{4}) + (v - 1)\Delta\theta_{x}] \\ R_{C} & [T_{1} + n(1 + \lambda_{1}) \ T_{2} + n(1 + \lambda_{1} + \lambda_{2}) \ (T_{3} + vT_{4})] \end{bmatrix}^{0.5}$$
(3)

where

v is the ratio of the thermal resistivities of the dry and moist soil zones $(v = \rho_d / \rho_w)$;

 R_C is the AC resistance of the conductor at its maximum operating temperature per unit length of the cable (Ω/m) ;

 $\rho_{\rm d}$ is the thermal resistivity of the dry soil (K · m/W);

 $\rho_{\rm w}$ is the thermal resistivity of the moist soil (K · m/W);

 θ_{x} is the critical temperature of the soil and temperature of the boundary between dry and moist zones (°C);

 θ a is the ambient temperature (°C);

 $\Delta\theta_{\rm X}$ is the critical temperature rise of the soil. This is the temperature rise of the boundary between the dry and moist zones above the ambient temperature of the soil $(\theta_{\rm X}-\theta_{\rm a})$ (K);

NOTE— T_4 is calculated using the thermal resistivity of the moist soil $(\rho_{\rm W})$ using IEC 60287-2-1:2023, 4.2.3.3. Mutual heating by modification of the temperature rise as in IEC 60287-2-1:2023, 4.2.3.2 cannot be applied.

 $\theta_{\rm X}$ and $\rho_{\rm d}$ shall be determined from a knowledge of the soil conditions.

NOTE 2 The choice of suitable soil parameters is under consideration. In the meantime, values may can be agreed between the manufacturer and purchaser.

4.3.2 DC cables up to 5 kV

The permissible current rating of a DC cable is obtained from the following simplification of the AC Formula (3):

^{1 &}quot;Current ratings of cables buried in partially dried-out soil, Part 1": Electra No. 104, p. 11, January 1966 (in particular section 3 and Appendix 1).

$$I = \left[\frac{\Delta\theta + (v-1)\Delta\theta_{X}}{R'\left[T_{1} + nT_{2} + n\left(T_{3} + vT_{4}\right)\right]}\right]^{0.5}$$

where

R' is the direct current resistance per unit length of the conductor cable at maximum operating temperature (Ω/m) .

When considering cable installations in pipes or ducts, the thermal resistance of the surrounding medium T_4 is composed by three additive contributions of thermal resistances, i. e. that of the medium inside the pipe, the pipe itself and the ambient medium around the pipe T_4 , T_4'' and T_4''' , see IEC 60287-2-1. In that case only the contribution T_4''' is affected by drying out of the soil and in the above two formulae the term vT_4 shall be replaced by the term $T_4''' + vT_4'''$.

4.4 Buried cables where drying-out of the soil shall be avoided

4.4.1 AC cables

Where it is desired that moisture migration be avoided by limiting the temperature rise of the cable surface to not more than $\Delta\theta_x$, the corresponding rating shall be obtained from:

$$I = \left[\frac{\Delta\theta_{x} - nW_{d}T_{4}}{nRT_{4}(1 + \lambda_{1} + \lambda_{2})}\right]^{0.5}$$

$$I = \left[\frac{\Delta\theta_{x} - nW_{d}T_{4}}{nR_{C}T_{4}(1 + \lambda_{1} + \lambda_{2})}\right]^{0.5}$$
(4)

However, depending on the value of $\Delta\theta_{\rm x}$ this may can result in a conductor temperature which exceeds the maximum permissible value. The current rating used shall be the lower of the two values obtained, either from the above Equation (4) or from Equation (1).

The conductor resistance R_{C} shall be calculated for the appropriate conductor temperature, which—may can be less than the maximum permitted value. An estimate of the operating temperature shall be made and, if necessary, subsequently amended.

NOTE For four-core low-voltage cables, see the final paragraph in 4.2.1.

4.4.2 DC cables up to 5 kV

The permissible current rating of a DC cable shall be obtained from the following simplification of the AC Formula (4):

$$I = \left[\frac{\Delta \theta_{\mathsf{X}}}{nR' T_{\mathsf{A}}}\right]^{0.5}$$

The conductor resistance R' shall be modified as in 4.3.2.

4.5 Cables directly exposed to solar radiation

4.5.1 General

Taking into account the effect of solar radiation on a cable, the permissible current rating is given by Formulae (5) and (6):

4.5.2 AC cables

$$\frac{1 - \left[\frac{\Delta \theta - W_{d} \left[0.5 \ T_{1} + n \ (T_{2} + T_{3} + T_{4}^{*}) \right] - \sigma \ D_{e}^{*} \ H \ T_{4}^{*} \right]^{0.5}}{RT_{1} + nR \ (1 + \lambda_{1}) \ T_{2} + nR \ (1 + \lambda_{1} + \lambda_{2}) \ (T_{3} + T_{4}^{*})} \right]}$$

$$I = \left[\frac{\Delta \theta - W_{d} \left[0.5 \ T_{1} + n \left(T_{2} + T_{3} + T_{4}^{\#} \right) \right] - \sigma \ D_{e}^{*} \ E_{e} \ T_{4}^{\#}}{R_{C} T_{1} + n R_{C} \left(1 + \lambda_{1} \right) T_{2} + n R_{C} \left(1 + \lambda_{1} + \lambda_{2} \right) \left(T_{3} + T_{4}^{\#} \right)} \right]^{0.5}$$

$$(5)$$

DC cables up to 5 Kv

$$I = \begin{bmatrix} \Delta\theta - \sigma D_{e}^{*} H T_{4}^{*} \\ R' T_{1} + nR' T_{2} + nR' (T_{3} + T_{4}^{*}) \end{bmatrix}^{0.5}$$

$$I = \begin{bmatrix} \Delta\theta - \sigma D_{e}^{*} E_{e} T_{4}^{\#} \\ R' T_{1} + nR' T_{2} + nR' (T_{3} + T_{4}^{\#}) \end{bmatrix}^{0.5}$$
(6)

where

 σ is the absorption coefficient of solar radiation for the cable surface (see Table 4);

 HE_{e} is the intensity of solar radiation which should be taken as 1000 W/m² for most latitudes; it is recommended that the local value should be obtained where possible;

 T_{4}^{*} is the external thermal resistance of the cable in free air, adjusted to take account of solar radiation (see IEC 60287-2-1) (K · m/W);

 D_e^* is the external diameter of the cable (m) for corrugated sheaths $D_e^* = (D_{00}^* + 2t_3) \cdot 10^{-3}$ (m);

 t_3 is the thickness of the serving (mm).

5 Calculation of losses

5.1 AC resistance of conductor

5.1.1 General

The AC resistance per unit length of the conductor cable at its maximum operating temperature is given by the following Formula (7), except in the case of pipe-type cables (see 5.1.6):

$$R = R'(1 + y_s + y_p)$$

$$R_C = R'(1 + y_s + y_p)$$
(7)

where

 R_C is the alternating current resistance of the conductor at maximum operating temperature per unit length of the cable (Ω/m) ; 2

R' is the DC resistance of the conductor at maximum operating temperature per unit length of the cable (Ω/m) ;

 y_s is the skin effect factor;

 $y_{\rm p}$ is the proximity effect factor.

5.1.2 DC resistance of conductor

The DC resistance per unit length of the conductor cable at its maximum operating temperature θ is given by:

$$R' = R_0 \cdot [1 + \alpha_{20} \cdot (\theta - 20)]$$

$$R' = R_0 [1 + \alpha_{20} (\theta - 20K)]$$

where

 $R_{\rm o}$ is the DC resistance of the conductor at 20 °C per unit length of the cable (Ω/m);

The value of R_0 shall be derived directly from IEC 60228. Where the conductor size is outside the range covered by IEC 60228, the value of R_0 -may can be chosen by agreement between the manufacturer and purchaser. The conductor resistance should then be calculated using the values of resistivity given in Table 1 and considering the length of the conductor in the finished cable, see also Annex A.

 α_{20} is the constant mass temperature coefficient at 20 °C per kelvin (see Table 1 for standard values);

 θ is the maximum operating temperature in degrees Celsius (this will be determined by the type of insulation to be used); see appropriate IEC specification or national standard.

5.1.3 Skin effect factor y_s

The skin effect factor y_s is given by the following equations:

For
$$0 < x_s \le 2.8$$

$$y_{s} = \frac{x_{s}^{4}}{192 + 0.8 x_{s}^{4}}$$

For
$$2.8 < x_s \le 3.8$$

$$y_s = -0.136 - 0.0177x_s + 0.0563x_s^2$$

For
$$x_s > 3.8$$

$$y_s = 0.354x_s - 0.733$$

where

$$x_s^2 = \frac{8\pi f}{R'} 10^{-7} k_s$$
 ;

f is the supply frequency in Hz.

Values for k_s are given in Table 2.

In the absence of alternative formulae, it is recommended that the formulae in 5.1.3-should be used also for sector and oval-shaped conductors.

5.1.4 Proximity effect factor y_p for two-core cables and for two single-core cables

The proximity effect factor is given by:

$$y_{\rm p} = \frac{x_{\rm p}^4}{192 + 0.8 x_{\rm p}^4} \left(\frac{d_{\rm c}}{s}\right)^2 \times 2.9$$

where

$$x_{\rm p}^2 = \frac{8\pi f}{R'} 10^{-7} k_{\rm p}$$
;

 $d_{\rm c}$ is the diameter of the conductor (mm);

is the distance between conductor axes (mm).

Values for k_p are given in Table 2.

The formulae in 5.1.4 are accurate providing x_p does not exceed 2,8 and therefore applies to the majority of practical cases.

Proximity effect factor y_p for three-core cables and for three single-core cables 5.1.5

5.1.5.1 Circular conductor cables

The proximity effect factor is given by:

ity effect factor
$$y_p$$
 for three-core cables and for three single lar conductor cables fect factor is given by:
$$y_p = \frac{x_p^4}{192 + 0.8 \ x_p^4} \left(\frac{d_c}{s}\right)^2 + \frac{1.18}{\frac{x_p^4}{192 + 0.8 \ x_p^4} + 0.27}$$

where

$$x_{\rm p}^2 = \frac{8\pi f}{R'} 10^{-7} k_{\rm p}$$
;

 $d_{\rm c}$ is the diameter of the conductor (mm);

is the distance between conductor axes (mm).

NOTE—For cables in flat formation, s is the spacing between adjacent phases. Where the spacing between adjacent phases is not equal, the distance will be taken as $s = \sqrt{s_1 \times s_2}$

Values for k_p are given in Table 2.

The formulae in 5.1.5.1 are accurate provided x_p does not exceed 2,8, and therefore applies to the majority of practical cases.

5.1.5.2 Shaped conductor cables

In the case of multicore cables with shaped conductors, the value of y_n shall be two-thirds of the value calculated according to 5.1.5.1,

with:

 $d_{\rm c}$ = $d_{\rm x}$ = diameter of an equivalent circular conductor of the same cross-sectional area, and degree of compaction (mm);

$$s = (d_x + t_0) \text{ (mm)},$$

where

is the thickness of insulation between conductors (mm).

Values for k_n are given in Table 2.

This calculation is accurate provided $x_{\rm p}$ does not exceed 2,8, and therefore applies to the majority of practical cases.

5.1.6 Skin and proximity effects in pipe-type cables

For pipe-type cables, the skin and proximity effects calculated according to 5.1.3, 5.1.4 and 5.1.5 shall be increased by a factor of 1,5. For these cables,

$$R = R'[1+1,5(y_s+y_p)] - (\Omega/m)$$

$$\frac{R - R' \left[1 + 1, 5 \left(y_s + y_p \right) \right] \quad (\Omega/m)}{R_C = R' \left[1 + 1, 5 \left(y_s + y_p \right) \right] \quad (\Omega/m)}$$

5.2 Dielectric losses (applicable to AC cables only)

The dielectric loss is voltage dependent and thus only becomes important at voltage levels related to the insulation material being used. Table 3 gives, for the insulation materials in common use, the value of Uo at which the dielectric loss should be taken into account where three-core screened or single-core cables are used. It is not necessary to calculate the dielectric loss for unscreened multicore or d.c. cables.

The dielectric loss should be taken into account for values of U_0 equal to or higher than the following:

for cable with solid-type impregnated paper insulation; 38 kV

63.5 kV for oil filled and gas-pressure cables;

18 kV for butyl rubber insulated cables;

63.5 kV for EPR insulated cables;

for PVC insulated cables;

for PE (HD and LD) insulated cables;

for XLPE (unfilled) insulated cables;

for XLPE (filled) insulated cables.

It is not necessary to calculate the dielectric loss for unscreened multicore or DC cables.

The dielectric loss per unit length of cable in each phase is given by:

$$W_{\rm d} = \omega C U_0^2 \tan \delta$$
 (W/m)

where

is the capacitance per unit length of a cable (F/m);

 U_0 is the voltage to earth (V).

Values of tan δ , the loss factor of the insulation at power frequency and operating temperature, are given in Table 3.

The capacitance for circular conductors is given by:

$$\frac{c = \frac{\varepsilon}{18 \ln \left(\frac{D_i}{d_c}\right)} - \frac{10^{-9}}{(F/m)}$$

\varepsilon is the relative permittivity of the insulation;

$$\frac{\varepsilon - \text{is the relative permittivity of the insulation;}}{D_i - \text{is the external diameter of the insulation (excluding screen) (mm);}}$$

$$\frac{d_e - \text{is the diameter of conductor, including screen, if any (mm).}}{C = \frac{2\pi\varepsilon_0\varepsilon}{\ln\left(\frac{D_i}{d_c}\right)}C_{LL}}$$
 (F/m) 3

where

is the permittivity of the vacuum $\approx 8,854 \cdot 10^{-12}$ Fym; ε_0

is the relative permittivity of the insulation; ε

is the external diameter of the insulation (excluding screen) (mm); D_{i}

is the diameter of the conductor, including screen, if any (mm). $d_{\mathbf{c}}$

is the length correction factor for considering laying up cores. The calculation is given in Annex A.

The same formula can be used for oval conductors if the geometric mean of the appropriate major and minor diameters is substituted for D_i and d_c .

Values of ε are given in Table 3.

Loss factor for sheath and screen (applicable to power frequency AC cables only)

5.3.1

The power loss in the sheath or screen (λ_1) consists of losses caused by circulating currents (λ'_1) and eddy currents (λ''_1) ,

thus:

$$\lambda_1 = \lambda_1' + \lambda_1''$$

The formulae given in this Subclause 5.3 express the loss in terms of the total power loss in the conductor(s) and for each particular case it is indicated which type of loss has to shall be considered. The formulae for single-core cables apply to single circuits only and the effects of earth return paths are neglected. Methods are given for both smooth-sided and corrugated sheaths.

For single-core cables with sheaths bonded at both ends of an electrical section, only the loss due to circulating currents in the sheaths need shall be considered (see 5.3.2, 5.3.3 and 5.3.4). An electrical section is defined as a portion of the route between points at which the sheaths or screens of all cables are solidly bonded.

An allowance has usually also to be made for increased spacing at certain points on the route (see 2.3.4).

To consider the effect of different spacing of certain spans along the route, see 5.3.5

For cables with Milliken conductors, the loss factor should be increased to take account of the loss due to eddy currents in the sheaths (see 5.3.6).

For a cross-bonded installation, it is considered unrealistic to assume that minor sections are electrically identical and that the loss due to circulating currents in the sheaths is negligible. Recommendations are made in 5.3.7 for augmenting the losses in the sheaths to take account of this electrical unbalance.

The electrical resistivities and temperature coefficients of lead and aluminium, for use in calculating the resistance of the sheath R_s are given in Table 1.

The formulae given in this Subclause 5.3 use the resistance of the sheath or screen at its maximum operating temperature. The maximum operating temperature of the sheath or screen is given by:

$$\theta_{\rm sc} = \theta - \left(t^2 R + 0.5W_{\rm d}\right) T_{\rm 1} (^{\circ}C)$$

$$\theta_{\rm sc} = \theta - \left(I^2 R_{\rm C} + 0.5 W_{\rm d}\right) T_{\rm 1} \quad (^{\circ} C)$$

where

 $\theta_{\rm sc}$ is the maximum operating temperature of the cable screen or sheath (°C).

Because the temperature of the sheath or screen is a function of the current, I, an iterative method is used for the calculation.

The resistance of the sheath or screen at its maximum operating temperature is given by:

$$R_{\rm S} = R_{\rm SO} \left[1 + \alpha_{\rm ZO} \left(0_{\rm SC} - 20 \right) \right] \left(\Omega / m \right)$$

$$R_{\rm s} = R_{\rm so} \left[1 + \alpha_{20} \left(\theta_{\rm sc} - 20 \mathrm{K} \right) \right] \quad (\Omega/\mathrm{m})$$

where

 R_{so} is the resistance of the cable sheath or screen at 20 °C per unit length of the cable (Ω/m).

5.3.2 Two single-core cables, and three single-core cables (in trefoil formation), sheaths bonded at both ends of an electrical section

For two single-core cables, and three single-core cables (in trefoil formation) with sheaths bonded at both ends, the loss factor is given by:

$$\frac{\lambda_1' = \frac{R_s}{R} - \frac{1}{1 + \left(\frac{R_s}{X}\right)^2}}$$

$$\lambda_1' = \frac{R_s}{R_C} \frac{1}{1 + \left(\frac{R_s}{X}\right)^2}$$

where

- R_s is the resistance of the sheath or screen per unit length of cable at its maximum operating temperature (Ω/m) ;
- X is the reactance per unit length of sheath or screen per unit length of cable, $2 ω 10^{-7} ln \left(\frac{2 s}{d}\right) (Ω/m);$
- ω is 2 π × frequency (1/s);
- is the distance between conductor axes in the electrical section being considered (mm);
- d is the mean diameter of the sheath (mm);
 - for oval-shaped cores, d is given by $\sqrt{d_{\rm M} \cdot d_{\rm m}}$ where $d_{\rm M}$ and $d_{\rm m}$ are the major and minor mean diameters respectively of the sheath or some en;
 - for corrugated sheaths, d is given by $\frac{1}{2}(D_{oc} + D_{it})$.
- λ_1'' = 0, i.e. eddy-current loss is ignored, except for cables having Milliken conductors when λ_1'' is calculated by the method given in 5.3.6.

5.3.3 Three single-core cables in flat formation, with regular transposition, sheaths bonded at both ends of an electrical section

For three single-core cables in flat formation, with the middle cable equidistant from the outer cables, regular transposition of the cables and the sheaths bonded at every third transposition, the loss factor is given by:

$$\frac{\lambda_1'}{R} = \frac{R_s}{R} = \frac{1}{1 + \left(\frac{R_s}{X_1}\right)^2}$$

$$\lambda_1' = \frac{R_s}{R_C} \frac{1}{1 + \left(\frac{R_s}{X_1}\right)^2}$$

where

- X_1 is the reactance per unit length of sheath, $2\omega 10^{-7} ln \left\{ 2\sqrt[3]{2} \left(\frac{s}{d}\right) \right\}$ (Ω/m);
- λ_1'' = 0, i.e. eddy-current loss is ignored, except for cables having Milliken conductors when λ_1'' is calculated by the method given in 5.3.6.

5.3.4 Three single-core cables in flat formation, without transposition, sheaths bonded at both ends of an electrical section

For three single-core cables in flat formation, with the middle cable equidistant from the outer cables, without transposition and with the sheaths bonded at both ends of an electrical section,

the loss factor for the cable which has the greatest loss (i.e. the outer cable carrying the lagging phase) is given by:

$$\frac{21}{R_{11}} = \frac{R_{s} \left[\begin{array}{ccc} 0.75 \, P^{2} & 0.25 \, Q^{2} & 2 \, R_{s} \, P \, Q \, X_{m} \\ R \left[\begin{array}{ccc} R_{s}^{2} + P^{2} & R_{s}^{2} + Q^{2} \end{array} \right] \sqrt{3 \, \left(R_{s}^{2} + P^{2}\right) \, \left(R_{s}^{2} + Q^{2}\right)} \right]}$$

$$\lambda'_{11} = \frac{R_s}{R_C} \left[\frac{0.75 \, C_P^2}{R_s^2 + C_P^2} + \frac{0.25 \, C_Q^2}{R_s^2 + C_Q^2} + \frac{2 \, R_s \, C_P \, C_Q \, X_m}{\sqrt{3} (R_s^2 + C_P^2) \, (R_s^2 + C_Q^2)} \right]$$
(8)

For the other outer cable, the loss factor is given by:

$$\frac{\lambda'_{12} - R_{s} \left[0.75P^{2} + 0.25Q^{2} + 2R_{s}PQX_{m} \right]}{R \left[R_{s}^{2} + P^{2} + R_{s}^{2} + Q^{2} + \sqrt{3(R_{s}^{2} + P^{2})(R_{s}^{2} + Q^{2})} \right]}$$

$$\lambda_{12}' = \frac{R_s}{R_C} \left[\frac{0.75 C_P^2}{R_s^2 + C_P^2} + \frac{0.25 C_Q^2}{R_s^2 + C_Q^2} - \frac{2R_s C_P C_Q X_m}{\sqrt{3} (R_s^2 + C_P^2) (R_s^2 + C_Q^2)} \right]$$
(9)

For the middle cable, the loss factor is given by:

$$\frac{2^{\prime}}{R} = \frac{R_{s}}{R_{C}} \frac{Q^{2}}{R_{s}^{2} + Q^{2}}$$

$$R = \frac{R_{s}}{R_{C}} \frac{C_{Q}^{2}}{R_{s}^{2} + C_{Q}^{2}}$$
(10)

In these Formulae (8) (9) and (10):

$$P = X + X_{m}$$

$$Q = X \frac{X_{\rm m}}{3}$$

$$C_{\mathsf{P}} = X + X_{\mathsf{m}}$$

$$C_{\mathsf{Q}} = X - \frac{X_{\mathsf{m}}}{3}$$

where

- X is the reactance of the sheath or screen per unit length of cable for two adjacent single-core cables, 2 ω 10⁻⁷ In $\left(\frac{2s}{d}\right)$ (Ω/m);
- $X_{\rm m}$ is the mutual reactance per unit length of cable between the sheath of an outer cable and the conductors of the other two, when the cables are in flat formation, $2 \omega 10^{-7} \ln{(2) (\Omega/m)}$;

 λ_1'' = 0, i.e. eddy-current loss is ignored, except for cables having Milliken conductors when λ_1'' is calculated by the method given in 5.3.6.

Ratings for cables in air should be based on the loss for the outer cable carrying the lagging phase.

5.3.5 Variation of spacing of single-core cables between sheath bonding points

For single-core cable circuits with sheaths solidly bonded at both ends and possibly at intermediate points, the circulating currents and the consequent loss increase as the spacing increases, and it is advisable to use as close a spacing as possible. The optimum spacing is achieved by considering both losses and mutual heating between cables.

It is not always possible to install cables with one value of spacing all along a route. The following recommendations relate to the calculation of sheath circulating current losses when it is not possible to install cables with a constant value of spacing over the length of one electrical section. A section is defined as a portion of the route between points at which sheaths of all cables are solidly bonded. The recommendations below give values for loss factors which apply to the whole of a section, but it should be noted that the appropriate values of conductor resistance and external thermal resistance—must shall be calculated on the basis of the closest cable spacing at any place along the section.

a) Where spacing along a section is not constant but the various values are known, the value for X in 5.3.2, 5.3.3 and 5.3.4 shall be derived from:

$$X = \frac{I_{a} X_{a} + I_{b} X_{b} Q \dots + I_{n} X_{n}}{I_{a} + I_{b} Y \dots + I_{n}}$$

$$X = \frac{I_{a}^{*} X_{a} + I_{b}^{*} X_{b} + \dots + I_{n}^{*} X_{n}}{I_{a}^{*} + I_{b}^{*} + \dots + I_{n}^{*}}$$

where

 I_{a} , I_{b} ... I_{n} I_{a}^{*} , I_{b}^{*} ... I_{n}^{*} are lengths with different spacings along an electrical section;

 $X_{\rm a}, X_{\rm b} \dots X_{\rm n}$ are the reactances per unit length of cable, the relevant formulae being given in 5.3.2, 5.3.3 and 5.3.4 where appropriate values of spacings $s_{\rm a}, s_{\rm b} \dots s_{\rm n}$ are used.

The proposed formula is an approximation. If more detailed results are required, the user shall refer to IEC 60287-1-3. For mixed formations, that comprise flat and trefoil sections, the user shall refer to IEC 60287-1-3.

- b) Where in any section the spacing between cables and its variation along the route are not known and cannot be anticipated, the losses in that section, calculated from the design spacing, shall be arbitrarily increased by 25 %, this value having been found to be appropriate for lead-sheathed HV cables. A different increase may can be used by agreement if it is considered that 25 % is not appropriate to a particular installation.
- c) Where the section includes a spread-out end, it is possible that the allowance in b)-may will not be sufficient and it is recommended that an estimate of the probable spacing be made and the loss calculated by the procedure given in a) above.

NOTE This increase does not apply to installations with single-point bonding or cross-bonding (see 5.3.7).

5.3.6 Effect of Milliken conductors

Where the conductors are subjected to a reduced proximity effect, as with Milliken conductors, the sheath loss factor λ_1'' of 5.3.2, 5.3.3 and 5.3.4 cannot be ignored, but shall be obtained by

multiplying the value of λ_1'' , obtained from 5.3.7 for the same cable configuration, by the factor $\digamma C_F$ given by the formula:

$$F = \frac{4 M^2 N^2 + (M+N)^2}{4 (M^2 + 1) (N^2 + 1)}$$

$$C_{\mathsf{F}} = \frac{4 \ C_{\mathsf{M1}}^2 C_{\mathsf{N}}^2 + (C_{\mathsf{M1}} + C_{\mathsf{N}})^2}{4 \ (C_{\mathsf{M1}}^2 + 1) \ (C_{\mathsf{N}}^2 + 1)}$$

Where

$$M = N = \frac{R_s}{X}$$
 $C_{M1} = C_N = \frac{R_s}{X}$ for cables in trefoil formation

And

$$\frac{M = \frac{R_s}{X + X_m}}{\frac{R_s}{X - \frac{X_m}{3}}}$$

$$C_{\rm M1} = \frac{R_{\rm S}}{X + X_{\rm m}}$$
 and $C_{\rm N} = \frac{R_{\rm S}}{X - \frac{X_{\rm m}}{3}}$ for cables in flat formation with equidistant spacing.

Where the spacing along a section is not constant the value of $\it X$ shall be calculated as

Single-core cables, with sheaths bonded at a single point or cross-bonded 5.3.7

Eddy-current losses 5.3.7.1

For single-core cables with sheaths bonded at a single point or cross-bonded the eddy-current loss factor is given by:

$$\frac{\lambda''}{R_1} = \frac{R_s}{R} \left[g_s \lambda_0 \left(1 + \Delta_1 + \Delta_2 \right) + \frac{(\beta_1 t_s)^4}{12 \times 10^{12}} \right]$$

$$\lambda_1'' = \frac{R_s}{R_C} \left[C_{gs} \lambda_0 (1 + \Delta_1 + \Delta_2) + \frac{(\beta_1 t_s)^4}{12 \times 10^{12}} \right]$$

Where

$$g_s = 1 + \left(\frac{t_s}{D_s}\right)^{1,74} (\beta_1 D_s 10^{-3} - 1.6)$$

$$C_{gs} = 1 + \left(\frac{t_s}{D_s}\right)^{1,74} (\beta_1 D_s 10^{-3} - 1,6);$$

$$\beta_1 = \sqrt{\frac{4\pi\omega}{10^7 \rho_s}}$$

 ρ_s is the electrical resistivity of the sheath material at operating temperature (see Table 1) (Ω m);

 $D_{\rm s}$ is the external diameter of the cable sheath (mm);

NOTE—For corrugated sheaths, the mean outside diameter $\frac{D_{\text{oc}} + D_{\text{it}}}{2} + t_{\text{s}}$ shall be used.

 t_s is the thickness of the sheath (mm);

 $\omega = 2\pi f$;

For lead-sheathed cables, $\mathbf{g}_{\mathbf{s}}C_{\mathbf{gs}}$ can be taken as unity and $\frac{\left(\beta_{\mathbf{1}}t_{\mathbf{s}}\right)^{4}}{12\times10^{12}}$ can be neglected.

NOTE 2 For aluminium sheathed cables, it can be necessary for both terms need to be evaluated when the sheath diameter is greater than approximately 70 mm or the sheath is thicker than usual.

NOTE 3—For cables with a wire screen and an equalizing tape, or foil screen over the wires, the eddy-current losses are considered negligible.

Formulae for λ_0 , Δ_1 and Δ_2 are given below:

(in which: $m = \frac{\omega}{R_s} 10^{-7}$, for $m \le 0,1$, Δ_1 and Δ_2 can be neglected)

1) Three single-core cables in trefoil formation:

$$\frac{\lambda_0}{1+m^2}\left(\frac{m^2}{1+m^2}\right)\left(\frac{d}{2s}\right)^2$$

$$\Delta_1 = (1,14m^{2,45} + 0,33) \left(\frac{d}{2s}\right)^{(0,92\ m+1,66)}$$

$$\Delta_2 = 0$$

2) Three single-core cables, flat formation:

a) centre cable:

$$\lambda_0 = 6 \left(\frac{m^2}{1 + m^2} \right) \left(\frac{d}{2s} \right)^2$$

$$\Delta_1 = 0.86m^{3.08} \left(\frac{d}{2s}\right)^{(1.4m + 0.7)}$$

$$\Delta_2 = 0$$

b) outer cable leading phase:

$$\lambda_0 = 1.5 \left(\frac{m^2}{1 + m^2} \right) \left(\frac{d}{2s} \right)^2$$

$$\Delta_1 = 4.7 m^{0.7} \left(\frac{d}{2s}\right)^{(0.16 m + 2)}$$

$$\Delta_2 = 21m^{3,3} \left(\frac{d}{2s}\right)^{(1,47m + 5,06)}$$

c) outer cable lagging phase:

$$\lambda_0 = 1.5 \left(\frac{m^2}{1 + m^2} \right) \left(\frac{d}{2s} \right)^2$$

$$\Delta_2 = 21m^{3,3} \left(\frac{d}{2s}\right)^{(1,47m+5,06)}$$
hase:
$$\lambda_0 = 1,5 \left(\frac{m^2}{1+m^2}\right) \left(\frac{d}{2s}\right)^2$$

$$\Delta_1 = -\frac{0,74(m+2)m^{0,5}}{2+(m-0,3)^2} \left(\frac{d}{2s}\right)^{(m+4)}$$

$$\Delta_2 = 0,92m^{3,7} \left(\frac{d}{2s}\right)^{(m+2)}$$

$$\Delta_2 = 0.92m^{3.7} \left(\frac{d}{2s}\right)^{(m+2)}$$

Circulating current losses 5.3.7.2

The circulating current loss is zero for installations where the sheaths are single-point bonded, and for installations where the sheaths are cross-bonded and each major section is divided into three electrically identical minor sections.

Where a cross-bonded installation contains sections whose unbalance is not negligible, a residual voltage is produced which results in a circulating current loss in that section which must shall be taken into account.

For installations where the actual lengths of the minor sections are known, the loss factor χ can be calculated by multiplying the circulating current loss factor for the cable configuration concerned, calculated as if it were bonded and earthed at both ends of each major section without cross-bonding by:

$$\frac{p^2 + q^2 + 1 - p - pq - q}{(p+q+1)^2}$$

$$\frac{C_{\rm p}^2 + C_{\rm q}^2 + 1 - C_{\rm p} - C_{\rm p}C_{\rm q} - C_{\rm q}}{\left(C_{\rm p} + C_{\rm q} + 1\right)^2} \tag{11}$$

Where in any major section, the two longer minor sections are ${}_{p}C_{p}$ and ${}_{q}C_{q}$ times the length of the shortest minor section (i.e. the minor section lengths are a, ${}_{p}aC_{p}a$ and ${}_{q}aC_{q}a$, where the shortest section is a).

This Formula (11) deals only with differences in the length of minor sections.

Any variations in spacing must shall also be taken into account.

Where lengths of the minor sections are not known, ${}_{p}C_{p}$ should be set to 1 and ${}_{q}C_{q}$ to 1,2, this gives a value of 0,004.

5.3.8 Two-core unarmoured cables with common sheath

For a two-core unarmoured cable where the cores are contained in a common metallic sheath, λ_1' is negligible and the loss factor is given by one of the following Formulae (12) and (13):

– for round or oval conductors:

$$\frac{\lambda_{1}^{"} - \frac{16 \omega^{2} \cdot 10^{-14}}{R R_{s}} \left(\frac{c}{d}\right)^{2} \left[1 + \left(\frac{c}{d}\right)^{2}\right]}{\left(\frac{c}{d}\right)^{2} \left[1 + \left(\frac{c}{d}\right)^{2}\right]}$$

$$\frac{\lambda_{1}^{"} = \frac{16 \omega^{2} \cdot 10^{-14}}{R_{C} R_{s}} \left(\frac{c}{d}\right)^{2} \left[1 + \left(\frac{c}{d}\right)^{2}\right]}{\left(\frac{c}{d}\right)^{2}}$$
(12)

- for sector-shaped conductors:

$$\frac{2n''_{1}}{R} = \frac{10.8 \,\omega^{2} \, 10^{-16}}{R \, R_{s}} \left(\frac{1.48 \, r_{1} + t}{d} \right)^{2} \left[12.2 + \left(\frac{1.48 \, r_{1} + t}{d} \right)^{2} \right]$$

$$2n''_{1} = \frac{10.8 \,\omega^{2} \, 10^{-16}}{R_{C} \, R_{s}} \left(\frac{1.48 \, r_{1} + t_{0}}{d} \right)^{2} \left[12.2 + \left(\frac{1.48 \, r_{1} + t_{0}}{d} \right)^{2} \right]$$

$$(13)$$

where

$$\omega = 2\pi \Omega$$

f is the frequency (Hz);

c / is the distance between the axis of one conductor and the axis of the cable (mm);

is the radius of the circle circumscribing the two sector-shaped conductors (mm);

d is the mean diameter of the sheath (mm);

- for oval-shaped cores, d is given by $\sqrt{d_{\rm M}\cdot d_{\rm m}}$ where $d_{\rm M}$ and $d_{\rm m}$ are the major and minor mean diameters respectively;
- for corrugated sheaths, d is given by $\frac{1}{2}(D_{oc} + D_{it})$.

5.3.9 Three-core unarmoured cables with common sheath

For a three-core unarmoured cable where the cores are contained in a common metallic sheath, \mathcal{X}_{1} is negligible and the loss factor is, therefore, given by one of the following Formulae (14), (15) and (16):

- for round or oval conductors, and where the sheath resistance R_s is less than or equal to 100 μΩ/m:

$$\frac{\lambda_{1}'' - 3R_{s}}{R} \left(\frac{2c}{d} \right)^{2} \frac{1}{1 + \left(\frac{R_{s}}{\omega} 10^{7} \right)^{2}} + \left(\frac{2c}{d} \right)^{4} \frac{1}{1 + 4\left(\frac{R_{s}}{\omega} 10^{7} \right)^{2}}$$

$$\lambda_{1}'' = \frac{3 R_{s}}{R_{C}} \left[\left(\frac{2c}{d} \right)^{2} \frac{1}{1 + \left(\frac{R_{s}}{\omega} 10^{7} \right)^{2}} + \left(\frac{2c}{d} \right)^{4} \frac{1}{1 + 4 \left(\frac{R_{s}}{\omega} 10^{7} \right)^{2}} \right]$$
(14)

– for round or oval conductors, and where the sheath resistance R_s is greater than 100 μΩ/m:

$$\frac{\lambda_{1}'' - \frac{3.2 \omega^{2}}{R R_{s}} \left(\frac{2c}{d}\right)^{2} + 10^{-14}}{R R_{c} R_{c} R_{s}} \left(\frac{2c}{d}\right)^{2} + 10^{-14}}$$
(15)

for sector-shaped conductors, and R_s any value:

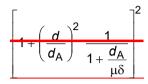
$$\frac{\lambda_1'' = 0.94 \frac{R_s}{R} \left(\frac{2r_1 + t}{d}\right)^2 \frac{1}{1 + \left(\frac{R_s}{\omega} \cdot 10^7\right)^2}$$

$$\lambda_{1}^{"} = 0.94 \frac{R_{s}}{R_{C}} \left(\frac{2r_{1} + t_{0}}{d}\right)^{2} \frac{1}{1 + \left(\frac{R_{s}}{\omega} \cdot 10^{7}\right)^{2}}$$
(16)

where

c is the distance between the axes of conductors and the axis of the cable for three-core cables (mm);

 r_{1} is the radius of the circle circumscribing the three shaped conductors (mm);


 t_0 is the thickness of insulation between conductors (mm);

d is the mean diameter of the sheath (mm);

- for oval-shaped cores, d is given by $\sqrt{d_{\rm M} \cdot d_{\rm m}}$ where $d_{\rm M}$ and $d_{\rm m}$ are the major and minor mean diameters respectively of the sheath or screen;
- for corrugated sheaths, d is given by $\frac{1}{2}(D_{oc} + D_{it})$.

5.3.10 Two-core and three-core cables with steel tape armour

The addition of steel tape armour increases the eddy-current loss in the sheath. The values for λ_1'' given in 5.3.8 and 5.3.9 should be multiplied by the following factor if the cable has steel-tape armour:

$$\left[1 + \left(\frac{d}{d_{\mathsf{A}}}\right)^2 \frac{1}{1 + \frac{d_{\mathsf{A}}}{\mu \delta_{\mathsf{A}}}}\right]^2$$

where

 d_{A} is the mean diameter of the armour (mm);

 μ is the relative permeability of the steel tape (usually taken as 300);

 δ_A is the equivalent thickness of the armour = $\frac{A}{\pi d_A} \frac{A_A}{\pi d_A}$ (mm);

where A_A is the cross-sectional area of the armour (mm²).

This correction is only known to be applicable to tapes 0,3 mm to 1,0 mm thick.

5.3.11 Cables with each core in a separate-lead metallic sheath (SL type) and armoured

For a three-core cable of which each core has a separate lead metallic sheath λ_1'' is zero and the loss factor for the sheaths is given by:

$$\frac{\lambda_1' = \frac{R_s}{R}}{1 + \left(\frac{R_s}{X}\right)^2}$$

$$\lambda_1' = \frac{R_s}{R_C} \frac{1.5}{1 + \left(\frac{R_s}{X}\right)^2}$$

where

$$X = 2 \cdot \omega \cdot 10^{-7} \ln \left(\frac{2 \, s}{d} \right) \cdot (\Omega/m)$$

$$X = 2\omega 10^{-7} \ln \left(\frac{2s}{d}\right) C_{LL} (\Omega/m);$$

s is the distance between conductor axes (mm).

 C_{LL} is the length correction factor for considering laying up cores. The calculation is given in Annex A.

The loss factor for unarmoured cables with each core in a separate—lead metallic sheath is obtained from 5.3.2.

5.3.12 Losses in screen and sheaths of pipe-type cables

If each conductor of a pipe-type cable has a screen only over the insulation, for example a lead sheath or copper tape, the ratio of the screen loss to the conductor loss may be calculated by the formula given in 5.3.2 for the sheath of a single-core cable, provided that the formula is corrected for the additional loss caused by the presence of the steel pipe and considering the unit length of the cable when calculating the reactance X.

This modifies the formula to:

$$\mathcal{X}_{\parallel} = \frac{R_{s}}{R} \frac{1,5}{1 + \left(\frac{R_{s}}{X}\right)^{2}}$$

$$\lambda_{1}' = \frac{R_{s}}{R_{C}} \frac{1.5}{1 + \left(\frac{R_{s}}{X}\right)^{2}}$$

If each core has a diaphragm sheath and non-magnetic reinforcement, the same formula is used, but the resistance R_s is replaced by the parallel combination of the resistance of the sheath and reinforcement. The diameter d is replaced by the value d':

$$d' = \sqrt{\frac{d^2 + d_2^2}{2}}$$

where

d' is the mean diameter of the sheath and reinforcement (mm);

d is the mean diameter of the screen or sheath (mm);

 d_2 is the mean diameter of the reinforcement (mm).

In the case of oval-shaped cores d and d_2 are given by $\sqrt{d_{\rm M} \cdot d_{\rm m}}$ where $d_{\rm M}$ and $d_{\rm m}$ are the major and minor mean diameters respectively of the sheath or screen.

NOTE See also 5.4.3.

5.4 Loss factor for armour, reinforcement and steel pipes (applicable to power frequency AC cables only)

5.4.1 General

The formulae given in this Subclause 5.4 express the power loss occurring in metallic armour, reinforcement or steel pipes of a cable in terms of an increment λ_2 of the power loss in all conductors.

Appropriate values of electrical resistivity and resistance temperature coefficients for the materials used for armour and reinforcement are given in Table 1.

The formulae given in this Subclause 5.4 use the resistance of the armour at its maximum operating temperature. The maximum operating temperature of the armour is given by:

$$\theta_{ar} = \theta = \left\{ \left(l^2 R + 0.5 W_d \right) T_1 + \left[l^2 R \left(1 + \hat{\lambda}_1 \right) + W_d \right] R T_2 \right\}$$
 (°C)

$$\theta_{\rm ar} = \theta - \left\{ \left(I^2 R_{\rm C} + 0.5 \ W_{\rm d} \right) \ T_1 + \left[I^2 R_{\rm C} \left(1 + \lambda_1 \right) + W_{\rm d} \right] \ n T_2 \right\} \ (^{\circ}\text{C})$$

where

 θ_{ar} is the maximum operating temperature of the armour (°C).

Because the temperature of the armour is a function of the current, I, an iterative method is used for the calculation.

The resistance of the armour per unit length of the cable at its maximum operating temperature is given by:

$$R_A = R_{AO} \left[1 + \alpha_{2U} \left(0_{ar} - 20 \right) \right] \cdot \left(\Omega/m \right)$$

$$R_{A} = R_{A0} \left[1 + \alpha_{20} \left(\theta_{ar} - 20 K \right) \right] \quad (\Omega/m)$$

where

 R_{A0} is the resistance of the armour per unit length of the cable at 20 °C (Ω/m).

Where the equivalent resistance of sheath and armour in parallel is used, it is sufficiently accurate to assume that both components are at the operating temperature of the armour and to use an average value for the temperature coefficient of the materials.

5.4.2 Non-magnetic armour or reinforcement

The general procedure is to combine the calculation of the loss in the reinforcement with that of the sheath. The formulae are given in 5.3 and the parallel combination of sheath and reinforcement resistance is used in place of the single sheath resistance $R_{\rm s}$. The root mean square value of the sheath and reinforcement diameter replaces the mean sheath diameter d (see 5.3.12). This procedure applies to both single, twin and multicore cables.

The value of the reinforcement resistance is dependent on the lay of the tapes as follows:

- a) If the tapes have a very long lay (longitudinal tapes), the resistance is based on a cylinder having the same mass of material per unit length of cable and also the same internal diameter as the tapes.
- b) If the tapes are wound at approximately 54° to the cable axis, the resistance is twice the value calculated according to item a) above.
- c) If the tapes are wound with a very short lay (circumferential tapes), the resistance is regarded as infinite, i.e. the loss can be neglected.
- d) If there are two or more layers of tapes in contact with each other, having a very short lay, the resistance is twice the value calculated according to item a) above.

These considerations apply also to the cores of pipe-type cables dealt with in 5.3.12.

5.4.3 Magnetic armour or reinforcement

5.4.3.1 Single-core lead-sheathed cables – Steel wire armour, bonded to sheath at both ends

The following method does not take into account the possible influence of the surrounding media, which may can be appreciable in particular for cables laid under water. The method is intended for installations where spacing between cables is large (i.e. 10 m or more). It gives

values for the sheath and armour losses that are usually higher than the actual ones, so that ratings are on the safe side. It should be noted that the hottest part of the cable route-may can be the on-shore section where both the losses and mutual heating may can be high.

Where the influence of the surrounding media can be ignored, for example in air, the method may be used for any spacing between cables.

Calculation of the power loss in the lead sheath and armour of single-core cables with steelwire armour with the sheath and armour bonded together at both ends is as follows:

a) The equivalent resistance of sheath and armour in parallel is given by:

$$R_{\rm e} = \frac{R_{\rm s}R_{\rm A}}{R_{\rm s} + R_{\rm A}} \quad (\Omega/{\rm m})$$

where

 $R_{\rm s}$ is the resistance of the sheath per unit length of cable at its maximum operating tem-

 R_{Δ} is the AC resistance of the armour per unit length of cable at its maximum operating temperature (Ω/m) .

The AC resistance of the armour wire varies from about 1,2 times the DC resistance of 2 mm diameter wires up to 1,4 times the DC resistance for 5 mm wires. The resistance does not critically affect the final result.

b) The inductance of the elements of the circuit is calculated per phase, as follows:

$$H_{\rm S} = 2 \times 10^{-7} \ln \left(\frac{2 s_2}{d} \right)$$

where H_s is the inductance due to the sheath per unit length of the cable (H/m)

$$H_{\rm s}$$
 is the inductance due to the sheath per unit length $H_{\rm l} = \pi \mu_{\rm e} \left(\frac{n_{\rm l}}{p} \frac{d_{\rm f}^2}{d_{\rm A}}\right) 10^{-7} \sin \beta \cos \gamma$
$$H_{\rm l} = \pi \mu_{\rm e} \left(\frac{n_{\rm l}}{p} \frac{d_{\rm f}^2}{d_{\rm A}}\right) 10^{-7} \sin \beta \sin \gamma$$

$$H_2 = \pi \mu_e \left(\frac{n_1 d_f^2}{p d_A} \right) 10^{-7} \sin \beta \sin \gamma$$

$$H_3 = 0.4 \left(\mu_{\rm t}(\cos\beta)^2 - 1\right) \left(\frac{d_{\rm f}}{d_{\rm A}}\right) 10^{-6}$$

NOTE H_3 is taken as zero for spaced wires.

where

 H_1 , H_2 and H_3 are the components of the inductance due to the steel wires (H/m);

is the axial spacing between adjacent cables in trefoil formation; for cables in flat formation s_2 is the geometric mean of the three spacings (mm);

is the mean diameter of the armour (mm); d_{A}

is the diameter of a steel wire (mm); d_{f}

is the length of lay of a steel wire along the cable (mm); p

 n_1 is the number of steel wires;

 β is the angle between the axis of the armour wire and the axis of the cable;

 γ is the angular time delay of the longitudinal magnetic flux in the steel wires behind the magnetizing force;

 μ_e is the longitudinal relative permeability of steel wires;

 μ_t is the transverse relative permeability of steel wires;

For values of γ , μ_e and μ_t , see item d).

Let
$$B_1 = \omega (H_s + H_1 + H_3) (\Omega/m)$$

 $B_2 = \omega H_2 (\Omega/m)$.

c) The total loss in the sheath and armour $W_{(s+A)}$ per unit length of the cable is given by:

$$W_{(s+A)} = I^2 R_e \frac{B_2^2 + B_1^2 + R_e B_2}{(R_e + B_2)^2 + B_1^2}$$
 (W/m)

The loss in the sheath and armour may be assumed to be approximately equal, so that:

$$\lambda_1' = \lambda_2 = \frac{W_{(s+A)}}{2 W_{c}}$$

where

 $W_{\rm c} = I^2 R_{\rm C}$ is the loss in the conductor per unit length of the cable (W/m).

d) Choice of magnetic properties γ , μ_e and μ_e

These quantities vary with the particular sample of steel and unless reference can be made to measurements on the steel wire to be used, some average values must should be assumed.

No appreciable error is involved if, for wires of diameters from 4 mm to 6 mm and tensile breaking strengths around 400 N/mm², the following values are assumed:

 $\mu_{e} = 400;$

 μ_t = 10, when wires are in contact;

 μ_t = 1, where wires are separated;

 $\nu = 45^{\circ}$

If a more precise calculation is required and the wire properties are known, then it is initially necessary to know an approximate value for the magnetizing force H in order to find the appropriate magnetic properties.

$$H = \frac{1000 \left| \overline{I} + \overline{I}_{s} \right|}{\pi d_{\Delta}}$$
 (ampere turns per metre)

where \overline{I} and \overline{I}_s are the vectorial values of the conductor current and sheath current. For the initial choice of magnetic properties, it is usually satisfactory to assume that $\left|\overline{I}+\overline{I}_s\right|=0,6~I$, and to repeat the calculations if it is subsequently established that the calculated value is significantly different.

5.4.3.2 Two-core cables - Steel wire armour

$$\hat{\kappa}_{2} = \frac{0.62 \, \omega^{2} \, 10^{-14}}{R \cdot R_{A}} + \frac{3.82 \, A\omega \, 10^{-5}}{R} \left[\begin{array}{c} 1.48 \, r_{1} + t \\ \hline d_{A}^{2} + 95.7 \, A \end{array} \right]^{2}$$

$$\lambda_2 = \frac{0.62 \,\omega^2 \,10^{-14}}{R_{\rm C} R_{\rm A}} + \frac{3.82 \,A_{\rm A} \omega \,10^{-5}}{R_{\rm C}} \left[\frac{1.48 \,r_1 + t_0}{d_{\rm A}^2 + 95.7 \,A_{\rm A}} \right]^2$$

where

 R_A is the AC resistance of the armour at maximum armour temperature per unit length of the cable (Ω/m) ;

 d_A is the mean diameter of the armour (mm);

 A_{Δ} is the cross-sectional area of the armour (mm²);

 r_1 is the circumscribing radius over conductors (mm);

 t_0 is the insulation thickness between conductors (mm).

No correction has been made for non-uniform current distribution in the conductors because it is considered negligible for conductor sizes up to 400 mm²

5.4.3.3 Three-core cables - Steel wire armour

5.4.3.3.1 Round conductor cable

$$\lambda_{2} = 1,23 \frac{R_{A}}{R} \left(\frac{2c}{d_{A}} \right)^{2} \frac{1}{\left(\frac{2,77 R_{A} \cdot 10^{6}}{\omega} \right)^{2} + 1}$$

$$\lambda_{2} = 1,23 \frac{R_{A}}{R_{C}} \left(\frac{2c}{d_{A}} \right)^{2} \frac{1}{\left(\frac{2,77 R_{A} \cdot 10^{6}}{\omega} \right)^{2} + 1}$$

where

 R_{Δ} is the AC resistance of the armour at maximum armour temperature (Ω/m);

 d_{A} is the mean diameter of the armour (mm);

c is the distance between the axis of a conductor and the cable centre, (for sector-shaped conductors = $0.55r_1 + 0.29t_0$) (mm);

 r_1 is the circumscribing radius over conductors (mm);

 t_0 is the insulation thickness between conductors (mm).

No correction has been made for non-uniform current distribution in the conductors because it is considered negligible for conductor sizes up to 400 mm². This equation is under consideration because it-may can overestimate the armour loss factor for some cable designs.

5.4.3.3.2 Sector conductor cables

$$\lambda_2 = 1,23 \frac{R_A}{R} \left(\frac{2c}{d_A} \right)^2 \frac{1}{\left(\frac{2,77 R_A 10^6}{\omega} \right)^2 + 1}$$

$$\lambda_2 = 0.358 \frac{R_A}{R_C} \left(\frac{2r_1}{d_A}\right)^2 \frac{1}{\left(\frac{2.77 R_A 10^6}{\omega}\right)^2 + 1}$$

where

$$\omega = 2\pi f$$

5.4.3.4

is the radius of the circle circumscribing the three shaped conductors (mm):
= 2πf;
is the frequency of supply (Hz).
3.4 Three-core cables – Steel tape armour or reinforcement
following Formulas (17) The following Formulae (17), (18), (19) and (20) apply to tapes 0,3 mm to 1 mm thick.

The hysteresis loss is given for a frequency of 50 Hz by:

$$\frac{\lambda_{2}' - s^{2} k^{2} 10^{-7}}{R d_{A} \delta}$$

$$\lambda_{2}' = \frac{s^{2} k^{2} 10^{-7}}{R_{C} d_{A} \delta_{A}}$$
(17)

where

is the distance between conductor axes (mm);

is the equivalent thickness of the armour (mm), i.e. $\frac{A}{\pi d_A} \frac{A_A}{\pi d_A}$;

and

 A_A is the armour cross-sectional area (mm²);

is the mean diameter of the armour (mm).

The factor kk_f is given by:

$$k_{f} = \frac{1}{1 + \frac{d_{A}}{\mu \delta}}$$

$$k_{f} = \frac{1}{1 + \frac{d_{A}}{\mu \delta_{A}}}$$
(18)

where

is the relative permeability of the steel tape, usually taken as 300.

For frequencies f other than 50 Hz, multiply the value of $\frac{f}{kk_f}$ given by the above Formula (18) by the factor $\frac{f}{50}$.

The eddy-current loss is given for a frequency of 50 Hz by:

$$\frac{\lambda_{Z}'' - 2,25 \text{ s}^{2} k^{2} \delta 10^{-8}}{R d_{A}}$$

$$\lambda_{Z}'' = \frac{2,25 \text{ s}^{2} k_{f}^{2} \delta_{A} 10^{-8}}{R_{C} d_{A}}$$
(19)

and for any other frequency the value calculated from this Formula (19) must shall be multiplied by the factor $\left(\frac{f}{50}\right)^2$.

The total armour loss factor is given by the sum of both hysteresis and eddy-current losses, thus:

$$\lambda_2 = \lambda_2' + \lambda_2'' \tag{20}$$

NOTE Magnetic armour or reinforcement, if any, increase eddy-current losses in the sheaths, see 5.3.10. Reference should be made to 2.3.9.

5.4.3.5 SL type cables

Where the armour is over an SL type cable, the screening effect of the sheath currents reduces the armour loss. The formula for χ_2 given in 5.4.3.3.1 or 5.4.3.3.2 shall be multiplied by the factor

$$\begin{pmatrix} 1 & R & \lambda_1' \\ & R_s \end{pmatrix}$$

$$\left(1-\frac{R_{\rm C}}{R_{\rm s}}\lambda_1'\right)$$

where λ_i is obtained from 5.3.2.

5.4.4 Losses in steel pipes

The loss in steel pipes is given by two empirical formulae, one for cables where the cores are bound in close trefoil formation and the other for cables where the cores are placed in a more open configuration (cradled) on the bottom of the pipe. Actual cores in service probably approximate to a configuration somewhere between the two. It is considered that the losses should be calculated for each configuration and a mean value used:

NOTE These formulae have been empirically obtained in the United States of America and at present apply only to pipe sizes and steel types used in that country.

$$\frac{\lambda_Z - \left(\begin{array}{c} 0,0115 \text{ s} - 0,001485 \text{ d}_{d} \\ R \end{array}\right)}{10^{-5}}$$
 for elecely bound triangular configuration

$$\frac{\lambda_2 - \left(\begin{array}{c} 0,00438 \text{ s} + 0,00226 \text{ d}_{\text{d}} \\ R \end{array}\right) 10^{-5} \text{ for the open or eradic d formation}$$

$$\lambda_2 = \left(\frac{11,5 \text{ s} - 1,485 \text{ } d_d}{R_C}\right) 10^{-8} \quad \text{for closely bound triangular configuration}$$
 (21)

$$\lambda_2 = \left(\frac{4,38s + 2,26d_d}{R_C}\right) 10^{-8} \quad \text{for the open or cradled formation}$$
 (22)

where

s is the axial spacing of adjacent conductors (mm);

 d_{d} is the internal diameter of the pipe (mm);

 RR_C is the AC resistance per unit length of the conductor cable at maximum operating temperature (Ω/m) .

The Formulae (21) and (22) apply to a frequency of 60 Hz. For 50 Hz, each formula should be multiplied by 0,76.

For pipe-type cables, where flat-wire armour is applied over all three cores after they are laid up, the losses are independent of the presence of the pipe. For such cables, the losses in the armour are to shall be calculated as for SL type cables (see 5.4.3.5 and the losses in the pipe are to shall be ignored).

Table 1 – Electrical resistivities and temperature coefficients of metals used

Material OW	Resistivity	(ρ) at 20 °C		e coefficient (α ₂₀) <mark>K</mark> at 20 °C
an.	(Ω	· m)		(K^{-1})
a) Conductors				
Copper	1,724 1	10 ⁻⁸	3,93	10^{-3}
Aluminium	2,826 4	10 ⁻⁸	4,03	10 ⁻³
b) Sheaths and armour				
Lead or lead alloy	21,4	10 ⁻⁸	4,0	10^{-3}
Steel	13,8	10 ⁻⁸	4,5	10 ⁻³
Bronze	3,5	10 ⁻⁸	3,0	10 ⁻³
Stainless steel	70	10 ⁻⁸	N	egligible
Aluminium	2,84	10 ⁻⁸	4,03	10^{-3}

NOTE Values for copper conductors are taken from IEC 60028. Values for aluminium conductors are taken from IEC 60889.

Table 2 - Skin and proximity effects -Experimental values for the coefficients k_s and k_p

Type of conductor	Conductor insulation system	k _s	<i>k</i> _р
Copper			
Round, solid	All	1	1
Round, stranded	Fluid ^d or paper ^e or PPL ^f	1	0,8
Round, stranded	Extruded ^g / or Mineral ^h	1	1
Round, Milliken ^c	Fluid <mark>/</mark> or paper <mark>/</mark> or PPL	0,435	0,37
Round, Milliken, insulated wires ^b	Extruded	0,35	0,20
Round, Milliken, bare uni-directional wires ^b	Extruded	0,62	1937
Round, Milliken, bare bi-directional wires ^b	Extruded	0,80	0,37
Hollow, helical stranded	All	а	0,8
Sector-shaped	Fluid <mark>/</mark> or paper <mark>/</mark> or PPL	1	0,8
Sector-shaped	Extruded or Mineral	100	1
Aluminium		4	
Round, solid	All	√ O ₁	1
Round, stranded	All	1	0,8
Round Milliken ^b	All	0,25	0,15
Hollow, helical stranded	All (J)	а	0,8

NOTE 1 The tabulated values of $k_{\rm s}$ and $k_{\rm p}$ for large-stranded conductors have generally been derived from those given in CIGRE Technical Brochure 272 (Large cross-sections and composite screens design). If conductors are different from the study to establish CIGRE Technical Brochure 272 (e.g. aluminium cross-sections bigger than 2 000 mm², copper cross-sections bigger than 2500 mm², different constructions, etc), k_s and k_p can be different from the CIGRE study. 4

NOTE 2 The value of k_s given for round, Milliken, insulated wires is a limiting value intended to cover all methods of insulating the wires including enamelling, oxidized wires or other methods.

NOTE 3 The value of k_s given for hollow helical stranded conductors is applicable to keystone conductors.

The following formula should be used for k_s :

$$k_{\rm S} = \left(\frac{d_{\rm C}' - d_{\rm i}}{d_{\rm C}' + d_{\rm i}}\right) \left(\frac{d_{\rm C}' + 2d_{\rm i}}{d_{\rm C}' + d_{\rm i}}\right)^2$$

is the inside diameter of the conductor (central duct) (mm);

is the outside diameter of the equivalent solid conductor having the same central duct (mm).

The coefficients for these designs can be influenced by the detail of the conductor design. Subject to agreement between the manufacturer and user, measured values of AC resistance or more conservative values of $k_{\rm s}$ and k_{p} -may can be used. A common measurement method is under consideration. CIGRE TB 272 discusses three measurement methods. A CIGRE working group is working on the subject.

stranded conductor comprising an assembly of shaped stranded Milliken conductor:

conductors, with each segment lightly insulated from each other. The individual strands may can be either insulated (e.g. enamelled or

oxidized) or bare.

insulation system consisting of lapped paper and an insulating fluid Fluid insulation:

which is designed to maintain free movement of the fluid within the

Paper insulation: lapped insulation consisting of paper impregnated with an insulating

material.

PPL insulation: fluid filled cable where a polypropylene and paper laminate is used in

place of lapped paper.

insulation consisting generally of one layer of a polymeric material and Extruded insulation:

applied by an extrusion process.

insulation consisting of compressed mineral powder. Generally only used on specific types of LV cable. Mineral insulation:

ECNORM.COM. Click to view the full Patr of IEC 80281.7.1.2023 CVM

Table 3 – Values of relative permittivity and loss factors for the insulation of high-voltage and medium-voltage cables at power frequency

Type of cable	3	tan δ^*
Cables insulated with impregnated paper		
Solid type, fully-impregnated, pre-impregnated or mass-impregnated non-draining	4	0,01
Oil-filled, self-contained a up to $U_0=36~\rm{kV}$ up to $U_0=87~\rm{kV}$ up to $U_0=160~\rm{kV}$	3,6 3,6 3,5	0,003 5 0,003 3 0,003 0
up to $U_0 = 220 \text{ kV}$	3,5	0,002 8
Oil-pressure, pipe-type ^b External gas-pressure ^c	3,7 3,6	0,004 5
Internal gas-pressure ^d	3,4	0,004 5
equal to, or greater than 63/110 kV cables	2,8	0,001 4
Cable with other kinds of insulation	'	
Butyl rubber	4	0,050
EPR ^e		
up to and including 18/30 (36) kV cables	3	0,020
greater than 18/30 (36) kV cables	3	0,005
PVC ^e	8	0,1
PE (HD and LD) ^e	2,3	0,001
XLPE°		
up to and including 18/30 (36) kV cables (unfilled)	2,5	0,004
greater than 18/30 (36) kV cables (unfilled)	2,5	0,001
greater than 18/30 (36) kV cables (filled)	3,0	0,005

^{*} Safe values at maximum permissible temperature, applicable to the highest voltages normally specified for each type of cable.

NOTE – The dielectic loss should be taken into account for values of $U_{
m o}$ equal to or greater than the following:

Type of cable	$oldsymbol{u}_{ullet}$
	kV
Cables insulated with impregnated paper	
Solid-type	38
Oil filled and gas pressure	63,5
Cables with other types of insulation	
Butyl rubber	18
EPR	- 63,5
PVC	6
PE (HD and LD)	-127
XLPE (unfilled)	-127
XLPE (filled)	- 63,5

a See IEC 60141-1.

b See IEC 60141-4.

c See IEC 60141-3.

d See IEC 60141-2.

e See IEC 60502-1 and IEC 60502-2.

- 42 -

Table 4 – Absorption coefficient of solar radiation for cable surfaces

Material	σ
Bituminized jute serving	8,0
Polychloroprene	0,8
PVC	0,6
PE	0,4
Lead	0,6

ECHORM.COM. Click to view the full Path of IEC 80281.1.1.2023 CMV

Annex A

(normative)

Correction factor for increased lengths of individual cores within multicore cables

In multicore cables the lengths of the individual cores are increased by their laying up compared to the length of the complete cable. For calculating physical properties like electrical resistance or capacitance relative to the length of the completed cable a correction factor shall be applied on the results that have been calculated at the individual straight cores.

In multicore cables with round cores the factor C_{LL} for taking into account this laying up can be evaluated as:

$$C_{LL} = \sqrt{1 + \left[\frac{\pi \cdot C_{fL} \cdot D_{p}^{*}}{L_{L}^{*}}\right]^{2}}$$
(A.1)

where:

 D_{p}^{*} is the diameter of the individual core (m);

 L_1^* is the axial cable length over which the cores make one full helical turn (m).

The factor C_{fL} is used to take into account the position of the neutral axis of the helically wound core, since such axis does not generally correspond to the core centre.

The properties like electrical resistance or electrical capacitance of the cable can then be found as the electrical resistance or capacitance of an individual core multiplied by the lay length factor. See Formula (A.1).

The values of $C_{\rm fl}$ for different numbers of cores are given in Table A.1:

Table A – Values of factor $C_{\rm fL}$ for different numbers of cores

Number of cores	2	3	4	5	6
Factor C_{fL}	1,16	1,29	1,53	1,80	2,08

Bibliography

IEC 60027-3, Letter symbols to be used in electrical technology - Part 3: Logarithmic and related quantities, and their units

IEC 60028:1925, International standard of resistance for copper

IEC 60141 (all parts), Tests on oil-filled and gas-pressure cables and their accessories

IEC 60502-1, Power cables with extruded insulation and their accessories for rated voltages from 1 kV (U_m = 1,2 kV) up to 30 kV (U_m = 36 kV) – Part 1: Cables for rated voltages of 1 kV $(U_m = 1, 2 \text{ kV})$ and 3 kV $(U_m = 3, 6 \text{ kV})$

IEC 60502-2, Power cables with extruded insulation and their accessories for rated voltages from 1 kV (U_m = 1,2 kV) up to 30 kV (U_m = 36 kV) – Part 2: Cables for rated voltages from 6 kV $(U_m = 7.2 \text{ kV}) \text{ up to 30 kV } (U_m = 36 \text{ kV})$

IEC 60853 (all parts), Calculation of the cyclic and emergency current ating of cables

IEC 60889, Hard-drawn aluminium wire for overhead line conductors

Electra No. 104, Part 1, "Current ratings of cables buried in partially dried-out soil", p.11, January 1966

CIGRE TB 272, Large cross-sections and composite screens design

ECHORIN. Click to view the fil

List of comments

- To avoid the use of same symbol with different meanings or different symbols with the same meaning across IEC 60287 standard series, some symbols have been changed. One of the main new criteria is the use of capital letter "C" for all coefficients.
- The reference "per unit length of cable" is now explicitly aligned to its use in IEC 60228.
- Introducing the length correction factor for considering the laying up at multicore cables.
- The base for the tabulated k_s and k_p factors is given to raise user's awareness about its

able as about sent the full politic and the full po

ECNORM.COM. Click to view the full Path of IEC 60/28 1.1.1.2023 CMV

Edition 3.0 2023-05

INTERNATIONAL STANDARD

Electric cables – Calculation of the current rating –
Part 1-1: Current rating equations (100 % load factor) and calculation of losses –
General

ECNORM. Click to view the full

CONTENTS

F	DREWOR	D	4
ΙN	TRODUC	TION	6
1	Scope		7
2	Norma	tive references	7
3		definitions and symbols	
_		erms and definitions	
		ymbols	
4		sible current rating of cables	
-	4.1 G	General	12
	4.2 B	Buried cables where drying out of the soil does not occur or cables in air	12
	4.2.1	AC cables	12
	4.2.2	AC cables DC cables up to 5 kV Suried cables where partial drying-out of the soil occurs	13
	4.3 B	suried cables where partial drying-out of the soil occurs	13
	4.3.1	AC cables DC cables up to 5 kV	13
	4.3.2	DC cables up to 5 kV	14
	4.4 B	suried cables where drying-out of the soil shall be avoided	14
	4.4.1	AC cables DC cables up to 5 kV Cables directly exposed to solar radiation	14
	4.4.2	DC cables up to 5 kV	15
	4.5 C	Cables directly exposed to solar radiation	15
	4.5.1	General	15
	4.5.2	AC cables	15
5	Calcula	ation of losses	16
	5.1 A	AC cables	16
	5.1.1	General	16
	5.1.2	DC resistance of conductor	
	5.1.3	Skin effect factor 🔊	16
	5.1.4	Proximity effect factor y_{p} for two-core cables and for two single-core	
		cables	17
	5.1.5	Proximity effect factor y_{p} for three-core cables and for three single-core	
		cables	17
	5.1.6	Skin and proximity effects in pipe-type cables	
		Dielectric losses (applicable to AC cables only)	18
		oss factor for sheath and screen (applicable to power frequency AC cables	40
		nly)	
	6 .3.1 5.3.2	Two single-core cables, and three single-core cables (in trefoil	19
	5.5.2	formation), sheaths bonded at both ends of an electrical section	20
	5.3.3	Three single-core cables in flat formation, with regular transposition,	
		sheaths bonded at both ends of an electrical section	21
	5.3.4	Three single-core cables in flat formation, without transposition,	0.4
	505	sheaths bonded at both ends of an electrical section	21
	5.3.5	Variation of spacing of single-core cables between sheath bonding points	22
	5.3.6	Effect of Milliken conductors	
	5.3.7	Single-core cables, with sheaths bonded at a single point or cross-	20
	0.0.1	bonded	23
	5.3.8	Two-core unarmoured cables with common sheath	26

5.3.9	Three-core unarmoured cables with common sheath	26
5.3.10	Two-core and three-core cables with steel tape armour	27
5.3.11	Cables with each core in a separate metallic sheath (SL type) and armoured	28
5.3.12	Losses in screen and sheaths of pipe-type cables	28
	s factor for armour, reinforcement and steel pipes (applicable to power uency AC cables only)	29
5.4.1	General	
5.4.2	Non-magnetic armour or reinforcement	
5.4.3	Magnetic armour or reinforcement	30
5.4.4	Losses in steel pipes	34
	native) Correction factor for increased lengths of individual cores within es	38
	ÖV	39
212110914411711		
Table 1 – Elec	ctrical resistivities and temperature coefficients of metals used	35
	and proximity effects – Experimental values for the coefficients	36
Table 3 – Valu	ues of relative permittivity and loss factors for the insulation of highedium-voltage cables at power frequency	37
	orption coefficient of solar radiation for cable surfaces	
	alues of factor C_{fl} for different numbers of cores	

.. or solar radiation for ... and so of factor C_{fL} for different number with the full circle of the country of the countr

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ELECTRIC CABLES – CALCULATION OF THE CURRENT RATING –

Part 1-1: Current rating equations (100 % load factor) and calculation of losses – General

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

IEC 60287-1-1 has been prepared by IEC technical committee 20: Electric cables. It is an International Standard.

This third edition cancels and replaces the second edition published in 2006 and Amendment 1:2014. This edition constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

- a) thorough redefinition of symbols used across the IEC 60287 and IEC 60853 series to realign and unify definitions, eliminate inconsistencies and to improve cross-use of the different parts of both IEC 60287 and IEC 60853 series;
- b) introduction of corrective factors on relevant calculated physical characteristics to take into account the effect of multicore lay-lengths; a dedicated annex to highlight correction factors for different number of cores has been introduced (Annex A).

The text of this International Standard is based on the following documents:

Draft	Report on voting
20/2096/FDIS	20/2103/RVD

Full information on the voting for its approval can be found in the report on voting indicated in the above table.

The language used for the development of this International Standard is English.

This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement available at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are described in greater detail at www.iec.ch/publications.

A list of all parts in the IEC 60287 series, published under the general title Electric cables -Calculation of the current rating, can be found on the IEC website.

LECHORN. COM. Cick to view the full role. The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under webstore.iec. In the data related to the specific document. At this date, the document will be

INTRODUCTION

This part of IEC 60287 contains formulae for the quantities $R_{\rm C}$, $W_{\rm d}$, $\lambda_{\rm 1}$ and $\lambda_{\rm 2}$.

It contains methods for calculating the permissible current rating of cables from details of the permissible temperature rise, conductor resistance, losses and thermal resistivities.

Formulae for the calculation of losses are also given.

The formulae in this document contain quantities which vary with cable design and materials used. The values given in the tables are either internationally agreed, for example, electrical resistivities and resistance temperature coefficients, or are those which are generally accepted in practice, for example, thermal resistivities and permittivities of materials. In this latter category, some of the values given are not characteristic of the quality of new cables but are considered to apply to cables after a long period of use. In order that uniform and comparable results can be obtained, the current ratings should be calculated with the values given in this document. However, where it is known with certainty that other values are more appropriate to the materials and design, then these may be used, and the corresponding current rating declared in addition, provided that the different values are quoted.

Quantities related to the operating conditions of cables are liable to vary considerably from one country to another. For instance, with respect to the ambient temperature and soil thermal resistivity, the values are governed in various countries by different considerations. Superficial comparisons between the values used in the various countries can lead to erroneous conclusions if they are not based on common criteria: for example, there can be different expectations for the life of the cables, and in some countries design is based on maximum values of soil thermal resistivity, whereas in others average values are used. Particularly, in the case of soil thermal resistivity, it is well known that this quantity is very sensitive to soil moisture content and can vary significantly with time, depending on the soil type, the topographical and meteorological conditions, and the cable loading.

The following procedure for choosing the values for the various parameters should, therefore, be adopted.

Numerical values should preferably be based on results of suitable measurements. Often such results are already included in national specifications as recommended values, so that the calculation can be based on these values generally used in the country in question; a survey of such values is given in IEC 60287-3-1.

A suggested list of the information required to select the appropriate type of cable is given in IEC 60287-3-1.

ELECTRIC CABLES – CALCULATION OF THE CURRENT RATING –

Part 1-1: Current rating equations (100 % load factor) and calculation of losses – General

1 Scope

This part of IEC 60287 is applicable to the conditions of steady-state operation of cables at all alternating voltages, and direct voltages up to 5 kV, buried directly in the ground, in ducts, troughs or in steel pipes, both with and without partial drying-out of the soil, as well as cables in air. The term "steady state" is intended to mean a continuous constant current (100 % load factor) just sufficient to produce asymptotically the maximum conductor temperature, the surrounding ambient conditions being assumed constant.

This document provides formulae for current ratings and losses.

The formulae given are essentially literal and designedly leave open the selection of certain important parameters. These can be divided into three groups:

- parameters related to construction of a cable (for example, thermal resistivity of insulating material) for which representative values have been selected based on published work;
- parameters related to the surrounding conditions, which can vary widely, the selection of which depends on the country in which the cables are used or will be used;
- parameters which result from an agreement between manufacturer and user and which involve a margin for security of service (for example, maximum conductor temperature).

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60228, Conductors of insulated cables

IEC 60287-1-8, Electric cables – Calculation of the current rating – Part 1-3: Current rating equations (100 % load factor) and calculation of losses – Current sharing between parallel single-core cables and calculation of circulating current losses

IEC 60287-2-1:2023, Electric cables – Calculation of the current rating – Part 2-1: Thermal resistance – Calculation of the thermal resistance

3 Terms, definitions and symbols

3.1 Terms and definitions

No terms and definitions are listed in this document.

ISO and IEC maintain terminology databases for use in standardization at the following addresses:

- IEC Electropedia: available at https://www.electropedia.org/
- ISO Online browsing platform: available at https://www.iso.org/obp

3.2 Symbols

The symbols used in this document and the quantities which they represent are given in the following list.

A_{A} B_{1}, B_{2}	cross-sectional area of the armour coefficients (see 5.4.3) capacitance per core coefficient defined in 5.3.6	$$ mm 2 $$ $\!$ $\!$ $\!$ $\!$ $\!$ $\!$ $\!$ $\!$ $\!$ $\!$
C	capacitance per core	F/m
C_{F}	coefficient defined in 5.3.6 coefficient to take into account the position of the neutral axis	
C_{fL}	of the helically wound core in Annex A	
$C_{\sf gs}$	coefficient used in 5.3.7.1	
C_{LL}	length correction factor for considering laying up of cores	
C_{M1}	coefficient defined in 5.3.6	
C_{N}	coefficient defined in 5.3.6 🗸	
C_{P}	coefficient defined in 5.3.4	Ω/m
C_{p}	coefficient used in 5.3.7.2	
C_{Q}	coefficient defined in 5.3.4	Ω/m
C_{q}	coefficient used in 5.3.7.2	
${D_{e}}^{\star}$	external diameter of cable	m
D_{i}	diameter over insulation	mm
${D_{p}}^{\star}$	diameter over the individual core of a multicore cable	m
D_{S}	external diameter of metal sheath	mm
D_{oc}	diameter of the imaginary coaxial cylinder which just touches the crests of a corrugated sheath	mm
D_{it}	diameter of the imaginary cylinder which just touches the inside surface of the troughs of a corrugated sheath	mm
E_{e}	intensity of solar radiation	W/m^2
H	magnetizing force (see 5.4.3)	A/m
H_{S}	inductance of sheath	H/m
H_1, H_2, H_3	components of inductance due to the steel wires (see 5.4.3)	H/m
I	current in one conductor (RMS value)	Α
I_{S}	current in sheath (RMS value)	Α
${L_{L}}^*$	axial cable length over which the cores make one full helical turn	m

R_{C}	alternating current resistance of conductor at its maximum operating temperature per unit length of the cable	Ω/m
R_{A}	AC resistance of armour at its maximum operating temperature per unit length of the cable	Ω/m
R_{Ao}	AC resistance of armour at 20 °C per unit length of the cable	Ω/m
R_{e}	equivalent AC resistance of sheath and armour in parallel	Ω/m
R_{s}	AC resistance of cable sheath or screen at their maximum operating temperature per unit length of the cable	Ω/m
R_{SO}	AC resistance of cable sheath or screen at 20 °C per unit length of the cable	Ω/m
R'	DC resistance of conductor at maximum operating temperature per unit length of the cable	Ω/m
R_{o}	DC resistance of conductor at 20 °C per unit length of the cable	Ω/m
T_{1}	thermal resistance per core between conductor and sheath per unit length of the cable	K·m/W
T_2	thermal resistance between sheath and armour per unit length of the cable	K·m/W
T_3	thermal resistance of external serving per unit length of the cable	K·m/W
T_{4}	thermal resistance of surrounding medium (ratio of cable surface temperature rise above ambient to the losses per unit length)	K·m/W
$T^{\#}_{4}$	thermal resistance in free air adjusted for solar radiation	K·m/W
T_4'	thermal resistance between cable and duct (or pipe)	$K \cdot m/W$
T_4''	thermal resistance of the duct (or pipe)	$K \cdot m/W$
T_4'''	thermal resistance of the medium surrounding the duct (or pipe)	K·m/W
U_{o}	voltage between conductor and screen or sheath	V
W_{A}	losses in armour per unit length of the cable	W/m
W_{c}	losses in conductor per unit length of the cable	W/m
W_{d}	dielectric losses per unit length of the cable per phase	W/m
W_{s}	losses dissipated in sheath per unit length of the cable	W/m
$W_{(s+A)}$	total losses in sheath and armour per unit length of the cable	W/m
X	reactance of sheath (two-core cables and three-core cables in trefoil) per unit length of the cable	Ω/m
X_1	reactance of sheath (cables in flat formation)	Ω/m
X_{m}	mutual reactance between the sheath of one cable and the conductors of the other two when cables are in flat information	Ω/m
a	shortest minor length in a cross-bonded electrical section having unequal minor lengths	m
C	distance between the axes of conductors and the axis of the cable for three-core cables	mm
d	mean diameter of sheath or screen	mm
d'	mean diameter of sheath and reinforcement	mm

d_2	mean diameter of reinforcement	mm
d_{A}	mean diameter of armour	mm
$d_{\mathtt{C}}$	external diameter of conductor	mm
d'c	external diameter of equivalent round solid conductor having the same central duct as a hollow conductor	mm
d_{d}	internal diameter of pipe	mm
d_{f}	diameter of a steel wire	mm
d_{i}	internal diameter of hollow conductor	mm
d_{M}	major diameter of screen or sheath of an oval conductor	mm_//
d_{m}	minor diameter of screen or sheath of an oval conductor	m
d_{X}	diameter of an equivalent circular conductor having the same cross-sectional area and degree of compactness as the shaped one	mm
f	system frequency	Hz
k_{f}	factor used in the calculation of hysteresis losses in armour or reinforcement (see 5.4.3.4)	
k_{p}	factor used in calculating x_p (proximity effect)	
k_{S}	factor used in calculating x_s (skin effect)	
l^*	length of a cable section (general symbol, see 5.3.5)	m
In	natural logarithm (logarithm to base e, see IEC 60027-3)	
m	parameter used in calculation of eddy-current loss factor	$10^{-7} \text{ m/}\Omega$
n	number of conductors in a cable	
n_1	number of steel wires in a cable (see 5.4.3)	
p	length of lay of a steel wire along a cable (see 5.4.3)	
<i>r</i> 1	circumscribing radius of two- or three-sector shaped conductors	mm
S	axial separation of conductors	mm
^S 1	axia separation of two adjacent cables in a horizontal group of three, not touching	mm
s ₂	axial spacing between adjacent cables in trefoil formation; for cables in flat formation s_2 is the geometric mean of the three spacings	mm
t_0	insulation thickness between conductors	mm
t_3	thickness of the serving	mm
t_{s}	thickness of the sheath	mm
v	ratio of the thermal resistivities of dry and moist soils $(v = \rho_{\rm d}/\rho_{\rm W})$	
x_{p}	argument of a Bessel function used to calculate proximity effect	
x_s	argument of a Bessel function used to calculate skin effect	
y_p	proximity effect factor (see 5.1)	
ys	skin effect factor (see 5.1)	

α_{20}	temperature coefficient of electrical resistivity at 20 °C, per kelvin	I/K
β_1	coefficient used in 5.3.7.1	
β_2	angle between axis of armour wires and axis of cable (see $5.4.3$)	
γ	angular time delay (see 5.4.3)	
Δ_1 , Δ_2	coefficients used in 5.3.7.1	
δ_{A}	equivalent thickness of armour or reinforcement	mm
$tan\delta$	loss factor of insulation	2
ε	relative permittivity of insulation	Chi
ε_0	permittivity of vacuum	₹ /m
θ	maximum operating temperature of conductor	°C
θ_{a}	ambient temperature	°C
$\theta_{\sf ar}$	ambient temperature maximum operating temperature of armour	°C
$\theta_{\rm sc}$	maximum operating temperature of cable screen or sheath	°C
θ_{X}	critical temperature of soil; this is the temperature of the boundary between dry and moist zones	°C
$\Delta heta$	permissible temperature rise of conductor above ambient temperature	K
$\Delta heta_{X}$	critical temperature rise of soil; this is the temperature rise of the boundary between dry and moist zones above the ambient temperature of the soil	K
λ_0	coefficient used in 5.3.7	
λ_1, λ_2	ratio of the total losses in metallic sheaths and armour respectively to the total conductor losses (or losses in one sheath or armour to the losses in one conductor)	
λ' ₁	ratio of the losses in one sheath caused by circulating currents in the sheath to the losses in one conductor	
λ_1''	ratio of the losses in one sheath caused by eddy currents to the losses in one conductor	
И́m	loss factor for the middle cable of three cables in flat formation without transposition, with sheaths bonded at both ends	
411	loss factor for the outer cable with the greater losses of three cables in flat formation without transposition, with sheaths bonded at both ends	
ર્યા2	loss factor for the outer cable with the least losses of three cables in flat formation without transposition, with sheaths bonded at both ends	
μ	relative magnetic permeability of armour material	
μ_{e}	longitudinal relative permeability	
μ_{t}	transverse relative permeability	
$ ho_{20}$	conductor resistivity at 20 °C	$\Omega\cdot m$
$ ho_{d}$	thermal resistivity of dry soil	K·m/W
$ ho_{W}$	thermal resistivity of moist soil	K·m/W

- $ho_{
 m s}$ sheath resistivity at 20 °C $\Omega \cdot {
 m m}$
- σ absorption coefficient of solar radiation for the cable surface
- ω angular frequency of system $(2\pi f)$

4 Permissible current rating of cables

4.1 General

When the permissible current rating is being calculated under conditions of partial drying out of the soil, it is also necessary to calculate a rating for conditions where drying out of the soil does not occur. The lower of the two ratings shall be used.

4.2 Buried cables where drying out of the soil does not occur or cables in air

4.2.1 AC cables

The permissible current rating of an AC cable can be derived from the expression for the temperature rise above ambient temperature:

$$\Delta\theta = (I^2 R_{\rm C} + \frac{1}{2} W_{\rm d}) T_1 + n [I^2 R_{\rm C} (1 + \lambda_1) + W_{\rm d}] T_2 + n [I^2 R_{\rm C} (1 + \lambda_2) + W_{\rm d}] (T_3 + T_4)$$
(1)

where

- I is the current flowing in one conductor (A):
- $\Delta\theta$ is the conductor temperature rise above the ambient temperature (K);

NOTE The ambient temperature is the temperature of the surrounding medium under normal conditions, at a situation in which cables are installed, or will be installed, including the effect of any local source of heat, but not the increase of temperature in the immediate neighbourhood of the cables due to heat arising therefrom.

- $R_{\rm C}$ is the alternating current resistance per unit length of the cable at maximum operating temperature (Ω/m);
- $W_{\rm d}$ is the dielectric loss per unit length of the cable for the insulation surrounding the conductor (W/m);
- T_1 is the thermal resistance per unit length of the cable between one conductor and the sheath $(K \cdot m/W)$:
- T_2 is the thermal resistance per unit length of the cable of the bedding between sheath and armour (K · m/W);
- T_3 is the thermal resistance per unit length of the cable of the external serving of the cable (K · m/W);
- T_4 is the thermal resistance per unit length between the cable surface and the surrounding medium, as derived from IEC 60287-2-1 (K · m/W);
- n is the number of load-carrying conductors in the cable (conductors of equal size and carrying the same load);
- λ_1 is the ratio of losses in the metal sheath to total losses in all conductors in that cable;
- λ_2 is the ratio of losses in the armouring to total losses in all conductors in that cable.

The permissible current rating is obtained from Formula (1) as follows:

$$I = \left[\frac{\Delta\theta - W_{d} \left[0.5 T_{1} + n \left(T_{2} + T_{3} + T_{4} \right) \right]}{R_{C} T_{1} + n R_{C} \left(1 + \lambda_{1} \right) T_{2} + n R_{C} \left(1 + \lambda_{1} + \lambda_{2} \right) \left(T_{3} + T_{4} \right)} \right]^{0.5}$$
(2)

Where the cable is exposed to direct solar radiation, the formulae given in IEC 60287-2-1:2023, 4.2.1.2 shall be used.

The current rating for a four-core low-voltage cable may be taken to be equal to the current rating of a three-core cable for the same voltage and conductor size having the same construction, provided that the cable is used in a three-phase system where the fourth conductor is either a neutral conductor or a protective conductor. When it is a neutral conductor, the current rating applies to a balanced load.

4.2.2 DC cables up to 5 kV

The permissible current rating of a DC cable is obtained from the following simplification of the AC Formula (2):

$$I = \left[\frac{\Delta \theta}{R'T_1 + nR'T_2 + nR'(T_3 + T_4)}\right]^{0.5}$$

where

R' is the direct current resistance per unit length of the cable at maximum operating temperature (Ω/m) .

Where the cable is exposed to direct solar radiation, the formulae given in IEC 60287-2-1:2023, 4.2.1.2 shall be used.

4.3 Buried cables where partial drying-out of the soil occurs

4.3.1 AC cables

The following method shall be applied to a single isolated cable or circuit only, laid at conventional depths. The method is based on a simple two-zone approximate physical model of the soil where the zone adjacent to the cable is dried out whilst the other zone retains the site's thermal resistivity, the zone boundary being on isotherm¹. This method is considered to be appropriate for those applications in which soil behaviour is considered in simple terms only.

NOTE 1 Unstallations of more than one circuit as well as the necessary spacing between circuits are under consideration.

Changes in external thermal resistance, consequent to the formation of a dry zone around a single isolated cable or circuit, shall be obtained from the following Formula (3), compared with Formula (2):

$$I = \left[\frac{\Delta\theta - W_{d} \left[0.5 T_{1} + n \left(T_{2} + T_{3} + v T_{4} \right) + (v - 1) \Delta\theta_{x} \right]}{R_{C} \left[T_{1} + n \left(1 + \lambda_{1} \right) T_{2} + n \left(1 + \lambda_{1} + \lambda_{2} \right) \left(T_{3} + v T_{4} \right) \right]} \right]^{0.5}$$
(3)

[&]quot;Current ratings of cables buried in partially dried-out soil, Part 1": Electra No. 104, p. 11, January 1966 (in particular section 3 and Appendix 1).

where

v is the ratio of the thermal resistivities of the dry and moist soil zones $(v = \rho_d / \rho_w)$;

 $R_{\rm C}$ is the AC resistance of the conductor at its maximum operating temperature per unit length of the cable (Ω/m);

- 14 -

 $\rho_{\rm d}$ is the thermal resistivity of the dry soil (K · m/W);

 $\rho_{\rm w}$ is the thermal resistivity of the moist soil (K · m/W);

 θ_{x} is the critical temperature of the soil and temperature of the boundary between dry and moist zones (°C);

 θ a is the ambient temperature (°C);

 $\Delta\theta_{\rm X}$ is the critical temperature rise of the soil. This is the temperature rise of the boundary between the dry and moist zones above the ambient temperature of the soil $(\theta_{\rm X} + \theta_{\rm a})$ (K);

 T_4 is calculated using the thermal resistivity of the moist soil ($\rho_{\rm w}$) using IEC 60287-2-1:2023, 4.2.3.3. Mutual heating by modification of the temperature rise as in NEC 60287-2-1:2023, 4.2.3.2 cannot be applied.

 $\theta_{\rm x}$ and $\rho_{\rm d}$ shall be determined from a knowledge of the soil conditions.

NOTE 2 The choice of suitable soil parameters is under consideration in the meantime, values can be agreed between the manufacturer and purchaser.

4.3.2 DC cables up to 5 kV

The permissible current rating of a DC cable is obtained from the following simplification of the AC Formula (3):

$$I = \left[\frac{\Delta\theta + (v-1) \Delta\theta_{X}}{R(T_{1} + nT_{2} + n (T_{3} + vT_{4}))}\right]^{0.5}$$

where

R' is the direct current resistance per unit length of the cable at maximum operating temperature (Ω/m).

When considering cable installations in pipes or ducts, the thermal resistance of the surrounding medium T_4 is composed by three additive contributions of thermal resistances, i. e. that of the medium inside the pipe, the pipe itself and the ambient medium around the pipe T_4' , T_4'' and T_4''' , see IEC 60287-2-1. In that case only the contribution T_4''' is affected by drying out of the soil and in the above two formulae the term vT_4 shall be replaced by the term $T_4' + T_4'' + vT_4'''$.

4.4 Buried cables where drying-out of the soil shall be avoided

4.4.1 AC cables

Where it is desired that moisture migration be avoided by limiting the temperature rise of the cable surface to not more than $\Delta\theta_x$, the corresponding rating shall be obtained from:

$$I = \left[\frac{\Delta\theta_{x} - nW_{d}T_{4}}{nR_{C}T_{4}\left(1 + \lambda_{1} + \lambda_{2}\right)}\right]^{0.5}$$
(4)

However, depending on the value of $\Delta\theta_{\rm X}$ this can result in a conductor temperature which exceeds the maximum permissible value. The current rating used shall be the lower of the two values obtained, either from the above Equation (4) or from Equation (1).

The conductor resistance $R_{\rm C}$ shall be calculated for the appropriate conductor temperature, which can be less than the maximum permitted value. An estimate of the operating temperature shall be made and, if necessary, subsequently amended.

NOTE For four-core low-voltage cables, see the final paragraph in 4.2.1.

4.4.2 DC cables up to 5 kV

The permissible current rating of a DC cable shall be obtained from the following simplification of the AC Formula (4):

$$I = \left[\frac{\Delta \theta_{\mathsf{X}}}{nR' T_{\mathsf{4}}}\right]^{0.5}$$

The conductor resistance R' shall be modified as in 4.3.2.

4.5 Cables directly exposed to solar radiation

4.5.1 General

Taking into account the effect of solar radiation on a cable, the permissible current rating is given by Formulae (5) and (6):

4.5.2 AC cables

$$I = \left[\frac{\Delta \theta - W_{d} \left[0.5 \ T_{1} + w \left(T_{2} + T_{3} + T_{4}^{\#} \right) \right] - \sigma \ D_{e}^{*} \ E_{e} \ T_{4}^{\#}}{R_{C} T_{1} + n R_{C} \left(1 + \lambda_{1} + \lambda_{2} \right) \left(T_{3} + T_{4}^{\#} \right)} \right]^{0.5}$$

$$(5)$$

DC cables up to 5 kV

$$I = \left[\frac{\Delta\theta - \sigma \ D_{e}^{*} \ E_{e} \ T_{4}^{\#}}{R' \ T_{1} + nR' \ T_{2} + nR' \ (T_{3} + T_{4}^{\#})} \right]^{0.5}$$
 (6)

where

- σ is the absorption coefficient of solar radiation for the cable surface (see Table 4);
- $E_{\rm e}$ is the intensity of solar radiation which should be taken as 1 000 W/m² for most latitudes; it is recommended that the local value be obtained where possible;
- $T_4^{\#}$ is the external thermal resistance of the cable in free air, adjusted to take account of solar radiation (see IEC 60287-2-1) (K · m/W);
- $D_{\rm e}^*$ is the external diameter of the cable (m) for corrugated sheaths $D_{\rm e}^* = (D_{\rm oc} + 2t_3) \cdot 10^{-3}$ (m);
- t_3 is the thickness of the serving (mm).

Calculation of losses

5.1 AC resistance of conductor

5.1.1 General

The AC resistance per unit length of the cable at its maximum operating temperature is given by the following Formula (7), except in the case of pipe-type cables (see 5.1.6):

– 16 **–**

$$R_{\rm C} = R'(1 + y_{\rm s} + y_{\rm p})$$
 (7)

where

R_C is the alternating current resistance of the conductor at maximum operating temperature per unit length of the cable (Ω/m) ;

is the DC resistance of the conductor at maximum operating temperature per unit length of KC 6028 the cable (Ω/m) ;

is the skin effect factor; y_s

is the proximity effect factor.

5.1.2 DC resistance of conductor

The DC resistance per unit length of the cable at its maximum operating temperature θ is given

$$R' = R_0 [1 + a_{20} (\theta - 20K)]$$

where

 R_0 is the DC resistance of the conductor at 20 °C per unit length of the cable (Ω/m);

The value of R_0 shall be derived directly from IEC 60228. Where the conductor size is outside the range covered by IEC 60228, the value of $R_{\rm o}$ can be chosen by agreement between the manufacturer and purchaser. The conductor resistance should then be calculated using the values of resistivity given in Table 1 and considering the length of the conductor in the finished cable, see also Annex A.

 α_{20} is the constant mass temperature coefficient at 20 °C per kelvin (see Table 1 for standard values);

is the maximum operating temperature in degrees Celsius (this will be determined by the type of insulation to be used); see appropriate IEC specification or national standard.

5.1.3 Skin effect factor y_s

The skin effect factor y_s is given by the following equations:

For
$$0 < x_s \le 2.8$$
 $y_s = \frac{x_s^4}{192 + 0.8 x_s^4}$

For
$$2.8 < x_s \le 3.8$$
 $y_s = -0.136 - 0.0177x_s + 0.0563x_s^2$

For
$$x_s > 3.8$$
 $y_s = 0.354x_s - 0.733$

where

$$x_s^2 = \frac{8\pi f}{R'} 10^{-7} k_s$$
;

f is the supply frequency in Hz.

Values for k_s are given in Table 2.

In the absence of alternative formulae, it is recommended that the formulae in 5.1.3 be used also for sector and oval-shaped conductors.

Proximity effect factor y_p for two-core cables and for two single-core cables 5.1.4

The proximity effect factor is given by:

$$y_{\rm p} = \frac{x_{\rm p}^4}{192 + 0.8 x_{\rm p}^4} \left(\frac{d_{\rm c}}{s}\right)^2 \times 2.9$$

where

$$x_{\rm p}^2 = \frac{8\pi f}{R'} 10^{-7} k_{\rm p}$$
;

 d_{c} is the diameter of the conductor (mm);

Values for $k_{\rm D}$ are given in Table 2.

 $\kappa_{\rm p}~;$ is the diameter of the conductor (mm); is the distance between conductor axes (mm). The estimate of the second conductor axes (mm) are given in Table 2. The province of practical cases against the province of the conductor axes (mm). The province of the conductor axes (mm) and the province of the conductor axes (mm) and the province of the conductor axes (mm). The province of the conductor axes (mm) and the conductor axes (mm) are axes (mm) and the conductor axes (mm) and the conductor axes (mm) and the conductor axes (mm) are axes (mm) and the conductor axes (mm) and the conductor axes (mm) are axes (The formulae in 5.1.4 are accurate providing x_p does not exceed 2,8, and therefore applies to the majority of practical cases.

Proximity effect factor y_p for three-core cables and for three single-core cables

5.1.5.1 Circular conductor cables

The proximity effect factor is given by:

$$y_{p} = \frac{x_{p}^{4}}{192 + 0.8 x_{p}^{4}} \left(\frac{d_{c}}{s}\right)^{2} \left[0.312 \left(\frac{d_{c}}{s}\right)^{2} + \frac{1.18}{\frac{x_{p}^{4}}{192 + 0.8 x_{p}^{4}} + 0.27}\right]$$

where

$$x_{\rm p}^2 = \frac{8\pi f}{p'} 10^{-7} k_{\rm p}$$
;

 $d_{\rm c}$ is the diameter of the conductor (mm);

is the distance between conductor axes (mm).

For cables in flat formation, s is the spacing between adjacent phases. Where the spacing between adjacent phases is not equal, the distance will be taken as $s = \sqrt{s_1 \times s_2}$.

Values for k_p are given in Table 2.

The formulae in 5.1.5.1 are accurate provided x_p does not exceed 2,8, and therefore applies to the majority of practical cases.

5.1.5.2 Shaped conductor cables

In the case of multicore cables with shaped conductors, the value of y_p shall be two-thirds of the value calculated according to 5.1.5.1,

with:

 $d_c = d_x =$ diameter of an equivalent circular conductor of the same cross-sectional area, and degree of compaction (mm);

$$s = (d_x + t_0) \text{ (mm)},$$

where

 t_0 is the thickness of insulation between conductors (mm).

Values for $k_{\rm D}$ are given in Table 2.

This calculation is accurate provided x_p does not exceed 2,8, and therefore applies to the majority of practical cases.

5.1.6 Skin and proximity effects in pipe-type cables

For pipe-type cables, the skin and proximity effects calculated according to 5.1.3, 5.1.4 and 5.1.5 shall be increased by a factor of 1,5. For these cables,

$$R_{\rm C} = R' \Big[1 + 1.5 (y_{\rm s} + y_{\rm p}) \Big] \quad (\Omega/m)$$

5.2 Dielectric losses (applicable to AC cables only)

The dielectric loss is voltage dependent and thus only becomes important at voltage levels related to the insulation material being used.

The dielectric loss should be taken into account for values of U_0 equal to or higher than the following:

38 kV ____for cables with solid-type impregnated paper insulation;

63,5 ky for oil-filled and gas-pressure cables;

18 kV for butyl rubber insulated cables;

63,5 kV for EPR insulated cables;

6 kV for PVC insulated cables;

127 kV for PE (HD and LD) insulated cables;

127 kV for XLPE (unfilled) insulated cables;

63,5 kV for XLPE (filled) insulated cables.

It is not necessary to calculate the dielectric loss for unscreened multicore or DC cables.

The dielectric loss per unit length of cable in each phase is given by:

$$W_{\rm d} = \omega C U_0^2 \tan \delta$$
 (W/m)

where

 $\omega = 2\pi f$

is the capacitance per unit length of a cable (F/m);

 U_0 is the voltage to earth (V).

Values of tan δ , the loss factor of the insulation at power frequency and operating temperature, are given in Table 3.

The capacitance for cylindrical screens around circular conductors is given by:

$$C = \frac{2\pi\varepsilon_0\varepsilon}{\ln\left(\frac{D_i}{d_c}\right)}C_{LL} \qquad (F/m)$$

where

is the permittivity of the vacuum $\approx 8,854 \cdot 10^{-12}$ Fym; is the relative permittivity ε_0

ε

is the external diameter of the insulation (excluding screen) (mm); D_{i}

is the diameter of the conductor, including screen, if any (mm). $d_{\mathbf{c}}$

is the length correction factor for considering laying up cores. The calculation is given in Annex A.

The same formula can be used for oval conductors if the geometric mean of the appropriate major and minor diameters is substituted for D_i and d_c .

Values of ε are given in Table 3.

Loss factor for sheath and screen (applicable to power frequency AC cables only) 5.3

5.3.1 General

The power loss in the sheath or screen (λ_1) consists of losses caused by circulating currents (λ'_1) and eddy currents (λ''_1) ,

thus:

$$\lambda_1 = \lambda_1' + \lambda_1''$$

The formulae given in this Subclause 5.3 express the loss in terms of the total power loss in the conductor(s) and for each particular case it is indicated which type of loss shall be considered. The formulae for single-core cables apply to single circuits only and the effects of earth return paths are neglected. Methods are given for both smooth-sided and corrugated sheaths.

For single-core cables with sheaths bonded at both ends of an electrical section, only the loss due to circulating currents in the sheaths shall be considered (see 5.3.2, 5.3.3 and 5.3.4). An electrical section is defined as a portion of the route between points at which the sheaths or screens of all cables are solidly bonded.

To consider the effect of different spacing of certain spans along the route, see 5.3.5

For cables with Milliken conductors, the loss factor should be increased to take account of the loss due to eddy currents in the sheaths (see 5.3.6).

For a cross-bonded installation, it is considered unrealistic to assume that minor sections are electrically identical and that the loss due to circulating currents in the sheaths is negligible. Recommendations are made in 5.3.7 for augmenting the losses in the sheaths to take account of this electrical unbalance.

The electrical resistivities and temperature coefficients of lead and aluminium, for use in calculating the resistance of the sheath R_s are given in Table 1.

The formulae given in this Subclause 5.3 use the resistance of the sheath or screen at its maximum operating temperature. The maximum operating temperature of the sheath or screen is given by:

$$\theta_{\rm sc} = \theta - \left(I^2 R_{\rm C} + 0.5 W_{\rm d}\right) T_{\rm 1}$$
 (°C)

where

 $\theta_{\rm sc}$ is the maximum operating temperature of the cable screen or sheath (°C).

Because the temperature of the sheath or screen is a function of the current, I, an iterative method is used for the calculation.

The resistance of the sheath of screen at its maximum operating temperature is given by:

$$R_{\rm s} = R_{\rm so} \left[1 + \alpha_{20} \left(\theta_{\rm sc} - 20 \text{K} \right) \right] \quad (\Omega/\text{m})$$

where

 R_{so} is the resistance of the cable sheath or screen at 20 °C per unit length of the cable (Ω/m).

5.3.2 Two single-core cables, and three single-core cables (in trefoil formation), sheaths bonded at both ends of an electrical section

For two single-core cables, and three single-core cables (in trefoil formation) with sheaths bonded at both ends, the loss factor is given by:

$$\lambda_1' = \frac{R_s}{R_C} \frac{1}{1 + \left(\frac{R_s}{X}\right)^2}$$

where

 R_s is the resistance of the sheath or screen per unit length of cable at its maximum operating temperature (Ω/m) ;

- X is the reactance per unit length of sheath or screen per unit length of cable, $2 ω 10^{-7} ln \left(\frac{2 s}{d}\right) (Ω/m);$
- ω is 2 π × frequency (1/s);
- s is the distance between conductor axes in the electrical section being considered (mm);
- d is the mean diameter of the sheath (mm);
 - for oval-shaped cores, d is given by $\sqrt{d_{\rm M} \cdot d_{\rm m}}$ where $d_{\rm M}$ and $d_{\rm m}$ are the major and minor mean diameters respectively of the sheath or screen;
 - for corrugated sheaths, d is given by $\frac{1}{2}(D_{oc} + D_{it})$.
- λ_1'' = 0, i.e. eddy-current loss is ignored, except for cables having Milliken conductors when λ_1'' is calculated by the method given in 5.3.6.

5.3.3 Three single-core cables in flat formation, with regular transposition, sheaths bonded at both ends of an electrical section

For three single-core cables in flat formation, with the middle cable equidistant from the outer cables, regular transposition of the cables and the sheaths bonded at every third transposition, the loss factor is given by:

$$\lambda_1' = \frac{R_s}{R_C} \frac{1}{1 + \left(\frac{R_s}{N_1}\right)^2}$$

where

 X_1 is the reactance per unit length of sheath, $2\omega 10^{-7} ln\left\{2\sqrt[3]{2}\left(\frac{s}{d}\right)\right\}$ (Ω/m);

 λ_1'' = 0, i.e. eddy-current loss is ignored, except for cables having Milliken conductors when λ_1'' is calculated by the method given in 5.3.6.

5.3.4 Three single-core cables in flat formation, without transposition, sheaths bonded at both ends of an electrical section

For three single-core cables in flat formation, with the middle cable equidistant from the outer cables, without transposition and with the sheaths bonded at both ends of an electrical section, the loss factor for the cable which has the greatest loss (i.e. the outer cable carrying the lagging phase) is given by:

$$\lambda'_{11} = \frac{R_s}{R_C} \left[\frac{0.75 \, C_P^2}{R_s^2 + C_P^2} + \frac{0.25 \, C_Q^2}{R_s^2 + C_Q^2} + \frac{2 \, R_s \, C_P \, C_Q \, X_m}{\sqrt{3} (R_s^2 + C_P^2) (R_s^2 + C_Q^2)} \right]$$
(8)

For the other outer cable, the loss factor is given by:

$$\lambda'_{12} = \frac{R_s}{R_C} \left[\frac{0.75 \, C_P^2}{R_s^2 + C_P^2} + \frac{0.25 \, C_Q^2}{R_s^2 + C_Q^2} - \frac{2 \, R_s \, C_P \, C_Q \, X_m}{\sqrt{3} \, (R_s^2 + C_P^2) \, (R_s^2 + C_Q^2)} \right] \tag{9}$$

For the middle cable, the loss factor is given by:

$$\lambda_{1m}' = \frac{R_s}{R_C} \frac{C_Q^2}{R_s^2 + C_Q^2}$$
 (10)

In these Formulae (8), (9) and (10):

$$C_{\mathsf{P}} = X + X_{\mathsf{m}}$$

- 22 -

$$C_{Q} = X - \frac{X_{m}}{3}$$

where

X is the reactance of the sheath or screen per unit length of cable for two adjacent single-core cables, 2 ω 10⁻⁷ In $\left(\frac{2s}{d}\right)$ (Ω/m);

 $X_{\rm m}$ is the mutual reactance per unit length of cable between the sheath of an outer cable and the conductors of the other two, when the cables are in flat formation, $2 \omega 10^{-7} \ln{(2)} (\Omega/m)$;

 λ_1'' = 0, i.e. eddy-current loss is ignored, except for cables having Milliken conductors when λ_1'' is calculated by the method given in 5.3.6.

Ratings for cables in air should be based on the loss for the outer cable carrying the lagging phase.

5.3.5 Variation of spacing of single-core cables between sheath bonding points

For single-core cable circuits with sheaths solidly bonded at both ends and possibly at intermediate points, the circulating currents and the consequent loss increase as the spacing increases, and it is advisable to use as close a spacing as possible. The optimum spacing is achieved by considering both losses and mutual heating between cables.

It is not always possible to install cables with one value of spacing all along a route. The following recommendations relate to the calculation of sheath circulating current losses when it is not possible to install cables with a constant value of spacing over the length of one electrical section. A section is defined as a portion of the route between points at which sheaths of all cables are solidly bonded. The recommendations below give values for loss factors which apply to the whole of a section, but it should be noted that the appropriate values of conductor resistance and external thermal resistance shall be calculated on the basis of the closest cable spacing at any place along the section.

a) Where spacing along a section is not constant but the various values are known, the value for X in 5.3.2, 5.3.3 and 5.3.4 shall be derived from:

$$X = \frac{I_{a}^{*} X_{a} + I_{b}^{*} X_{b} + ... + I_{n}^{*} X_{n}}{I_{a}^{*} + I_{b}^{*} + ... + I_{n}^{*}}$$

where

 $I_{\mathsf{a}}^*, I_{\mathsf{b}}^* \dots I_{\mathsf{n}}^*$ are lengths with different spacings along an electrical section;

 $X_{\rm a}, X_{\rm b} \dots X_{\rm n}$ are the reactances per unit length of cable, the relevant formulae being given in 5.3.2, 5.3.3 and 5.3.4 where appropriate values of spacings $s_{\rm a}, s_{\rm b} \dots s_{\rm n}$ are used.

The proposed formula is an approximation. If more detailed results are required, the user shall refer to IEC 60287-1-3. For mixed formations, that comprise flat and trefoil sections, the user shall refer to IEC 60287-1-3.

- b) Where in any section the spacing between cables and its variation along the route are not known and cannot be anticipated, the losses in that section, calculated from the design spacing, shall be arbitrarily increased by 25 %, this value having been found to be appropriate for lead-sheathed HV cables. A different increase can be used by agreement if it is considered that 25 % is not appropriate to a particular installation.
- c) Where the section includes a spread-out end, it is possible that the allowance in b will not be sufficient and it is recommended that an estimate of the probable spacing be made and the loss calculated by the procedure given in a) above.

NOTE This increase does not apply to installations with single-point bonding or cross-bonding (see 5.3.7).

5.3.6 Effect of Milliken conductors

Where the conductors are subjected to a reduced proximity effect, as with Milliken conductors, the sheath loss factor λ_1'' of 5.3.2, 5.3.3 and 5.3.4 cannot be ignored, but shall be obtained by multiplying the value of λ_1'' , obtained from 5.3.7 for the same cable configuration, by the factor C_F given by the formula:

$$C_{\mathsf{F}} = \frac{4 \ C_{\mathsf{M1}}^2 C_{\mathsf{N}}^2 + (C_{\mathsf{M1}} + C_{\mathsf{N}})^2}{4 \ (C_{\mathsf{M1}}^2 + 1) \ (C_{\mathsf{N}}^2 + 1)}$$

where

$$C_{\rm M1} = C_{\rm N} = \frac{R_{\rm s}}{X}$$
 for cables in trefoil formation

and

$$C_{\text{M1}} = \frac{R_{\text{S}}}{X + X_{\text{m}}}$$
 and $C_{\text{N}} = \frac{R_{\text{S}}}{X - \frac{X_{\text{m}}}{2}}$ for cables in flat formation with equidistant spacing.

Where the spacing along a section is not constant the value of X shall be calculated as in 5.3.5 a).

5.3.7 Single-core cables, with sheaths bonded at a single point or cross-bonded

5.3.7 Eddy-current losses

For single-core cables with sheaths bonded at a single point or cross-bonded the eddy-current loss factor is given by:

$$\lambda_1'' = \frac{R_s}{R_C} \left[C_{gs} \lambda_0 (1 + \Delta_1 + \Delta_2) + \frac{(\beta_1 t_s)^4}{12 \times 10^{12}} \right]$$

where

$$C_{gs} = 1 + \left(\frac{t_s}{D_s}\right)^{1,74} (\beta_1 D_s 10^{-3} - 1.6);$$

$$\beta_1 = \sqrt{\frac{4\pi\omega}{10^7 \rho_s}};$$

is the electrical resistivity of the sheath material at operating temperature (see Table 1)

 D_s is the external diameter of the cable sheath (mm);

For corrugated sheaths, the mean outside diameter $\frac{D_{oc} + D_{it}}{2} + t_s$ shall be used.

is the thickness of the sheath (mm);

 $= 2\pi f$;

For lead-sheathed cables, C_{gs} can be taken as unity and $\frac{(\beta_1 t_s)^4}{12 \times 10^{12}}$ can be neglected.

For aluminium sheathed cables, it can be necessary for both terms to be evaluated when the sheath diameter is greater than approximately 70 mm or the sheath is thicker than usual.

For cables with a wire screen and an equalizing tape, or foll screen over the wires, the eddy-current losses are considered negligible.

Formulae for $\lambda_0,\,\Delta_1$ and Δ_2 are given below:

(in which: $m = \frac{\omega}{R} 10^{-7}$, for $m \le 0,1$, Δ_1 and Δ_2 can be neglected)

1) Three single-core cables in trefoil formation:

le-core cables in trefoil formation:
$$\lambda_0 = 3 \left(\frac{m^2}{1+m^2}\right) \left(\frac{d}{2s}\right)^2$$

$$\Delta_1 = (1,14m^{2,45}+0,33) \left(\frac{d}{2s}\right)^{(0,92\ m+1,66)}$$

$$\Delta_1 = (1,14m^{2,45} + 0,33) \left(\frac{d}{2s}\right)^{(0,92m+1,66)}$$

$$\Delta_2 = 0$$

2) Three single-core cables, flat formation:

a) centre cable:

$$\lambda_0 = 6 \left(\frac{m^2}{1 + m^2} \right) \left(\frac{d}{2s} \right)^2$$

$$\Delta_1 = 0.86m^{3.08} \left(\frac{d}{2s}\right)^{(1.4m + 0.7)}$$

$$\Delta_2 = 0$$